

US006288034B1

(12) United States Patent

Murgita

(10) Patent No.: US 6,288,034 B1

(45) Date of Patent: *Sep. 11, 2001

(54) RECOMBINANT HUMAN ALPHA-FETOPROTEIN AS AN IMMUNOSUPPRESSIVE AGENT

(75) Inventor: Robert A. Murgita, Montreal (CA)

(73) Assignee: Martinex R & D Inc. (CA)

(*) Notice: This patent issued on a continued prosecution application filed under 37 CFR

1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C.

154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: **09/186,723**

(22) Filed: Nov. 5, 1998

Related U.S. Application Data

(63) Continuation of application No. 08/377,309, filed on Jan. 24, 1995, now Pat. No. 5,965,528.

(51)	Int. Cl. ⁷	•••••	A61K	38/00 ;	C07K	14/47
------	-----------------------	-------	-------------	----------------	------	-------

(56) References Cited

U.S. PATENT DOCUMENTS

4,692,332	9/1987	McMichael 424/88
4,877,610	10/1989	McMichael 424/88
4,966,753	10/1990	McMichael 424/88
4,970,071	11/1990	McMichael 424/88
4,996,193	2/1991	Hewitt et al 514/11
5,130,415	7/1992	Tecce et al 530/324
5,206,153	4/1993	Tamaoki et al 435/69.7
5,365,948	11/1994	McMichael 128/898
5,384,250	1/1995	Murgita 435/69.1

FOREIGN PATENT DOCUMENTS

0 001 812	5/1979	(EP).
20058666	1/1990	(JP).
WO 86/04241	7/1986	(WO).
WO 93/05774	4/1993	(WO).
WO 94/10199	5/1994	(WO).

OTHER PUBLICATIONS

Abramsky et al., "Alpha-fetoprotein Suppresses Experimental Allergic Encephalomyelitis," Journal of Neuroimmunology 2:1–7 (1982).

Abramsky et al., Annals New York Academy of Sciences, pp. 108–115 (1983).

Aoyagi et al., "Differential Reactivity ofα–Fetoprotein with Lectins and Evaluation of Its Usefulness in the Diagnosis of Hepatocellular Carcinoma", Gann 75:809–815 (1984).

Biddle et al., "Specific Cytoplasmic Alpha–fetoprotein Binding Protein In MCF–7 Human Breast Cancer Cells and Primary Breast Cancer Tissue," Breast Cancer Research and Treatment 10:279–286 (1987).

Boismenu et al., "Expression of Domains of Mouse Alpha–Fetoprotein in *Escherichia coli*," Life Sciences 43:673–681 (1988).

Brenner et al., "Influence Of Alpha–fetoprotein On The In Vitro And In Vivo Immune Response To Acetylcholine Receptor," Annals New York Academy of Sciences 377:208–221 (1981).

Brenner et al., "Inhibitory Effect Of α-fetoprotein On the Binding Of *Myasthenia gravis* Antibody To Acetylcholine Receptor," Proc. Natl. Acad. Sci. USA 77:3635–3639(1980). Brenner et al., "Immunosuppression of Experimental Autoimmune *Myasthenia gravis* by Alpha-Fetoprotein Rich Formation," Immunology Letters 3:163–167 (1981).

Buamah et al., "Serum alpha fetoprotein heterogeneity as a means of differentiating between primary hepatocellular carcinoma and hepatic secondaries," Clinica Chimica Acta. 139:313–316 (1984).

Buschman et al., "Experimental Myasthenia gravis Induced in Mice by Passive Transfer of Human Myasthenic Immunoglobulin," Journal of Neuroimmunology, 13:315–330 (1987).

Cohen et al., "Suppression by Alpha–Fetoprotein of Murine Natural Killer Cell Activity Stimulated in Vitro and in Vivo by Interferon and Interleukin 2," Scand. J. Immunol. 23:211–223 (1986).

Dattwyler et al., "Binding Of α-foetoprotein To Murine T Cells," Nature 256:656-657 (1975).

Fialova et al., "Serum Levels of Trophoblast-Specific Beta-1-Globulin (SP1) and Alpha-1-Fetoprotein (AFP) in Pregnant Women With Rheumatoid Arthritis," Ceskoslovenska Gynekologie 56:166–170 (1991) (Abstract only).

Gershwin et al., "The Influence of α-Fetoprotein on Moloney Sarcoma Virus Oncogenesis: Evidence For Generation of Antigen Nonspecific Suppressor T Cells," The Journal of Immunology 121:2292–2297 (1978).

Giuliani et al., "Synthesis And Characterization Of A Recombinant Fragment Of Human α-fetoprotein With Antigenic Selectivity Versus Albumin," Protein Engineering 2:605–610 (1989).

Glazier et al., "Graft-Versus-Host Disease in Cyclosporin A-Treated Rats After Syngeneic and Autologous Bone Marrow Reconstitution," J. Exp. Med. 158:1–8 (1983).

Goidl et al., "Studies On The Mechanisms of Alpha–Feto-protein Induction of Immune Suppressive Activity," Developmental Immunobiology pp. 35–55 (1979).

(List continued on next page.)

Primary Examiner—Kenneth R. Horlick Assistant Examiner—Teresa Strzelecka (74) Attorney, Agent, or Firm—Clark & Elbing LLP

(57) ABSTRACT

Disclosed are methods of inhibiting autoreactive immune cell proliferation in a mammal, involving administering to the mammal a therapeutically effective amount of recombinant human alpha-fetoprotein or an immune cell antiproliferative fragment or analog thereof.

13 Claims, 7 Drawing Sheets

OTHER PUBLICATIONS

Hamel et al., "Phenotype and Function of Bone Marrow-Derived T-and Non-T-Cells Activated in Vitro By Alpha-Fetoprotein," In: Biological Activities of Alpha-Fetoprotein (vol. 1), Mizejewski, G.J. and Jacobson, H.I (eds.), CRC Press, Inc. (Boca Raton, Fl), pp. 167–177 (1987).

Heyward et al., "Early Detection Of Primary Hepatocellular Carcinoma By Screening For Alpha–Fetoprotein In High–Risk Families," The Lancet 2:1161–1162 (1983).

Hooper et al., "Human AFP Inhibits Cell Proliferation and NK-Like Cytotoxic Activity Generated in Autologous, But Not In Allogeneic Mixed Lymphocyte Reactions," In: Biological Activities of Alpha-Fetoprotein, (vol. II) Mizejewski, G.J. and Jacobson, H.I. (eds.), CRC Press, Inc. (Boca Raton, FL), pp. 183–197 (1989).

Hooper et al., "Selective Inhibition Of Murine T-Cell Proliferation And Lymphokine-Activated Natural Killer Cell Function By alpha-Fetoprotein, In: Biological Activities of Alpha-Fetoprotein," (vol. 1) Mizejewski, G.J. and Jacobson, H.I (eds.), CRC Press, Inc. (Boca Raton, FL), pp. 153–165 (1987).

Hooper et al., "Regulation of Murine T–Cell Responses to Autologous Antigens by α–Fetoprotein," Cellular Immunology 63:417–425 (1981).

Hooper et al., "Suppression Of Primary And Secondary Autologous Mixed Lymphocyte Reactions By Murine Alphafetoprotein," Oncodevelopmental Biology and Medicine 3:151–160 (1982).

Hoskin et al., "Analysis of Pregnancy–Associated Immunoregulatory Pathways," In: Alpha–Fetoprotein and Congenital Disorders, Academic Press, Inc. (New York), pp. 59–78 (1985).

Hoskin et al., "In Vitro Activation of Bone Marrow–Derived T–and Non–T–Cells Subsets by α–Fetoprotein," Cellular Immunology 96:163–174 (1985).

Hoskin et al., "Specific Maternal Anti–fetal Lymphoproliferative Responses And Their Regulation By Natural Immunosuppressive Factors," Clin. Exp. Immunol. 76:262–267 (1989).

Innis et al., "Amplification of α–Fetoprotein Complementary DNA by Insertion into a Bacterial Plasmid," Archives of Biochemistry and Biophysics 195:128–135 (1979).

Ishiguro et al., "Serum Alpha-Fetoprotein Subfractions in Patients With Primary Hepatoma or Hepatic Metastasis of Gastric Cancer," Cancer 55:156–159 (1985).

Jacobson et al., "Inhibition of Estrogen-dependent Breast Cancer Growth by a Reaction Product of α-Fetoprotein and Estradiol," Cancer Research 50:415–420 (1990).

Jiang et al., "Role of CD8⁺T Cells In Murine Experimental Allergic Encephalomyelitis," Science 256:1213–1215 (1992).

Keller et al., "Immunosuppressive Properties of AFP: Role Of Estrogens," In: Onco-Developmental Gene Expression, Fishman, W.H. and Sell, S. (eds.), Academic Press, Inc. (New York) pp. 287–295 (1976).

Kikutani et al., "The Murine Autoimmune Diabetes Model: NOD and Related Strains," Advances in Immunology 51:285–322 (1992).

Line et al., "Medical Potential Of AFP As A Tumor Imaging Agent," In: Biological Activities of Alpha–Fetoprotein (vol. II), Mizejewski, G.J. and Jacobson, H.I (eds.), CRC Press, Inc. (Boca Raton, FL), pp. 139–148 (1989).

Lu et al., "α–Fetoprotein Inhibits Macrophage Expressions Of la Antigens," The Journal of Immunology 132:1722–1727 (1984).

Masuda et al., "Selective Antitumor Effect of Thioether-Linked Immunotoxins Composed of Gelonin and Monoclonal Antibody to Alpha-Fetoprotein or its F(ab')₂ Fragment," Tumor Biol. 15:175–183 (1994).

Mizejewski et al., "Alpha Fetoprotein Testing: Regulatory and Technical Considerations," Laboratory Management (1987).

Morinaga et al., "Primary Structures Of Human α-fetoprotein And Its mRNA," Proc. Natl. Acad. Sci. USA 80:4604–4608 (1983).

Moro et al., "Monoclonal Antibodies Directed against a Widespread Oncofetal Antigen: The Alpha–Fetoprotein Receptor," Tumor Biol. 14:116–130 (1993).

Murgita et al., "Selective Immunoregulatory Properties Of α -Fetoprotein," La Ricerca Clin. Lab. 9:327–342 (1979). Murgita et al., "Regulation of Immune Functions in the Fetus and Newborn," Progress Allergy 29:54–132 (1981). Murgita et al., "Suppression Of The Immune Response By α -Fetoprotein," The Journal of Experimental Medicine 141:440–452 (1975).

Murgita et al., "Suppression Of The Immune Response By α–Fetoprotein," The Journal of Experimental Medicine 141:269–286 (1975).

Murgita et al., "Adult murine T cells activated in vitro by α-fetoprotein and naturally occuring T cells in newborn mice: Identity in function and cell surface differentiation antigens," Proc. Natl. Acad. Sci. USA 75:2897–2901 (1978). Murgita et al., "Effects of human alpha-foetoprotein on human B and T lymphocyte proliferaton in vitro," Clin. Exp. Immunol. 33:347–356 (1978).

Murgita et al., "The Effects of Mouse Alpha–Fetoprotein on T–Cell–Dependent and T–Cell–Independent Immune Responses In Vitro," Scand. J. Immunol. 5:1215–1220 (1976).

Murgita et al., "The Immunosuppressive Role of Alpha–Feto–protein During Pregnancy," Scand. J. Immunol. 5:1003–1014 (1976).

Murgita et al., "α–Fetoprotein induces suppressor T cells in vitro," Nature 267:257–258 (1977).

Murgita et al., "Characterization Of Murine Newborn Inhibitory T Lymphocytes: Functional And Phenotype Comparison With An Adult T Subset Activated in vitro By Alpha–fetoprotein," Eur. J. Immunol. 11:957–964 (1981).

Nelson et al., "Maternal–Fetal Disparity in HLA Class II Alloantigens And The Pregnancy–Induced Amelioration of Rheumatoid Arthritis," The New England Journal of Medicine 329:466–471 (1993).

Nishi et al., "Expression of Rat α–Fetoprotein cDNA in *Escherichia coli* and in Yeast," J. Biochem. 104:968–972 (1988).

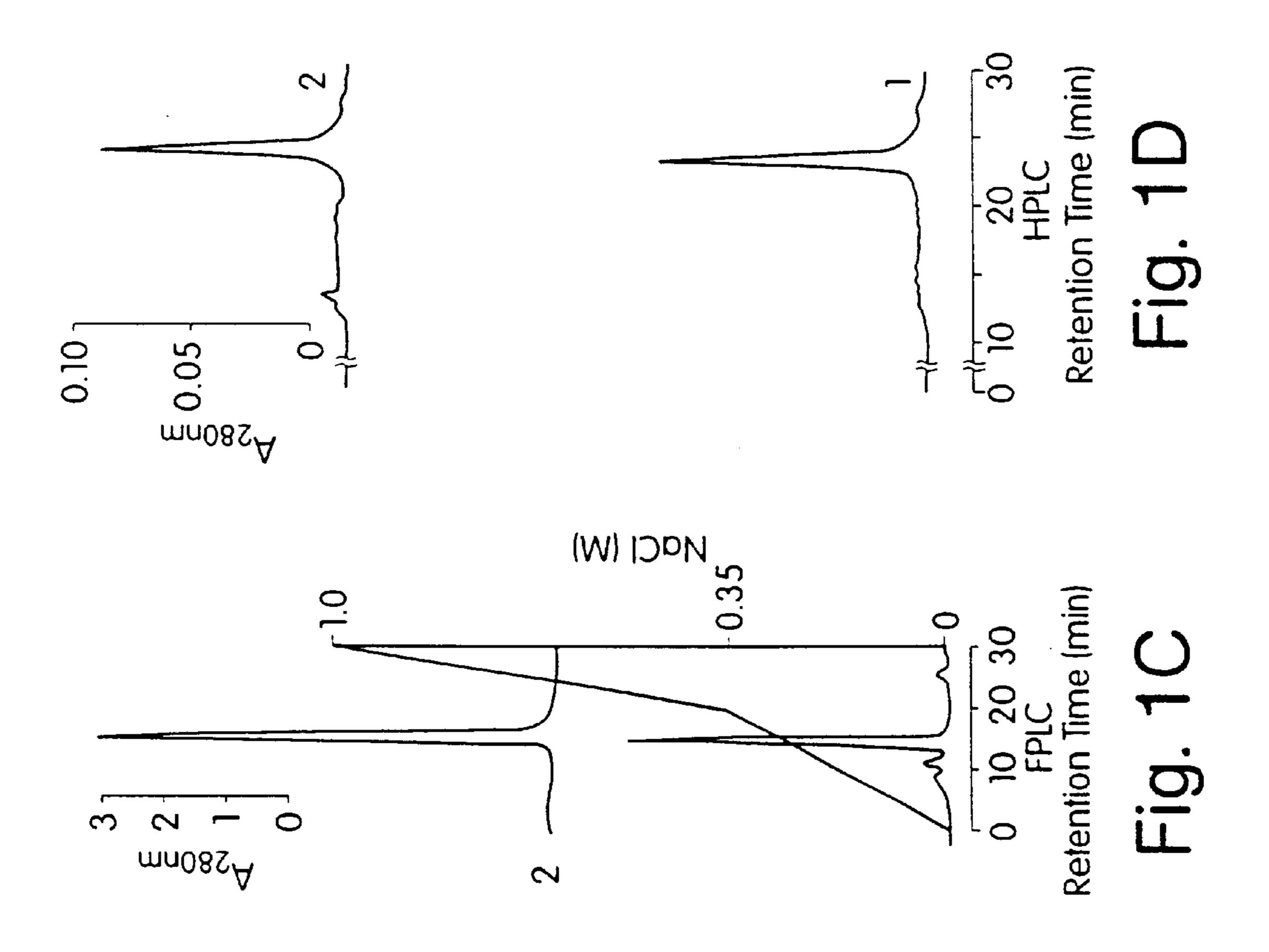
O'Neill et al., "Regulation Of Human Lymphocyte Activation By Alpha–Fetoprotein: Evidence For Selective Suppression Of la–Associated T–Cell Proliferation In Vitro," Oncodevelopmental Biology and Medicine 3:135–150 (1982).

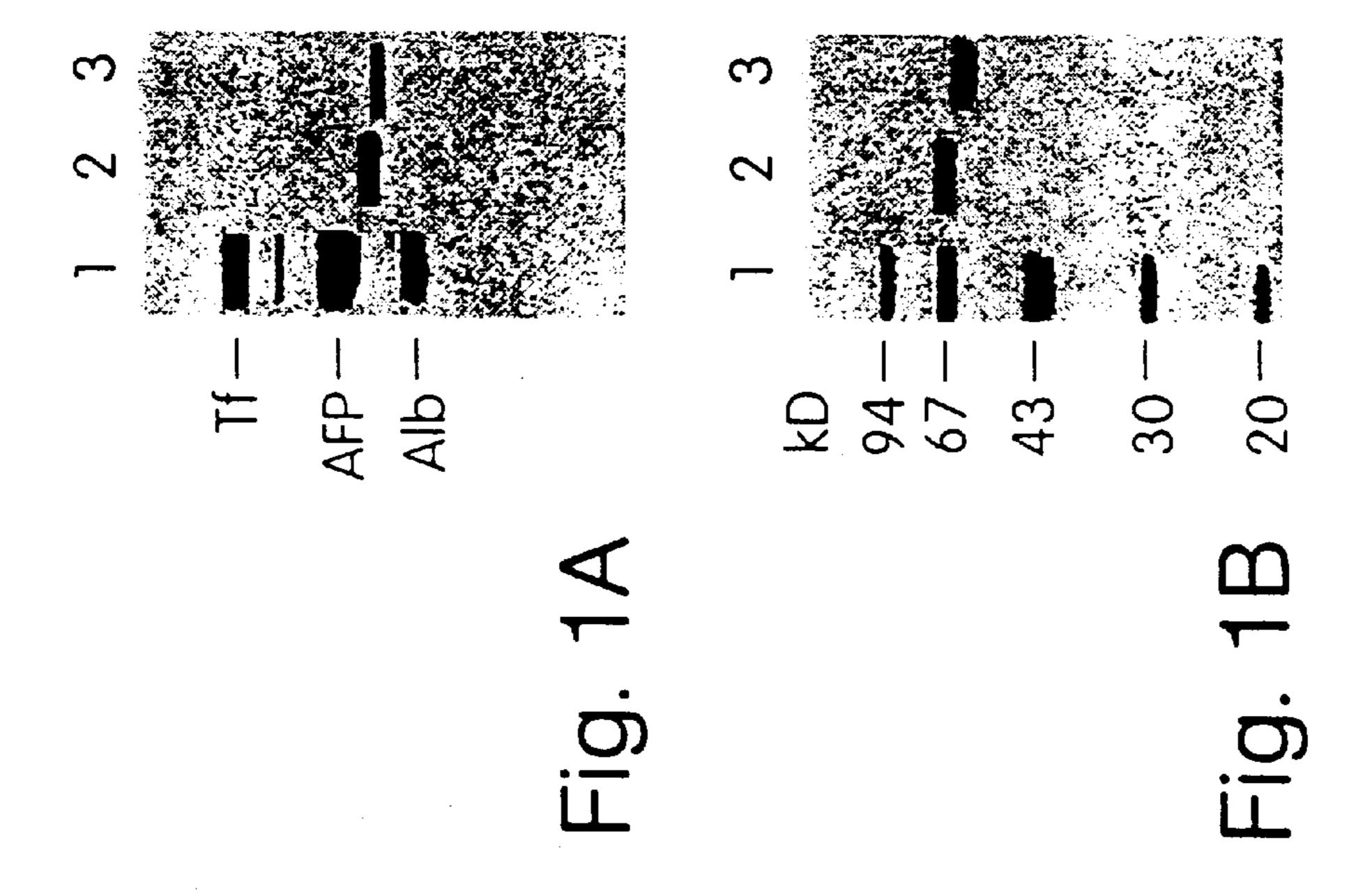
Peck et al., "Cellular And Genetic Restrictions In The Immunoregulatory Activity Of α–Fetoprotein," The Journal of Immunology 128:1134–1140 (1982).

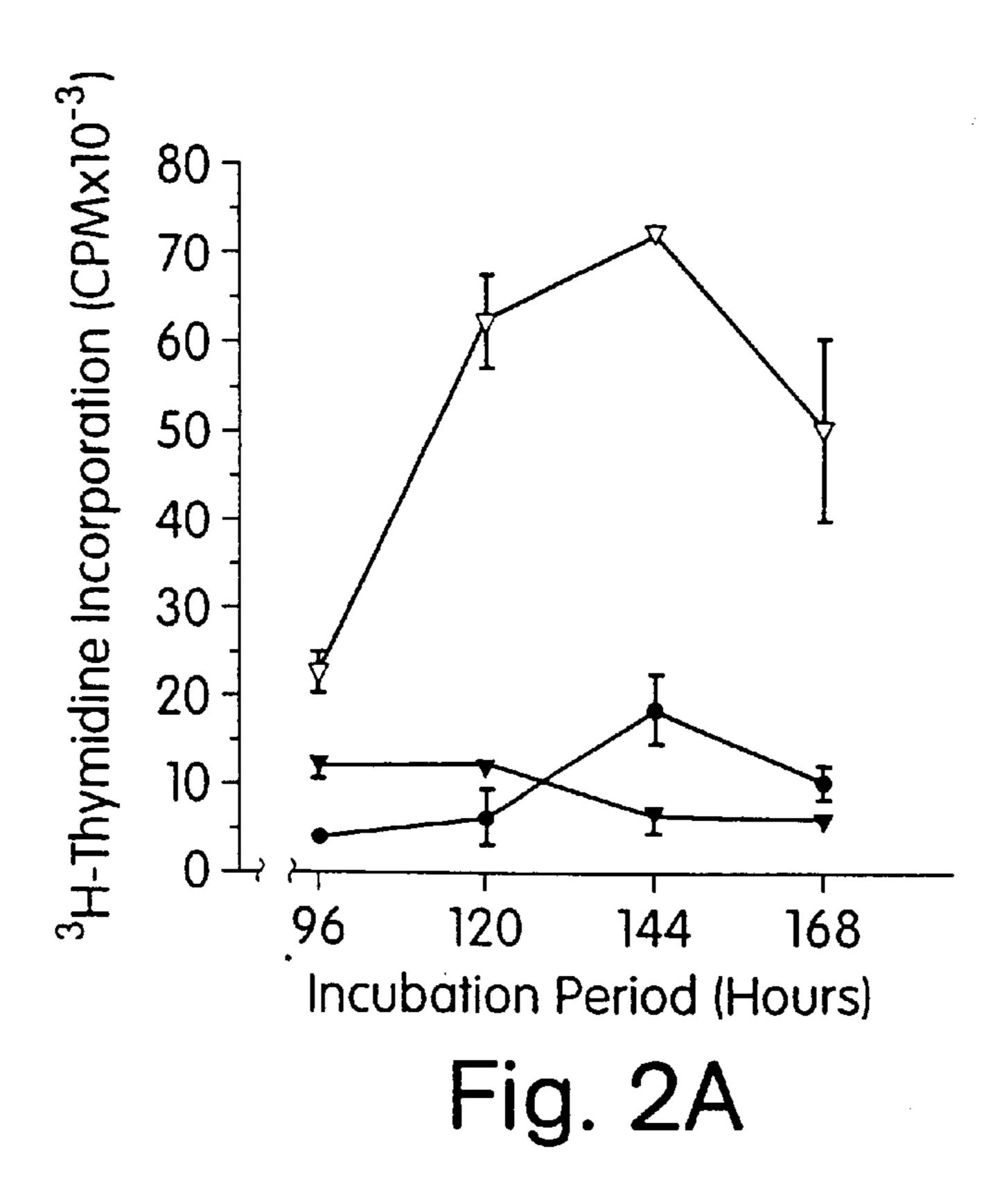
Peck et al., "Cellular And Genetic Restrictions In The Immunoregulatory Activity Of Alpha–Fetoprotein," The Journal of Experimental Medicine 147:667–683 (1978).

Peck et al., "Cellular And Genetic Restrictions In The Immunoregulatory Activity Of Alph–Fetoprotein," J. Exp. Med. 148:360–372 (1978)..

Sell, "Alphafetoprotein," In: Cancer Markers Diagnostic and Developmental Significance, Sell, S., (ed.), Humana Press, Clifton, NJ pp. 249–293 (1980).


Semeniuk et al., "Immunoregulation By Recombinant Alpha–Fetoproteins Produced In Eukaryotic And Prokaryotic Expression Systems," Abstracts 2799, Experimental Biology 94[™], Anaheim, CA (1994).


Soto et al., "Control Of Growth Of Estrogen-sensitive Cells: Role For α-fetoprotein," Proc. Natl. Acad. Acad. Sci. USA 77:2084–2087 (1980).


van Oers et al., "Analytical– And Preparative–Scale Separation Of Molecular Variants of α–Fetoprotein By Anion– Exchange Chromatography On Monobead™ Resins," Journal of Chromatography 525:59–69 (1990).

van Oers et al., "Isolation And Characterization Of A Distinct Immunoregulatory Isoform Of α -Fetoprotein Produced By The Normal Fetus," J. Exp. Med. 170:811–825 (1989).

Villacampa et al., "Alpha–Fetoprotein Receptors In A Human Breast Cancer Cell Line," Biochemical and Biophysical Research Communications 122:1322–1327 (1984).

Sep. 11, 2001

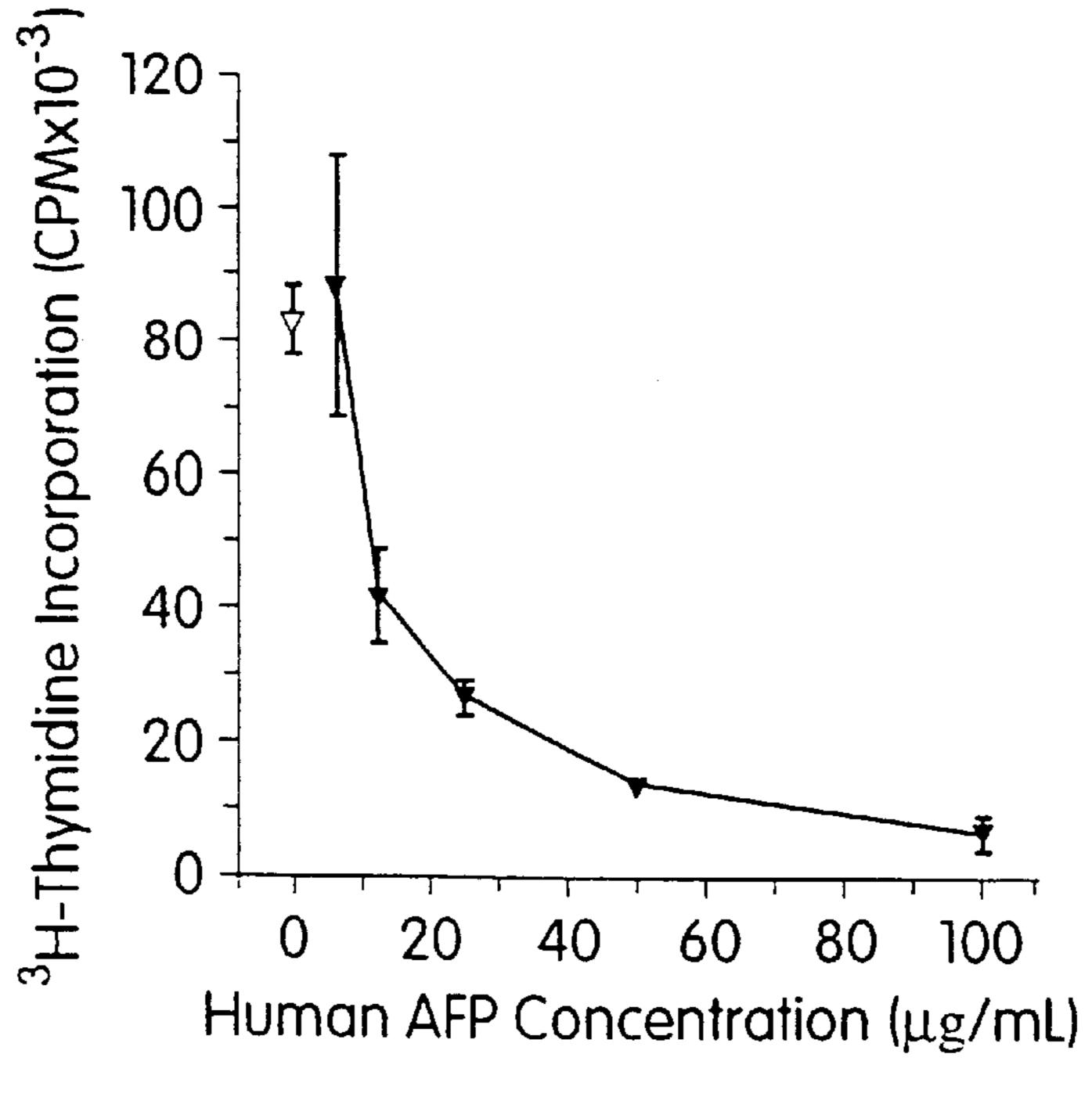
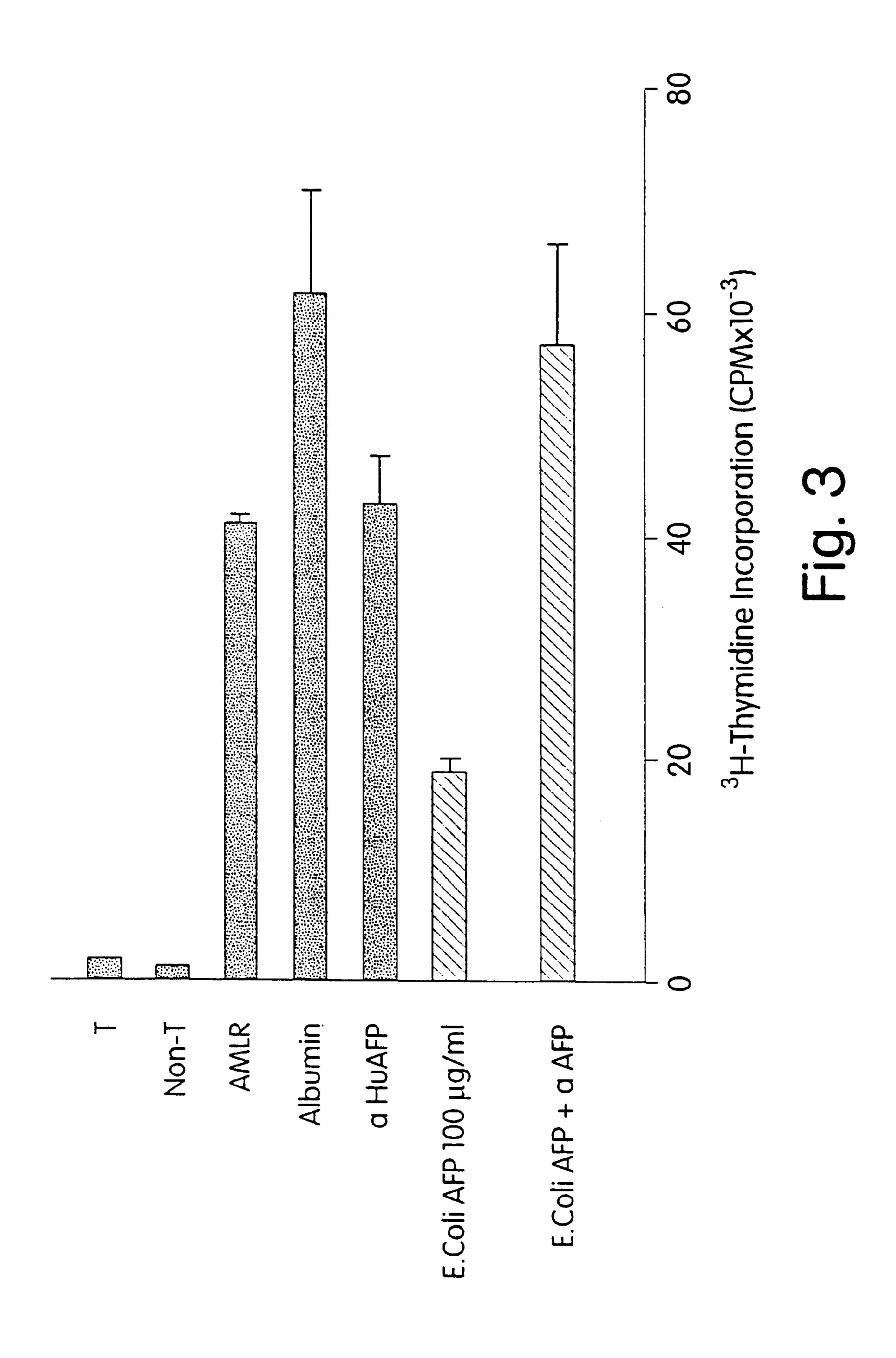
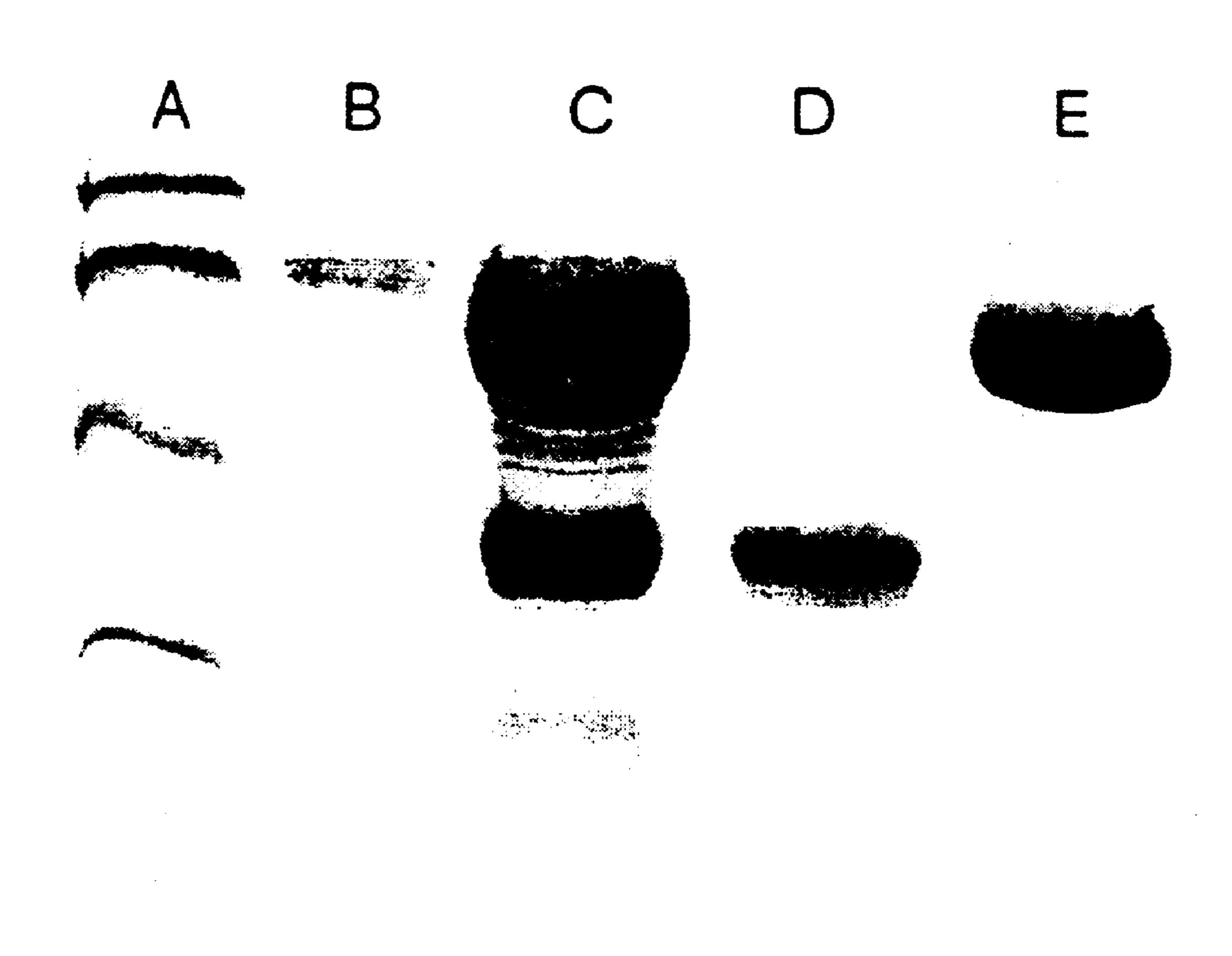



Fig. 2B

Sep. 11, 2001


(2)(101)(191)(281)551) arg AGA 30 ile ATA 60 g1y gGA g1y GGA 9 120 phe TTC arg AGG 210 asn AAT 150 180 ser thr ACC thr tyr TAC leu CTT arg AGA lys Aaa ala GCA ala GCT pro lys AAG pro met ATG ala GCA asn AAT thr ACT leu CTG ile ATC ile ATA GTA glu val phe TTT asp glu GAG TTG leu ser TCG glu GAG GCT ala ala GCA ala GCT ile ATT asn AAT ile ATT ala cys TGT tyr Tat GCA lys Aaa leu CTA leu TTA GCA ala glu GAA pro ATT CCA GCA ile cys Igc ala leu CTA thr ACT ser AGT AAA 1ysACT CAT phe thr cys Tgc his phe TTC ile ATA leu TTG glu GAG pro CCC Lys AAA ser TCT gln CAA -10 ile ATT glu GAG his CAT ala GCA lys AAG AAT asn AAC pro CCA asn leu TTA asp GAT 20 ala cys TGC GCA lys Aaa 50 80 leu TTA 110 ATG met ile ATT 140 170 200 TTT phe thr ACT 1ys AAA leu CTT his CAC phe ile leu TTG ATA ATT ile cys TGT val Grg glu GAA ser ala lys Aaa GCA ACA thr ser gln CAA met ATG glu GAA CTT len glu GAG asp GAC AGC ser glu GAA tyr Tac lys Aaa leu CTG TTT phe arg AGG tyr TAT glu GAA GTG ser ser AGC phe TTT val cys TGT asp GAC arg ccc arg AGA asp GAT trp Igg GTA ala GCC val asn AAC glu GAA TTA ala GCT leu lys AAG pro CCT leu TTG glu GAA CAT GAA glu glu GAA his GCT ala ile ATA lys AAG ATG met leu CTA -19 arg AGA tyr TAT lys Aaa trp Igg tyr Tac ser TCC gln leu Cir g1y GGA ala GCA ACA thr ATTGTGCTTCCACCACTGCCAATAACAAATAACTAGCAACC ala GCT thr ACT asn AAC glu GAG 40 70 glu 100 GAA leu CTT val GTT 130 190 160 ATA ile ala GCC glu GAA glu Gaa cys TGT ATT thr ACA ile gly GGA glu GAA leu TTA ser ser GCA ala ACA thr tyr TAT gln CAA cys TGT gln CAA ACA pro ala GCA thr GAA val GTT glu 91y 666 ser lys AAG val GTC ala GCA AAT phe TTT asn ser TCA tyr TAT Pro cys 7GC thr ACA arg AGA gln CAG ser glu GAA cys TGC gln len CTG CAA CAT ala GCC his glnGAG asp GAC pro phe TTC phe CTG phe TTT len glu GAA val GTT TCA pro cys Tgc ser phe TTT thr ACA asp GAT 31 his CAT 61 gln his CAT glu GAA CAA 91 121 181 151

asn AAT (1001) 330 ile ATC(1091) (911)450 leu CTA(1451) (821) 360 glu GAG (1181) 390 gln CAA(1271) 420 ala GCC (240 val GTC cys TGT 270 leu CTA ile ATA glu GAA asn AAT gln CAG ser AGC lys Aaa tyr TAC ala GCA lys Aaa tyr TAC glu GAG lys AAG asp GAC gln CAG ser his CAT glu gly GGA thr ACA ATC ile met ATG ile ATT 91*y* 666 AAA ile ATC tyr TAC ser AGT glu GAA ile ATC ile ATA ser GCT leu ala tyr Tac ala GCT thr ACT cys TGT ser TCT AAA 1ysGTT lys Aaa gln val Gir val phe TTT glu GAA gln CAA phe TTT arg AGA gln CAG leu CTC Cys TGC AAT gly GGT asn g1y GGG gln CAA leu CTA cys TGT leu TTA phe TTT GTT asp GAT arg CGT asn ATT val glu GAA ile ala ACT 929 thr 1ysAAA gln glu CAG phe TTT GAA 230 260 ${\tt glu}$ 290 GTA GAA asn 320 AAT ala GCC val 350 380 410 440 ACC thr CIG len asp GAT leu CTG ser glu TCA GAA gln ala GCA CAA phe TTT Cys ACG arg AGA thr val GTC gly GGA leu TTA ACA thr AAG asp GAT asp GAT lys thr ACC GCT lys Aaa tyr Tac ala ala GCC gln CAG CTG leu CTG leu gly GGA leu CTT asp GAT tyr Tat GCA ala ser GTG leu TTA lys AAA gln val gln CAG glu ATG met GAA leu GGG asp GAT cys Igc phe TTT pro cys Igc 91y 66A lys Aaa lys AAA g1y GGA Cys TGC arg AGG his CAT leu CTA glu GAA arg AGA ACT glu thr GAA AGA asn arg AAC AGA arg CTT len lys Aaa thr ACC GTT cys TGC val ACA leu CTA pro CCT arg AGA thr gln ile ATC ACT thr Cys TGT ile 220 ATA asn AAT 250 280 asn 310 ser TCA AAC 340 370 phe TTC ala GCC 400 430 ATA ile CAC his lys AAA pro TAT glu GAA tyr len CIC ATG met ညည ala glu GAG asn AAC Ser glu GAA thr ACT 91<u>y</u> GGC leu CTG gln CAA CAT TCA leu CTA his CAT his gln CAG ser CYS glu GAG phe TTC gly GGT GTA leu CTG val GTT phe TTC val ser TCG ser ACT thr CAT ACT glu GAA his thr phe TTT cys TgT TCG arg CGA ser arg CGA ည္ဟ asp ala pro AGT lys AAG ser AAG thr 1ys ACC ACC thr gln GTG CAA lys AAA val GCA glu GAG ala leu CTG ala GCA g1y GGG asp GAT gln CAA glu GAA TTG leu TTG leu leu TTG gln CAG phe TTT TCT leu CTG asp GAT 211 ser 241 271 301 phe TTC leu TTA ala 361 pro CCC 331 391 SC. 421

						-		
	CAG(1541) 510	asp GAC (1631)		CAA (1721)		1811)		.908
480 gln	CAG (asp Gac (:	540 gln	CAA (1	570	glu GAA (1811)		Attacttcagggaagagagacaaaacgagtct (1908)
	ည	asp	lys (gln (CGAGT
		ser	val			glu GAA (AAAA(
gly		phe	ec	CTT		gln		AGAC
pro		ala GCA	asn	AAC		91y 66C		GAGA
asn	AAC	pro	ile	ATT		gln		GGAA
val	GIA	pro	leu	CIC		cys TGC		CAGG
pro	5	val GTC	phe	TTT		cys Tgc		'ACTT
thr	ACT	tyr TAT	glu	GAG		lys Aaa		ATT
met	ATG	thr ACA	gln	CAA		glu GAG		ter TAA
470 glu	500 500	glu GAA	530 1ys	AAG	560	leu TTG	590	val Gii
	S S	asp Gat	met	ATG		leu CTG		g1y GGA
rt 1	AGA	val GTG		ACG		91y 660		leu TTG
		val GTG	gln			Ser		ala GCT
Cys		leu TTG				phe TTC		ala GCT
	TI'	Ser	ala			asp		arg
, 4		s ser	val	GTA		ala GCA		thr ACT
e g1y		s phe	ı gly			ile		1ys
e ile		A TGC	a gln			r val		ser TCA
0 e ile		g pro		A GCT		ala GCT		i ile 3 ATT
460 p ile	ລ 4 4	g arg g AGG	520 s gln		55(ı glu r GAG	58(s leu A CTG
4 A S	§	n arg c AGG		G TGC		n leu A CTT		n lys A AAA
a al	ب ا	a C AA	p leu	E		u gln A CAA		y gln A CAA
1y al	.	g 6	ស	₹		u glu G GAA		u g1y 3 GGA
5 1 (9	er tyr CA TAT	s lys			ъ		u glu A GAG
y glu		Ω Ε ⊣	e his			e thr A ACA		a glu T GAA
rs gly		r ser	e phe			n ile A ATA		e ala T GCT
la cys	ن	s thr c acr	le ile			o gln A CAA		s phe C TTT
451 leu al		rs cys	u 7s phe		-	's pro	 1	1 cys
4.4	11G	CYS TGC	511 1ys	**	541	lys AAG	571	val GTC

Sep. 11, 2001

Sep. 11, 2001

RECOMBINANT HUMAN ALPHA-FETOPROTEIN AS AN IMMUNOSUPPRESSIVE AGENT

This application is a continuation of, and claims priority 5 from, U.S. application Ser. No. 08/377,309, filed Jan. 24, 1995, U.S. Pat. No. 5,965,528.

BACKGROUND OF THE INVENTION

This invention relates to methods for treating autoimmune diseases.

Responses of the immune system initiate the destruction and elimination of invading organisms and toxic molecules produced by them. Because these immune reactions are 15 destructive, it is essential that they be made in response only to molecules that are foreign to the host and not to those of the host itself. The ability to distinguish foreign molecules from self molecules is a fundamental feature of the immune system. Occasionally the immune system fails to make this 20 distinction and reacts destructively against the host's own molecules; such autoimmune diseases can be fatal. Thus, tolerance to self antigens breaks down, causing the components of the immune system such as T or B cells (or both) to react against their own tissue antigens. Multiple sclerosis, 25 rheumatoid arthritis, myasthenia gravis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus are a few examples of such autoimmune diseases.

SUMMARY OF THE INVENTION

I have discovered that unglycosylated recombinant human alpha-fetoprotein made in a prokaryote (e.g., *E. coli*) is useful for inhibiting autoreactive immune cells derived from a mammal. Accordingly, the invention features a method of inhibiting autoreactive immune cell proliferation 35 in a mammal (e.g., a human patient), involving administering to the mammal a therapeutically effective amount of recombinant human alpha-fetoprotein or an immune cell anti-proliferative fragment or analog thereof. Preferably, such immune cells include T cells or B cells; and the 40 recombinant human alpha-fetoprotein used in such methods is produced in a prokaryotic cell (e.g., *E. coli*) and is unglycosylated.

In another aspect, the invention features a method of treating an autoimmune disease in a mammal (e.g., a human 45 patient), involving administering to the mammal a therapeutically effective amount of recombinant human alphafetoprotein or an immune cell anti-proliferative fragment or analog thereof. Such an autoimmune disease is multiple sclerosis; is rheumatoid arthritis; is myasthenia gravis; is 50 insulin-dependent diabetes mellitus; or is systemic lupus erythematosus. In yet other preferred embodiments the autoimmune disease is acquired immune deficiency syndrome or is a rejection of a transplanted organ, tissue or cell. Preferably, the recombinant human alpha-fetoprotein used in 55 such methods is produced in a prokaryotic cell (e.g., E. coli) and is unglycosylated. In other preferred embodiments, such methods further involve administering to the mammal an immunosuppressive agent in an effective dose which is lower than the standard dose when the immunosuppressive 60 agent is used by itself. Preferably, such an immunosuppressive agent is cyclosporine; is a steroid; is azathioprine; is FK-506; or is 15-deoxyspergualin. In yet another preferred embodiment, such a method involves administering to the mammal a tolerizing agent. Preferably, the recombinant 65 human alpha-fetoprotein used in such methods is produced in a prokaryotic cell (e.g., E. coli) and is unglycosylated.

2

By "immune cell anti-proliferative" is meant capable of inhibiting the growth of an undesirable immune cell e.g., an autoreactive T cell as measured using the assays described herein).

By "therapeutically effective amount" is meant a dose of unglycosylated recombinant human alpha-fetoprotein (or a fragment or analog thereof) capable of inhibiting autoreactive immune cell proliferation.

By "recombinant human alpha-fetoprotein" is meant a polypeptide having substantially the same amino acid sequence as the protein encoded by the human alpha-fetoprotein gene as described by Morinaga et al., *Proc. Natl. Acad. Sci., USA* 80: 4604 (1983). The method of producing recombinant human alpha-fetoprotein in a prokaryotic cell is described in U.S. Ser. No. 08/133,773 issuing as U.S. Pat. No. 5,384,250.

According to the invention, administration of recombinant human alpha-fetoprotein ("rHuAFP") (or a fragment or analog thereof) can be an effective means of preventing or treating or ameliorating autoimmune diseases in a mammal. To illustrate this, I have shown that recombinant HuAFP produced in a prokaryotic expression system is effective in suppressing T cell proliferation in response to self antigens, despite the fact that such rHuAFP is not modified in the same fashion as naturally occurring HuAFP. The use of natural HuAFP has heretofore been limited by its unavailability, natural HuAFP is obtained by laborious purification from limited supplies of umbilical cords and umbilical cord serum. Because biologically rHuAPP can now be prepared in large quantities using the techniques of recombinant DNA, the use of rHuAFP for treating autoimmune diseases is now possible. The use of rHuAFP is especially advantageous since there are no known adverse side effects related to human alpha-fetoprotein and it is believed that relatively high doses can be safely administered.

Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

DETAILED DESCRIPTION

The drawings will first be described. Drawings

FIG. 1 is a series of panels (FIGS. 1A–1D) showing the purity and biochemical characteristics of rHuAFP using polyacrylamide gel electrophoresis and column chromatography. FIGS. 1A is a 10% non-denaturing alkaline polyacrylamide gel showing the purity of rHuAFP produced in E. coli. Mouse amniotic fluid proteins (transferrin, AFP and albumin) are shown in lane 1, natural HuAFP and rHuAFP are shown in lane 2 and lane 3, respectively. FIG. 1B is a 10% sodium dodecyl sulfate-polyacrylamide gel showing the purity of rHuAFP produced in E. coli. Molecular weight markers are shown in lane 1, natural HuAFP and rHuAFP are shown in lane 2 and lane 3, respectively. FIG. 1C is a series of FPLC chromatograms of natural HuAFP and rHuAFP eluted on a MonoQ anion exchange column. The superimposed chromatograms identify natural HuAFP (Chromatogram 1) and rHuAFP (Chromatogram 2). FIG. 1D is a series of HPLC chromatograms obtained by passing 50 μg of natural and rHuAFP by passing through a reverse phase Delta Pak C18 column (Waters) and eluting with a gradient of 0-100% acetonitrile in 0.1% TFA. The superimposed chromatograms identify natural HuAFP (Chromatogram 1) and rHuAFP (Chromatogram 2).

FIG. 2 is a series of graphs showing the inhibitory effects of the rHuAFP on kinetics of T cell activation (FIG. 2A) and

the dose-response relationship of rHuAFP on autoproliferating T cells (FIG. 2B). FIG. 2A is a graph showing proliferative responses over a 4 day time course of cells cultured in the absence (∇) and in the presence of $100 \,\mu\text{g/ml}$ (\triangle) rHuAFP. (\blacksquare) denotes the background proliferation of 5 the responder cell population cultured separately. Recombinant HuAFP-mediated suppression on the AMLR over the time course was significant (p<0.01). FIG. 2B is a graph showing the inhibition of autoproliferating T cells at 144 hours with amounts of rHuAFP ranging from 6–100 μ g/ml 10 (\triangle). (∇) denotes the control response of the reaction in the absence of protein. Inhibition of autoreactive T cells by rHuAFP in the range of 12.5–100 μ g/ml is significant (p<0.005).

FIG. 3 is a bar graph showing that monoclonal antinatural HuAFP antibodies block immunosuppression of the AMLR by rHuAFP. Immunosuppression by rHuAFP was significant (p<0.002) and blocking of rAFP-mediated immunosuppression by the AMLR by monoclonal anti-natural HuAFP antibodies was also significant (p<0.03).

FIG. 4 is the nucleotide sequence (SEQ ID NO: 1) and deduced amino acid sequence (SEQ ID NO: 2) of the cDNA encoding human alpha-fetoprotein.

FIG. 5 is the 10% SDS-PAGE analysis of rHuAFP Fragment I or alpha-fetoprotein (Lane A, MW marker; Lane B, 25 natural human alpha-fetoprotein, Lane C, unpurified rHuAFP and rHuAFP Fragment I, Lane D, purified rHuAFP Fragment I, and Lane E, purified full-length rHuAFP).

PRODUCTION OF RECOMBINANT HUMAN ALPHA-FETOPROTEIN

As summarized above, the invention includes therapies for the prevention and treatment of autoimmune diseases involving recombinant human alpha-fetoprotein ("rHuAFP") or fragments or analogs thereof. Methods for 35 producing such rHuAFP in a prokaryotic cell are described in U.S. Ser. No. 08/133,773 and in U.S. Pat. No. 5,384,250, issued Jan. 24, 1995.

Fragments and Analogs

The invention includes biologically active fragments of 40 rHuAFP. A biologically active fragment of rHuAFP is one that possesses at least one of the following activities: (a) directs a specific interaction with a target cell, e.g., binds to a cell expressing a receptor which is recognized by rHuAFP (e.g., the membrane of an autoreactive immune cell); or (b) 45 halts, reduces, or inhibits the growth of an autoreactive immune cell (e.g., binds to a cell surface receptor and imparts an anti-proliferative signal); or (c) blocks, inhibits, or prevents an immunopathologic antibody reaction. The ability of rHuAFP fragments or analogs to bind to a receptor 50 which is recognized by rHuAFP can be tested using any standard binding assay known in the art. Methods for assaying the biological activity or rHuAFP fragments and analogs are also known in the art, e.g., those described herein. Accordingly, a rHuAFP fragment, like the full-length 55 rHuAFP molecule, can be used inhibit autoreactive immune cell proliferation.

In general, fragments of rHuAFP are produced according to the techniques of polypeptide expression and purification described in U.S. Ser. No. 08/133,773 (U.S. Pat. No. 5,384, 60 250). For example, suitable fragments of rHuAFP can be produced by transformation of a suitable host bacterial cell with part of an HuAFP-encoding cDNA fragment (e.g., the cDNA described above) in a suitable expression vehicle. Alternatively, such fragments can be generated by standard 65 techniques of PCR and cloned into the expression vectors (supra). Accordingly, once a fragment of rHuAFP is

4

expressed, it may be isolated by various chromatographic and/or immunological methods known in the art. Lysis and fractionation of rHuAFP-containing cells prior to affinity chromatography may be performed by standard methods. Once isolated, the recombinant protein can, if desired, be further purified, e.g., by high performance liquid chromatography (see, e.g., Fisher, *Laboratory Techniques In Biochemistry And Molecular Biology*, Work and Burdon, eds., Elsevier, 1980).

A rHuAFP fragment may also be expressed as a fusion protein with maltose binding protein produced in *E. coli*. Using the maltose binding protein fusion and purification system (New England Biolabs), the cloned human cDNA sequence can be inserted downstream and in frame of the gene encoding maltose binding protein (malE), and the malE fusion protein can then be overexpressed. In the absence of convenient restriction sites in the human cDNA sequence, PCR can be used to introduce restriction sites compatible with the vector at the 5' and 3' end of the cDNA fragment to facilitate insertion of the cDNA fragment into the vector.

Following expression of the fusion protein, it can be purified by affinity chromatography. For example, the fusion protein can be purified by virtue of the ability of the maltose binding protein portion of the fusion protein to bind to amylose immobilized on a column.

To facilitate protein purification, the pMalE plasmid contains a factor Xa cleavage site upstream of the site into which the cDNA is inserted into the vector. Thus, the fusion protein purified as described above can then be cleaved with 30 factor Xa to separate the maltose binding protein from a fragment of the recombinant human cDNA gene product. The cleavage products can be subjected to further chromatography to purify rHuAFP from the maltose binding protein. Alternatively, a fragment of rHuAFP may be expressed as a fusion protein containing a polyhistidine tag can be produced. Such an alpha-fetoprotein fusion protein may then be isolated by binding of the polyhistidine tag to an affinity column having a nickel moiety which binds the polyhistidine region with high affinity. The fusion protein may then be eluted by shifting the pH within the affinity column. The rHuAFP can be released from the polyhistidine sequences present in the resultant fusion protein by cleavage of the fusion protein with specific proteases.

Recombinant HuAFP fragment expression products (e.g., produced by any of the prokaryotic systems described in U.S. Ser. No. 08/133,773) may be assayed by immunological procedures, such as Western blot, immunoprecipitation analysis of recombinant cell extracts, or immunofluorescence (using, e.g., the methods described in Ausubel et al., *Current Protocols In Molecular Biology*, Greene Publishing Associates and Wiley Interscience (John Wiley & Sons), New York, 1994).

Once a fragment of rHuAFP is expressed, it is isolated using the methods described supra. Once isolated, the fragment of rHuAFP can, if desired, be further purified by using the techniques described supra. Fragments can also be produced by chemical synthesis (e.g., by the methods described in *Solid Phase Peptide Synthesis*, 2nd ed., 1984, The Pierce Chemical Co., Rockford, Ill.). The ability of a candidate rHuAFP fragment to exhibit a biological activity of alpha-fetoprotein is assessed by methods known to those skilled in the art (e.g., those described herein).

The purified recombinant gene product or fragment thereof can then be used to raise polyclonal or monoclonal antibodies against the human recombinant alpha-fetoprotein using well-known methods (see Coligan et al., eds., *Current Protocols in Immunology*, 1992, Greene Publishing Associ-

ates and Wiley-Interscience). To generate monoclonal antibodies, a mouse can be immunized with the recombinant protein, and antibody-secreting B cells isolated and immortalized with a non-secretory myeloma cell fusion partner. Hybridomas are then screened for production of recombinant human alpha-fetoprotein (or a fragment or analog thereof)-specific antibodies and cloned to obtain a homogenous cell population which produces monoclonal antibodies.

As used herein, the term "fragment," as applied to a rHuAFP polypeptide, is preferably at least 20 contiguous amino acids, preferably at least 50 contiguous amino acids, more preferably at least 100 contiguous amino acids, and most preferably at least 200 to 400 or more contiguous amino acids in length. Fragments of rHuAFP molecules can be generated by methods known to those skilled in the art, 15 e.g., proteolytic cleavage or expression of recombinant peptides, or may result from normal protein processing (e.g., removal of amino acids from nascent polypeptide that are not required for biological activity).

Recombinant HuAFP fragments of interest include, but 20 are not limited to, Domain I (amino acids 1 (Thr)-197 (Ser), see FIG. 4, SEQ ID NO: 3), Domain II (amino acids 198 (Ser)-389 (Ser), see FIG. 4, SEQ ID NO: 4), Domain III (amino acids 390 (Gln)-590 (Val), see FIG. 4, SEQ ID NO: 5), Domain I+II (amino acids 1 (Thr)-389 (Ser), see FIG. 4, 25 SEQ ID NO: 6), Domain II+III (amino acids 198 (Ser)-590 (Val), see FIG. 4, SEQ ID NO: 7), and rHuAFP Fragment I (amino acids 266 (Met)-590 (Val), see FIG. 4, SEQ ID NO: 8). Activity of a fragment is evaluated experimentally using conventional techniques and assays, e.g., the assays 30 described herein.

The invention further includes analogs of full-length rHuAFP or fragments thereof. Analogs can differ from rHuAFP by amino acid sequence differences, or by modifications (e.g., post-translational modifications) which do 35 not affect sequence, or by both. Analogs of the invention will generally exhibit at least 80%, more preferably 85%, and most preferably 90% or even 99% amino acid identity with all or part of a rHuAFP amino acid sequence. Modifications (which do not normally alter primary sequence) include in 40 vivo, or in vitro chemical derivatization of polypeptides, e.g., acetylation, or carboxylation; such modifications may occur during polypeptide synthesis or processing or following treatment with isolated modifying enzymes. Analogs can also differ from the naturally occurring rHuAFP by alter- 45 ations in primary sequence, for example, substitution of one amino acid for another with similar characteristics (e.g., valine for glycine, arginine for lysine, etc.) or by one or more non-conservative amino acid substitutions, deletions, or insertions which do not abolish the polypeptide's biological 50 activity. These include genetic variants, both natural and induced (for example, resulting from random mutagenesis by irradiation or exposure to ethanemethylsulfate or by site-specific mutagenesis as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold 55 Spring Harbor Press, 1989, or Ausubel et al., supra)). Also included are cyclized peptide molecules and analogs which contain residues other than L-amino acids, e.g., D-amino acids or non-naturally occurring or synthetic amino acids, side chains (see e.g., Noren et al., Science 244:182, 1989).

DomI25

DomI3

DomII5

Methods for site-specific incorporation of non-natural amino acids into the protein backbone of proteins is described, e.g., in Ellman et al., Science 255:197, 1992. Also included are chemically synthesized polypeptides or peptides with modified peptide bonds (e.g., non-peptide bonds as described in U.S. Pat. No. 4,897,445 and U.S. Pat. No. 5,059,653) or modified side chains to obtain the desired pharmaceutical properties as described herein. Useful mutants and analogs are identified using conventional methods, e.g., those described herein.

The cloning, expression, isolation and characterization of exemplary rHuAFP fragments now follows. These examples are provided to illustrate, not limit, the invention.

EXPERIMENTAL

MATERIALS AND METHODS

Polymerase Chain Reaction (PCR) rHuAFP Fraqments

Plasmid constructs encoding fragments of human alphafetoprotein were prepared using polymerase chain reaction (PCR) techniques known to those skilled in the art of molecular biology, using oligonucleotide primers designed to amplify specific portions of the human alpha-fetoprotein gene (see e.g., PCR Technology, H. A. Erlich, ed., Stockton Press, New York, 1989; PCR Protocols: A Guide to Methods and Applications, M. A. Innis, David H. Gelfand, John J. Sninsky, and Thomas J. White, eds., Academic Press, Inc., New York, 1990, and Ausubel et. al., supra).

The following six rHuAFP fragments were prepared to evaluate their biological activity (e.g., according to the methods disclosed herein):

	Domain I	Amino acids 1 (Thr)-197 (Ser),	(FIG. 4, SEQ
C	Domain II	Amino acids 198 (Ser)-389 (Ser),	ID NO:3) (FIG. 4, SEQ
	Domain III	Amino acids 390 (Gln)-590 (Val),	ID NO:4) (FIG. 4, SEQ
	Domain I + II	Amino acids 1 (Thr)-389 (Ser),	ID NO:5) (FIG. 4, SEQ
5	Domain II + III	Amino acids 198 (Ser)-590 (Val),	ID NO:6) (FIG. 4, SEQ
	rHuAFP	Amino acids 266 (Met)-590 (Val),	ID NO:7) (FIG. 4, SEQ
	Fragment I	Annino acius 200 (Mici)—390 (Vai),	ID NO:8)

Amino acid sequences were deduced from those for human alpha-fetoprotein (1 (Thr)-590 (Val); SEQ ID NO: 2) shown in FIG. 4. Fragments of rHuAFP designated Domain I, Domain II, Domain III, Domain I+II, Domain II+III and rHuAFP Fragment I were synthesized using standard PCR reaction conditions in 100 μ L reactions containing 34 μ L H_2O , 10 μ L 1X reaction buffer, 20 μ L 1 mM dNTP, 2 μ L DNA template (HuAFP cloned in pI18), appropriate 5' and 3' oligonucleotide primers (10 μ L 10 pmol/ μ L 5' primer, 10 μ L 10 pmol/ μ L 3' primer), 1 μ L glycerol, 10 μ L DMSO, and e.g., β or γ amino acids, or L-amino acids with non-natural 60 1 μ L Pfu polymerase (Stratagene, LaJolla, Calif.). Primers used for PCR amplifications were:

-continued

DomII3	5 - AAAAAAGGATCCTTAGCTCTCCTGGATGTATTT-3 '	(SEQ ID NO:12)
DomIII5	5'-AAAAAATCGATATGCAAGCATTGGCAAAGCGA-3'	(SEQ ID NO:13)
DomIII3	5'-AAAAAAGGATCCTTAAACTCCCAAAGCAGCACG-3'	(SEQ ID NO:14)
5'rHuAFP Fragment I	5 '-AAAAAATCGATATGTCCTACATATGTTCTCAA-3 '	(SEQ ID NO:15)

Accordingly, primer pairs DomI25 and DomI3, DomII5 and DomII3, DomIII5 and DomIII3, 5'rHuAFP Fragment I and were used to isolate cDNA sequences of Domain I, Domain II, Domain III, rHuAFP Fragment I, Domain I+II, and Domain II+III, respectively, of rHuAFP. Annealing, extension, and denaturation temperatures were 50° C., 72° C., and 94° C., respectively, for 30 cycles. PCR products 15 were purified according to standard methods. Purified PCR products encoding Domain I and Domain I+II were digested individually with KpnI and BamHI and cloned separately into KpnI/BamHI-treated pTrp4. Purified PCR products encoding Domain II, Domain III, Domain II+III, and 20 rHuAFP Fragment I were digested individually with Bsp106I and BamHI and were cloned separately into Bsp106I/BamHI-treated pTrp4. Each plasmid construct was subsequently transformed into competent E. coli cells. Since the expression product will begin with the amino acid 25 sequence encoded by the translation start signal methionine, it is expected that such signal will be removed, or in any event, not affect the bioactivity of the ultimate expression product.

Autologous Mixed Lymphocyte Reactions (AMLR) AMLR assays were performed as described below.

RESULTS

Expression and Purification

E. coli containing the expression plasmid encoding rHuAFP Fragment I was cultured and purified. FIG. 5 (lane D) shows the SDS-PAGE profile of the purified rHuAFP Fragment I. N-terminal amino acid sequence analysis 40 showed that rHuAFP Fragment I possessed the amino acid sequence Ser₂₆₇-Tyr-Ile-Cys-Ser-Gln-Gln-Asp-Thr₂₇₅ (SEQ ID NO: 16) which corresponds to the expected N-terminal amino acid sequence of rHuAFP Fragment I (see FIG. 4, SEQ ID NO: 2) where the initiating methionine is cleaved intracellularly.

Inhibition of the Autologous Mixed Lymphocyte Reactions (AMLR)

The immunosuppressive activity of 100 μ g/ml rHuAFP Fragment I was assessed by its ability to suppress human autologous mixed lymphocyte reactions (AMLR). As shown in Table I, rHuAFP Fragment I inhibited the proliferative response of autoreactive lymphocytes stimulated by autologous non-T cells at 144 hours.

TABLE I

Reaction Setup	Thymidine Incorporation (CPM)
T Cells	7118 ± 964
AMLR	83103 ± 6480
AMLR + rHuAFP Fragment I (100 μ g/ml)	29692 ± 2963

Recombinant HuAFP As An Immunosuppressive Agent Immunosuppressive attributes of rHuAFP (or a fragment or analog thereof) is evaluated by any standard assay for

analysis of immunoregulatory activity in vivo or in vitro. As discussed infra, the art provides a number of animal systems DomIII3, DomI25 and DomII3, and DomII5 and DomIII3 ₁₀ for in vivo testing of immunosuppressive characteristics of rHuAFP (or a fragment or analog thereof) on an autoimmune disease, e.g., the nonobese diabetic (NOD) mouse. Furthermore, a wide variety of in vitro systems are also available for testing immunosuppressive aspects of rHuAFP e.g., one such in vitro assay evaluates the inhibition of autoantigen-induced proliferation of T cells in an autologous mixed lymphocyte reaction (AMLR).

> The following examples demonstrate that unglycosylated rHuAFP inhibits T cell autoproliferation in response to self antigens. These examples are provided to illustrate, not limit, the invention.

EXPERIMENTAL

MATERIALS AND METHODS

Gel Electrophoresis, Immunoblotting and Purification

The purity and characterization of rHuAFP was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing alkaline PAGE (APAGE) according to standard methods. Gels were subsequently analyzed either by staining with Coomassie brilliant blue or by transferring electrophoretically separated polypeptides to Immobilon PVDF membranes (Millipore, Mississauga, ON) for immunoblotting analysis. Recombinant HuAFP-monospecific rabbit anti-natural HuAFP polyclonal antibody complexes were identified by alkalinephosphatase-conjugated goat anti-rabbit IgG and the immunoreactive bands were detected with the BCIP/NBT color development solution (Bio-Rad-Laboratories, Mississauga, ON) according to the manufacturer's instructions.

Column chromatography was performed according to standard methods.

Autologous Mixed Lymphocyte Reactions (AMLR)

Isolation of human peripheral blood mononuclear cells (PBMC), their fractionation into non-T cell populations, and the AMLR, were performed according to standard procedures. Responder T cells were isolated by passing 1.5×10⁸ PMBC over a commercial Ig-anti-Ig affinity column (Biotek Laboratories) and 2×10^5 responder cells were subsequently cultured with 2×10^5 autologous ¹³⁷Cs-irradiated (2500 rads) 55 non-T stimulator cells from a single donor. The medium employed consisted of RPMI-1640 supplemented with 20 - mM HEPES (Gibco), 5×10⁻⁵ M 2-mercaptoethanol (BDH, Montreal, QC), 4 mM L-glutamine (Gibco), 100 U/ml penicillin (Gibco) and 100 μ g/ml streptomycin sulfate, with 60 the addition of 10% fresh human serum autologous to the responder T cell donor for the AMLR. Varying concentrations of purified rHuAFP, human serum albumin (HSA), anti-HuAFP monoclonal antibodies clone #164 (125 μ g/ml final concentration in culture) (Leinco Technologies, St. 65 Louis, Mo.) were added at the initiation of cultures. AMLR cultures were incubated for 4 to 7 days, at 37° C. in 95% air and 5% CO₂. At the indicated intervals, DNA synthesis was

assayed by a 6 hour pulse with 1 μ Ci of ³H-thymidine (specific activity 56 to 80 Ci/mmole, ICN). The cultures were harvested on a multiple sample harvester (Skatron, Sterling, Va.), and the incorporation of ³H-TdR was measured in a Packard 2500 TR liquid scintillation counter. 5 Results are expressed as mean cpm±the standard error of the mean of triplicate or quadruplicate cultures.

RESULTS

Expression and Purification

Purity of isolated rHuAFP expressed in E. coli was verified as a single band on Coomassie stained APAGE and SDS-PAGE are shown in FIGS. 1A–1B, respectively. Soluble monomeric rHuAFP derived from E. coli was obtained by eluting a protein fraction containing rHuAFP employing Q-sepharose chromatography. Approximately 1 mg of pure rHuAFP per liter of bacterial culture was recovered as a single homogeneous peak by FPLC Mono-Q anion exchange with 220–230 mM NaCl and migrated at approximately 65 kD on SDS-PAGE (FIG. 1B). Recombinant HuAFP exhibits a lower molecular weight on SDS-PAGE than natural HuAFP, since prokaryotic expression systems lack the enzymatic machinery required for glycosylation of proteins. Rechromatographed samples of pure rHuAFP on FPLC and HPLC yielded a single peak as shown in FIG. 1C and FIG. 1D, confirming the purity of the rHuAFP preparation. In addition, N-terminal sequencing data correspond to the expected amino acid sequence at the N-terminus of rHuAFP.

Inhibition of the Autologous Mixed Lymphocyte Reactions (AMLR)

The immunosuppressive activity of rHuAFP was assessed by its ability to suppress human autologous mixed lymphocyte reactions (AMLR). As shown in FIG. 2A, rHuAFP inhibited the proliferative response of autoreactive lymphocytes stimulated by autologous non-T cells, throughout the 4 to 7 day time course measuring autoproliferation. Results from dose-response studies performed at the peak of T cell 40 autoproliferation, as shown in FIG. 2B, demonstrate that the addition of rHuAFP at the initiation of cultures suppressed the AMLR in a dose-dependent manner. Furthermore, parallel viability-studies established that the inhibitory activity of rHuAFP on human autoreactive T cells was not due to non-specific cytotoxic effects.

To further substantiate that rHuAFP was the agent responsible for the inhibition of autoproliferating T cells, blocking of rHuAFP-mediated suppression of the AMLR was performed using commercial murine anti-human AFP mono- 50 clonal antibodies (MAb). As illustrated in FIG. 3, suppression of proliferating autoreactive T cells by 100 μ g/ml of rHuAFP was completely blocked by anti-HuAFP NAb. The addition of 100 μ g/ml of HSA did not diminish the AMLR response and the presence of MAb alone in the reaction 55 culture was without any effect.

Recombinant polypeptides produced in prokaryotic expression systems are at risk for contamination with host cell lipopolysaccharide (LPS) during their isolation from bacteria. It has been demonstrated that small amounts of 60 LPS can antagonize the biological activities of cytokines, thereby impairing the immune responsiveness of macrophages. Accordingly, the effect of endotoxin on various rHuAFP preparations was evaluated by performing AMLR experiments with recombinant protein depleted of endotoxin 65 by passage over Detoxi-gel (Pierce) versus that of rHuAFP which was untreated. Results of these experiments showed

10

that both preparations had equivalent levels of immunosuppressive activity.

As shown in FIG. 2A and FIG. 2B, the results of this study also demonstrate that rHuAFP suppresses the proliferation of autoreaction T cells with a potency equivalent to glycosylated nHuAFP by eliciting inhibitory effects on autoproliferating T cells throughout the in vitro reactions, with highly significant inhibition being achieved with rHuAFP concentrations ranging from 5 μ g/ml to 100 μ g/ml.

10 Autoimmune Disease

As is discussed above, autoimmune diseases are characterized by a loss of tolerance to self antigens, causing cells of the immune systems, e.g., T or B cells (or both), to react against self tissue antigens. Autoimmune diseases may involve any organ system, although some are affected more commonly than others. Examples of tissues affected by autoimmune conditions include: the white matter of the brain and spinal cord in multiple sclerosis; the lining of the joints in rheumatoid arthritis; and the insulin secreting β islet cells of the pancreas in insulin-dependent diabetes mellitus. Other forms of autoimmune disease destroy the connections between nerve and muscle in myasthenia gravis or destroy the kidneys and other organs-in systemic lupus erythematosus. Examples of other autoimmune diseases include, without limitation, Addison's disease, Crohn's disease, Graves' disease, psoriasis, scleroderma, and ulcerative colitis.

The art provides a wide variety of experimental animal systems, transgenic and non-transgenic, for testing therapies 30 for human illness involving autoimmune diseases (see e.g., Paul, W. E., Fundamental Immunology, 2nd ed., Raven Press, New York, 1989; and Kandel et al. *Principles of* Neural Science, 3rd ed., Appleton and Lange, Norwalk, Conn., 1991; and Current Protocols In Immunology, Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M., and Strober, eds., Green Publishing Associates (John Wiley & Sons), New York, 1992). Based on the abovedescribed experimental results showing immunosuppressive activity of unglycosylated rHuAFP, it is reasonable to believe that other autoimmune diseases can be treated by administration of such rHuAFP (or fragment or analog thereof) produced in a prokaryotic system. Accordingly, the invention provides the use of rHuAFP (or a fragment or analog thereof) for treatment (i.e., prevention or suppression or amelioration or promotion of remission) of any autoimmune disease.

There now follow examples of animal systems useful for evaluating the efficacy of recombinant human alphafetoprotein or an immune cell anti-proliferative fragment or analog thereof in treating autoimmune diseases. These examples are provided for the purpose of illustrating, not limiting, the invention.

Multiple Sclerosis

Multiple sclerosis (MS) is a demyelinating disease involving scattered areas of the white matter of the central nervous system. In MS, myelin basic protein and proteolipid protein are the major targets of an autoimmune response involving T lymphocytes, among other immune system components. Loss of the myelin sheath of nerve cells (demyelination) occurs, resulting in neurological symptoms that culminate in coma or paralysis.

Experimental autoimmune encephalomyelitis (EAE) is a primary model used in the art to examine and assess the effectiveness of therapeutic agents for treating MS. EAE is an inflammatory autoimmune demyelinating disease induced in laboratory animals by immunization with central nervous system tissue. When animals (e.g., mice, rats,

guinea pigs, rabbits, monkeys, etc.) are injected with adjuvant, e.g., complete Freund's adjuvant, plus myelin basic protein or proteolipid protein, EAE is induced, which is similar, pathologically to MS (see e.g., Alvord et al., Experimental Allergic Encephalomyelitis-A Useful Model 5 for Multiple Sclerosis, Liss, New York, 1984; Swanborg, Meth. Enzymol. 162:413, 1988; and McCarron et al., J. Immunol., 147: 3296, 1991.)

To evaluate rHuAFP or a fragment or analog thereof, EAE is induced in an appropriate laboratory animal, e.g., a mouse 10 or rabbit, according to methods known in the art. To evaluate the compound's immunosuppressive effect on EAE, i.e., its ability to prevent or ameliorate EAE, the compound is administered according to standard methods, e.g., intravenously or intraperitoneal, at an appropriate dosage on a daily 15 basis. Generally, administration is initiated prior to inducing EAE and/or after the clinical appearance of EAE. Control animals receive a placebo, e.g., human serum albumin, similarly administered as for rHuAFP or related molecules. The effect of the test molecules on EAE is monitored 20 according to any standard method. For example, weight loss and muscle paralysis in EAE-induced animals is monitored on a daily basis. If desired, histological inspection (e.g., by using any standard histochemical or immunohistochemical procedure, see e.g., Ausubel et al., Current Protocols In 25 Molecular Biology, Greene Publishing Associates (John Wiley & Son), New York, 1994; Bancroft and Stevens, Theory and Practice of Histochemical Techniques, Churchill Livingstone, 1982) of brain and spinal cord tissues is performed and tissue samples examined microscopically for 30 evidence of EAE, e.g., evidence of perivascular cellular infiltrates. Comparative studies between treated and control animals are used to determine the relative efficacy of the test molecules in preventing or ameliorating EAE. A molecule which prevents or ameliorates (decreases or suppresses or 35 relieves or promotes remission of) the symptoms of EAE is considered useful in the invention.

Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a common chronic illness in which the synovial membrane of multiple joints becomes 40 inflamed, causing damage to cartilage and bone. RA is associated with human lymphocyte antigen (HLA)-DR4 and considered to be an autoimmune disorder involving T cells, see e.g., Sewell et al., *Lancet* 341: 283, 1993. RA results from a complex interaction of synovial cells with various 45 cellular elements (and their soluble products) that infiltrate from the circulation into the synovial lining of joints. A series of biological events occur which ultimately lead to a lesion which invades and erodes collagen and the cartilage matrix of the joint.

A number of animal models of RA, e.g., the MRL-lpr/lpr mouse, are known in the art which develop a form of arthritis resembling the human disease (see e.g., *Fundamental Immunology*, supra). Alternatively, autoimmune collagen arthritis (ACA) and adjuvant arthritis (AA) can be induced 55 in an appropriate animal according to standard methods.

To evaluate rHuAFP or a fragment or analog thereof on immunosuppressive on RA, i.e., the compound's ability to prevent or ameliorate RA, the test molecule is administered to a MRL-lpr/lpr mouse according to standard methods, e.g., 60 intravenously or intraperitoneally, at an appropriate dosage on a daily basis. Generally, administration is initiated prior to the onset of RA and/or after the clinical appearance of RA. Control animals receive a placebo, e.g., human serum albumin, similarly administered as for rHuAFP or related 65 molecules. The effect of the test molecule on RA is monitored according to standard methods. For example, analysis

of the cellular component(s) of a synovial joint are monitored on a daily basis. If desired, histological inspection (e.g., by using any standard histochemical or immunohistochemical procedure, see e.g., Ausubel et al., supra; Bancroft and Stevens, supra) of the synovial joint is performed and tissue samples examined microscopically for evidence of RA, e.g., evidence of erosion of collagen and cartilage matrix in a joint. Comparative studies between treated and control animals are used to determine the relative efficacy of the test molecule in preventing or ameliorating RA. A test molecule which prevents or ameliorates (decreases or suppresses or relieves or promotes remission of) the symptoms of RA is considered useful in the invention.

Myasthenia Gravis

Myasthenia gravis (MG) is a disorder of neuromuscular transmission in which there are autoantibodies against acetylcholine receptors of neuromuscular junctions. Antibodies attack the junction, causing weakness and paralysis. Females are afflicted twice as often as males, typically during the third decade of life. Muscular weakness is the predominant feature of the disease. Clinical signs include drooping of the eyelids and double vision. There is an association between MG and hyperthyroidism.

Experimental autoimmune MG (EAMG) has been studied in a variety of animals including rabbits, monkeys, Lewis rats and inbred strains of mice (see e.g., *Principles of Neural Science*, supra), the symptoms of EAMG resemble the essential characteristics of the human disease. A single injection of acetylcholine receptor, e.g., purified from the electric organs of the eel Torpedo californica, along with adjuvants, causes an acute phase of weakness within 8 to 12 days and then chronic weakness after about 30 days. The response to the eel receptor is T cell dependent. The C57BL/6 strain (H-2B) is a high responder to Torpedo receptor and highly susceptible to EAMG.

To evaluate rHuAFP or a fragment or analog thereof, EAMG is induced in an appropriate laboratory animal, e.g., the C57BL/6 strain (H-2B) mouse, according to methods known in the art. To evaluate the compound's immunosuppressive effect on EAMG, i.e., its ability to prevent or ameliorate EAMG, the compound is administered according to standard methods, e.g., intravenously or intraperitoneally, at an appropriate dosage on a daily basis. Generally, administration is initiated prior to inducing EAMG and/or after the clinical appearance of EAMG. Control animals receive a placebo, e.g., human serum albumin, similarly administered as for rHuAFP or related molecules. The effect of the test molecules on EAMG is monitored according to standard methods. For example, nerve stimulation in an electromyographic muscle assay (e.g., according to the methods of Pachner et al., Ann. Neurol. 11:48, 1982) in EAMG-induced animals can be assayed. If desired, histological inspection (e.g., by using any standard histochemical or immunohistochemical procedure, see e.g., Ausubel et al., supra; Bancroft and Stevens, supra) of tissue samples is performed and tissue samples examined microscopically for evidence of EAMG, e.g., evidence of monocyte infiltration and/or autoantibody localization at acetylcholine receptors of neuromuscular junctions. Comparative studies between treated and control animals are used to determine the relative efficacy of the test molecules in preventing or ameliorating EAMG. A molecule which prevents or ameliorates (decreases or suppresses or relieves or promotes remission of) the symptoms of EAMG is considered useful in the invention.

Insulin-Dependent Diabetes Mellitus

Diabetes is a disorder of glucose metabolism. Insulindependent diabetes mellitus (IDDM), also known as Type I

diabetes, is an autoimmune disease characterized by T-cell mediated destruction of pancreatic β cells in the islets of Langerhans, accompanied by an immune response to a diversity of self peptides leading to hyperglycemia, among other pathological events. IDDM patients depend on exog- 5 enous insulin to maintain normal glucose metabolism. Humans at risk for developing IDDM can be identified prior to onset of hyperglycemia by the abnormal occurrence of autoantibodies to insulin, islet cells, glutamic acid carboxylase, as well as other autologous proteins (see e.g., 10 Baekkeskov et al., J. Clin. Invest. 79:926, 1987; Dean et al., Diabetologia 29: 339, 1986; Rossini et al., Annu. Rev. Immunol. 3:289, 1985; Srikanta et al., N. Enal. J. Med. 308:322, 1983). Autoantibody patterns, in general, are predictive for the eventual disease progression and/or risk for 15 developing the disease (see e.g., Keller et al., Lancet 341:927, 1993).

Examples of animal models which spontaneously develop IDDM resembling the human disease include the Bio-Breeding (BB) rat and nonobese diabetic (NOD) mouse. 20 Diabetes is also experimentally induced by streptozotocin.

The BB rat spontaneously develops a disease similar to IDDM, with insulitis (infiltration of mononuclear cells into the pancreatic islets) and autoantibodies against self cells and insulin (see e.g., Baekkeskov et al., *J. Clin. Invest.* 25 79:926, 1987; Rossini et al, supra; Nakhooda et al., *Diabetes* 26: 100, 1977; Dean et al., *Clin. Exp. Immunol.* 69: 308, 1987).

NOD mice typically develop insulitis between 5 and 8 weeks of age, and by 7 months 70% of the females and 40% 30 of the males become diabetic. T cells transferred from diabetic mice to young nondiabetic NOD mice induce diabetes within 2 to 3 weeks (see e.g., Bendelac et al., *J. Exp. Med.* 166:823, 1987). NOD mice usually die within 1 to 2 months after the onset of diabetes unless they receive insulin 35 therapy.

Chemically induced diabetes is accomplished using multiple injections of small doses of streptozotocin, a drug toxic for pancreatic β cells, which causes severe insulitis and diabetes (see e.g., Kikutani et al., *Adv. Immunol.* 51:285, 40 1992).

Accordingly, the art provides a variety animal models resembling human IDDM which can be used to examine and assess approaches for the prevention or amelioration of diabetes involving rHuAFP (or a fragment or analog 45 thereof).

To evaluate the immunosuppressive effect of rHuAFP or a fragment or analog thereof on the development of diabetes mouse, i.e., the compound's ability to treat or prevent insulitis and diabetes, the test compound is administered to 50 an appropriate test animal, e.g, a NOD mouse, according to standard methods, e.g., intravenously or intraperitoneally, at an appropriate dosage on a daily basis. Generally, administration is initiated prior to the onset of insulitis and diabetes and/or after the clinical appearance of diabetic characteris- 55 tics. control animals receive a placebo, e.g., human serum albumin, similarly administered as for rHuAFP or related molecules. The effect of test molecules on insulitis and diabetes is monitored according to standard methods. For example, weight loss, ketone body formation, and blood 60 glucose concentration is monitored on a daily basis. If desired, histological inspection (e.g., by using any standard histochemical or immunohistochemical procedure, see e.g., Ausubel et al., supra; Bancroft and Stevens, supra) of pancreatic islet cells is performed and tissue samples exam- 65 ined microscopically for evidence of insulitis and β cell destruction. Comparative studies between treated and con-

trol animals are used to determine the relative efficacy of the test molecules in preventing or ameliorating the diabetic condition. A molecule which prevents or ameliorates (decreases or suppresses or relieves or promotes remission of) the symptoms of diabetes, e.g., IDDM, is considered useful in the invention.

Systemic LuPus Erythematosus

Systemic lupus erythematosus (SLE) is a severe systemic autoimmune disease. About 90% of patients with this disease are young women. This marked preponderance of females is not seen before puberty or after menopause. The illness generally begins in young adulthood when a characteristic skin rash appears over cheekbones and forehead. Hair loss is common, as is severe kidney damage, arthritis, accumulation of fluid around the heart and inflammation of the lining of the lungs. In nearly half of the patients the blood vessels of the brain also become inflamed, leading to paralysis and convulsions. The activity of the disease, like other autoimmune diseases, can fluctuate: long quiescent periods of good health can terminate abruptly and inexplicably with the onset of a new attack. A large number of different autoantibodies are known to occur in SLE, e.g., autoantibodies against DNA, RNA and histories (see, e.g., Fundamental Immunology, supra)

A number of animal models of human SLE, e.g., inbred mouse strains including NZB mice-and their F₁ hybrids, MRL mice, and BXSB mice, are known in the art (see e.g., Bielschowsky et al. *Proc. Univ. Otago Med. Sch.* 37:9, 1959; Braverman et al., *J. Invest. Derm.* 50: 483, 1968; Howie et al. *Adv. Immunol.* 9:215, 1968; *Genetic Control of Autoimmune Disease*, Rose, M., Bigazzi, P. E., and Warner, N. L. eds., Elsevier, Amsterdam, 1979; and *Current Protocols In Immunology*, supra). For example, the NZBXNZW F₁ mouse is an excellent model of human SLE, female mice develop high levels of anti-double- and single-stranded DNA autoantibodies, other anti-nuclear antibodies, and renal disease; death usually occurs at approximately 8 months (see e.g., Theofilopoulos et al., *Adv. Immunol.* 37:269, 1985).

To evaluate the immunosuppressive effect of rHuAFP or a fragment or analog thereof on SLE, i.e., the compound's ability of rHuAFP to prevent or ameliorate SLE, test compounds are administered to an appropriate animal, e.g., the NZBXNZW F₁ mouse, according to standard methods, e.g., intravenously or intraperitoneally, at an appropriate dosage on a daily basis. Generally, administration is initiated prior to the onset of SLE and/or after the clinical appearance of SLE. Control animals receive a placebo, e.g., human serum albumin, similarly administered as for rHuAFP or related molecules. The effect of the test compound on SLE is monitored according to standard methods. For example, analysis of autoantibodies, e.g., anti-DNA antibodies can be monitored. If desired, histological inspection (e.g., by using any standard histochemical or immunohistochemical procedure, see e.g., Ausubel et al., supra; Bancroft and Stevens, supra) of kidney tissue is performed and tissue samples examined microscopically for evidence of SLE, e.g., evidence of lupus nephritis. Comparative studies between treated and control animals are used to determine the relative efficacy of the test compounds in preventing or ameliorating SLE. A molecule which prevents or ameliorates (decreases or suppresses or relieves or promotes remission of) the symptoms of SLE is considered useful in the invention.

Therapeutic Administration

As demonstrated above, recombinant alpha-fetoprotein, e.g., rHuAFP (or a fragment or analog thereof) is effective

in inhibiting proliferation of autoimmune cells and accordingly is useful for the prevention or amelioration of autoimmune diseases including, but not limited to, multiple sclerosis, rheumatoid arthritis, diabetes mellitus, systemic lupus erythematosus, and myasthenia gravis. Accordingly, recombinant human alpha-fetoprotein (or a fragment or analog thereof) can be formulated according to known methods to prepare pharmaceutically useful compositions.

Recombinant alpha-fetoprotein, e.g., rHuAFP (or a fragment or analog thereof), is preferably administered to the 10 patient in an amount which is effective in preventing or ameliorating the symptoms of an autoimmune disease. Generally, a dosage of 0.1 ng/kg to 10 g/kg body is adequate. If desired, administration is performed on a daily basis. Because there are no known adverse side effects related to recombinant human alpha-fetoprotein, it is believed that 15 relatively high dosages can be safely administered. For example, treatment of human patients will be carried out using a therapeutically effective amount of rHuAFP (or a fragment or analog thereof) in a physiologically acceptable carrier. Suitable carriers and their formulation are described 20 for example in Remington's *Pharmaceutical Sciences* by E. W. Martin. The amount of rHuAFP to be administered will-vary depending upon the manner of administration, the age and body weight of the patient, and with the type of disease, and size of the patient predisposed to or suffering from the disease. Preferable routes of administration include, for example, subcutaneous, intravenous, intramuscular, or intradermal injections which provide continuous, sustained levels of the drug in the patient. In other preferred routes of administration, rHuAFP can be given to a patient by injection or implantation of a slow release preparation, for example, in a slowly dissociating polymeric or crystalline form; this sort of sustained administration can follow an initial delivery of the drug by more conventional routes (for example, those described above). Alternatively, rHuAFP can be administered using an infusion pump (e.g., an external or implantable infusion pump), thus allowing a precise degree of control over the rate of drug release, or through installation of rHuAFP in the nasal passages in a similar fashion to that used to promote absorption of insulin. As an alternative to nasal transmucosal 40 absorption, rHuAFP can be delivered by aerosol deposition of the powder or solution into the lungs.

Furthermore, the method(s) of the invention can also employ combination therapy in which rHuAFP is administered either simultaneously or sequentially with a therapeutic agent such as a general or specific tolerizing agent (e.g., an anti-idiotypic agent (e.g., a monoclonal) or a therapeutic vaccine or an oral agent (e.g., insulin, collagen or myelin basic protein) or a cytokine (e.g., Il-15) or an interferon (α-interferon) or an immunosuppressive agent. Preferably, 50 an immunosuppressive agent is administered in an effective dose which is lower than the standard dose when the immunosuppressive agents are cyclosporine, FK-506, steroids, azathioprine, or 15-deoxyspergualin.

Treatment is started generally with the diagnosis or suspicion of an autoimmune disease and is generally repeated on a daily basis. Protection or prevention from the development (or progression or exacerbation) of an autoimmune disease is also achieved by administration of rHuAFP prior 60 to the onset of the disease. If desired, the efficacy of the treatment or protection regimens is assessed with the methods of monitoring or diagnosing patients for autoimmune disease.

The method(s) of the invention can also be used to treat 65 non-human mammals, for example, domestic pets, or livestock.

In other embodiments, the invention includes the use of rHuAFP (or fragment or analog thereof) for the prevention or treatment of acquired immunodeficiency syndrome (AIDS). To evaluate the immunosuppressive effect of rHuAFP or a fragment or analog thereof on AIDS, i.e., the compound's ability to prevent or ameliorate an autoimmune component of AIDS, test compounds are administered to an appropriate animal (e.g., a human patient), according to standard methods, e.g., intravenously or intraperitoneally, at an appropriate dosage on a daily basis as is discussed above. Generally, administration is initiated prior to the onset of AIDS and/or after the clinical appearance of AIDS. Control animals receive a placebo, e.g., human serum albumin, similarly administered as for rHuAFP or related molecules. The effect of the test compound on AIDS is monitored according to standard methods. For example, analysis of the ability of the test compound to inhibit or prevent or ameliorate the destruction of helper T cells can be monitored. Comparative studies between treated and control animals are used to determine the relative efficacy of the test compounds in preventing or ameliorating AIDS. A molecule which prevents or ameliorates (decreases or suppresses or relieves or promotes remission of) the symptoms of AIDS is con-

In the invention also includes the use of a therapeutically effective amount rHuAFP (or fragment or analog thereof) for inhibiting the rejection of a transplanted organ (e.g., the heart, the liver, the lung, the pancreas, and the kidney), tissue (e.g., skin, bone marrow, dura mater, bone, implanted collagen, an implanted bioreactor), or cell (e.g., β islet cells of the pancreas, stem cells, hematopoietic cells, lymph cells, neuroendocrine or adrenal cells) in a mammal. Such transplanted organs, tissues, or cells may be derived from any source, e.g., such biological material can be allogenic, phenogenic, autologous, synthetic, artificial or genetically-engineered. For example, the method can also be used when the patient is the recipient of an allograft such a heart or kidney from another species.

sidered useful in the invention.

In one working example, the immunosuppressive effect of rHuAFP on clinical transplantation, i.e., the ability of rHuAFP to prevent or ameliorate transplant rejection (e.g., hyperacute rejection, acute rejection and chronic rejection), is evaluated by administering rHuAFP to an NIH minipig according to standard methods, e.g., intravenously or intraperitoneally, at an appropriate dosage on a daily basis. Generally, administration of rHuAFP is initiated prior to the transplant, e.g., transplantation of a kidney and/or after the transplant procedure. Control animals receive a placebo, e.g., human serum albumin, similarly administered as for 55 rHuAFP. The effect of rHuAFP on transplant rejection is monitored according to standard methods. One manifestation of the rejection process is diminished function of the transplanted organ, for example, analysis of urine output can be monitored. If desired, histological inspection (e.g., by using any standard histochemical or immunohistochemical procedure, see e.g., Ausubel et al., supra; Bancroft and Stevens, supra) of kidney tissue is performed and tissue samples obtained by biopsy are examined microscopically for evidence of transplant rejection, e.g., chronic interstitial fibrosis, vascular thrombosis, or the presence of abnormal lymphocytic infiltrates. Comparative studies between treated and control animals are used to determine the relative

efficacy of rHuAFP in preventing or ameliorating transplant rejection. Recombinant HuAFP (a fragment or analog thereof) which prevents or ameliorates (decreases or suppresses or relieves or promotes remission of) the symptoms of transplant rejection is considered useful in the invention.

All publications, manufacturer's instructions, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

SEQUENCE LISTING

<160> NUMBE	ER OF SEQ II	NOS: 16				
<210> SEQ I <211> LENGT <212> TYPE:	TH: 2027 DNA	aniona				
<213> ORGAN	NISM: Homo s ENCE: 1	aprens				
atattqtqct	tccaccactg	ccaataacaa	aataactaqc	aaccatqaaq	tqqqtqqaat	60
	aattttccta		-			120
atggaatagc	ttccatattg	gattcttacc	aatgtactgc	agagataagt	ttagctgacc	180
	attttttgcc					240
	tgcattgact					300
	ccagctacct					360
agaagtacgg	acattcagac	tgctgcagcc	aaagtgaaga	gggaagacat	aactgtttc	420
ttgcacacaa	aaagcccact	gcagcatgga	tcccactttt	ccaagttcca	gaacctgtca	480
caagctgtga	agcatatgaa	gaagacaggg	agacattcat	gaacaaattc	atttatgaga	540
tagcaagaag	gcatcccttc	ctgtatgcac	ctacaattct	tctttcggct	gctgggtatg	600
agaaaataat	tccatcttgc	tgcaaagctg	aaaatgcagt	tgaatgcttc	caaacaaagg	660
cagcaacagt	tacaaaagaa	ttaagagaaa	gcagcttgtt	aaatcaacat	gcatgtccag	720
taatgaaaaa	ttttgggacc	cgaactttcc	aagccataac	tgttactaaa	ctgagtcaga	780
agtttaccaa	agttaatttt	actgaaatcc	agaaactagt	cctggatgtg	gcccatgtac	840
atgagcactg	ttgcagagca	gatgtgctgg	attgtctgca	ggatggggaa	aaaatcatgt	900
cctacatatg	ttctcaacaa	gacactctgt	caaacaaaat	aacagaatgc	tgcaaactga	960
ccacgctgga	acgtggtcaa	tgtataattc	atgcagaaaa	tgatgaaaaa	cctgaaggtc	1020
tatctccaaa	tctaaacagg	tttttaggag	atagagattt	taaccaattt	tcttcagggg	1080
aaaaaatat	cttcttggca	agttttgttc	atgaatattc	aagaagacat	cctcagcttg	1140
ctgtctcagt	aattctaaga	gttgctaaag	gataccagga	gttattggag	aagtgtttcc	1200
agactgaaaa	ccctcttgaa	tgccaagata	aaggagaaga	agaattacag	aaatacatcc	1260
aggagagcca	agcattggca	aagcgaagct	gcggcctctt	ccagaaacta	ggagaatatt	1320
acttacaaaa	tgagtttctc	gttgcttaca	caaagaaagc	ccccagctg	acctcgtcgg	1380
agctgatggc	catcaccaga	aaaatggcag	ccacagcagc	cacttgttgc	caactcagtg	1440
aggacaaact	attggcctgt	ggcgagggag	cggctgacat	tattatcgga	cacttatgta	1500
tcagacatga	aatgactcca	gtaaaccctg	gtgttggcca	gtgctgcact	tcttcatatg	1560
ccaacaggag	gccatgcttc	agcagcttgg	tggtggatga	aacatatgtc	cctcctgcat	1620
tctctgatga	caagttcatt	ttccataagg	atctgtgcca	agctcagggt	gtagcgctgc	1680
aaaggatgaa	gcaagagttt	ctcattaacc	ttgtgaagca	aaagccacaa	ataacagagg	1740

aacaacttga ggctctcatt gcagatttct caggcctgtt ggagaaatgc tgccaaggcc

-continued

aggaacagga agtctgcttt gctgaagagg gacaaaaact gatttcaaaa actggtgctg														
ctttgggagt ttaaattact tcaggggaag agaagacaaa acgagtcttt cattcggtgt														
gaacttttct ctttaatttt aactgattta acactttttg tgaattaatg aaatgataaa														
gacttttatg tgagatttcc ttatcacaga aataaaatat ctccaaa														
<210> SEQ ID NO 2 <211> LENGTH: 590 <212> TYPE: PRT <213> ORGANISM: Homo sapiens														
<400> SEQUENCE: 2														
Thr Leu His Arg Asn Glu Tyr Gly Ile Ala Ser Ile Leu Asp Ser Tyr 1 5 10 15														
Gln Cys Thr Ala Glu Ile Ser Leu Ala Asp Leu Ala Thr Ile Phe Phe 20 25 30														
Ala Gln Phe Val Gln Glu Ala Thr Tyr Lys Glu Val Ser Lys Met Val 35 40 45														
Lys Asp Ala Leu Thr Ala Ile Glu Lys Pro Thr Gly Asp Glu Gln Ser 50 55														
Ser Gly Cys Leu Glu Asn Gln Leu Pro Ala Phe Leu Glu Glu Leu Cys 65 70 75 80														
His Glu Lys Glu Ile Leu Glu Lys Tyr Gly His Ser Asp Cys Cys Ser 85 90 95														
Gln Ser Glu Glu Gly Arg His Asn Cys Phe Leu Ala His Lys Lys Pro 100 105 110														
Thr Ala Ala Trp Ile Pro Leu Phe Gln Val Pro Glu Pro Val Thr Ser 115 120 125														
Cys Glu Ala Tyr Glu Glu Asp Arg Glu Thr Phe Met Asn Lys Phe Ile 130 135 140														
Tyr Glu Ile Ala Arg Arg His Pro Phe Leu Tyr Ala Pro Thr Ile Leu 145 150 160														
Leu Ser Ala Ala Gly Tyr Glu Lys Ile Ile Pro Ser Cys Cys Lys Ala 165 170 175														
Glu Asn Ala Val Glu Cys Phe Gln Thr Lys 180 185 190														
Glu Leu Arg Glu Ser Ser Leu Leu Asn Gln His Ala Cys Pro Val Met 195 200 205														
Lys Asn Phe Gly Thr Arg Thr Phe Gln Ala Ile Thr Val Thr Lys Leu 210 215 220														
Ser Gln Lys Phe Thr Lys Val Asn Phe Thr Glu Ile Gln Lys Leu Val 225 230 230 235														
Leu Asp Val Ala His Val His Glu His Cys Cys Arg Ala Asp Val Leu 245 250 255														
Asp Cys Leu Gln Asp Gly Glu Lys Ile Met Ser Tyr Ile Cys Ser Gln 260 265 270														
Gln Asp Thr Leu Ser Asn Lys Ile Thr Glu Cys Cys Lys Leu Thr Thr 275 280 285														
Leu Glu Arg Gly Gln Cys Ile Ile His Ala Glu Asn Asp Glu Lys Pro 290 295 300														
Glu Gly Leu Ser Pro Asn Leu Asn Arg Phe Leu Gly Asp Arg Asp Phe 305 310 315 320														
Asn Gln Phe Ser Ser Gly Glu Lys Asn Ile Phe Leu Ala Ser Phe Val 325 330 335														

-continued

Arg Val Ala Lys Gly Tyr Gln Glu Leu Leu Glu Lys Cys Phe Gln Thr Glu Asn Pro Leu Glu Cys Gln Asp Lys Gly Glu Glu Glu Leu Gln Lys Tyr Ile Gln Glu Ser Gln Ala Leu Ala Lys Arg Ser Cys Gly Leu Phe Gln Lys Leu Gly Glu Tyr Tyr Leu Gln Asn Glu Phe Leu Val Ala Tyr Thr Lys Lys Ala Pro Gln Leu Thr Ser Ser Glu Leu Met Ala Ile Thr Arg Lys Met Ala Ala Thr Ala Ala Thr Cys Cys Gln Leu Ser Glu Asp Lys Leu Leu Ala Cys Gly Glu Gly Ala Ala Asp Ile Ile Gly His Leu Cys Ile Arg His Glu Met Thr Pro Val Asn Pro Gly Val Gly Gln Cys Cys Thr Ser Ser Tyr Ala Asn Arg Arg Pro Cys Phe Ser Ser Leu Val Val Asp Glu Thr Tyr Val Pro Pro Ala Phe Ser Asp Asp Lys Phe Ile Phe His Lys Asp Leu Cys Gln Ala Gln Gly Val Ala Leu Gln Arg Met Lys Gln Glu Phe Leu Ile Asn Leu Val Lys Gln Lys Pro Gln Ile Thr Glu Glu Gln Leu Glu Ala Leu Ile Ala Asp Phe Ser Gly Leu Leu Glu Lys Cys Cys Gln Gly Gln Glu Gln Glu Val Cys Phe Ala Glu Glu Gly Gln Lys Leu Ile Ser Lys Thr Gly Ala Ala Leu Gly Val <210> SEQ ID NO 3 <211> LENGTH: 197 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 Thr Leu His Arg Asn Glu Tyr Gly Ile Ala Ser Ile Leu Asp Ser Tyr Gln Cys Thr Ala Glu Ile Ser Leu Ala Asp Leu Ala Thr Ile Phe Phe Ala Gln Phe Val Gln Glu Ala Thr Tyr Lys Glu Val Ser Lys Met Val Lys Asp Ala Leu Thr Ala Ile Glu Lys Pro Thr Gly Asp Glu Gln Ser Ser Gly Cys Leu Glu Asn Gln Leu Pro Ala Phe Leu Glu Glu Leu Cys His Glu Lys Glu Ile Leu Glu Lys Tyr Gly His Ser Asp Cys Cys Ser Gln Ser Glu Glu Gly Arg His Asn Cys Phe Leu Ala His Lys Lys Pro Thr Ala Ala Trp Ile Pro Leu Phe Gln Val Pro Glu Pro Val Thr Ser

His Glu Tyr Ser Arg Arg His Pro Gln Leu Ala Val Ser Val Ile Leu

-continued

```
Cys Glu Ala Tyr Glu Glu Asp Arg Glu Thr Phe Met Asn Lys Phe Ile
    130
                        135
Tyr Glu Ile Ala Arg Arg His Pro Phe Leu Tyr Ala Pro Thr Ile Leu
                    150
145
                                        155
                                                            160
Leu Ser Ala Ala Gly Tyr Glu Lys Ile Ile Pro Ser Cys Cys Lys Ala
                165
                                    170
                                                        175
Glu Asn Ala Val Glu Cys Phe Gln Thr Lys Ala Ala Thr Val Thr Lys
            180
                                185
                                                    190
Glu Leu Arg Glu Ser
        195
<210> SEQ ID NO 4
<211> LENGTH: 192
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 4
Ser Leu Leu Asn Gln His Ala Cys Pro Val Met Lys Asn Phe Gly Thr
Arg Thr Phe Gln Ala Ile Thr Val Thr Lys Leu Ser Gln Lys Phe Thr
            20
                                25
Lys Val Asn Phe Thr Glu Ile Gln Lys Leu Val Leu Asp Val Ala His
        35
                            40
Val His Glu His Cys Cys Arg Ala Asp Val Leu Asp Cys Leu Gln Asp
    50
Gly Glu Lys Ile Met Ser Tyr Ile Cys Ser Gln Gln Asp Thr Leu Ser
65
                                                             80
Asn Lys Ile Thr Glu Cys Cys Lys Leu Thr Thr Leu Glu Arg Gly Gln
Cys Ile Ile His Ala Glu Asn Asp Glu Lys Pro Glu Gly Leu Ser Pro
            100
                                105
                                                    110
Asn Leu Asn Arg Phe Leu Gly Asp Arg Asp Phe Asn Gln Phe Ser Ser
        115
                            120
                                                125
Gly Glu Lys Asn Ile Phe Leu Ala Ser Phe Val His Glu Tyr Ser Arg
    130
                        135
                                            140
Arg His Pro Gln Leu Ala Val Ser Val Ile Leu Arg Val Ala Lys Gly
145
                    150
                                        155
                                                            160
Tyr Gln Glu Leu Leu Glu Lys Cys Phe Gln Thr Glu Asn Pro Leu Glu
                165
                                    170
                                                        175
Cys Gln Asp Lys Gly Glu Glu Leu Gln Lys Tyr Ile Gln Glu Ser
            180
                                185
                                                    190
<210> SEQ ID NO 5
<211> LENGTH: 201
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 5
Gln Ala Leu Ala Lys Arg Ser Cys Gly Leu Phe Gln Lys Leu Gly Glu
Tyr Tyr Leu Gln Asn Glu Phe Leu Val Ala Tyr Thr Lys Lys Ala Pro
                                25
            20
Gln Leu Thr Ser Ser Glu Leu Met Ala Ile Thr Arg Lys Met Ala Ala
        35
                            40
Thr Ala Ala Thr Cys Cys Gln Leu Ser Glu Asp Lys Leu Leu Ala Cys
    50
```

-continued

Gly Glu Gly Ala Ala Asp Ile Ile Ile Gly His Leu Cys Ile Arg His Glu Met Thr Pro Val Asn Pro Gly Val Gly Gln Cys Cys Thr Ser Ser Tyr Ala Asn Arg Arg Pro Cys Phe Ser Ser Leu Val Val Asp Glu Thr Tyr Val Pro Pro Ala Phe Ser Asp Asp Lys Phe Ile Phe His Lys Asp Leu Cys Gln Ala Gln Gly Val Ala Leu Gln Arg Met Lys Gln Glu Phe Leu Ile Asn Leu Val Lys Gln Lys Pro Gln Ile Thr Glu Glu Gln Leu Glu Ala Leu Ile Ala Asp Phe Ser Gly Leu Leu Glu Lys Cys Cys Gln Gly Gln Glu Glu Val Cys Phe Ala Glu Glu Gly Gln Lys Leu Ile Ser Lys Thr Gly Ala Ala Leu Gly Val <210> SEQ ID NO 6 <211> LENGTH: 389 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 6 Thr Leu His Arg Asn Glu Tyr Gly Ile Ala Ser Ile Leu Asp Ser Tyr Gln Cys Thr Ala Glu Ile Ser Leu Ala Asp Leu Ala Thr Ile Phe Phe Ala Gln Phe Val Gln Glu Ala Thr Tyr Lys Glu Val Ser Lys Met Val Lys Asp Ala Leu Thr Ala Ile Glu Lys Pro Thr Gly Asp Glu Gln Ser Ser Gly Cys Leu Glu Asn Gln Leu Pro Ala Phe Leu Glu Glu Leu Cys His Glu Lys Glu Ile Leu Glu Lys Tyr Gly His Ser Asp Cys Cys Ser Gln Ser Glu Glu Gly Arg His Asn Cys Phe Leu Ala His Lys Lys Pro Thr Ala Ala Trp Ile Pro Leu Phe Gln Val Pro Glu Pro Val Thr Ser Cys Glu Ala Tyr Glu Glu Asp Arg Glu Thr Phe Met Asn Lys Phe Ile Tyr Glu Ile Ala Arg Arg His Pro Phe Leu Tyr Ala Pro Thr Ile Leu Leu Ser Ala Ala Gly Tyr Glu Lys Ile Ile Pro Ser Cys Cys Lys Ala Glu Asn Ala Val Glu Cys Phe Gln Thr Lys Ala Ala Thr Val Thr Lys Glu Leu Arg Glu Ser Ser Leu Leu Asn Gln His Ala Cys Pro Val Met Lys Asn Phe Gly Thr Arg Thr Phe Gln Ala Ile Thr Val Thr Lys Leu Ser Gln Lys Phe Thr Lys Val Asn Phe Thr Glu Ile Gln Lys Leu Val

-continued

					230					235					240
Leu	Asp	Val	Ala	His 245	Val	His	Glu	His	C y s 250	Cys	Arg	Ala	Asp	Val 255	Leu
Asp	Cys	Leu	Gln 260	Asp	Gly	Glu	Lys	Ile 265	Met	Ser	Tyr	Ile	C y s 270	Ser	Gln
Gln	Asp	Thr 275	Leu	Ser	Asn	Lys	Ile 280	Thr	Glu	Суѕ	Суѕ	L y s 285	Leu	Thr	Thr
Leu	Glu 290	Arg	Gly	Gln	Cys	Ile 295	Ile	His	Ala	Glu	Asn 300	Asp	Glu	Lys	Pro
Glu 305	Gly	Leu	Ser	Pro	Asn 310	Leu	Asn	Arg	Phe	Leu 315	Gly	Asp	Arg	Asp	Phe 320
Asn	Gln	Phe	Ser	Ser 325	_	Glu	Lys	Asn	Ile 330	Phe	Leu	Ala	Ser	Phe 335	Val
His	Glu	Tyr	Ser 340	Arg	Arg	His	Pro	Gln 345	Leu	Ala	Val	Ser	Val 350	Ile	Leu
Arg	Val	Ala 355	_	Gly	Tyr	Gln	Glu 360	Leu	Leu	Glu	Lys	C y s 365	Phe	Gln	Thr
Glu	Asn 370	Pro	Leu	Glu	Cys	Gln 375	Asp	Lys	Gly	Glu	Glu 380	Glu	Leu	Gln	Lys
Ty r 385	Ile	Gln	Glu	Ser											
0.1				7											
<213 <213)> SE l> LE 2> TY 3> OF	NGTE PE:	1: 39 PRT	3) car	ni en c	1								
)> SE				, par) I CII L	,								
~ 4 01)	, ČOEL	· 100	I											
C	т	T	7	<i>α</i> 1	TT	70 T =	0	Desc	T7_]	Mal	T	7	Dh -	<i>α</i> 1	mե
1	Leu			5			_		10		_			15	
1	Leu			5			_		10 L y s		_			15	
1 Arg		Phe	Gln 20	5 Ala	Ile	Thr	Val	Thr 25	10 L y s	Leu	Ser	Gln	Ly s 30	15 Phe	Thr
1 Arg Lys	Thr	Phe Asn 35	Gln 20 Phe	5 Ala Thr	Ile	Thr	Val Gln 40	Thr 25 L y s	10 Lys Leu	Leu Val	Ser	Gln Asp 45	Lys 30 Val	15 Phe	Thr
1 Arg Lys	Thr Val His 50 Glu	Phe Asn 35 Glu Lys	Gln 20 Phe His	5 Ala Thr Cys Met	Ile Glu C y s	Thr Ile Arg 55	Val Gln 40 Ala	Thr 25 Lys Asp	10 Lys Val	Leu Val Leu	Ser Leu Asp 60	Gln Asp 45 Cys	Lys 30 Val Leu	15 Phe Ala Gln Leu	Thr His
Arg Lys Val Gly 65	Thr Val His 50 Glu	Phe Asn 35 Glu Lys	Gln 20 Phe His	5 Ala Thr Cys	Ile Glu Ser 70	Thr Ile 55 Tyr	Val Gln 40 Ala	Thr 25 Lys Cys	10 Lys Leu Val	Leu Val Gln 75	Ser Leu Asp 60	Gln Asp 45 Asp	Lys 30 Val Leu	Phe Ala Gln Leu	Thr His Asp Ser 80
Arg Lys Gly 65 Asn	Thr Val 50 Glu	Phe Asn 35 Glu Lys	Gln 20 Phe His Thr	Ala Thr Cys Met Glu 85	Ile Glu Ser 70 Cys	Thr Ile 55 Tyr	Val Gln 40 Ala Ile	Thr 25 Lys Cys	10 Lys Val Ser Thr 90	Leu Val Gln 75 Thr	Ser Leu Asp 60 Gln Leu	Gln Asp 45 Asp Glu	Lys 30 Val Leu Arg	Phe Ala Gln Gly 95	Thr His Asp Ser 80
Arg Lys Gly 65 Asn Cys	Thr Val His 50 Glu Lys	Phe Asn 35 Glu Lys Ile	Gln 20 Phe His 100	Ala Thr Cys Met Glu 85 Ala	Ile Glu Ser 70 Cys	Thr Ile Arg 55 Tyr Cys Asn	Val Gln 40 Ala Lys Asp	Thr 25 Lys Cys Cus 105	Lys Leu Thr 90 Lys	Leu Val Gln 75 Thr	Ser Leu Asp 60 Gln Glu	Gln Asp 45 Asp Glu Gly	Lys 30 Val Leu Thr	Phe Ala Gln Gly 95 Ser	Thr His Ser 80 Gln Pro
Arg Lys Cly 65 Asn Cys	Thr Val His 50 Glu Lys	Phe Asn 35 Glu Lys Ile Asn 115	Gln 20 Phe His 100 Arg	Ala Thr Cys Met Glu 85 Ala Phe	Ile Glu Ser 70 Cys Glu Leu	Thr Ile Arg 55 Tyr Cys Gly	Val Gln 40 Ala Ile Asp 120	Thr 25 Lys Cys Cys Arg	Lys Leu Val Ser Asp	Leu Val Gln 75 Thr	Ser Leu Asp 60 Gln Asn	Gln Asp Asp Glu Glu Gly Gln 125	Lys 30 Val Leu 110 Phe	Phe Ala Gly 95 Ser	Thr His Ser 80 Gln Pro
Arg Lys Val Gly 65 Asn Gly Gly	Thr Val His 50 Glu Lys Glu	Phe Asn 35 Glu Lys Ile Asn 115 Lys	Gln 20 Phe His 100 Arg	Ala Thr Cys Met Glu 85 Ala Phe Ile	Ile Glu Ser 70 Cys Glu Phe	Thr Ile Arg 55 Tyr Cys Asn Gly Leu 135	Val Gln 40 Ala Ile Asp 120 Ala	Thr 25 Lys Cys Cu Glu 105 Arg	Lys Leu Thr 90 Lys Phe	Leu Val Gln 75 Thr Pro	Ser Leu Asp 60 Gln Leu His 140	Gln Asp 45 Glu Glu Gly Glu Glu	Lys 30 Val Leu 110 Phe	Phe Ala Gly 95 Ser Ser	Thr His Asp Ser 80 Arg
Arg Lys Val Gly 65 Asn Gly Arg 145	Thr Val His 50 Glu Lys Glu 130	Phe Asn 35 Glu Lys Ile Asn 115 Lys Pro	Gln 20 Phe His 100 Arg	Ala Thr Cys Met Glu 85 Ala Phe Leu Leu	Ile Glu Cys Ser 70 Cys Glu Phe Ala 150	Thr Ile Arg 55 Tyr Cys Asn Gly Leu 135 Val	Val Gln 40 Ala Ile Asp 120 Ala Ser	Thr 25 Lys Cys Cu Glu 105 Arg Val	Lys Leu Val Ser Asp Phe Ile	Leu Val Gln 75 Thr Pro Val Leu 155	Ser Leu Asp 60 Glu Asn His 140 Arg	Gln Asp 45 Cys Glu Glu Glu Val	Lys 30 Val Leu Thr Arg Leu 110 Phe Ala	Phe Ala Gln Ser Ser Lys	Thr His Asp Ser 80 Gln Gly 160
Arg Lys Val Gly 65 Asn Cys Arg 145 Tyr	Thr Val His 50 Glu Leu Glu 130 His	Phe Asn 35 Glu Lys Ile An 115 Cys Pro Glu Glu	Gln 20 Phe His 100 Arg	Ala Thr Cys Met Glu 85 Ala Phe Leu 165	Ile Glu Ser 70 Cys Glu Phe Ala 150 Glu	Thr Ile Arg 55 Tyr Cys Asn Cly Leu 135 Val Lys	Val Gln 40 Ala Ile Asp 120 Ala Ser Cys	Thr 25 Lys Cys Cu Glu 105 Arg Val Phe	Lys Leu Val Ser Thr 90 Lys Phe Gln 170	Leu Val Gln 75 Thr Val Leu 155 Thr	Ser Leu Asp 60 Glu Asn His 140 Arg	Gln Asp Asp Glu Glu Cys Glu Asn Asn	Lys 30 Val Leu Thr Arg Phe Tyr Ala	Phe Ala Glu Gly 95 Ser Ser Lys Leu 175	Thr His Asp Ser 80 Gln Gly 160 Glu
Arg Lys Val Gly 65 Asn Cys Arg 145 Tyr Cys	Thr Val His 50 Glu Leu Glu 130 His Gln	Phe Asn 35 Glu Lys Ile Asn 115 Lys Pro Glu Asp	Gln 20 Phe His 100 Arg Asn Cln Leu Lys 180	Ala Thr Cys Met Glu 85 Ala Phe Leu 165 Gly	Ile Glu Ser 70 Cys Glu Phe Ala 150 Glu Glu	Thr Ile Arg 55 Tyr Cys Asn Gly Leu 135 Val Glu Glu	Val Gln 40 Ala Ile Asp 120 Ala Ser Cys	Thr 25 Lys Cys Clu 105 Arg Val Phe Leu 185	10 Lys Leu Val Ser Thr 90 Lys Phe Gln 170 Gln	Leu Val Gln 75 Thr Pro Leu 155 Thr	Ser Leu Asp 60 Glu Asn His 140 Arg Glu Tyr	Gln Asp Glu Gly Gln 125 Glu Val Asn Ile	Lys 30 Val Leu Thr Arg Leu 110 Phe Gln 190	Phe Ala Glu Gly 95 Ser Lys Leu 175 Glu	Thr His Asp Ser 80 Gln Gly 160 Glu Ser

-continued

Tyr Tyr Leu Gln Asn Glu Phe Leu Val Ala Tyr Thr Lys Lys Ala Pro Gln Leu Thr Ser Ser Glu Leu Met Ala Ile Thr Arg Lys Met Ala Ala Thr Ala Ala Thr Cys Cys Gln Leu Ser Glu Asp Lys Leu Leu Ala Cys Gly Glu Gly Ala Ala Asp Ile Ile Ile Gly His Leu Cys Ile Arg His Glu Met Thr Pro Val Asn Pro Gly Val Gly Gln Cys Cys Thr Ser Ser Tyr Ala Asn Arg Arg Pro Cys Phe Ser Ser Leu Val Val Asp Glu Thr Tyr Val Pro Pro Ala Phe Ser Asp Asp Lys Phe Ile Phe His Lys Asp Leu Cys Gln Ala Gln Gly Val Ala Leu Gln Arg Met Lys Gln Glu Phe Leu Ile Asn Leu Val Lys Gln Lys Pro Gln Ile Thr Glu Glu Gln Leu Glu Ala Leu Ile Ala Asp Phe Ser Gly Leu Leu Glu Lys Cys Cys Gln Gly Gln Glu Glu Val Cys Phe Ala Glu Glu Gly Gln Lys Leu Ile Ser Lys Thr Gly Ala Ala Leu Gly Val <210> SEQ ID NO 8 <211> LENGTH: 325 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 8 Met Ser Tyr Ile Cys Ser Gln Gln Asp Thr Leu Ser Asn Lys Ile Thr Glu Cys Cys Lys Leu Thr Thr Leu Glu Arg Gly Gln Cys Ile Ile His Ala Glu Asn Asp Glu Lys Pro Glu Gly Leu Ser Pro Asn Leu Asn Arg Phe Leu Gly Asp Arg Asp Phe Asn Gln Phe Ser Ser Gly Glu Lys Asn Ile Phe Leu Ala Ser Phe Val His Glu Tyr Ser Arg Arg His Pro Gln Leu Ala Val Ser Val Ile Leu Arg Val Ala Lys Gly Tyr Gln Glu Leu Leu Glu Lys Cys Phe Gln Thr Glu Asn Pro Leu Glu Cys Gln Asp Lys Gly Glu Glu Leu Gln Lys Tyr Ile Gln Glu Ser Gln Ala Leu Ala Lys Arg Ser Cys Gly Leu Phe Gln Lys Leu Gly Glu Tyr Tyr Leu Gln Asn Glu Phe Leu Val Ala Tyr Thr Lys Lys Ala Pro Gln Leu Thr Ser Ser Glu Leu Met Ala Ile Thr Arg Lys Met Ala Ala Thr Ala Ala Thr Cys Cys Gln Leu Ser Glu Asp Lys Leu Leu Ala Cys Gly Glu Gly Ala

-continued

Ala	Asp	Ile 195	Ile	Ile	Gly	His	Leu 200	Суѕ	Ile	Arg	His	Glu 205	Met	Thr	Pro	
Val	Asn 210	Pro	Gly	Val	Gly	Gln 215	Cys	Cys	Thr	Ser	Ser 220	Tyr	Ala	Asn	Arg	
Arg 225	Pro	Сув	Phe	Ser	Ser 230	Leu	Val	Val	Asp	Glu 235	Thr	Tyr	Val	Pro	Pro 240	
Ala	Phe	Ser	Asp	Asp 245	Lys	Phe	Ile	Phe	His 250	Lys	Asp	Leu	Cys	Gln 255	Ala	
Gln	Gly	Val	Ala 260		Gln	Arg	Met	Lys 265	Gln	Glu	Phe	Leu	Ile 270	Asn	Leu	
Val	Lys	Gln 275	Lys	Pro	Gln	Ile	Thr 280	Glu	Glu	Gln	Leu	Glu 285	Ala	Leu	Ile	
Ala	Asp 290	Phe	Ser	Gly	Leu	Leu 295	Glu	Lys	Cys	Cys	Gln 300	Gly	Gln	Glu	Gln	
Glu 305	Val	Сув	Phe	Ala	Glu 310	Glu	Gly	Gln	Lys	Leu 315	Ile	Ser	Lys	Thr	Gl y 320	
Ala	Ala	Leu	Gly	Val 325												
<211 <212)> SE .> LE !> TY !> OR	NGTH PE:	: 30 DNA)	sap	oiens	5									
	> SE	~			ca ta	agaaa	atgaa	ā								30
				-		,	,									
<211 <212)> SE .> LE !> TY 8> OR	NGTH PE:	: 33 DNA	}	sap	oiens	\$									
<400)> SE	QUEN	ICE:	10	-											
aaaa	aagg	gat c	ctta	agctt	ct ct	ctta	aatto	c ttt	.							33
<211 <212)> SE .> LE !> TY !> OR	NGTH PE:	: 33 DNA	}	sap	oiens	5									
<400)> SE	QUEN	ICE:	11												
aaaa	aaat	.cg a	atato	gagct	t gt	taaa	atcaa	a cat	5							33
<211 <212)> SE .> LE !> TY !> OR	NGTH PE:	: 33 DNA	}	sap	oiens	5									
<400)> SE	QUEN	ICE:	12												
aaaa	aagg	gat c	ctta	agcto	ct co	ctgga	atgta	a ttt	Ξ.							33
<211 <212)> SE .> LE !> TY !> OR	NGTH PE:	: 33 DNA	}	sap	oiens	5									
<400)> SE	QUEN	ICE:	13	-											
aaaa	aaat	.cg a	atato	gcaag	jc at	tggd	caaaq	g ega	ā							33

-continued

```
<210> SEQ ID NO 14
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 14
                                                                        33
aaaaaaggat ccttaaactc ccaaagcagc acg
<210> SEQ ID NO 15
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 15
aaaaaaatcg atatgtccta catatgttct caa
                                                                        33
<210> SEQ ID NO 16
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 16
Ser Tyr Ile Cys Ser Gln Gln Asp Thr
```

What is claimed is:

- 1. A method of inhibiting autoreactive immune cell proliferation in a mammal, said method comprising administering to said mammal a therapeutically effective amount of recombinant human alpha-fetoprotein or a fragment thereof comprising Domain I, Domain II, Domain III, Domain II+II, Domain II+III, or Fragment I.
- 2. The method of claim 1, wherein said immune cells include T cells.
- 3. The method of claim 1, wherein said mammal is a human patient.
- 4. A method of treating an autoimmune disease in a mammal, said method comprising administering to said mammal a therapeutically effective amount of recombinant human alpha-fetoprotein or a fragment thereof comprising Domain I, Domain II, Domain III, Domain III, Domain III, Domain III, Domain III, and IIIIII, or Fragment I.
- 5. The method of claim 4, wherein said autoimmune disease is multiple sclerosis.
- 6. The method of claim 4, wherein said autoimmune disease is rheumatoid arthritis.

- 7. The method of claim 4, wherein said autoimmune disease is myasthenia gravis.
- 8. The method of claim 4, wherein said autoimmune disease is insulin-dependent diabetes mellitus.
- 9. The method of claim 4, wherein said autoimmune disease is systemic lupus erythematosus.
- 10. The method of claim 1, further comprising administering to said mammal an immunosuppressive agent in an effective dose which is lower than the standard dose when said immunosuppressive agent is used by itself.
- 11. The method of claim 1, further comprising administering to said mammal a tolerizing agent.
- 12. The method of claim 10, wherein said immunosuppressive agent is cyclosporine.
- 13. The method of claim 10, wherein said immunosuppresive agent is a steroid, azathioprine, FK-506, or 15-deoxyspergualin.

* * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,288,034 B1

DATED

: September 11, 2001

INVENTOR(S): Robert A. Murgita

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Page 1 of 2

Title page,

OTHER PUBLICATIONS, replace the Brenner reference title "Inhibitory Effect Of α -fetoprotein On the Binding Of *Myasthenia gravis* Antibody To Acetylcholine Receptor" with -- Inhibitory Effect Of α -fetoprotein On the Binding Of *Myasthenia gravis* Antibody To Acetylcholine Receptor --;

OTHER PUBLICATIONS, replace the Murgita reference title "Adult murine T cells activated in vitro by α -fetoprotein and naturally occurring T cells in newborn mice: Indentity in function and cell surface differentiation antigens," with -- Adult murine T cells activated in vitro by α -fetoprotein and naturally occurring T cells in newborn mice: Identity in function and cell surface differentiation antigens --;

Column 2,

```
Line 2, replace "cell e.g.," with -- cell (e.g., --;
```

Line 29, replace rHuAPP" with -- rHuAFP --;

Line 36, replace "ahd" with -- and --;

Line 47, replace "FIGS. 1A" with -- FIG. 1A --;

Column 3,

```
Line 5, replace "▲" with -- ▼ --;
```

Line 11, replace "▲" with --- ▼ --;

Column 6,

Line 56, replace "1X reaction buffer," with -- 10X reaction buffer --;

Column 9,

Lines 6 through 8, put a blank line between "Results are expressed as mean cpm±the standard error of the mean of triplicate or quadruplicate cultures." and "RESULTS"; Line 53, replace "NAb." with -- MAb --;

Column 10,

Line 23, replace "organs-in" with -- organs in --;

Column 12,

```
Line 29, replace "Torpedo californica" with -- Torpedo californica --;
```

Line 33, replace "(H-2B)" with -- (H-2^B) --;

Line 37, replace "(H-2B)" with -- (H-2^B) --;

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,288,034 B1

DATED

: September 11, 2001

INVENTOR(S): Robert A. Murgita

Page 2 of 2

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 13,

Line 13, replace "Enal." with -- Engl. --;

Line 56, replace "control animals" with -- Control animals --;

Column 14,

Line 7, replace "LuPus" with -- Lupus --; and Line 26, replace "mice-and" with -- mice and --.

Signed and Sealed this

Sixteenth Day of April, 2002

Attest:

JAMES E. ROGAN

Director of the United States Patent and Trademark Office

Attesting Officer