US006272636B1
a2 United States Patent (10) Patent No.: US 6,272,636 Bl
Neville et al. 45) Date of Patent: *Aug. 7, 2001
(54) DIGITAL PRODUCT EXECUTION CONTROL 5,826,011 * 10/1998 Chou et al.cccveeveernennee. 713/200
AND SECURITY 5,870,543 * 2/1999 RoNNINgccoeevevvevrevnvnneneeneen 395/186
5,883,054 * 3/1999 RONNING ..ccvevrerverreeneereeeeereenennnes 500/4
(75) Inventors: Eugene A. Neville, Hillsboro; Jimmy 5,883,955 * 3/1999 RoONNING ..oevverreniiiiiiieciaeeenens 380/4
L. Sesma, White City, both of OR (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: Preview Systems, Inc, Sunnyvale, CA
(US) WO 98/33106 7/1998 (WO) .
(*) Notice: This patent 1ssued on a continued pros- * cited by examiner
ecution application filed under 37 CFR
11);:15,[21(1?)’,[2?1?1 18;1;2]12? ;1;[;) ﬂ;? t?; nt{;}zgeér Primary Examiner—Gilberto Barron, Jr.
154(a)(2). Assistant Examiner—Ho S. Song
(74) Attorney, Agent, or Firm—Keith A. Cushing
Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 (57) ABSTRACT
U.S.C. 154(b) by 0O days. Digital product execution control as disclosed contemplates
production of a final version of a digital product and
(21) Appl. No.: 08/837,019 subsequently imposing execution control on that digital
(22) Filed Apr. 11, 1997 product. The manufacturer of the original digital product
need not incorporate execution control features 1nto the final
(51) Int. CL7 s GO6F 11/30 version of the product. Execution control programming
attaches to an executable file of the digital product to create
(52) US.ClL ..o, 713/189; 713/190; 705/57 a controlled executable file. The resulting operating envi-
ronment when loaded 1s 1nsufficient for the original execut-
(58) Field of Search ... 380/4; 707/9; 705/51, able file, and control programming determines whether or
705/57, 59, 58; 713/189—-190, 193 not execution will be allowed. It allowed, control program-
ming creates the necessary operating environment for the
(56) References Cited digital product, 1.e., as would be provided by the operating
US. PATENT DOCUMENTS system 1f loaded normally, and allows execution of the
digital product only under controlled conditions. Further
4,465,901 * 8/}984 Best e 713/190 security Measures identify an executable portion of the
g’;gi’?gg - gggg Ef;g;;r'ﬁ 713/190 digital product and a plurality of sub-portions of the execut-
5 307 504 4/1994 Robinso Cetal able portion are encrypted. An exception handler 1s estab-
5:341: 479 8/1994 Stringer et al. . lished with the operating system and upon access to memory
5509070 4/1996 SChUIl werveeeeeeeeeeeeeereereereereeen 705/54 regilons marked as protected the exception handler decrypts
5,535,320 7/1996 Hastingsccceeveverererernrernenn. 714/35 cach sub-portion when accessed. A further security measure
5,544,356 8/1996 Robinson et al. . stores at a remote clearing house a key needed to decrypt the
5,584,023 * 12/1996 HSU .eovevvnviiniiiiieieiieeveeeineneen, 7/204 dlgltal produ(}t for use. Upon execution, the controlled
5,629,980 * 5/1997 Stefik et al.c.ccoeerviiiniinnennnens, 380/4 digital product interacts with the remote clearing house to
gﬂgggﬂgg . 13? gg; ggllfh}ﬁ """""""""""""""""""" 72;6 5/3 obtain permission to execute and to obtain the key needed
5,745,678 * 4/1998 Hergberg T R 305/18 LOT execution.
5,757,908 * 5/1998 Cooper et al. ...ooeeeeeeeennennnnnnene. 380/4
5,815,653 9/1998 You et al. . 17 Claims, 12 Drawing Sheets

1HGITAL PROTAICT METERTNG S

100

SOFTWARE
DEYTTOPER.

MANLTACTURE FULLY FUNCTIONAL.
LINMOLIFIET [MGITAL PRODUCT
U0 e
DYMCTTAT.
N PROMDLIC l
DELIVER DIGITAL PRODUCT
TODINTRIBUTOR
20
DIGITAL
N DL T l

TO ESTARLISH METLERING

INCORPORATE PRE-EXTCTUTION
CONTROL INTO DI TAL PRODUCT

mﬂr_‘ IMGITAL

PRODUCT

l

PUBLICLY DISTIRIBLTE
METERED PRODUCT

DIGIETATL
PRODUICT

k 4

METHERED
PRODUCT
DISTRIBUTOR

NI USERS RECTITVE
AND TXLECUTE METERED
PEODLCT

END LSERS

L

U.S. Patent Aug. 7, 2001 Sheet 1 of 12 US 6,272,636 Bl

DIGITAL PRODUCT METERING
100

MANUFACTURE FULLY FUNCTIONAL
UNMODIFIED DIGITAL PRODUCT
500 SOFTWARE
N DEVELOPER

DELIVER DIGITAL PRODUCT
10 DISTRIBUTOR
PRODUCT

104

INCORPORATE PRE-EXECUTION
CONTROL INTO DIGITAL PRODUCT
TO ESTABLISH METERING

METERED

200" 1 pIGITAL PRODUCT
PRODUCT DISTRIBUTOR

PUBLICLY DISTRIBUTE | 106
METERED PRODUCT
]
PROD

107

END USERS RECEIVE

AND EXECUTE METERED END USERS
PRODUCT

FIG. 1

U.S. Patent Aug. 7, 2001 Sheet 2 of 12 US 6,272,636 Bl

200
. 202e

1‘ 202d
PE 202c¢
FILE
202b
202a
FI1G. 2
(Prior Art)

U.S. Patent Aug. 7, 2001 Sheet 3 of 12 US 6,272,636 Bl

300

P.E. Header

Entry Point Address 2023
300b . .
Pomter to Imported Functions

300c Pointer to Relocatable Table
300d .
Section Table

302

300a

Code Section

304
Imported Function Section

Relocatable Section

FIG. 3
(PRIOR ART)

306
308

U.S. Patent Aug. 7, 2001 Sheet 4 of 12 US 6,272,636 Bl

300" P.E. Header
300a 202a'

Entry Point Address 2
300b'
Pointer to Imported Functions

300c¢ _
Pointer to Relocatable Table

300d’
408

Section Table

302
\) Code Section

304
Data Section

306
Imported Function Section

308
Relocatable Section

42 Meter Code Section

Meter Imported Function
Section

<
a@
gV
—
)
-
-
g+
w
-
N
-
=

\> Meter Relocatable Section

U.S. Patent Aug. 7, 2001 Sheet 5 of 12 US 6,272,636 Bl

NORMAL OPERATING SYSTEM CONTROL)Y

502
USER REQUESTS OPERATING SYSTEM
TO START APPLICATION

OPERATING SYSTEM 504

PREPARES NECESSARY ENVIRONMENT
TO EXECUTE APPLICATION AS DIRECTED

BY THE P.E. HEADER FOUND IN THE
EXECUTION FILE

EXECUTION CONTROL TRANSFERS
TO APPLICATION ENTRY POINT ADDRESS 206

AND THE APPLICATION BEGINS EXECUTION
AS INDICATED IN THE P.E. HEADER

FIG. 5
(PRIOR ART)

U.S. Patent

DISPLAY MESSAGE TO USER
TRIAL EVALUATION CONCLUDED
PURCHASE PRODUCT TO
CONTINUE USE

Aug. 7, 2001 Sheet 6 of 12 US 6,272,636 Bl

600
ORMALOPERATING SYSTEM CONTROL

002

USER REQUESTS OPERATING SYSTEM
1O START APPLICATION

OPERATING SYSTEM
PREPARES NECESSARY ENVIRONMENT | _ 694
TO EXECUTE APPLICATION AS DIRECTED
BY THE P.E. HEADER FOUND IN THE
EXECUTION FILE

EXECUTION CONTROL TRANSFERS
TO METER CODE ENTRY POINT ADDRESS
AS DEFINED IN THE P.E. HEADER AND METER
CODE (EXECUTION CONTROL) EXECUTES

606

607

EXECUTION

ALLOWED
7

NO

608

METER CODE FINISHES PREPARING THE
NECESSARY ENVIRONMENT FOR ORIGINAL
APPLICATION AS SPECIFIED UNDER

ORIGINAL P.E. HEADER

609

METER CODE TRANSFERS EXECUTION
CONTROLTO ORIGINAL ENTRY POINT
ADDRESS AND APPLICATION EXECUTES

FIG. 6

U.S. Patent Aug. 7, 2001 Sheet 7 of 12 US 6,272,636 Bl

BUILD EXECUTION CONTROLLED PRODUCT

700
READ ORIGINAL IMPORTED FUNCTIONS TABLE
702

EXTRACT, ENCRYPT AND STORE SUFFICIENT INFORMATION

1O RECREATE ORIGINAL IMPORTED FUNCTION TABLE

704
PLACE EXECUTION CONTROL MODULE

CREATE AND PLACE NEW SIMPLIFIED IMPORT TABLE
UNDER STANDARD FORMAT FOR OPERATING SYSTEM USE AND
POINT TO EXECUTION CONTROL MODULE

706

710

PLACE NEW START ADDRESS
ENCRYPT ADDITIONAL PORTIONS
OF ORIGINAL APPLICATION

712

U.S. Patent Aug. 7, 2001 Sheet 8 of 12 US 6,272,636 Bl

800
ORIGINAL
MANUFACTURER

DIGITAL
PRODUCT
200

802

PRODUCT DISTRIBUTOR KEY/PRODUCT ID
(BUILDER) 203

805

METERED
DISTRIBUTION \ DIGITAL
MECHANISM PRODUCT

200°

(‘ 807
808
R06 REOUEST/USER ID
END-USER

203 UNLOCK KEY

804
SERVER
CLEARINGHOUSE
3809
USE HISTORY
DATABASE

FIG. 8

U.S. Patent Aug. 7, 2001 Sheet 9 of 12 US 6,272,636 Bl

606

ENCRYPTION KEY EXCHANGE

(USED FOR NETWORK COMMUNICATION) 07

902
(CLIENT) USER IDENTIFICATION
(CLIENT ID'S USER TO SERVER)

904

(SERVER) USER VALIDATION
(SERVER CHECKS USER'S RIGHT TO RUN)

(SERVER) UNLOCK KEY
TRANSFERRED (SERVER
SENDS KEY TO CLIENT)

908

(SERVER) EXPIRATION MESSAGE
(SERVER SENDS MESSAGE TO CLIENT)

FI(G. 9 610 608

U.S. Patent Aug. 7, 2001 Sheet 10 of 12 US 6,272,636 Bl

950

INSTALL EXCEPTION HANDLER

WITH OPERATING SYSTEM

952
SUBDIVIDE CODE SEGMENT

INTO MEMORY REGIONS

ENCRYPT EACH MEMORY REGION | 954
WITH UNIQUE SYMMETRIC KEY

956

MARK ALL MEMORY REGIONS
AS PROTECTED

FIG. 10

U.S. Patent Aug. 7, 2001 Sheet 11 of 12 US 6,272,636 Bl

EXCEPTION HANDLER

DECRYPT PROTECTED MEMORY REGION
972
MARK MEMORY REGION
AS UNPROTECTED

974

970

COUNT NUMBER OF UNPROTECTED

MEMORY REGIONS

976

EXCEEDS
QUOTA

ENCRYPT AND MARK
PROTECTED LEAST-RECENTLY
UNPROTECTED MEMORY
REGION

CEND > FIG. 11

U.S. Patent Aug. 7, 2001 Sheet 12 of 12 US 6,272,636 Bl

990

INVOKE DEBUGACTIVEPROCESS()

FIG. 12

US 6,272,636 Bl

1

DIGITAL PRODUCT EXECUTION CONTROL
AND SECURITY

RELATED APPLICATIONS

This application relates to co-pending application Ser. No.
08/837,018 filed concurrently herewith and entitled Digital
Product Execution Control.

FIELD OF THE INVENTION

The present 1mvention relates generally to product pro-
duction and distribution, and particularly to digital product
production and distribution including distribution of digital
products 1n an execution controlled form.

BACKGROUND OF THE INVENTION

Digital products, €.g., computer software and data, have
been published widely through a variety of methods and
mediums. Publishers have sold and distributed digital prod-
ucts like other products, ¢.g., packaged and available at retail
outlets or through catalog and mail-order delivery. The
nature of digital products, however, lends 1itself to non-
fraditional methods of distribution. Because common
devices, e.g., personal computers and modems, duplicate
digital material without degradation, consumers can copy
and distribute reliably most digital products. Examples
include shareware and distribution by modem via computer
bulletin boards or the well-known Internet global commu-
nication medium. A second popular digital product distri-
bution mechanism 1s CD-ROM, a relatively inexpensive
medium having vast storage capacity, allowing publishers to
distribute on a single disk a large volume of digital material
including supporting documentation and manuals.

Such methods of broad distribution attract both publishers
and end-users of digital products. Widespread distribution of
fully functional digital products occurs accurately and with-
out significant cost to the publisher. End-users access a
variety of products for comparison with opportunity to
actually try each product before making a decision to
purchase. In essence, the end-user receives the fully func-
tional digital product as an offer to purchase based on an
opportunity to fully evaluate the actual product. The pub-
lisher profits when the evaluation process yields suflicient
purchasers. This “try-before-you-buy” distribution mecha-
nism 1s especially attractive 1n the context of global com-
munication networks such the Internet where distribution
occurs globally at minimal cost and where an enormous
number of potential purchasers of digital products interact.

Unfortunately, the ability to accurately copy and make use
of digital products lends itself to unauthorized use of digital
products by unauthorized users. For example, persons using,
the digital product fully and indefinitely beyond an imitial
evaluation period take value from the publisher. Digital
products may be easily reproduced and the publisher can
take advantage of this characteristic as a distribution
mechanism, however, the publisher risks unauthorized use
and lost sales under such a distribution mechanism without
some form of control over product execution. The digital
product publisher taking advantage of such broad distribu-
fion schemes must implement some form of control to
prevent unauthorized use of the digital product while still
making the product widely available for consumer-
evaluation.

Early attempts to control use of published digital products
included distribution of an “evaluation” copy of a digital
product. The evaluation copy, “diminished” relative to the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

actual product, introduced the consumer to the product, but
wouldn’t allow or even 1nclude code supporting fully func-
tional use. To produce the evaluation copy, the product
author, e.g., programmer, would rewrite the product 1n an
alternate, 1.e., less functional, form. In such product
re-design process, difficult 1ssues arose with respect to the
degree of 1noperability established relative to the fully
operational form of the product. Furthermore, a consumer
wishing to purchase the product following trial use of the
evaluation copy had to obtain a fully functional version
through traditional, e.g., retail, distribution mechanisms.

A second, but only slightly more successiul, approach
contemplated distribution of a “crippled” form of the fully
functional product. Distribution material would include a
fully functional digital product, but also safeguards incor-
porated 1nto the product to prevent fully functional use until
authorization, 1.€., purchase, occurred. For example, a word
processing program could not, 1n 1its crippled form, print a
document or save a document to disk. When, following an
evaluation period, the user decided to purchase the product,
a purchase procedure “de-crippled” the product for fully
functional use. For example, the purchaser received a “key”,
1.€., a predetermined coded value, required to convert the
crippled form of the product to a truly fully functional form.

The consumer need not physically obtain a new copy of the
product at the time of purchase.

Unfortunately, users demand a truly fully functional form
of the product during the evaluation period. To meet such
user demand, providers of digital content now distribute a
fully functional form of the digital product for evaluation,
yet control 1n some manner the use of the product to prevent
unauthorized use, 1.e., prevent use beyond an allowed trial
evaluation.

A “metering” mechanism used 1n association with a
published “try before you buy” digital product places a
limitation on a potential purchaser’s use of the digital
product. A metering mechanism 1s required for distribution
of a fully functional version of a digital product. Otherwise,
the potential purchaser has no reason to become an actual
purchaser. A metering limitation might include a time period
of allowed use followed by a purchase requirement for
continued use. Another common metering limitation 1s a
limited number of uses, €.g., limited number of executions,
followed by a purchase requirement for continued use.
Important to note, during evaluation the potential purchaser
has full use of the product.

Unfortunately, converting a fully functional digital prod-
uct to a metered form for distribution introduces not only a
new and significant production step, but also introduces an
opportunity to create flaws or “bugs” in the product. This
also tends to 1ntroduce complexity into the published prod-
uct not related to operation of the product itself as designed
by the software developer, but complexity as related to
implementation of a reliable metering function.

As digital products evolve, especially computer program
products, overall size and complexity increase. Software
developers hesitate to implement quick solutions for known
problems, fearing introduction of yet additional problems. A
particular condition or “bug” sometimes requires many
specific ordered steps to manifest itself. Software developers
use sophisticated software testing scripts providing repeat-
able recursion testing for past or known “bugs” to msure the
quality of the latest version of a given program. Developers
endeavor to minimize the resource usage of their products
and to keep the size of the programs as small as possible.
This can be an especially sensitive problem 1f the proposed

US 6,272,636 Bl

3

orowth of a product requires an increase 1n the number or
type of distribution medium, e.g., adding an additional
diskette to a software product 1s considered a costly require-
ment.

The need to produce a fully functional demonstration
version of a product, 1.€., a “try before you buy” version of
a product, normally introduces a higher order magnitude of
difficulty. Creating a “crippled” version of the full-
functioning product and/or controlling usage and maintain-
ing version control of both the crippled version and the
non-crippled version 1s a daunting task, not to mention the
need to execute elaborate, e.g., recursion, testing of both
versions of the product. In essence, the manufacturer must
provide two products mstead of one, 1.€., doubles the prod-
uct mventory and associated testing and product manage-
ment.

Most solutions for such problems faced by software
developers require extensive involvement of software
programmers, quality control labs, version/source control
managers and, most importantly, time. Any “automated”
solution to metering or to execution control usually requires
the original software programmers to reprogram their final
product to uftilize the “automated” solution. The “auto-
mated” solution 1s usually 1n the form of additional devel-
opment software provided by a third party that needs to be
integrated with a final product via programming. This type
of solution is commonly referred to as an “SDK” (software
development kit) approach. An SDK approach to metering,
however, introduces complexity and potential for program-
ming errors unrelated to operation of the product itself.
Further, and far from trivial, the use of an SDK approach
adds time and cost to the development cycle.

Developers of digital products prefer to simply create the
digital product without lIimitation or additional production
steps unrelated to use and operation of the fully functional
form of the product. In other words, 1t 1s difficult enough to
produce a fully functional form of the product as designed
without the additional complexity of incorporating safe-
cguards against unauthorized use beyond a trial evaluation.

Thus, distribution of digital products according to the “try
before you buy” method should not require that the creator
of the digital product modify its design to meet a particular
distribution scheme. At present, “try before you buy” dis-
tribution schemes typically require some modification of the
digital product by the original developer to implement
distribution 1n a metered form, 1.e., a controllable form
allowing distribution and evaluation of a fully functional
product but not allowing long term use.

Ideally, digital products are produced without use limita-
tions or safeguards, leaving the creator of the digital product
exclusively to the task of implementing the digital product
itself. The present invention allows a creator of a digital
product to concentrate on the product 1tself without requir-
ing the creator to incorporate safeguards or limitations
against unauthorized use.

Digital product distribution according to the “try before
you buy” distribution method 1s an example of a need to
impose execution control over a digital product. Such execu-
fion control has nothing to do with the digital product as
designed, but represents an auxiliary feature 1imposed upon
the product and unrelated to the product’s operation or
function as designed. Other forms of execution control, 1.e.,
other forms unrelated to product execution as designed,
include encryption and decryption functions applied for
security purposes, compression and decompression func-
tions to conserve media storage space, long term metering of

10

15

20

25

30

35

40

45

50

55

60

65

4

usage for billing purposes or license usage enforcement, and
interfacing with other programs or systems or controlling
agents to enforce ongoing authorization of use. Generally,
these auxiliary control features imposed upon a digital
product have purposes unrelated to the execution of the

digital product as designed, but rather are 1mposed for other
reasons.

Thus, it 1s desirable to impose execution control over a
digital product, but undesirable to require that such execu-
tion control be integrated into the design and production of
the digital product. The subject matter of the present inven-
fion advantageously isolates digital product design from
imposition of auxiliary execution control.

One form or mechanism for 1imposing control over the
execution of an application has previously been available
through the use of “TSR” (terminate and stay resident)
programs. A TSR program loads into a computer and
remains available while any other application might be
called upon to run. A TSR 1s normally thought of as a
“DOS”-based facility, but 1t can provide similar services for
WINDOWS (™) based applications as well. A WINDOWS
(™) “device driver” or “VxD” (virtual device driver) can
provide similar services only for WINDOWS (™)-based
applications. However, the use of such TSRs or VxDs to
provide execution control, €.g., for metering, 1s 1impractical
because there 1s no mechanism to enforce the presence of
such a control. The control device must accompany the
application to be metered. And more importantly, 1t 1s
mandatory that 1t be done in such fashion that metering
cannot be avoided, 1.¢., that the application cannot run unless
the metering function or control device permits 1t. Generally,
TSRs and VxDs cannot guarantee such execution control.

Thus, there remains need for improvement in the area of
execution control over existing applications. Execution con-
trol can be designed into an application. The application
designer, however, most preferably 1gnores any such auxil-
1ary control 1ssues and designs the product strictly according
to 1ts mntended function. Auxiliary control, preferably, is
imposed upon the digital product in its final form as pro-
duced according to its design without reference to any such
auxiliary control 1n its original design. The subject matter of
the present invention provides a mechanism for imposition
of execution control over an application without requiring
that the application design include such control features.
Under the present invention, the application may be first
designed and manufactured to final form as mtended with
execution control imposed subsequently upon the digital
product as taken 1n its final form.

SUMMARY OF THE INVENTION

Digital product execution control and security under the
present mvention applies to a digital product having incor-
porated therein execution control programming limiting use
of the digital product to a given controlled use. Under one
aspect of the present invention, a method of providing
security against use outside controlled use includes first
identifying an executable portion of the digital product to be
loaded for execution 1n memory regions of a computing
device. A plurality of sub-portions of the executable portion
are 1dentified and each sub-portion 1s loaded for execution 1n
an assoclated memory region during controlled use.
Memory regions holding each sub-portion are marked
through the operating system as being protected. An excep-
tion handler 1s established with the operating system and
upon access to memory regions marked as protected the
exception handler decrypts each sub-portion when accessed.

US 6,272,636 Bl

S

The method 1s further enhanced by encrypting each sub-
portion with a unique encryption key. Furthermore, each
assoclated memory region upon first access thereto may be
marked as being unprotected. The method may further
include 1dentification of memory regions remaining marked
as protected and selectively re-encrypting at least one sub-
portion and re-marking as protected the associated memory
region.

In a digital product having incorporated therein execution
control programming limiting use of the digital product to a
orven controlled use, a method of providing security against
use outside said given use under the present invention
includes encrypting at least one portion of the digital product
prior to distribution, a key being necessary to decrypt and
make executable the at least one portion encrypted. The
method further contemplates storing the key 1n association
with an 1dentifier of the digital product at a clearinghouse
with the clearinghouse being adapted for telecommunication
interaction. The method incorporates into the control pro-
cramming telecommunication programming adapted for
interaction with the clearinghouse. The control program-
ming provides to the clearinghouse by telecommunication
interaction upon execution thereof a product identifier and
request to execute the digital product. The clearinghouse
selectively provides the key to the control programming in
response to the request to execute based on established
limitations of the controlled use.

The subject matter of the present invention 1s particularly
pointed out and distinctly claimed in the concluding portion
of this specification. However, both the organization and
method of operation of the mvention, together with further
advantages and objects thereof, may best be understood by
reference to the following description taken with the accom-
panying drawings wherein like reference characters refer to
like elements.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention, and to show
how the same may be carried into effect, reference will now
be made, by way of example, to the accompanying drawings
in which:

FIG. 1 1s a flow chart illustrating production and distri-
bution of metered digital products according to one embodi-
ment of the present invention.

FIG. 2 illustrates schematically various components of a
digital product 1n its fully functional form as designed and
produced by the developer without incorporating any meter-
ing function therein.

FIG. 3 illustrates partially a prior art format for an
executable component of the digital product of FIG. 2.

FIG. 4 1llustrates partially the structure of the prior art
executable file of FIG. 3, but as modified under the present
invention to implement execution control establishing a
metering function relative to the original digital product of

FIG. 2.

FIG. § 1s a flow chart 1llustrating generally conventional
steps executed when an operating system loads and executes

the executable file of FIG. 3.

FIG. 6 1llustrates by flow chart steps executed under the
present invention when an operating system loads and
executes the executable file of FIG. 4.

FIG. 7 illustrates by flow chart a manufacturing step
converting a digital product mnto a metered digital product in
accordance with one embodiment of the present invention.

FIG. 8 1llustrates manufacture, distribution, and execution
of a metered digital product including selected encryption of

10

15

20

25

30

35

40

45

50

55

60

65

6

portions of the digital product and execution control includ-
ing a determination to allow execution at a remote site.

FIG. 9 1llustrates by flow chart interaction between a
client application and a remote server application imposing
execution control 1n accordance with one embodiment of the
present 1nvention.

FIG. 10 illustrates by flow chart dynamic code segment
encryption applied to an original code segment while
allowed execution under the present invention.

FIG. 11 illustrates by flow chart an exception handler
operating in conjunction with the programming of FIG. 10
in managing dynamic encryption and decryption of a code
segment during execution.

FIG. 12 illustrates by flow chart use of an operating
system debugging mechanism to prevent malicious mspec-
tion of a digital product allowed execution under the present
ivention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention provides an ability to add various
types of control functionality and/or characteristics to a
digital product after its final creation by 1ts original
developer, 1.e., without involving effort or even knowledge
on behalf of the original developer and without use of a
software development kit (SDK).

FIG. 1 1llustrates generally one embodiment of the present
invention whereby a metering function is incorporated into
a previously manufactured fully functional digital product.
Generally, the present invention 1imposes execution control
over a given product to establish additional functionality,
¢.g., to establish a metering function relative to use of the
fully functional digital product. Thus, while a metering
function 1s shown to 1illustrate the present invention, other
execution control functions may be incorporated into a
digital product including, but not limited to, compression of
critical parts of the product to allow more content to be
stored on the distribution media and/or less space consumed
on the final storage media (typically a hard drive); encryp-
tion of critical parts of the product providing a degree of
security; long term metering of usage for billing purposes or
license usage enforcement; and, interfacing with other pro-

orams or systems or controlling agents to enforce authori-
zation of use.

In FIG. 1, digital product metering according to a pre-
ferred embodiment of the present invention begins 1n block
100 where a software developer manufactures a digital
product 200 (FIG. 2) in its fully functional and unmodified
form as intended for use by an end-user. The software
developer need not be concerned with functions or design
assoclated with a later implemented distribution scheme,
c.2., a metering function or auxiliary features such as
encryption or compression. The software developer need
only design and implement the digital product 200 as desired
without use of unrelated SDK resources. In block 102, the
software developer delivers the unmodified digital product
200 to a metered product distributor, 1.€., one who converts
the fully functional product 200 1nto a fully functional but
metered digital product 200' to allow controlled “try before
you buy” distribution. By imposition of the present mnven-
tion on the original digital product 200, one converts the

original digital product 200 into a metered digital product
200" by converting an executable file 202a (FIG. 2) of

product 200 into an executable file 2024a' (FI1G. 4) of product
200'.

In block 104, the metered product distributor incorporates
execution control 1nto the digital product 200 to produce, in

US 6,272,636 Bl

7

the 1llustrated example, metered digital product 200'. In
block 106, the metered product distributor makes the
metered digital product 200' publicly available by free
distribution of the metered digital product 200'. For
example, the metered digital product 200' may be posted on
bulletin boards, made available on the Internet global com-
munication medium or distributed on CD ROM media.
Because metered digital product 200' 1s protected against
unauthorized or long term use by virtue of the metering
function established, wide spread and copious distribution of
metered digital product 200" 1s most desirable. Following
public distribution of the metered product 200, end users
receive, in block 107, copies of the metered product 200' for
evaluation by execution thereof on a given computing
device.

Thus, the software developer concentrates on his or her
special expertise, 1.e., producing a fully functional and
reliable digital product as designed, and the metering func-
fion becomes part of the distribution process. The software
developer need have no mvolvement 1n 1implementation of
or concern regarding the metering function, or any other
auxiliary function implemented under the present invention.

FIG. 2 illustrates schematically the conventional or origi-
nal fully functional digital product 200 as produced by the
software developer and ready for normal execution as
designed. In other words, digital product 200 as 1llustrated in
FIG. 2 represents the fully functional form of digital product
200 without mcorporation of any features, €.g., metering,
features, unrelated to the operation of digital product 200. In
FIG. 2, the particular digital product 200 illustrated herein
includes a variety of individual components, individually
components 202a-202¢. As may be appreciated, any given
digital product may include one such component 202 or any
number or size of components 202. One of components 202,
however, will be regarded as the primary executable file, 1.¢.,
component 202a 1 FIG. 2. In the particular embodiment
1llustrated herein, component 2024 1s a program executable
under the WINDOWS (™) operating system and conform-
ing to the portable executable (P.E.) file format designed for
use by such operating systems as WINDOWS NT and
WINDOWS 95™ The subject matter of the present inven-
fion may be applied, however, to other file formats and
operating system loading and executing methods.

FIG. 3 1llustrates 1n more detail portions of the structure
of executable component 202a of FIG. 2. More particularly,
FIG. 3 1llustrates executable component 2024 1n its original
form as provided by the software developer, 1.€., a fully
functional unmodified form of the digital product 200. In
FIG. 3, executable component 202a includes a P.E. header
300, a code section 302, a data section 304, an 1mported
functions section 306, and a relocatable section 308. The
structure of P.E. header 300 provides access to several pieces
of information modified under the present invention. More
particularly, header 300 includes an entry point address 300a
indicating the location of the first program instruction to be
executed following loading of component 202a. In the
illustrated example, entry point address 300a points to a
location 1n code section 302. Header 300 also includes an
imported functions pointer 3005 indicating the location of
imported functions section 306. A relocatable table pointer
300c indicates the location of relocatable section 308.
Header 300 also includes a section table 300d including an
entry therein for each section of component 2024, ¢.g., an
entry for each of code section 302, data section 304,
imported functions section 306, and relocatable section 308.

FIG. 4 1llustrates portions of component 202a' as modified
under the present invention to 1mplement execution control

10

15

20

25

30

35

40

45

50

55

60

65

3

over the digital product 200. In FIG. 4, header 300' corre-
sponds generally to the header 300 of FIG. 3 but includes
modifications. Executable component 2024" includes intact
the original code section 302, original data section 304,
original 1mported functions section 306, and original relo-
catable section 308. In addition, the 1llustrated embodiment
adds three new sections, 1.e., a meter code section 402, a
meter imported functions section 404, and a meter relocat-
able section 406. Section table 3004 corresponds to the
original section table 300d, but includes new table entries as
indicated at reference numeral 408. More particularly, the
new table 3004 entries 408 correspond to the new sections
402, 404, and 406 appended to component 2024' under this

particular embodiment of the present imnvention.

Entry point address 300a' references the beginning
executable mstruction 1n the meter code section 402. As may
be appreciated,. the original entry point address 300a 1s
preserved under the present invention for later use as
described more fully herecafter. The imported functions
pointer 300b' points to the new meter imported functions
section 404, and the original imported function pointer 3005
1s preserved for later use as described more fully hereafter.
The relocatable table pointer 300c¢' indicates the location of
meter relocatable section 406, and the original relocatable
table pointer 300c 1s preserved for later use as described
more fully hereafter.

Modifications imposed to create executable component
2024a' allow the operating system to load component 2024’
for execution, but such modifications establish execution
control under programming held 1n the meter code section
402. Reference herein to execution control programming in
or performed by meter code section 402 shall also include
additional modules referenced by section 402 and provided
in conjunction with digital product 200'. Limited execution
control programming can be implemented 1n a small code
section 402, however, more sophisticated control program-
ming can be place 1n an associated external code or data file,
¢.g., a dynamic link library (DLL) module as available under
the WINDOWS (™) operating system. Under such
arrangement, the actual code section 402 injected into a
digital product may be a very short sequence of machine
code 1nstructions calling a procedure 1in an associated DLL
file, e.g., one provided in conjunction with converting digital
product 200 to digital product 200'. Once code section 402
executes, control passes to this external control program-
ming code holding the bulk of execution control program-
ming under the present invention. Accordingly, 1t shall be
understood that reference herein to execution of code section
402 shall be taken to include reference to any such additional
programming, €.g., programming in an associated DLL file,
added to product 200 and called directly or indirectly by
code section 402.

Thus, under the illustrated embodiment, a metering func-
tion operates under the programming of code section 402,
¢.g., allows a limited number of metered digital products
200" executions or allows product 200' execution only dur-
ing a limited time period. Once the meter code section 402
completes its metering function, e.g., determines that digital
product 200' may execute, meter code section 402 processes
the original 1mported functions section 306 and original
relocatable section 308 in a manner corresponding to that
normally done by the operating system. Processing control
then passes to the instruction indicated in the original code
section 302, 1.e., control passes to the address indicated by
the original entry point address 300a. The operating system
has no 1indication that an execution control segment has been
itroduced into the metered digital product 200'. In other

US 6,272,636 Bl

9

words, the operating system loads and executes executable
component 2024' 1n a manner 1dentical to that of 2024, but
by virtue of the modifications 1mplemented under the
present invention a metering function, or auxiliary function,
exists without mnvolving the operating system 1n the process.
FIG. 5 1llustrates in simplified flow chart form the normal
loading and execution of a digital product, 1.¢., loading and
execution of the original executable component 202a. In
FIG. §, block 500 represents normal operating system con-
trol prior to a user request to execute, for example, the
original digital product 200. Processing advances to block
502 when a user requests that the operating system start an
application, 1.e., execute the original digital product 200. In
response, the operating system prepares 1n block 504 the
necessary environment to run the original digital product
200 including reading the executable component 2024 from
a storage medium.

In block 506, execution control transfers to the
application, 1.e., the program instruction indicated in the
original entry point address 300a. Thereatter, the application
executes normally. When the application terminates, control
returns to block 500, 1.¢., normal operating system control
independent of original digital product 200.

FIG. 6 illustrates loading and execution of metered digital
product 200, 1e., loading and execution of component
2024'. Block 600 represents normal operating system
control, 1.e., normal operating system operation prior to
launch or execution of product 200'. In FIG. 6, processing
advances to block 602 when a user requests execution of
metered digital product 200'. In block 604 the operating
system prepares the necessary environment to run product
200" including reading the executable component 2024' and
header structure 300" as provided under the present inven-
tion. In block 606, execution control transfers to the meter
code section 402 by virtue of the modified entry point
address, 1.¢., the entry point address 300a’.

Once execution control passes to the meter code section
402, a variety of auxiliary functions may be implemented,
1.€., 1n the present illustration a metering function operates.
Decision block 607 represents programming provided by
meter code section 402 and determines 1f continued execu-
fion of product 200' 1s allowed. Programming associated
with decision block 607 determines according to some
criteria, ¢.g., number of allowed executions or execution
only during an allowed time period, whether the trial evalu-
ation of metered digital product 200' remains 1n effect. If the
trial evaluation 1s complete, the control passes to block 610
where meter code section 402 presents a message to the user
indicating the trial evaluation has terminated and that pur-
chase 1s now required to continue use. Code section 402 then
terminates and control returns to block 600 for normal
operating system control, 1.e., as before the user mnitiated
execution of product 200.

If continued execution of metered digital product 200" 1s
allowed 1n block 607, then meter code 402 establishes 1n
block 608 the necessary operating environment as specified
in the original P.E. header 300. In particular, meter code 402
uses the original entry point address 300a, the original
pointer 3005 to the original imported functions section 306,
and the original pointer 300c to the origimnal relocatable
section 308. Control transfers 1n block 609 as originally
intended, 1.e., transfers as intended in the original code
section 302 as indicated by the original entry point address
300a. In essence, meter code 402 emulates the normal
operating system load and execute procedures.

In a particular implementation of the present invention,
three basic software components have been used to establish

10

15

20

25

30

35

40

45

50

55

60

65

10

a high security metering function. More particularly, a
metered digital product, e.g., product 2000, includes pro-
cramming corresponding to block 607 in FIG. 6 and acting
as a client entity. A server enfity interacts from a remote
location to determine whether execution of a given digital
product will be allowed. In other words, an end-user
machine interacts, e.g., via telephone connection, with a
remote server making determination as to whether this
particular execution of this particular digital product by this
user will be allowed. Encryption of selected portions of the
digital product enhance security. Maintaining decryption
keys at the remote server location severely restricts oppor-
tunity to maliciously decrypt and make operable the digital
product locally, 1.e., at an end-user machine. Thus, the three
basic software components include a builder program used
in a manufacturing step to convert a digital product into a
metered digital product, a client program operating as con-
trol programming in the metered digital product and per-
forming functions associated with decision block 607 in
FIG. 6, and a server program located at a remote location
relative to an end-user machine executing the metered
digital product.

The builder program (FIG. 7) accepts as input the original
application from the original software developer, €.g., digital
product 200, and converts the application 1nto an execution
controlled digital product, e.g., metered product 200'. The
client application 1s incorporated into the original
application, ¢.g., execution control as provided in the case of
meter control by meter code section 402. In this manner, the
client, e.g., meter code section 402, 1s distributed with the
original application and when executed by an end-user gets
control of execution and allows execution only under given
conditions, e.g., execution allowed during an evaluation in
the case of a metered application. The client application,
once mvoked and before the metered application 1s allowed
to run, establishes a network connection, e.g., via the
Internet, with the server application running at a publisher,
reseller, or clearinghouse site. This client-server relationship
can be established according to conventional methods via
the Internet or a variety of network and direct one-to-one
communication methods and protocols.

The server application 1s located at a remote site or
clearinghouse which interacts with the client and tracks, in
the case of a metered execution control, the amount of time
or usage a particular user has remaining before purchase 1s
required for continued use of a metered product. The server
stores a symmetric unlock key used previously by the
builder (FIG. 7) to encrypt selected portions of the metered
application, e¢.g., code section 302 (FIG. 4) and entries 408
in section table 300d'. The builder program uses this key to
encrypt such selected portions of the metered digital product
200" at the time of converting product 200 to product 200’
As distributed publicly, however, the key 1s not provided
with metered digital product 200 nor 1s 1t stored at any time
permanently on the end-user’s computing device. Thus, to
decrypt these selected portions of the metered digital
product, and have basis for executing the original digital
product 200, the client application must receive this key
from the server application at a time when execution 1is

requested, €.g., such as represented 1n decision block 607 of
FIG. 6.

Under this arrangement, the end-user’s computer includes
the necessary telecommunication equipment and access to
telecommunication services to interact with the server at the
clearinghouse. Execution control i1s thereby dictated by
permission or authorization established at a remote site, 1.¢.,
execution 1s authorized at the remote clearinghouse. In this

US 6,272,636 Bl

11

aspect, the client software executing on the end user
machine 1n cooperation with the server software executing
on a clearinghouse machine together ensure that a user
cannot, 1n the case of a metered application, run the appli-
cation following expiration of an allowed evaluation use.

FIG. 7 illustrates generally by flow chart the operation of
the builder software component responsible for modifying a
orven application, e.g., modily digital product 200 to include
execution control, such as metered usage as provided by

meter code section 402 (FIG. 4) and any associated DLL file.
As may be appreciated, programming 1illustrated in FIG. 7
nced be executed only once for a given product, and
thereafter copies of the modified form of the product are
publicly distributed as illustrated in FIG. 1. The building
process 1nvolves several stages, including import table
manipulation, data encryption, execution control code 1njec-
fion. Only the execution control code injection stage 1is
required for the purposes of controlling execution, e.g.,
metering application usage. The manipulation and encryp-
fion stages provide additional security by increasing the
“tamper resistance” of the application. Accordingly, the
following discussion will focus primarily on import table
manipulation, data encryption, and injection of execution
control code.

With respect to the WINDOWS (™) operating system,
executable files contain an “import table” as discussed above
which lists the functions the executable file uses, 1.e., lists
other executable files or “modules” needed for proper execu-
fion. These other “modules” typically include operating
system or utility library functions. When an executable file
1s loaded for execution, the operating system must ensure
that all modules that are referenced in the 1mport table are
loaded 1nto the program’s memory space in addition to the
executable file. The operating system then determines all the
resulting “entry points” of each function listed 1n the 1mport
table, and places the memory address of each entry point 1n
the 1mport table. Once the operating system has finished
loading the executable and providing the proper
environment, €.g., placing appropriate entry point memory
addresses 1n the import table, the operating system allows
the executable file to execute by passing control to the start
address 1ndicated 1n the executable file header section. The
executable file expects and absolutely requires that all
memory addresses of all its imported functions will be
available in the import table. When invoking these modules
or functions the executable file passes control to the
addresses found 1n the imported function table.

Thus; the 1mport table establishes a required operating
environment and contains critical information necessary for
the operation of the executable file. Without an appropriately
coniigured import table, 1.¢., appropriately configured by the
operating system, the executable cannot call external func-
fions and no useful operation occurs. In other words, the
executable cannot use any modules or utilities outside that
found 1n 1ts own code section. Because many such functions
are basic operating system utility functions, a corrupted
import table will prevent entirely acceptable operation of a
program.

In FIG. 7, the builder component first reads 1n block 700
the original imported functions table. In block 702, the
builder extracts and stores suflicient information to later
recreate the original imported function table. Also in block
702, the builder encrypts this information with a key held
only by the server component at the remote clearinghouse
site. In block 704, the builder places the execution control
module 1 the application to be controlled, e.g., places

sections 402, 404, and 406 as illustrated in FIG. 4 by

10

15

20

25

30

35

40

45

50

55

60

65

12

appending these files to the original executable file. In
establishing execution control under the present invention,
code section 402 may be simply a small segment of machine
code appended to the original executable file as illustrated in
FIG. 4. This machine code can reference an associated meter
code DLL file which contains the bulk of control
programming, 1.€., the client application as described herein,
determining whether execution 1s to be allowed. As dis-
cussed previously, the section table 1n the header of the
original file 1s also modified to include entries for these new
sections. In block 706, the builder creates and places a new
simplified import table under standard format for operating
system use and points in that table to the execution control
module.

The mjected code gets control of the application 1mme-
diately upon launch, and simply calls an 1imported function
from the associated client or meter code DLL file. The client
code within the meter code DLL then does all the necessary
authentication, communication, decryption, and other such
functions as described herein 1 1mplementation of the
present invention. Depending on the type of executable
being metered (EXE vs. DLL) the injected code consists of
12 to 19 bytes of hand-coded machine language 1nstructions
which simply uses the address of the imported client DLL
function (from the new version of the imported table as
established by the operating system loader), and transfers
execution to 1t.

The builder thereby constructs the necessary machine
code bytes and 1njects them into the product executable file
at an appropriate location, 1.e., as module 402. Next 1in block
710, the builder updates the “code entry point” or original
start address field in the executable header to reference this
injected code. In block 712 the builder encrypts additional
portions of the original application. The operating system
thereby gives control to the injected machine code, instead
of the original application code, and control passes to, for
example, section 402 and the associated meter code DLL
file. Thus, upon execution of the controlled product the
operating system establishes an operating environment
according to only the simplified import table and upon
passing control to the application the programming found in
the execution control module provided under the present
invention executes first. Important to note, the operating
system has no access to the original import table, and the
original application cannot possibly execute without autho-
rization via the execution control module as provide under
the present invention.

Under a particularly secure form of the present invention,
execution authorization occurs by way of telecommunica-
fion 1nteraction between the execution control module as a
“client” and remote programming at a clearinghouse acting
as a “server’ as discussed above. Once authorization for
execution of the original application occurs, the client or
execution control module re-establishes the original
imported functions table, removes or bypasses the mjected
machine code segment, and places the appropriate external
function memory addresses as necessary in the imported
functions table, 1.€., as if the operating system had estab-
lished this operating environment under normal load and
execute procedures. Once the proper operating environment
for execution of the original application has been
established, then program control passes to the original start
address indicated 1n the original application P.E. header start

address field.

FIG. 8 1illustrates generally digital product execution
control via a remote clearinghouse interaction. In FIG. 8, an
original manufacturer 800 produces a fully functional digital

US 6,272,636 Bl

13

product 200 and passes digital product 200 to a product
distributor 802. As discussed herein above, product distribu-
tor 802 executes the builder program of FIG. 7 to produce
for distribution the metered digital product 200'. The builder

program encrypts selected portions of the metered digital
product 200 (block 712 of FIG. 7) as published for distri-
bution and provides the unlock key and a product identifier
803 to a server/clearinghouse 804. Metered digital product
200" 1s then disseminated publicly through a variety of
distribution mechanisms 8085, ¢.¢., diskettes, bulletin boards,
CD ROM, and via networks including global communica-
tion networks such as the Internet. An end-user 806 receives
a copy of metered digital product 200' and executes metered
digital product 200' on a computing device. As discussed
herein above, the client application incorporated into
metered digital product 200 as execution control program-
ming 1nitiates a telephonic or network connection 807 with
server/clearinghouse 804. The client application executing
on the end-user 806 computing device provides a request/
user ID 808 to the server/clearinghouse 804. The client
application identifies a user to the server/clearinghouse 804
and the server/clearinghouse 804 tracks requests by this user
to execute this digital product 200'. The server/
clearinghouse 804 determines whether the user 1s authorized
to execute the application and, if allowed, the server trans-
mits the unlock key 803 to the end-user 806 computing
device executing the client application. The client applica-
fion makes use of unlock key 803 to decrypt previously
encrypted portions, 1.€., as encrypted by the builder program
(FIG. 7), and facilitate execution of the actual digital prod-
uct. If the user 1s not to be allowed use of this application,
1.€., the server/clearinghouse 804 determines that an evalu-
ation period has expired, the server does not transmit the
unlock key 803 to the end-user 806 computing device but
sends an “end of evaluation” message. The original appli-
cation cannot then execute on the end-user 806 computing
device. Without the unlock key 803 being stored perma-
nently on the end-user 806 computing device, a malicious
user would have to apply exceptional cryptanalytical attacks
to defeat the encryption implemented in this embodiment of
a metered digital product 200'. By using sufficiently long
keys as key 803 attempts to break the encryption without use
of key 803 become unfeasible.

To further 1increase security, that network communications
between the end-user computing device executing the client
application of metered digital product 200' and the server/
clearinghouse 804 be encrypted with a combination of
known or conventional public/private key encryption and
symmetric key encryption algorithms to prevent electronic/
digital eavesdropping on the client-server interaction.

FIG. 9 1llustrates programming corresponding to decision
block 607 of FIG. 7 as applied 1n the context of execution
control employing a client-server relationship as portrayed
in FIG. 8. In FIG. 9, 1in block 900 the client application on
the end-user 806 computing device and the server/
clearinghouse 804 exchange encryption keys to establish
according 1s to conventional practice a secure network
communication. In block 902, the client application execut-
ing on the end-user 806 computing device sends the request/
user ID 808 to server/clearinghouse 804. Decision block 904
executes at the server/clearinghouse 804. The server/
clearinghouse 804 determines, based on the user ID and
subject product, whether this particular user can execute this
particular product at this time. As may be appreciated, the
server/clearinghouse maintains a use history database 809 ot
users and products and applies an evaluation criteria, e€.g., a
number of executions or a time period of allowed execution,

10

15

20

25

30

35

40

45

50

55

60

65

14

to respond appropriately to the request/user ID 808. If this
particular user 1s allowed to execute this particular product
at this time, then processing branches from decision block
904 to block 906 where the server/clearinghouse 804 deliv-
ers key 803 to the end-user 806 computing device. With key
803, the end-user computing device decrypts the previously
encrypted portions of the original application and establishes
the necessary operating environment to allow execution of
the original application as described herein above. I,
however, the user’s evaluation use has expired, then pro-
cessing branches from decision block 904 to block 908
where an expiration message may be delivered from clear-
inghouse 804 to the end-user 806 computing device i1ndi-
cating that execution 1s not allowed and that the evaluation
use has expired.

Once execution 1s to be allowed, additional safeguards
operate dynamically by way of selected encryption and
decryption of the code section 302 during execution thereof.
FIG. 109 illustrates processing applied to code segment 302
just prior to allowing execution of code segment 302. The
programming of FIG. 10, in conjunction with that of FIG.
11, dynamically hides by encryption selected portions of
code section 302 to prevent a malicious user from taking a
““snapshot” of an executatable form of code section 302
during execution of code section 302. Code section 302 1s
thereby made dependent on execution control programming.
The programming of FIG. 10 may be inserted serially
between decision block 607 and block 608 of FIG. 6.

In FIG. 10, the programming executed in block 950
installs control programming as an “exception” handler with
the operating system. Most common microprocessor archi-
tectures allow marking of selected memory regions as being
“protected” or “unprotected.” Processor access to protected
memory regions mvokes the exception handler. Under the
present invention, the exception handler operates to dynami-
cally maintain at all times a portion of code segment 302 1n
an encrypted form even during execution thereof. Thus,
programming 1n block 950 represents installation of an
exception handler as illustrated 1 FIG. 11. In block 952,
control programming under the present invention subdivides
code segment 302 1nto memory regions. Each memory
region 1s encrypted in block 954 with a unique symmetric
key, 1.e., one unique key for each region. In block 956, all
memory regions are marked as being protected. Upon access

to any such region marked as being protected, the exception
handler (FIG. 11) executes.

Once the original application 1s allowed to execute, 1.¢.,
execution control passed to code segment 302, and during
the entire time of execution, the end-user computing device
microprocessor executes instructions throughout the code
scoment 302. Each time the microprocessor attempts to
access a memory region, 1.€., one previously marked pro-
tected 1n block 956 of FIG. 10, the microprocessor, in
conjunction with the operating system, transfers control to

the exception handler as installed 1n block 950 of FIG. 10
and 1llustrated 1 FIG. 11.

In FIG. 11, the exception handler begins in block 970
where the memory region accessed 1s decrypted and thereby
made suitable for execution. In block 972, the memory
region 1s marked as being unprotected, thereby allowing
continuous uninterrupted access to this memory region for
purposes of execution. To prevent all memory regions from
eventually being marked unprotected, processing in block
974 counts the number of remaining unprotected memory
regions. Decision block 976 then determines whether this
number of currently unprotected memory regions exceeds a
orven quota. In other words, decision block 976 determines

US 6,272,636 Bl

15

whether additional encryption 1s needed to maintain a given
portion of code segment 302 1n an encrypted and non-
executable form.

As may be appreciated, the particular proportion of
encrypted versus executable portions of code section 302
will vary according to security and performance criteria. In
any event, 1f additional memory regions of code segment
302 need to be re-encrypted and re-marked protected, then
processing advances to block 978 where the least-recently
unprotected memory region 1s again encrypted with a unique
symmetric key and marked as being protected. In this
manner, code segment 302 even while being executed,
undergoes dynamic modification making a complete, static
image of code segment 302 unavailable at any given time 1n
the memory devices of the end-user computing device. At all
times during execution, therefore, a minimum number or
percentage of memory regions are encrypted and, therefore,
non-¢xecutable. If a malicious user attempts to take a
“snapshot” of the code segment 302 during execution, the
user obtains an incomplete i1mage of the original code
scoment 302. Furthermore, because memory regions are
constantly undergoing encryption and decryption, a mali-
cious user may be frustrated in i1dentifying and predicting
which regions are encrypted and which are decrypted at any
gven fime.

As a further precaution against malicious attempts to
recover portions of or monitor execution of code segment
302, the present 1nvention contemplates a preemptive use of
operating system debugging mechanisms. More particularly,
the Win32 API (Application Programming Interface) stan-
dard (used by WINDOWS 95 (™) and WINDOWS NT (™))
provides a debugging mechanism allowing one program to
“debug” another program. By invoking this debugging
mechanism, a program gains access to a variety of useful
information and control relative to the program being
“debugged” including: the ability to view and modily
memory space, the ability to view and modify thread context
(the state of each execution thread in the process, including
what part of the code a thread i1s executing at any given
time), and notification of important events, such as when a
thread 1s created or destroyed, when a new DLL module 1s
loaded, when the process ends, when the process encounters

certain error conditions.

Furthermore, the Win32 API standard enforces three
important constraints on the relationship between one pro-
oram 1nvoking this debugging mechanism and the program
being debugged. First, 1f the process invoking the debugeing,
mechanism terminates, either on 1ts own or through the
control of any external process, the process being debugged
1s 1mmediately terminated also. Second, if an application
invoking the debugging mechanism 1s “attached” to a given
program to be debugged that is already running, it (or any
external process) cannot terminate the relationship without
terminating the program being debugged. Third, 1f a pro-
oram 1nvoking the debugging mechanism 1s attached to a
program being debugeed, no other process can debug the
same program being debugged.

This debugging mechanism available under Win32 API 1s
used primarily by software developers to help find errors in
programs under development. Commercial products are
available on the market which use this debugging mecha-
nism to aid 1n program development. Any such products or
programs that use this Win32 API debugging function are
commonly known as “local debuggers.” These local debug-
gers operate as normal applications under the operating
system.

Under the present mnvention, execution control program-
ming launches a separate “debugger” process, which imme-

10

15

20

25

30

35

40

45

50

55

60

65

16

diately attempts to debug the metered digital product 200'.
More particularly, execution control programming under the
present invention uses the Win32 API function
DebugActiveProcess() to protect the executing metered
digital product 200'. A second “local debugger” cannot
thereby attach to the executing metered digital product 200'.
This protective step prevents a malicious user from using a
local debugger to look at the internal workings (and hence
learn how to defeat) execution control. Once the debugger
process has attached to the executing metered digital product
200', a malicious user cannot use a local debugger to view
the operation of the metering or control programming
because the operating system will not allow a second
program to attach to or debug a program already being
debugged. Similarly, if a malicious user has used a local
debugger to debug the metered digital product 200' betfore
execution, then when the metered digital product 200
attempts to call DebugActiveProcess() it will fail because
the operating system will not allow a second program to
attach to a program being debugeed. Upon such failure, the
control programming of the present invention simply exits.
Furthermore, once the debugging process invoked by the
metered digital product 200' has attached, a malicious user
cannot terminate the debugger or “remove” the debugger to
replace 1t with a second local debugger.

While this technique does not prevent a malicious user
from using more sophisticated, 1.€., “system-level” debug-
ogers established with the operating system as “device
drivers”, 1t does prevent use of local debuggers which are
common and more easily used than more sophisticated
system-level debuggers.

FIG. 12 1llustrates programming executed at the onset of
control programming to establish a preemptive use of the
debuggeing mechanism. For example, the programming of
FIG. 12 may be inserted as part of or just after block 606 of
FIG. 6. In FIG. 12, block 990 represents invocation of the
DebugActiveProcess() function available under the Win32
API standard. If the call to DebugActiveProcess() fails, then
processing branches at decision block 992 and exits control
programming entirely, 1.e., terminates execution of control
programming and thereby prevents execution of the digital
product entirely. If, however, the call to
DebugActiveProcess() succeeds, then processing continues
as described above, but the control programming 1s made
immune against inspection by means of a local debugger.

Thus, an 1improved method of digital product execution
control has been shown and illustrated. Execution control
under the present invention may be employed to prevent
unauthorized use of a digital product, e.g., beyond an
evaluation period, or to implement auxiliary functions, €.g.,
such as compression or decompression of a digital product
for purposes of storage efficiency. The present mvention
allows a software developer to publish a full featured
version of a software package without design or implemen-
tation concerns regarding execution control, e.g., without
incorporating 1nto the design process security features
against unauthorized use. The present invention converts
such a full-featured version of a software package to a
demonstration version allowing an end-user to make full use
of the application under a controlled execution thereof.
Under one embodiment of the present invention, execution
control mcludes authorization to execute at a remote clear-
inghouse site, thereby preventing local, 1.e., user, manipu-
lation of a digital product to avoid security measures imple-
mented under the present invention. Potential customers
thereby have an opportunity to evaluate fully a software
package and determine whether 1t will meet their needs

US 6,272,636 Bl

17

before they commit to a purchase. A purchase step may be
incorporated mto the execution control procedures described
herein. Essentially, a purchase step would remove any
execution control features, and allow full execution of the
product without limitation.

It will be appreciated that the present invention is not
restricted to the particular embodiment that has been
described and 1llustrated, and that variations may be made
therein without departing from the scope of the invention as
found 1n the appended claims and equivalents thereof.

What 1s claimed 1s:

1. In an executable digital product having incorporated
therein execution control programming limiting use of the
digital product to a given controlled use, a method of
providing security against use outside said given controlled
use, said method comprising:

identifying an executable portion of said digital product to
be loaded for execution 1n memory regions of a com-
puting device;

identifying a plurality of sub-portions of said executable
portion and encrypting into a non-executable form each
sub-portion as loaded for execution in an associated
memory region during said given controlled use, said

sub-portions being thereby loaded for execution 1n an
encrypted and non-executable state;

marking as protected memory regions holding each sub-
portion; and

establishing with an operating system an exception han-
dler executed by said operating system during execu-
tion of said digital product and upon access to memory
regions marked as protected, said exception handler
thereby decrypting 1nto an executable form each sub-
portion when accessed and thereby controllably allow-
ing use thereof.

2. A method according to claim 1 wherein said step of
encrypting each sub-portion comprises encrypting each sub-
portion with a unique encryption key.

3. A method according to claim 1 wherein said step of
decrypting each sub-portion further comprises marking each
assoclated memory region as being unprotected.

4. A method according to claim 1 wherein said method
further comprises 1dentification of memory regions marked
as protected and selectively re-encrypting at least one sub-
portion and re-marking as protected the associated memory
region.

5. A method according to claim 1 wherein said operating
system 1ncludes a debugeging mechanism attachable to an
executing process and said method further comprises an
attempt to attach said debugging mechanism to said execut-
able portion, said operating system allowing only one
attachment of said debugging mechanism to a given execut-
INg Process.

6. A method according to claim 5 wherein said control
programming upon failure to attach said debugging mecha-
nism terminates.

7. In an executable digital product having incorporated
therein execution control programming limiting use of the
digital product to a given controlled use, a method of
providing security against use outside said given use, said
method comprising:

encrypting at least one portion of said digital product prior
to distribution, a key being necessary to decrypt and
make executable said at least one portion, and storing
said key 1n association with an identifier of said digital
product at a clearinghouse, said clearinghouse being,
adapted for telecommunication interaction, said at least

10

15

20

25

30

35

40

45

50

55

60

65

138

one portion 1n 1ts encrypted form bemng thereby loaded
for execution upon an attempt to load said executable
digital product for execution; and

incorporating into said control programming telecommu-

nication programming adapted for mteraction with said
clearinghouse upon said attempt to load said executable
digital product for execution, said control programming,
providing to said clearinghouse by telecommunication
interaction upon execution thereof a product identifier
and request to execute said digital product, said clear-
inghouse selectively providing said key to said control
programming 1n response to said request to execute
said digital product whereby said control programming
thercafter decrypts and makes executable said at least
one portion and passes execution control thereto.

8. A method according to claim 7 further comprising,
providing a user identification 1n conjunction with said
request to execute.

9. A method according to claim 7 wherein said clearing-
house maintains a use history for a given user relative to said
digital product and returns said key only when said given
controlled use for said given user remains valid.

10. In an executable digital product having incorporated
theremn execution control programming limiting use of the
digital product to a given controlled use, a method of
providing security against use outside said given use, said
method comprising:

encrypting at least one portion of said digital product prior

to distribution of said digital product, a key being
necessary to decrypt and make executable said at least
one portion, and storing said key in association with an
identifier of said digital product at a clearinghouse, said
clearinghouse being adapted for telecommunication
Interaction, said at least one portion as encrypted being
thereby non-executable and loaded for execution upon

loading for execution said executable digital product;

incorporating 1nto said control programming telecommu-
nication programming adapted for mteraction with said
clearinghouse upon execution of said digital product,
said control programming providing to said clearing-
house by telecommunication interaction upon execu-
tion thereof a product identifier and request to execute
said digital product, said clearinghouse selectively pro-
viding said key to said control programming in
response to said request to execute;

marking as protected memory regions holding said at least
one portion as loaded for execution 1n 1ts non-
executable encrypted form; and

establishing with said operating system an exception
handler executed by said operating system during
execution of said digital product and upon access to
said memory regions marked as protected, said excep-
tion handler decrypting into executable form said at
least one portion during execution of said digital prod-
uct and when accessed for execution.

11. A method according to claim 10 further comprising
providing a user identification 1n conjunction with said
request to execute.

12. A method according to claim 10 wherein said clear-
inghouse maintains a use history for a given user relative to
said digital product and returns said key only when said
orven conftrolled use for said given user remains valid.

13. A method according to claim 11 wherein said step of
encrypting each sub-portion comprises encrypting each sub-
portion with a unique encryption key.

14. A method according to claim 11 wherein said step of
decrypting each sub-portion further comprises marking each
assoclated memory region as being unprotected.

US 6,272,636 Bl

19

15. A method according to claim 11 wherein said method
further comprises 1dentification of memory regions marked
as protected and selectively re-encrypting at least one sub-
portion and re-marking as protected the associated memory
region.

16. A method according to claim 11 wherein said oper-
ating system includes a debugging mechanism attachable to
an executing process and said method further comprises an
attempt to attach said debugging mechanism to said execut-

20

able portion, said operating system allowing only one

attachment of said debugging mechanism to a given execut-
INg Process.

17. A method according to claim 16 wherein said control

programming upon failure to attach said debugging mecha-
nism terminates.

	Front Page
	Drawings
	Specification
	Claims

