US006260953B1 # (12) United States Patent Silverbrook et al. US 6,260,953 B1 (10) Patent No.: Jul. 17, 2001 (45) Date of Patent: #### SURFACE BEND ACTUATOR VENTED INK (54)SUPPLY INK JET PRINTING MECHANISM Inventors: Kia Silverbrook; Greg McAvoy, both (75) of Sydney (AU) Silverbrook Research Pty Ltd, (73)Assignee: Balmain (AU) Subject to any disclaimer, the term of this Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Appl. No.: 09/112,820 Jul. 18, 1998 Filed: #### (30)Foreign Application Priority Data | Jul. 15, 1997 | (AU) | ••••• | PO7991 | |---------------|------|-------|--------| | Jun. 9, 1998 | (AU) | ••••• | PP3985 | (51) Int. Cl.⁷ B41J 2/015; B41J 2/135; B41J 2/04 347/47; 347/85 347/94, 48, 84, 85 #### **References Cited** (56) #### FOREIGN PATENT DOCUMENTS * cited by examiner Primary Examiner—John Barlow Assistant Examiner—An H. Do #### **ABSTRACT** (57) An ink jet print head includes a nozzle chamber for storage of ink to be ejected from an ink ejection nozzle formed in one wall of the nozzle chamber; and a movable paddle actuator mechanism formed in a first wall of the nozzle chamber, one end of the paddle actuator traversing along a second wall of the nozzle chamber, the second wall being substantially perpendicular to the first wall; the one end further including a flange having a surface abutting the second wall, the movable paddle actuator mechanism being operable to cause the ejection of ink from the ink ejection nozzle with the flange moving substantially tangentially to the second wall. #### 13 Claims, 8 Drawing Sheets FIG. 3 FIG. 4a F16. 4b FIG. 7 FIG. 9 CROSS-REFERENCED AUSTRALIAN PROVISIONAL **PATENT** #### SURFACE BEND ACTUATOR VENTED INK SUPPLY INK JET PRINTING MECHANISM #### -continued US PATENT/PATENT APPLICATION (CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN DOCKET #### CROSS REFERENCES TO RELATED **APPLICATIONS** | | ıstralian provisional patent apı | - | | PATENT
APPLICATION NO. | PRIORITY FROM AUSTRALIAN
PROVISIONAL APPLICATION) | DOCKET
NO. | |----------------------|-----------------------------------|-----------|----------------|---------------------------|--|-----------------| | - | ted by cross-reference. For the | | | PP2370 | 09/112,781 | DOT01 | | of location and iden | tification, US patent application | ons iden- | | PP2371 | 09/113,052 | DOT02 | | ified by their US pa | tent application serial numbers | s (USSN) | 10 | PO8003 | 09/112,834 | Fluid01 | | • | the Australian applications fro | | | PO8005 | 09/113,103 | Fluid02 | | _ | | | | PO9404 | 09/113,101 | Fluid03 | | ne 08 patent appno | cations claim the right of prior | my. | | PO8066 | 09/112,751 | IJ 01 | | | | | | PO8072 | 09/112,787 | IJ02 | | | | | | PO8040 | 09/112,802 | IJ03 | | | | | 15 | PO8071 | 09/112,803 | IJ 04 | | CROSS-REFERENCED | US PATENT/PATENT | | 13 | PO8047 | 09/113,097 | IJ05 | | AUSTRALIAN | APPLICATION | | | PO8035 | 09/113,099 | IJ 06 | | PROVISIONAL | (CLAIMING RIGHT OF | | | PO8044 | 09/113,084 | IJ07 | | PATENT | PRIORITY FROM AUSTRALIAN | DOCKET | | PO8063 | 09/113,066 | IJ08 | | APPLICATION NO. | PROVISIONAL APPLICATION) | NO. | | PO8057 | 09/112,778 | IJ 09 | | ALLICATION NO. | T NO VISIONAL AIT LICATION) | NO. | | PO8056 | 09/112,779 | IJ10 | | PO7991 | 09/113,060 | ART01 | 20 | PO8069 | 09/113,077 | IJ11 | | PO8505 | 09/113,070 | ART02 | | PO8049 | 09/113,061 | IJ12 | | PO7988 | 09/113,073 | ART02 | | PO8036 | 09/112,818 | IJ13 | | PO9395 | | ART03 | | PO8048 | , , | | | | 09/112,748 | | | | 09/112,816 | IJ14 | | PO8017 | 09/112,747 | ART06 | | PO8070 | 09/112,772 | IJ15 | | PO8014 | 09/112,776 | ART07 | 25 | PO8067 | 09/112,819 | IJ16 | | PO8025 | 09/112,750 | ART08 | 25 | PO8001 | 09/112,815 | IJ17 | | PO8032 | 09/112,746 | ART09 | | PO8038 | 09/113,096 | IJ18 | | PO7999 | 09/112,743 | ART10 | | PO8033 | 09/113,068 | IJ 19 | | PO7998 | 09/112,742 | ART11 | | PO8002 | 09/113,095 | IJ2 0 | | PO8031 | 09/112,741 | ART12 | | PO8068 | 09/112,808 | IJ21 | | PO8030 | 09/112,740 | ART13 | | PO8062 | 09/112,809 | IJ22 | | PO7997 | 09/112,739 | ART15 | 30 | PO8034 | 09/112,780 | IJ23 | | PO7979 | 09/113,053 | ART16 | | PO8039 | 09/113,083 | IJ24 | | PO8015 | 09/112,738 | ART17 | | PO8041 | 09/113,121 | IJ25 | | PO7978 | 09/112,750 | ART18 | | PO80041 | 09/113,121 | IJ26 | | PO7982 | | ART19 | | PO8037 | | IJ27 | | | 09/113,063 | | | | 09/112,793 | | | PO7989 | 09/113,069 | ART20 | | PO8043 | 09/112,794 | IJ28 | | PO8019 | 09/112,744 | ART21 | 35 | PO8042 | 09/113,128 | IJ29 | | PO7980 | 09/113,058 | ART22 | | PO8064 | 09/113,127 | IJ30 | | PO8018 | 09/112,777 | ART24 | | PO9389 | 09/112,756 | IJ31 | | PO7938 | 09/113,224 | ART25 | | PO9391 | 09/112,755 | IJ32 | | PO8016 | 09/112,804 | ART26 | | PP0888 | 09/112,754 | IJ33 | | PO8024 | 09/112,805 | ART27 | | PP0891 | 09/112,811 | IJ34 | | PO 7940 | 09/113,072 | ART28 | 40 | PP 0890 | 09/112,812 | IJ35 | | PO7939 | 09/112,785 | ART29 | 40 | PP0873 | 09/112,813 | IJ36 | | PO8501 | 09/112,797 | ART30 | | PP0993 | 09/112,814 | IJ37 | | PO8500 | 09/112,796 | ART31 | | PP 0890 | 09/112,764 | IJ38 | | PO7987 | 09/113,071 | ART32 | | PP1398 | 09/112,765 | IJ3 9 | | PO8022 | 09/112,824 | ART33 | | PP2592 | 09/112,767 | IJ 40 | | PO8497 | 09/113,090 | ART34 | | PP2593 | 09/112,768 | IJ41 | | PO8020 | 09/112,823 | ART38 | 45 | PP3991 | 09/112,700 | IJ42 | | | | | | | | | | PO8023 | 09/113,222 | ART39 | | PP3987 | 09/112,806 | IJ43 | | PO8504 | 09/112,786 | ART42 | | PP3985 | 09/112,820 | IJ44 | | PO8000 | 09/113,051 | ART43 | | PP3983 | 09/112,821 | IJ45 | | PO7977 | 09/112,782 | ART44 | | PO7935 | 09/112,822 | IJM 01 | | PO7934 | 09/113,056 | ART45 | | PO7936 | 09/112,825 | IJM02 | | PO7990 | 09/113,059 | ART46 | 50 | PO7937 | 09/112,826 | IJM03 | | PO8499 | 09/113,091 | ART47 | | PO8061 | 09/112,827 | IJM 04 | | PO8502 | 09/112,753 | ART48 | | PO8054 | 09/112,828 | IJM05 | | PO7981 | 09/113,055 | ART50 | | PO8065 | 6,071,750 | IJM 06 | | PO7986 | 09/113,057 | ART51 | | PO8055 | 09/113,108 | IJM07 | | PO7983 | 09/113,054 | ART52 | | PO8053 | 09/113,109 | IJM08 | | PO8026 | 09/112,752 | ART53 | ,- | PO8078 | 09/113,103 | IJM09 | | PO8020 | | ART54 | 55 | | | IJM109
IJM10 | | | 09/112,759 | | | PO7933 | 09/113,114 | | | PO8028 | 09/112,757 | ART56 | | PO7950 | 09/113,115 | IJM11 | | PO9394 | 09/112,758 | ART57 | | PO7949 | 09/113,129 | IJM12 | | PO9396 | 09/113,107 | ART58 | | PO8060 | 09/113,124 | IJM13 | | PO9397 | 09/112,829 | ART59 | | PO8059 | 09/113,125 | IJM14 | | PO9398 | 09/112,792 | ART60 | 60 | PO8073 | 09/113,126 | IJM15 | | PO9399 | 6,106,147 | ART61 | 60 | PO8076 | 09/113,119 | IJM16 | | PO9400 | 09/112,790 | ART62 | | PO8075 | 09/113,120 | IJM17 | | PO9401 | 09/112,789 | ART63 | | PO8079 | 09/113,221 | IJM 18 | | PO9402 | 09/112,788 | ART64 | | PO8050 | 09/113,116 | IJM 19 | | PO9403 | 09/112,795 | ART65 | | PO8052 | 09/113,118 | IJM20 | | PO9405 | 09/112,793 | ART66 | | PO7948 | 09/113,117 | IJM21 | | PP0959 | 09/112,749 | ART 68 | 65 | PO7940
PO7951 | 09/113,117 | IJM21
IJM22 | | | | | _ _ | | • • • | | | PP1397 | 09/112,783 | ART69 | | PO8074 | 09/113,130 | IJM23 | | | | | | | | | -continued | CROSS-REFERENCED AUSTRALIAN PROVISIONAL PATENT APPLICATION NO. | US PATENT/PATENT APPLICATION (CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN PROVISIONAL APPLICATION) | DOCKET
NO. | |--|---|------------------| | PO7941 | 09/113,110 | IJM24 | | PO8077 | 09/113,112 | IJM25 | | PO8058 | 09/113,087 | IJM26 | | PO8051 | 09/113,074 | IJM27 | | PO8045 | 6,110,754 | IJM28 | | PO7952 | 09/113,088 | IJM 29 | | PO8046 | 09/112,771 | IJM 30 | | PO9390 | 09/112,769 | IJM31 | | PO9392 | 09/112,770 | IJM32 | | PP0889 | 09/112,798 | IJM35 | | PP0887 | 09/112,801 | IJM36 | | PP0882 | 09/112,800 | IJM37 | | PP0874 | 09/112,799 | IJM38 | | PP1396 | 09/113,098 | IJM3 9 | | PP3989 | 09/112,833 | IJM 40 | | PP2591 | 09/112,832 | IJM41 | | PP3990 | 09/112,831 | IJM42 | | PP3986 | 09/112,830 | IJM43 | | PP3984 | 09/112,836 | IJM44 | | PP3982 | 09/112,835 | IJM45 | | PP0895 | 09/113,102 | IR01 | | PP0870 | 09/113,106 | IR02 | | PP0869 | 09/113,105 | IR04 | | PP0887 | 09/113,104 | IR05 | | PP0885 | 09/112,810 | IR06 | | PP0884 | 09/112,766 | IR10 | | PP0886 | 09/113,085 | IR12 | | PP0871 | 09/113,086 | IR13 | | PP0876 | 09/113,094 | IR14 | | PP0877 | 09/112,760 | IR16 | | PP0878 | 09/112,773 | IR17 | | PP0879 | 09/112,774 | IR18 | | PP0883 | 09/112,775 | IR19 | | PP0880 | 6,152,619 | IR20 | | PP0881 | 09/113,092 | IR21 | | PO8006 | 6,087,638 | MEMS02 | | PO8007 | 09/113,093 | MEMS02
MEMS03 | | PO8008 | 09/113,062 | MEMS03 | | PO8010 | 6,041,600 | MEMS05 | | PO8010 | 0,041,000 | MEMS05 | | PO7947 | 6,067,797 | MEMS07 | | PO7947 | 0,007,797 | MEMS07
MEMS09 | | PO7944 | 6,044,646 | MEMS10 | | PO9393 | 0,044,040 | MEMS10
MEMS11 | | PP0875 | 09/113,003 | MEMS11 | | PP0894 | 09/113,076 | MEMS12
MEMS13 | | 110074 | 09/113,073 | MICM313 | # STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable. #### FIELD OF THE INVENTION The present invention relates to the field of inkjet printing and, in particular, discloses a surface bend actuator vented ink supply ink jet printer. ### BACKGROUND OF THE INVENTION Many different types of printing have been invented, a large number of which are presently in use. The known 60 forms of printers have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye 65 sublimation printers and ink jet printers
both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc. In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature. Many different techniques of ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, "Non-Impact Printing: Introduction and Historical Perspective", Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207–220 (1988). Ink Jet printers themselves come in many different types. The utilization of a continuous stream of ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing. U.S. Pat. No. 3,596,275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electrostatic field so as to cause drop separation. This technique is still utilized by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al) Piezoelectric ink jet printers are also one form of commonly utilized ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which utilizes a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) discloses a bend mode of piezoelectric operation, Howkins in U.S. Pat. No. 4,459,601 discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a shear mode type of piezoelectric transducer element. Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclosed ink jet printing techniques which rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard. As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables. #### SUMMARY OF THE INVENTION It is an object of the present invention to provide for an inkjet printing device having a paddle type actuator that further includes a low level of actuation energy. In accordance with a first aspect of the present invention, there is provided an ink jet nozzle arrangement comprising: a nozzle chamber for storage of ink to be ejected from an ink ejection nozzle formed in one wall of the nozzle chamber; and a moveable paddle actuator mechanism formed in a first wall of the nozzle chamber, one end of the paddle actuator traversing along a second wall of the nozzle chamber, the second wall being substantially perpendicular to the first 5 wall; the one end further including a flange including a surface abutting the second wall, the movable paddle actuator mechanism being operable to cause the ejection of ink from the ink ejection nozzle with the flange moving substantially tangentially to the second wall. The arrangement can further include an ink supply channel interconnected to the nozzle chamber for the resupply of ink to the nozzle chamber, the interconnection comprising a slot in a wall of the chamber, the slot being substantially opposite an end of the flange. The slot can be arranged in a 15 corner of a third wall of the chamber and the second wall of the chamber can further form one wall of the ink supply channel. The arrangement can be formed on a silicon wafer and the ink supply channel can be formed by back etching a back 20 surface of the wafer. The back etching can comprise a plasma etching of the back surface. The moveable paddle actuator, in being actuated to eject a drop of ink, can constricts the flow of ink into the nozzle chamber. The arrangement further preferably can include a slot around a substantial portion of the moveable paddle actuator, the slot interconnecting the nozzle chamber with an external ambient atmosphere, the slot being dimensioned to 30 provide for fluid movement during operation of the moveable paddle actuator mechanism so as to minimize the required energy for drop ejection whilst not allowing for the ejection of fluid out of the nozzle chamber. includes a thermal actuator for actuation of the mechanism on demand. The thermal actuator can comprise a conductive heater layer between layers of a substantially nonconductive material having a high coefficient of thermal expansion. The conductive heater layer can be arranged in a serpentine form so that, on conductive heating of the conductive beater layer, the conductive heater layer concertinas so as to allow for substantially unhindered expansion of the substantially non-conductive material. The substantially non-conductive material can comprise substantially polytetrafluroethylene. The silicon wafer can be initially processed utilizing a CMOS processing system so as to form the electrical circuitry required to operate the ink jet nozzle arrangement on the silicon wafer. #### BRIEF DESCRIPTION OF THE DRAWINGS Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which: FIG. 1 to FIG. 3 are schematic sectional views illustrating the operational principles of the preferred embodiment; FIG. 4a and FIG. 4b illustrate the operational principles of the thermal actuator of the preferred embodiment; FIG. 5 is a side perspective view of a single nozzle arrangement of the preferred embodiment; FIG. 6 illustrates an array view of a portion of a printhead constructed in accordance with the principles of the preferred embodiment. FIG. 7 provides a legend of the materials indicated in FIGS. 8 to 16; and FIG. 8 to FIG. 17 illustrate sectional views of the manufacturing steps in one form of construction of an ink jet printhead nozzle. #### DESCRIPTION OF PREFERRED AND OTHER **EMBODIMENTS** The preferred embodiment of the present invention discloses an inkjet printing device made up of a series of nozzle arrangements. Each nozzle arrangement includes a thermal surface actuator device which includes an L-shaped cross sectional profile and an air breathing edge such that actuation of the paddle actuator results in a drop being ejected from a nozzle utilizing a very low energy level. Turning initially to FIG. 1 to FIG. 3, there will now be described the operational principles of the preferred embodiment. In FIG. 1, there is illustrated schematically a sectional view of a single nozzle arrangement 1 which includes an ink nozzle chamber 2 containing an ink supply which is resupplied by means of an ink supply channel 3. A nozzle rim 4 is provided, across which a meniscus 5 forms, with a slight bulge when in the quiescent state. A bend actuator device 7 is formed on the top surface of the nozzle chamber and includes a side arm 8 which runs generally parallel to the surface 9 of the nozzle chamber wall so as to form an "air breathing slot" 10 which assists in the low energy actuation of the bend actuator 7. Ideally, the front surface of the bend actuator 7 is hydrophobic such that a meniscus 12 forms between the bend actuator 7 and the surface 9 leaving an air pocket in slot 10. When it is desired to eject a drop via the nozzle rim 4, the bend actuator 7 is actuated so as to rapidly bend down as illustrated in FIG. 2. The rapid downward movement of the actuator 7 results in a general increase in pressure of the ink within the nozzle chamber 2. This results in a outflow of ink The movable paddle actuator mechanism preferably can 35 around the nozzle rim 4 and a general bulging of the meniscus 5. The meniscus 12 undergoes a low amount of movement. > The actuator device 7 is then turned off so as to slowly return to its original position as illustrated in FIG. 3. The return of the actuator 7 to its original position results in a reduction in the pressure within the nozzle chamber 2 which results in a general back flow of ink into the nozzle chamber 2. The forward momentum of the ink outside the nozzle chamber in addition to the back flow of ink 15 results in a general necking and breaking off of the drop 14. Surface tension effects then draw further ink into the nozzle chamber via ink supply channel 3. Ink is drawn in the nozzle chamber 3 until the quiescent position of FIG. 1 is again achieved. The actuator device 7 can be a thermal actuator which is 50 heated by means of passing a current through a conductive core. Preferably, the thermal actuator is provided with a conductive core encased in a material such as polytetrafluoroethylene which has a high level coefficient of expansion. As illustrated in FIG. 4, a conductive core 23 is preferably of a serpentine form and encased within a material 24 having a high coefficient of thermal expansion. Hence, as
illustrated in FIG. 4b, on heating of the conductive core 23, the material 24 expands to a greater extent and is therefore caused to bend down in accordance with requirements. Turning now to FIG. 5, there is illustrated a side perspective view, partly in section, of a single nozzle arrangement when in the state as described with reference to FIG. 2. The nozzle arrangement 1 can be formed in practice on a semiconductor wafer 20 utilizing standard MEMS tech-65 niques. The silicon wafer 20 preferably is processed so as to include a CMOS layer 21 which can include the relevant electrical circuitry required for the full control of a series of nozzle arrangements 1 formed so as to form a printhead unit. On top of the CMOS layer 21 is formed a glass layer 22 and an actuator 7 which is driven by means of passing a current through a serpentine copper coil 23 which is encased in the 5 upper portions of a polytetrafluoroethylene (PTFE) layer 24. Upon passing a current through the coil 23, the coil 23 is heated as is the PTFE layer 24. PTFE has a very high coefficient of thermal expansion and hence expands rapidly. The coil 23 constructed in a serpentine nature is able to expand substantially with the expansion of the PTFE layer 24. The PTFE layer 24 includes a lip portion 8 which upon expansion, bends in a scooping motion as previously described. As a result of the scooping motion, the meniscus 5 generally bulges and results in a consequential ejection of a drop of ink. The nozzle chamber 4 is later replenished by 15 means of surface tension effects in drawing ink through an ink supply channel 3 which is etched through the wafer through the utilization of a highly an isotropic silicon trench etcher. Hence, ink can be supplied to the back surface of the wafer and ejected by means of actuation of the actuator 7. 20 The gap between the side arm 8 and chamber wall 9 allows for a substantial breathing effect which results in a low level of energy being required for drop ejection. A large number of arrangements 1 of FIG. 5 can be formed together on a wafer with the arrangements being collected into printheads which can be of various sizes in accordance with requirements. Turning now to FIG. 6, there is illustrated one form of an array 30 which is designed so as to provide three color printing with each color providing two spaced apart rows of nozzle arrangements 34. The three groupings can comprise groupings 31, 32 and 33 with each grouping supplied with a separate ink color so as to provide for full color printing capability. Additionally, a series of bond pads e.g. 36 are provided for TAB bonding control signals to the printhead 30. Obviously, the arrangement 30 of FIG. 6 illustrates only a portion of a printhead which can be of a length as determined by requirements. One form of detailed manufacturing process which can be used to fabricate monolithic ink jet printheads operating in accordance with the principles taught by the present embodiment can proceed utilizing the following steps: - 1. Using a double sided polished wafer 20, complete drive transistors, data distribution, and timing circuits using a 0.5 micron, one poly, 2 metal CMOS process 21. Relevant features of the wafer at this step are shown in FIG. 8. For clarity, these diagrams may not be to scale, and may not represent a cross section though any single plane of the nozzle. FIG. 7 is a key to representations of various materials in these manufacturing diagrams, and those of other cross referenced ink jet configurations. - 2. Etch the CMOS oxide layers down to silicon or second level metal using Mask 1. This mask defines the nozzle cavity and the edge of the chips. Relevant features of the wafer at this step are shown in FIG. 8. - 3. Plasma etch the silicon to a depth of 20 microns using the oxide as a mask. This step is shown in FIG. 9. - 4. Deposit 23 microns of sacrificial material **50** and planarize down to oxide using CMP. This step is shown in FIG. **10**. - 5. Etch the sacrificial material to a depth of 15 microns using Mask 2. This mask defines the vertical paddle 8 at the end of the actuator. This step is shown in FIG. 11. - 6. Deposit a thin layer (not shown) of a hydrophilic 65 polymer, and treat the surface of this polymer for PTFE adherence. 8 - 7. Deposit 1.5 microns of polytetrafluoroethylene (PTFE) **51**. - 8. Etch the PTFE and CMOS oxide layers to second level metal using Mask 3. This mask defines the contact vias 52 for the heater electrodes. This step is shown in FIG. 12. - 9. Deposit and pattern 0.5 microns of gold 53 using a lift-off process using Mask 4. This mask defines the heater pattern. This step is shown in FIG. 13. - 10. Deposit 1.5 microns of PTFE 54. - 11. Etch 1 micron of PTFE using Mask 5. This mask defines the nozzle rim 4 and the rim 4 at the edge of the nozzle chamber. This step is shown in FIG. 14. - 12. Etch both layers of PTFE and the thin hydrophilic layer down to the sacrificial layer using Mask 6. This mask defines the gap 10 at the edges of the actuator and paddle. This step is shown in FIG. 15. - 13. Back-etch through the silicon wafer to the sacrificial layer (with, for example, an ASE Advanced Silicon Etcher from Surface Technology Systems) using Mask 7. This mask defines the ink inlets which 3 are etched through the wafer. This step is shown in FIG. 16. - 14. Etch the sacrificial layers. The wafer is also diced by this etch. - 15. Mount the printheads in their packaging, which may be a molded plastic former incorporating ink channels which supply the appropriate color ink to the ink inlets at the back of the wafer. - 16. Connect the printheads to their interconnect systems. For a low profile connection with minimum disruption of airflow, TAB may be used. Wire bonding may also be used if the printer is to be operated with sufficient clearance to the paper. - 17. Fill the completed printheads with ink 55 and test them. A filled nozzle is shown in FIG. 17. The presently disclosed ink jet printing technology is potentially suited to a wide range of printing system including: color and monochrome office printers, short run digital printers, high speed digital printers, offset press supplemental printers, low cost scanning printers high speed pagewidth printers, notebook computers with inbuilt pagewidth printers, portable color and monochrome printers, color and monochrome copiers, color and monochrome facsimile machines, combined printer, facsimile and copying machines, label printers, large format plotters, photograph copiers, printers for digital photographic "minilabs", video printers, PHOTO CD (PHOTO CD is a registered trade mark of the Eastman Kodak Company) printers, portable printers for PDAs, wallpaper printers, indoor sign printers, billboard printers, fabric printers, camera printers and fault tolerant commercial printer arrays. It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects to be illustrative and not restrictive. Ink Jet Technologies The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable. The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an 5 efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out. The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require 10 a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per printhead, but is a major impediment to the fabrication of pagewidth printheads with 19,200 15 nozzles. Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet 20 technologies have been created. The target features include: low power (less than 10 Watts) high resolution capability (1,600 dpi or more) photographic quality output low manufacturing cost small size (pagewidth times minimum cross section) high speed (<2 seconds per page). All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. ³⁰ Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table under the heading Cross References to Related ³⁵ Applications. The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems. ⁴⁰ For ease of manufacture using standard process equipment, the printhead is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the printhead is 100 mm long, with a width which depends upon the ink jet type. The smallest printhead designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm.
The printheads each contain 19,200 nozzles plus data and control circuitry. Ink is supplied to the back of the printhead by injection molded plastic ink channels. The molding requires 50 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. 10 The printhead is connected to the camera circuitry by tape automated bonding. Tables of Drop on-Demand Ink Jets Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee. The following tables form the axes of an eleven dimensional table of ink jet types. Actuator mechanism (18 types) Basic operation mode (7 types) Auxiliary mechanism (8 types) Actuator amplification or modification method (17 types) Actuator motion (19 types) Nozzle refill method (4 types) Method of restricting back-flow through inlet (10 types) Nozzle clearing method (9 types) Nozzle plate construction (9 types) Drop ejection direction (5 types) Ink type (7 types) The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 which match the docket numbers in the table under the heading Cross References to Related Applications. Other ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet printheads with characteristics superior to any currently available ink jet technology. Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a print technology may be listed more than once in a table, where it shares characteristics with more than one entry. Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc. The information associated with the aforementioned 11 dimensional matrix are set out in the following tables. | | Description | Advantages | Disvantages | Examples | |----------------|---|--|--|--| | | ACTUATOR MECHANIS | M (APPLIED ONLY TO | SELECTED INK DRO | PS) | | Thermal bubble | An electrothermal heater heats the ink to above boiling point, transferring significant heat to the aqueous ink. A bubble | Large force generated Simple construction No moving parts Fast operation | High power Ink carrier limited to water Low efficiency High temperatures | Canon Bubblejet
1979 Endo et al GB
patent 2,007,162
Xerox heater-in-
pit 1990 Hawkins et
al U.S. Pat. No. 4,899,181 | | | Description | Advantages | Disvantages | Examples | |-----------------------|--|---|---|--| | | nucleates and quickly forms, expelling the ink. The efficiency of the process is low, with typically less than 0.05% of the electrical energy being transformed into kinetic energy of the drop | Small chip area required for actuator | required High mechanical stress Unusual materials required Large drive transistors Cavitation causes actuator failure Kogation reduces bubble formation Large print heads are difficult to fabricate | Hewlett-Packard TIJ 1982 Vaught et al U.S. Pat. No. 4,490,728 | | Piezo-
electric | A peizoelectric crystal such as lead lanthanum zirconate (PZT) is electrically activated, and either expands, shears, or bends to apply pressure to the ink, ejecting drops. | Low power consumption Many ink types can be used Fast operation High efficiency | Very large area requried for actuator Difficult to integrate with electronics High voltage drive tansistors required Full pagewidth print heads impractical due to actuator size Requires electrical poling in high field strengths | Kyser et al U.S. Pat. No. 3,946,398 Zolton U.S. Pat. No. 3,683,212 1973 Stemme U.S. Pat. No. 3,747,120 Epson Stylus Tektronix IJ04 | | Electro-
strictive | An electric field is used to activate electrostriction in relaxor materials such as lead lanthanum zirconate titanate (PLZT) or lead magnesium niobate (PMN). | Low power consumption Many ink types can be used Low thermal expansion Electric field strength required (approx. 3.4 V/\mum) can be generated without difficulty Does not require electrical poling | during manufacture Low maximum strain (approx.) 0.01%) Large area required for actuator due to low strain Response speed is marginal (~10 (µs) High voltage drive transistors required Full pagewidth print heads impractical due to | Seiko Epson,
Usui et all JP
253401/96
IJ04 | | Ferro-electric | An electric field is used to induce a phase transition between the antiferroelectric (AFE) and ferroelectric (FE) phase. Perovskite materials such as tin modified lead lanthanum zirconate titanate (PLZSnT) exhibit large strains of up to 1% associated with the AFE to FE | Low power consumption Many ink types can be used Fast operation (<1 \mu s) Relatively high longitudinal strain High efficiency Electric field strength of around 3 V/\mu can be readily provided | actuator size Difficult to integrate with electronics Unusual materials such as PLZSnT are required Actuators require a large area | IJ04 | | Electrostatic plates | phase transition. Conductive plates are separated by a compressible or fluid dielectric (usually air). Upon application of a voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb structure, or stacked to increase the surface area and therefore the force. | Low Power consumption Many ink types can be used Fast operation | Difficult to operate electrostatic devices in an aqueous environment The electrostatic actuator will normally need to be separated from the ink Very large area required to achieve high forces High voltage drive transistors may be required Full pagewidth | IJ02, IJ04 | | -continued | | | | | |------------------------------------|--|---|--|--| | | Description | Advantages | Disvantages | Examples | | Electrostatic pull on ink | A strong electric field is applied to the ink, whereupon electrostatic attraction accelerates the ink towards the print medium | Low current consumption Low temperature | print heads are not competitive due to actuator size High voltage required May be damaged by sparks due to air breakdown Required field strength increases as the drop size decreases High voltage drive transistors required Electrostatic field | 1989 Saito et al,
U.S. Pat. No. 4,799,068
1989 Miura et al,
U.S. Pat. No. 4,810,954
Tone-jet | | Permanent magnet electromagnetic | An electromagnet directly attracts a permanent magnet, displacing ink and causing drop ejection. Rare earth magnets with a field strength around 1 Tesla can be used. Examples are: Samarium Cobalt (SaCo) and magnetic materials in the neodymium iron boron family
(NdFeB, NdDyFeBNb, NdDyFeB, etc) | Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads | attracts dust Complex fabrication Permanent magnetic material such as Neodymium Iron Boron (NdFeB) required. High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pigmented inks are usually infeasible Operating temperature limited to the Curie temperature (around | IJ07, IJ10 | | Soft magnetic core electromagnetic | A solenoid induced a magnetic field in a soft magnetic core or yoke fabricated from a ferrous material such as electroplated iron alloys such as CoNiFe [1], CoFe, or NiFe alloys. Typically, the soft magnetic material is in two parts, which are normally held apart by a spring. When the solenoid is actuated, the two parts attract, displacing the ink | Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads | Complex fabrication Materials not usually present in a CMOS fab such as NiFe, CoNiFe, or CoFe are required High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Electroplating is required High saturation flux density is required (2.0–2.1 T is achievable with | IJ01, IJ05, IJ08,
IJ10, IJ12, IJ14,
IJ15, IJ17 | | Lorenz force | The Lorenz force acting on a current carrying wire in a magnetic field is utilized. This allows the magnetic field to be supplied externally to the print head, for example with rare earth permanent magnets. Only the current carrying wire need be fabricated on the print- | Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads | CoNiFe [1]) Force acts as a twisitng motion Typically, only a quarter of the solenoid length provides force in a useful direction High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity | IJ06, IJ11, IJ13,
IJ16 | | | -continued | | | | |------------------------------|--|--|--|--| | | Description | Advantages | Disvantages | Examples | | Magneto-
striction | head, simplifying materials requirements. The actuator uses the giant magnetostrictive effect of materials such as Terfenol-D (an alloy of terbium, dysprosium and iron developed at the Naval Ordnance Laboratory, hence Ter-Fe-NOL). For best efficiency, the actuator should be prestressed to approx. 8 MPa. | Many ink types can be used Fast operation Easy extension from single nozzles to pagewidth print heads High force is available | Pigmented inks are usually infeasible Force acts as a twisitng motion Unusual materials such as Terfenol-D are required High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pre-stressing | Fischenbeck,
U.S. Pat. No. 4,032,929
IJ25 | | Surface tension reduction | Ink under positive pressure is held in a nozzle by surface tension. The surface tension of the ink is reduced below the bubble threshold, causing the ink to egres from the nozzle. | Low power consumption Simple construction No unusual materials requried in fabrication High efficiency Easy extension from single nozzles to pagewidth print heads | may be required Requires supplementary force to effect drop separation Requires special ink surfactants Speed may be limited by surfactant properties | related patent applications | | Viscosity reduction | The ink viscosity is locally reduced to select which drops are to be ejected. A viscosity reduction can be achieved electrothermally with most inks, but special inks can be engineered for a 100:1 viscosity reduction. | Simple construction No unusual materials required in fabrication Easy extension from single nozzles to pagewidth print heads | Requires supplementary force to effect drop separation Requires special ink viscosity properties High speed is difficult to achieve Requires oscillating ink pressure A high temperature difference (typically 80 degrees) is | Silverbrook, EP
0771 658 A2 and
related patent
applications | | Acoustic | An acoustic wave is generated and focussed upon the drop ejection region. | Can operate without a nozzle plate | required Complex drive circuitry Complex fabrication Low effeciency Poor control of drop position Poor control of | 1993 Hadimioglu
et al, EUP 550,192
1993 Elrod et al,
EUP 572,220 | | Thermo-elastic bend actuator | An actuator which relies upon differential thermal expansion upon Joule heating is used. | Low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print | drop volume Efficient aqueous operation requires a thermal insulator on the hot side Corrosion prevention can be difficult Pigmented inks may be infeasible as pigment particles may jam the bend actuator | IJ03, IJ09, IJ17,
IJ18, IJ19, IJ20,
IJ21, IJ22, IJ23,
IJ24, IJ27, IJ28,
IJ29, IJ30, IJ31,
IJ32, IJ33, IJ34,
IJ35, IJ36, IJ37,
IJ38, IJ39, IJ40,
IJ41 | | | Description | Advantages | Disvantages | Examples | |--|---|---|--|---| | High CTE thermo- elastic actuator | A material with a very high coefficient of thermal expansion (CTE) such as polytetrafluoroethylen e (PTFE) is used. As high CTE materials are usually nonconductive, a heater fabricated from a conductive material is incorporated. A 50 µm long PTFE bend actuator with polysilicon heater and 15 mW power input can provide 180 µN force and 10 µm deflection. Actuator motions include: Bend Push Buckle Rotate | heads High force can be generated Three methods of PTFE deposition are under development: chemical vapor deposition (CVD), spin coating, and evaporation PTFE is a candidate for low dielectric constant insulation in ULSI Very low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print | Requires special material (e.g. PTFE) Requires a PTFE deposition process, which is not yet standard in ULSI fabs PTFE deposition cannot be followed with high temperature (above 350° C.) processing Pigmented inks may be infeasible, as pigment particles may jam the bend actuator | Ш09, Ш17, Ш18,
Ш20, Ш21, Ш22,
Ш23, Ш24, Ш27,
Ш28, Ш29, Ш30,
Ш31, Ш42, Ш43,
Ц44 | | Conduct-ive polymer thermoelastic actuator | A polymer with a high coefficient of thermal expansion (such as PTFE) is doped with conducting substances to increase its conductivity to about 3 orders of magnitude below that of copper. The conducting polymer expands when resistively heated. Examples of conducting dopants include: Carbon nanotubes Metal fibers Conductive polymers such as doped polythiophene Carbon granules | heads High force can be generated Very low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads | Requires special materials development (High CTE conductive polymer) Requires a PTFE deposition process, which is not yet standard in ULSI fabs PTFE deposition cannot be followed with high
temperature (above 350° C.) processing Evaporation and CVD deposition techniques cannot be used Pigmented inks may be infeasible, as pigment particles may jam the bend | IJ24 | | Shape
memory
alloy | A shape memory alloy such as TiNi (also known as Nitinol - Nickel Titanium alloy developed at the Naval Ordance Laboratory) is thermally switched between its weak martensitic state and its high stiffness austenic state. The shape of the actuator in its martensitic state is deformed relative to the austenic shape. The shape change causes ejection of a drop. | High force is available (stresses of hundreds of MPa) Large strain is available (more than 3%) High corrosion resistance Simple construction Easy extension from single nozzles to pagewidth print heads Low voltage operation | Fatigue limits maximum number of cycles Low strain (1%) is required to extend fatigue resistance Cycle rate limited by heat removal Requires unusual materials (TiNi) The latent heat of transformation must be provided High current operation Requires pre- stressing to distort | IJ26 | | Linear
Magnetic | Linear magnetic actuators include the | Linear Magnetic actuators can be | the martensitic state
Requires unusual
semiconductor | IJ12 | | | | -continued | | | |---------------------------|---|---|---|---| | | Description | Advantages | Disvantages | Examples | | Actuator | Linear Induction Actuator (LIA), Linear Permanent Magnet Synchronous Actuator (LPMSA), Linear Reluctance Synchronous Actuator (LRSA), Linear Switched Reluctance Actuator (LSRA), and the Linear Stepper Actuator (LSA). | constructed with high thrust, long travel, and high efficiency using planar semiconductor fabrication techniques Long actuator travel is available Medium force is available Low voltage operation BASIC OPERATION MODE | materials such as soft magnetic alloys (e.g. CoNiFe) Some varieties also require permanent magnetic materials such as Neodymium iron boron (NdFeB) Requires complex multiphase drive circuitry High current operation | | | Actuator
directly | This is the simplest | Simple operation No external | Drop repetition rate is usually | Thermal ink jet Piezoelectric ink | | pushes ink | mode of operation: the actuator directly supplies sufficient kinetic energy to expel the drop. The drop must have a sufficient velocity to overcome the surface tension. | fields required Satellite drops can be avoided if drop velocity is less than 4 m/s Can be efficient, depending upon the actuator used | limited to around 10 kHz. However, this is not fundamental to the method, but is related to the refill method normally used All of the drop kinetic energy must be provided by the actuator Satellite drops usually form if drop velocity is greater than 4.5 m/s | jet IJ01, IJ02, IJ03, IJ04, IJ05, IJ06, IJ07, IJ09, IJ11, IJ12, IJ14, IJ16, IJ20, IJ22, IJ23, IJ24, IJ25, IJ26, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41, | | Proximity | The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by contact with the print medium or a transfer roller. | Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle | Requires close proximity between the print head and the print media or transfer roller May require two print heads printing alternate rows of the image Monolithic color print heads are difficult | Silverbrook, EP
0771 658 A2 and
related patent
applications | | Electrostatic pull on ink | The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong electric field. | Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle | Requires very high electrostatic field Electrostatic field for small nozzle sizes is above air breakdown Electrostatic field may attract dust | Silverbrook, EP
0771 658 A2 and
related patent
applications
Tone-Jet | | Magnetic pull on ink | The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong magnetic field acting on the magnetic ink. | Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle | Requires magnetic ink Ink colors other than black are difficult Requires very high magnetic fields | Silverbrook EP
0741 658 A2 and
related patent
applications | | Shutter | The actuator moves a shutter to block ink flow to the nozzle. The ink presure is pulsed at a multiple of the drop ejection frequency. | High speed (>50 kHz) operation can be achieved due to reduced refill time Drop timing can be very accurate The actuator | Moving parts are required Requires ink pressure modulator Friction and wear must be considered Stiction is | IJ13, IJ17, IJ21 | | | Description | Advantages | Disvantages | Examples | |---|--|---|--|---| | | energy can be very | possible | | 1 | | Shuttered
grill | The actuator moves a shutter to block ink flow through a grill to | low Actuators with small travel can be used | Moving parts are required Requires ink | IJ08, IJ15, IJ18,
IJ19 | | | the nozzle. The shutter movement need only be equal to the width of the grill holes. | Actuators with small force can be used High speed (>50 kHz) operation can be achieved | pressure modulator
Friction and wear
must be considered
Stiction is
possible | | | Pulsed magnetic pull on ink pusher | A pulsed magnetic field attracts an 'ink pusher' at the drop ejection frequency. An actuator controls a catch, which prevents the ink pusher form moving when a drop is not to be ejected. AUXILLARY M. | Extremely low energy operation is possible No heat dissipation problems | ◆Requries an external pulsed magnetic field Requries special materials for both the actuator and the ink pusher Complex construction ALL NOZZLES) | IJ10 | | None | The actuator directly | Simplicity of | Drop ejection | Most ink jets, | | | fires the ink drop, and there is no external field or other mechanism required. | construction Simplicity of operation Small physical size | energy must be supplied by individual nozzle actuator | including piezoelectric and thermal bubble IJ01, IJ02, IJ03, IJ04, IJ05, IJ07, IJ09, IJ11, IJ12, IJ14, IJ20, IJ22, IJ23, IJ24, IJ25, IJ26, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44 | | Oscillating ink pressure (including acoustic stimul- ation) | The ink pressure oscillates, providing much of the drop ejection energy. The actuator selects which drops are to be fired be selectively blocking or enabling nozzles. The ink pressure oscillation may be acheived by vibrating the print head, or preferably by an actuator in the ink supply. | Oscillating ink pressure can provide a refill pulse, allowing higher operating speed The actuators may operate with much lower energy Acoustic lenses can be used to focus the sound on the nozzles | Requries external ink pressure oscillator Ink pressure phase and amplitude must be carefully controlled Acoustic reflections in the ink chamber must be designed for | IJ17, IJ18, IJ19,
IJ21 | | Media proximity | The print head is placed in close proximity to the print medium. Selected drops protrude from the print head further than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause drop separation. | Low power High accuracy Simple print head construction | Precision assembly required Paper fibers may cause problems Cannot print on rough substrates | Silverbrook, EP
0771 658 A2 and
related patent
applications | | Transfer roller | Drops are printed to a transfer roller
instead of straight to the print medium. A transfer roller can also be used for proximity drop separation. | High accuracy Wide range of print substrates can be used Ink can be dried on the transfer roller | Bulky Expensive Complex construction | Silverbrook, EP 0771 658 A2 and related patent applications Tektronix hot melt piezoelectric ink jet Any of the IJ series | | Electro-
static | An electric field is used to accelerate selected drops towards | Low power Simple print head construciton | Field strength required for separation of small | Silverbrook, EP
0771 658 A2 and
related patent | | | Description | Advantages | Disvantages | Examples | |--------------------------------------|--|--|--|--| | | the print medium. | | drops is near or above air breakdown | applications
Tone-Jet | | Direct
magnetic
field | A magnetic field is used to accelerate selected drops of magnetic ink towards | Low power Simple print head construction | Requires magnetic ink Requires strong magnetic field | Silverbrook, EP
0771 658 A2 and
related patent
applications | | Cross
magnetic
field | the print medium. The print head is placed in a constant magnetic field. The Lorenz force in a current carrying wire is used to move the actuator. | Does not require magnetic materials to be integrated in the print head manufacturing process | Requires external magnet Current densities may be high, resulting in electromigration problems | IJ06, IJ16 | | Pulsed magnetic field | A pulsed magnetic field is used to cyclically attract a paddle, which pushes on the ink. A small actuator moves a catch, which selectively prevents the paddle from moving. | Very low power operation is possible Small print head size | Complex print head construction Magnetic materials requried in print head | IJ10 | | | ACTUATOR AM | PLIFICATION OR MODIFICATION OF | ATION METHOD | | | None | No actuator mechanical amplification is used. The actuator directly drives the drop ejection process. | Operational simplicity | Many actuator mechanisms have insufficient travel, or insufficient force, to efficiently drive the drop ejection process | Thermal Bubble Ink jet IJ01, IJ02, IJ06, IJ07, IJ16, IJ25, IJ26 | | Differential expansion bend actuator | An actuator material expands more on one side than on the other. The expansion may be thermal, peizoelectric, magnetostrictive, or other mechanism. The bend actuator converts a high force low travel actuator mechanism to high travel, lower | Provides greater travel in a reduced print head area | High stresses are involved Care must be taken that the materials do not delaminate Residual bend resulting from high temperature or high stress during formation | Piezoelectric IJ03, IJ09, IJ17, IJ18, IJ19, IJ20, IJ21, IJ22, IJ23, IJ24, IJ27, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ42, IJ43, IJ44 | | Transient bend actuator | force mechanism. A trilayer bend actuator where the two outside layers are identical. This cancels bend due to ambient temperature and residual stress. The actuator only responds to transient heating of | Very good
temperature stability
High speed, as a
new drop can be
fired before heat
dissipates
Cancels residual
stress of formation | High stresses are involved Care must be taken that the materials do not delaminate | IJ40, IJ41 | | Reverse spring | one side or the other. The actuator loads a spring. When the actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection. | Better coupling to the ink | Fabrication complexity High stress in the spring | IJ05, IJ11 | | Actuator stack | A series of thin actuators are stacked. This can be appropriate where actuators require high electric field strength, such as electrostatic and piezoelectric | Increased travel Reduced drive voltage | Increased fabrication complexity Increased possibility of short circuits due to pinholes | Some piezoelectric ink jets IJ04 | | Multiple | actuators.
Multiple smaller | Increases the | Actuator forces | IJ12, IJ13, IJ18, | | | Description | Advantages | Disvantages | Examples | |---------------------------|---|--|--|---| | ctuators | actuators are used simultaneously to move the ink. Each actuator need provide only a portion of the force required. | force available from an actuator Multiple actuators can be positioned to control ink flow accurately | may not add
linearly, reducing
efficiency | IJ20, IJ22, IJ28,
IJ42, IJ43 | | inear
pring | A linear spring is used to transform a motion with small travel and high force into a longer travel, lower force motion. | Matches low travel actuator with higher travel requirements Non-contact method of motion transformation | Requires print head area for the spring | IJ15 | | oiled
etuator | A bend actuator is coiled to provide greater travel in a reduced chip area. | Increases travel Reduces chip area Planar implementations are relatively easy to fabricate | Actuator forces Generally restricted to planar implementations due to extreme fabrication difficulty in other orientations. | IJ17, IJ21, IJ34,
IJ35 | | lexure
end
ctuator | A bend actuator has a small region near the fixture point, which flexes much more readily than the remainder of the actuator. The actuator flexing is effectively converted form an even coiling to an angular bend, resulting in greater travel of the actuator tip. | Simple means of increasing travel of a bend actuator | Care must be taken not to exceed the elastic limit in the flexure area Stress distribution is very uneven Difficult to accurately model with finite element analysis | IJ10, IJ19, IJ33 | | atch | The actuator controls a small catch. The catch either enables or disables movement of an ink pusher that is controlled in a bulk manner. | Very low actuator energy Very small actuator size | Complex construction Requries external force Unsuitable for pigmented inks | IJ10 | | ears | Gears can be used to increase travel at the expense of duration. Circular gears, rack and pinion, ratchets, and other gearing methods can be used. | Low force, low travel actuators can be used Can be fabricated using standard surface MEMS processes | Moving parts are required Several actuator cycles are required More complex drive electronics Complex consturction Friction, friction, and wear are | IJ13 | | uckle plate | A buckle plate can be used to change a slow actuator into a fast motion. It can also convert a high force, low travel actuator into a high travel, medium force motion. | Very fast
movement
achievable | Must stay
within elastic limits of the materials for long device life High stresses involved Generally high power requirement | S. Hirata et al, "An Ink-jet Head Using Diaphragm Microactuator", Proc. IEEE MEMS, Feb. 1996, pp 418– 423. IJ18, IJ27 | | apered
nagnetic
ole | A tapered magnetic pole can increase travel at the expense of force. | Linearized the magnetic force/distance curve | Complex construction | IJ14 | | ever | A lever and fulcrum is used to transform a motion with small travel and high force into a motion with longer travel and lower force. The lever can also reverse the direction of travel. | Matches low
travel actuator with
higher travel
requirements
Fulcrum area has
no linear movement,
and can be used for
a fluid seal | High stress around the fulcrum | IJ32, IJ36, IJ37 | | Rotary
mpeller | The actuator is connected to a rotary impeller. A small angular deflection of the actuator results in | High mechanical advantage The ratio of force to travel of the actuator can be | Complex construction Unsuitable for pigmented inks | IJ28 | | | Description | Advantages | Disvantages | Examples | |--------------------------------------|--|--|--|---| | | a rotation of the impeller vanes, which push the ink against stationary vanes and out of the nozzle. | matched to the nozzle requirements by varying the number of impeller vanes | | | | coustic | A refractive or diffractive (e.g. zone plate) acoustic lens is used to concentrate sound waves. | No moving parts | Large area required Only relevant for acoustic ink jets | 1993 Hadimioglu
et al, EUP 550,192
1993 Elrod et al,
EUP 572,220 | | Sharp
conductive
point | A sharp point is used to concentrate an electrostatic field. | Simple construction | Difficult to fabricate using standard VLSI processes for a surface ejecting inkjet Only relevant for | Tone-jet | | | | ACTUATOR MOTION | electrostatic ink jets | | | Volume
expansion | The volume of the actuator changes, pushing the ink in all directions. | Simple construction in the case of thermal ink jet | High energy is typically required to achieve volume expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations | Hewlett-Packard Thermal Ink jet Canon Bubblejet | | Linear,
formal to
thip surface | The actuator moves in a direction normal to the print head surface. The nozzle is typically in the line of | Efficient coupling to ink drops ejected normal to the surface | High fabrications complexity may be required to achieve perpendicular motion | IJ01, IJ02, IJ04,
IJ07, IJ11, IJ14 | | arallel to
hip surface | movement. The actuator moves parallel to the print head surface. Drop ejection may still be normal to the surface. | Suitable for planar fabrication | Fabrication complexity Friction Stiction | IJ12, IJ13, IJ15,
IJ33, IJ34, IJ35,
IJ36 | | Iembrane
ush | An actuator with a high force but small area is used to push a stiff membrane that is in contact with the ink. | The effective area of the actuator becomes the membrane area | Fabrication complexity Actuator size Difficulty of integration in a VLSI process | 1982 Howkins U.S. Pat. No. 4,459,601 | | otary | The actuator causes the rotation of some element, such a grill or impeller | Rotary levers may be used to increase travel Small chip area requirements | Device complexity May have friction at a pivot point | IJ05, IJ08, IJ13,
IJ28 | | Bend | The actuator bends when energized. This may be due to differential thermal expansion, piezoelectric expansion, magnetostriction, or other form of relative dimensional change. | A very small change in dimensions can be converted to a large motion. | Requires the actuator to be made from at least two | 1970 Kyser et al
U.S. Pat. No. 3,946,398
1973 Stemme
U.S. Pat. No. 3,747,120
IJ03, IJ09, IJ10,
IJ19, IJ23, IJ24,
IJ25, IJ29, IJ30,
IJ31, IJ33, IJ34,
IJ35 | | wivel | The actuator swivels around a central pivot. This motion is suitable where there are opposite forces applied to opposite sides of the paddle, | Allows operation where the net linear force on the paddle is zero Small chip area requirements | Inefficient coupling to the ink motion | IJ 06 | | traighten | e.g. Lorenz force. The actuator is normally bent, and straightens when energized. | Can be used with shape memory alloys where the austenic phase is planar | Requires careful balance of stresses to ensure that the quiescent bend is accurate | IJ26, IJ32 | | Double
bend | The actuator bends in one direction when one element is | One actuator can be used to power two nozzles. | Difficult to make
the drops ejected by
both bend directions | IJ36, IJ37, IJ38 | | | -continued | | | | | |--------------------------|--|---|---|--|--| | | Description | Advantages | Disvantages | Examples | | | | energized, and bends
the other way when
another element is
energized. | Reduced chip size. Not sensitive to ambient temperature | identical. A small efficiency loss compared to equivalent single bend actuators. | | | | Shear | Energizing the actuator causes a shear motion in the actuator material. | Can increase the effective travel of piezoelectric actuators | Not readily applicable to other actuator mechanisms | 1985 Fishbeck
U.S. Pat. No. 4,584,590 | | | Radial con-
striction | The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. | Relatively easy to fabricate single nozzles from glass tubing as macroscopic structures | High force required Inefficient Difficult to integrate with VLSI processes | 1970 Zoltan
U.S. Pat. No. 3,683,212 | | | Coil / uncoil | A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator ejects the ink. | Easy to fabricate as planar VLSI process Small area required, therefore low cost | Difficult to fabricate for non-planar devices Poor out-of-plane stiffness | IJ17, IJ21, IJ34,
IJ35 | | | Bow | The actuator bows (or buckles) in the middle when energized. | Can increase the speed of travel Mechanically rigid | Maximum travel in constrained High force required | IJ16, IJ18, IJ27 | | | Push-Pull | Two actuators control a shutter. One actuator pulls the shutter, and the other pushes it. | The structure is pinned at both ends, so has a high out-of-plane rigidity | Not readily suitable for ink jets which directly push the ink | IJ18 | | | Curl
inwards | A set of actuators curl inwards to reduce the volume of ink that they enclose. | Good fluid flow to the region behind the actuator increases efficiency | Design
complexity | IJ20, IJ42 | | | Curl
outwards | A set of actuators curl outwards, pressurizing ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber. | Relatively simple construction | Relatively large chip area | IJ43 | | | Iris | Multiple vanes enclose
a volume of ink. These
simultaneously rotate,
reducing the volume
between the vanes. | High efficiency Small chip area | High fabrication complexity Not suitable for pigmented inks | IJ22 | | | Acoustic vibration | The actuator vibrates at a high frequency. | The actuator can be physically distant from the ink | Large area required for efficient operation at useful frequencies Acoustic coupling and crosstalk Complex drive circuitry Poor control of drop volume and | 1993 Hadimioglu
et al,EUP 550,192
1993 Elrod et al,
EUP 572,220 | | | None | In various ink jet designs the actuator does not move. | No moving aprts | Position Various other tradeoffs are required to eliminate moving parts | Silverbrook, EP
0771 658 A2 and
related patent
applications
Tone-jet | | | | METHOD OF RE | ESTRICTING BACK-FLOW T | HROUGH INLET | | | | Long inlet channel | The inlet channel to the nozzle chamber is made long and relatively narrow, relying on viscous drag to reduce inlet back-flow. | Design simplicity Operational simplicity Reduces crosstalk | Restricts refill rate May result in a relatively large chip area Only partially effective | Thermal ink jet Piezoelectric ink jet IJ42, IJ43 | | | Positive ink pressure | The ink is under a positive pressure, so that in the quiescent state some of the ink drop already protrudes | Drop selection and separation forces can be reduced Fast refill time | Requires a method (such as a nozzle rim or effective hydrophobizing, or | Silverbrook, EP
0771 658 A2 and
related patent
applications
Possible | | | | -continued | | | | | |---|--|--
---|---|--| | | Description | Advantages | Disvantages | Examples | | | | from the nozzle. This reduces the pressure in the nozzle chamber which is required to eject a certian volume of ink. The reduction in chamber pressure results in a reduction in ink pushed out | | both) to prevent flooding of the ejection surface of the print head. | operation of the following: IJ01–IJ07, IJ09–IJ12, IJ14, IJ16, IJ20, IJ22, IJ23–IJ34, IJ36–IJ41, IJ44 | | | Baffle | through the inlet. One or more baffles are placed in the inlet ink flow. When the actuator is energized, the rapid ink movement creates eddies which restrict the flow through the inlet. The slower refill process is unrestricted, and doesnot result in | The refill rate is not as restricted as the long inlet method. Reduces crosstalk | Design complexity May increase fabrication complexity (e.g. Tektronix hot melt Piezoelectric print heads). | HP Thermal Ink Jet Tektronix piezoelectric ink jet | | | Flexible flap restricts inlet | In this method recently disclosed by Canon, the expanding actuator (bubble) pushes on a flexible flap that restricts the inlet. | Significantly reduces back-flow for edge-shooter thermal ink jet devices | Not applicable to most ink jet configurations Increased fabrication complexity Inelastic deformation of polymer flap results in creep over extended use | Canon | | | Inlet filter | A filter is located between the ink inlet and the nozzle chamber. The filter has a multitude of small holes or slots, restricting ink flow. The filter also removes, particles which may | Additional advantage of ink filtration Ink filter may be fabricated with no additional process steps | Restricts refill rate May result in complex construction | IJ04, IJ12, IJ24, IJ27, IJ29, IJ30 | | | Small inlet compared to nozzle | block the nozzle. The ink inlet channel to the nozzle chamber has a substantially smaller cross secton than that of the nozzle, resulting in easier ink egress out of the nozzle than out of the inlet. | Design simplicity | Restricts refill rate May result in a relatively large chip area Only partially effective | IJ02, IJ37, IJ44 | | | Inlet shutter | A secondary actuator controls the position of a shutter, closing off the ink inlet when the main actuator is energized. | Increases speed of the ink-jet print head operation | Requires separate refill actuator and drive circuit | IJ 09 | | | The inlet is located behind the ink-pushing surface | The method avoids the problem if inlet backflow by arranging the ink-pushing surface of the actuator between the inlet and the nozzle | Back-flow problem is eliminated | Requires careful design to minimize the negative pressure behind the paddle | IJ01, IJ03, IJ05,
IJ06, IJ07, IJ10,
IJ11, IJ14, IJ16,
IJ22, IJ23, IJ25,
IJ28, IJ31, IJ32,
IJ33, IJ34, IJ35,
IJ36, IJ39, IJ40,
IJ41 | | | Part of the actuator moves to shut off the inlet | The actuator and a wall of the ink chamber are arranged so that the motion of the actuator closes off the inlet. | Significant reductions in back-flow can be achieved Compact designs possible | Small increase in fabrication complexity | IJ07, IJ20, IJ26, IJ38 | | | Nozzle
actuator
does not
result in ink | In some configurations of ink jet, there is no expansion or movement of an | Ink back-flow problem is eliminated | None related to ink back-flow on actuation | Silverbrook, EP
0771 658 A2 and
related patent
applications | | | | Description | Advantages | Disvantages | Examples | |--------------------------------------|--|---|---|---| | backflow | actuator which may
cause ink back-flow | | | Valve-jet
Tone-jet | | | through the inlet. | NOZZLE CLEARING METHO | <u>D</u> | | | Normal nozzle firing | All of the nozzles are fired periodically, before the ink has a chance to dry. when not in use the nozzles are sealed (capped) against air. The nozzle firing is usually performed during a special clearing cycle, after first moving the print head to a cleaning station | No added complexity on the print head | May not be sufficient to displace dried ink | Most ink jet
systems
IJ04, IJ05, IJ06,
IJ07, IJ09, IJ10,
IJ11, IJ12, IJ14,
IJ16, IJ20, IJ22,
IJ23, IJ24, IJ25,
IJ26, IJ27, IJ28,
IJ29, IJ30, IJ31,
IJ32, IJ33, IJ34,
IJ36, IJ37, IJ38,
IJ39, IJ40, IJ41,
IJ42, IJ43, IJ44,,
IJ45 | | Extra power to ink heater | In systems which heat the ink, but do not boil it under normal situations, nozzle clearing can be achieved by overpowering the heater and boiling ink at the nozzle. | Can be highly effective if the heater is adjacent to the nozzle | Requires higher dirve voltage for clearing May require larger drive transistors | Silverbrook, EP
0771 658 A2 and
related patent
applications | | Rapid success-ion of actuator pulses | The actuator is fired in rapid succession. In some configurations, this may cause heat build-up at the nozzle which boils the ink, clearing the nozzle. In other situations, it may cause sufficient | Does not require extra drive circuits on the print head Can be readily controlled and initiated by digital logic | Effectiveness depends substantially upon the configuration of the ink jet nozzle IJ30, IJ31, IJ32, | May be used with: IJ01, IJ02, IJ03, IJ04, IJ05, IJ06, IJ07, IJ09, IJ10, IJ11, IJ14, IJ16, IJ20, IJ22, IJ23, IJ24, IJ25, IJ27, IJ28, IJ29, | | | vibrations to dislodge clogged nozzles. | | 1350, 1351, 1352, | IJ33, IJ34, IJ36,
IJ37, IJ38, IJ39,
IJ40, IJ41, IJ42,
IJ43, IJ44, IJ45 | | Extra power to ink pushing actuator | Where an actuator is
not normally driven to
the limit of its motion,
nozzle clearing may be
assisted by providing
an enhanced drive
signal to the actuator. | A simple solution where applicable | Not suitable where there is a hard limit to actuator movement | May be sued with: IJ03, IJ09, IJ16, IJ20, IJ23, IJ24, IJ25, IJ27, IJ29, IJ30, IJ31, IJ32, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44, IJ45 | | Acoustic resonance | An ultrasonic wave is applied to the ink chamber. This wave is of an appropriate amplitude and frequency to cause sufficient force at the nozzle to clear blockages. This is easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity. | A high nozzle clearing capability can be achieved May be implemented at very low cost in systems which already include acoustic actuators | High implementation cost if system does not already include an acoustic actuator | IJ08, IJ13, IJ15, | | Nozzle clearing plate | A microfabricated plate is pushed against the nozzles. The plate has a post for every nozzle. A post moves through each nozzle, displacing dried ink. | Can clear severely clogged nozzles | Accurate mechanical alignment is required Moving parts are required There is risk of damage to the nozzles Accurate fabrication is required | Silverbrook, EP
0771 658 A2 and
related patent
applications | | Ink
pressure | The pressure of the ink is temporarily | May be effective where other | Requires pressure pump or | May be used with all IJ series ink | | | | -continued | | | |---|---|---|---|--| | | Description | Advantages | Disvantages | Examples | | pulse | increased so that ink streams from all of the nozzles. This may be used in conjunction with actuator energizing. | methods cannot be used | other pressure actuator Expensive Wasteful of ink | jets | | Print head wiper | A flexible 'blade' is wiped across the print head surface. The blade is usually fabricated from a flexible polymer, e.g. rubber or synthetic elastomer. | Effective for planar print head surfaces Low cost | Difficult to use if print head surface is non-planar or very fragile Requires mechanical parts Blade can wear out in high volume print systems | Many ink jet systems | | Separate ink boiling heater | A separate heater is provided at the nozzle although the normal drop e-ection mechanism does not require it. The heaters do not require individual drive circuits, as many nozzles can be cleared simultaneously, and no imaging is required. NO |
Can be effective where other nozzle clearing methods cannot be used Can be implemented at no additional cost in some ink jet configurations | Fabrication complexity | Can be used with many IJ series ink jets | | Electro-
formed
nickel | A nozzle plate is separately fabricated from electroformed nickel, and bonded to the print head chip. | Fabrication simplicity | High temperatures and pressures are required to bond nozzle plate Minimum thickness constraints Differential | Hewlett Packard Thermal Ink jet | | Laser ablated or drilled polymer | Individual nozzle holes are ablated by and intense UV laser in a nozzle plate, which is typically a polymer such as polyimide or polysulphone | No masks required Can be quite fast Dome control over nozzle profile is possible Equipment required is relatively low cost | thermal expansion Each hole must be individually formed Special equipment required Slow where there are many thousands of nozzles per print head May produce thin burrs at exit holes | Canon Bubblejet 1988 Sercel et al., SPIE, Vol. 998 Excimer Beam applications, pp. 76–83 1993 Watanabe et al., U.S. Pat. No. 5,208,604 | | Silicon
micro-
machined | A separate nozzle plate is micromachined from single crystal silicon, and bonded to the print head wafer. | High accuracy is attainable | Two part construction High cost Requires precision alignment Nozzles may be clogged by adhesive | K. Bean, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, 1978, pp 1185–1195 Xerox 1990 Hawkins et al., U.S. Pat. No. 4,899,181 | | Glass capillaries | Fine glass capillaries are drawn from glass tubing. This method has been used for making individual nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles. | No expensive equipment required Simple to make single nozzles | Very small nozzle sizes are difficult to form Not suited for mass production | 1970 Zoltan U.S. Pat No. 3,683,212 | | Monolithic, surface micro-machined using VLSI litho-graphic processes | The nozzle plate is deposited as a layer using standard VLSI deposition techniques. Nozzles are etched in the nozzle plate using VLSI lithography and etching. | High accuracy (<1 \(\mu\mathrm{m}\)) Monolithic Low cost Existing processes can be used | Requires sacrificial layer under the nozzle plate to form the nozzle chamber Surface may be fragile to the touch | Silverbrook, EP
0771 658 A2 and
related patent
applications
IJ01, IJ02, IJ04,
IJ11, IJ12, IJ17,
IJ18, IJ20, IJ22,
IJ24, IJ27, IJ28,
IJ29, IJ30, IJ31,
IJ32, IJ33, IJ34, | | | Description | Advantages | Disvantages | Examples | |---|--|--|---|--| | Monolithic, etched through substrate | The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back thinned from the back side. Nozzles are then etched in the etch stop | High accuracy (<1 μm) Monolithic No differential expansion | Requires long etch times Requires a support wafer | U36, U37, U38, U39, U40, U41, U42, U43, U44 U03, U05, U06, U07, U08, U09, U10, U13, U14, U15, U16, U19, U21, U23, U25, U26 | | No nozzle plate | Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens | No nozzles to become clogged | Difficult to control drop position accurately Crosstalk problems 1993 Elrod et al | Ricoh 1995
Sekiya et al
U.S. Pat. No. 5,412,413
1993 Hadimioglu
et al EUP 550,192
EUP 572,220 | | Trough | mechanisms Each drop ejector a trough through which a paddle moves. There is no nozzle | Reduced manufacturing complexity Monolithic | Drop firing direction is sensitive to wicking. | IJ35 | | Nozzle slit instead of individual nozzles | The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves | No nozzles to become clogged | Difficult to control drop position accurately Crosstalk problems | 1989 Saito et al
U.S. Pat. No. 4,799,068 | | | | DROP EJECTION DIRECTIO | <u>N</u> | | | Edge
('edge
shooter') | Ink flow is along the surface of the chip, and ink drops are ejected from the chip edge. | Simple construction No silicon etching required Good heat sinking via substrate Mechanically strong Ease of chip handing | Nozzles limited
to edge
High resolution
is difficult
Fast color
printing requires
one print head per
color | Canon Bubblejet
1979 Endo et al GB
patent 2,007,162
Xerox heater-in-
pit 1990 Hawkins et
al U.S. Pat. No. 4,899,181
Tone-jet | | Surface
('roof
shooter') | Ink flow is along the surface of the chip, and ink drops are ejected from the chip surface, normal to the plane of the chip. | No bulk silicon etching required Silicon can make an effective heat sink Mechanical | Maximum ink flow is severely restricted | Hewlett-Packard TIJ 1982 Vaught et al U.S. Pat. No. 4,490,728 IJ02, IJ11, IJ12, IJ20, IJ22 | | Through chip, forward ('up shooter') | Ink flow is through the chip, and ink drops are ejected from the front surface of the chip. | strength High ink flow Suitable for pagewidth print heads High nozzle packing density therefore low | Requires bulk silicon etching | Dilverbrook, EP
0771 658 A2 and
related patent
applications
IJ04, IJ17, IJ18,
IJ24, IJ27–IJ45 | | Through chip, reverse ('down shooter') | Ink flow is through the chip, and ink drops are ejected from the rear surface of the chip. | manufacturing cost High ink flow Suitable for pagewidth print heads High nozzle packing density therefore low | Requires wafer thinning Requires special handling during manufacture | IJ01, IJ03, IJ05,
IJ06, IJ07, IJ08
IJ09, IJ10, IJ13,
IJ14, IJ15, IJ16,
IJ19, IJ21, IJ23,
IJ25, IJ26 | | Through actuator | Ink flow is through the actuator, which is not fabricated as part of the same substrate as the drive transistors. | manufacturing cost Suitable for piezoelectric print heads | Pagewidth print heads require several thousand connections to drive circuits | Epson Stylus Tektronix hot melt piezoelectric ink jets | | | -continued | | | | |--|--|--|--|---| | | Description | Advantages | Disvantages | Examples | | | | INK TYPE | Cannot be manufactured in standard CMOS fabs Complex assembly required | | | Aqueous, dye | Water based ink which typically contains: water, dye, surfactant, humectant, and biocide. Modern ink dyes have high water-fastness, light fastness | Environmentally friendly No odor | Slow drying Corrosive Bleeds on paper May strikethrough Cockles paper | Most existing ink jets All IJ series ink jets Silverbrook, EP 0771 658 A2 and related patent applications | | Aqueous, pigment | Water based ink which typically contains: water, pigment, surfactnat, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough | Environmentally friendly No odor Reduced bleed Reduced wicking Reduced strikethrough | Slow drying corrosive Pigment may clog nozzles Pigment may clog actuator mechanisms Cockles paper | IJ02, IJ04, IJ21, IJ26, IJ27, IJ30 Silverbrook, EP 0771 658 A2 and related patent applications Piezoelectric ink- jets Thermal ink jets (with significant restrictions) | | Methyl Ethyl Ketone (MEK) | MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans. | Very fast drying Prints on various substrates such as metals and plastics | Odorous
Flammable | All IJ series ink jets | | Alcohol (ethanol, 2-butanol, and others) | Alcohol based inks can be used where the temperatures below the freezing point of water. An example of this is in-camera consumer | Fast drying Operates at sub- freezing temperatures Reduced paper cockle Low cost | Slight odor flammable | All IJ series ink jets | | Phase change (hot melt) | photographic printing. The ink is solid at room temperature, and is melted in the print head before jetting. Hot melt inks are usually wax based, with a melting point around 80° C. After jetting the ink freezes almost instantly upon contacting the print medium or a transfer roller. | No drying time- ink instantly freezes on the print medium Almost any print medium can be used No paper cockle occurs No wicking occurs No bleed occurs No strikethrough occurs | High visocity Printed ink typically has a 'waxy' feel Printed pages may 'block' Ink temperature
may be above the curie point of permanent magnets Ink heaters consume power Long warm-up time | Tektronix hot melt piezoelectric ink jets 1989 Nowak U.S. Pat. No. 4,820,346 All IJ series ink jets | | Oil | Oil based inks are extensively used in offset printing. They have advantages in improved characteristics on paper (especially no wicking or cockle). Oil soluble dies and pigments are required. | High solubility medium for some dyes Does not cockle paper Does not wick through paper | High viscosity: this is a significant limitation for use in ink jets, which usually require a low viscosity. Some short chain and multi-branched oils have a sufficiently low viscosity. Slow drying | All IJ series ink jets | | Micro-emulsion | A microemulsion is a stable, self forming emulsion of oil, water, and surfactant. The characteristic drop size is less than 100 nm, and is determined by the preferred curvature of the surfactant. | Stops ink bleed High dye solubility Water, oil, and amphiphilic soluble dies can be used Can stabilize pigment suspensions | Viscosity higher than water Cost is slightly higher than water based ink High surfactant concentration required (around 5%) | All IJ series ink jets | We claim: - 1. An ink jet print head comprising: - a nozzle chamber for storage of ink to be ejected from an ink ejection nozzle formed in a first wall of the nozzle chamber; and - a movable paddle actuator mechanism formed in said first wall of said nozzle chamber, one end of said paddle actuator traversing along a second wall of said nozzle chamber, said second wall being substantially perpendicular to said first wall; said one end further having a flange including a surface adjacent said second wall, said movable paddle actuator mechanism being operable to cause ejection of ink from said ink ejection nozzle with said flange moving substantially tangentially to said second wall. - 2. An ink jet print head as claimed in claim 1 further comprising an ink supply channel interconnected to said nozzle chamber for supplying ink to said nozzle chamber, said interconnection comprising a slot in a wall of said chamber, said slot being substantially opposite an end of said flange. - 3. An ink jet print head as claimed in claim 2 wherein said slot is arranged in a corner of a third wall of said chamber and wherein said second wall of said chamber further forms one wall of said ink supply channel. - 4. An ink jet print head as claimed in claim 2 is formed on a silicon wafer. - 5. An ink jet print head as claimed in claim 4 wherein said ink supply channel is formed by back etching a back surface of said wafer. - 6. An ink jet print head as claimed in claim 5 wherein said back etching comprises a plasma etching of said back surface. 42 - 7. An ink jet print head as claimed in claim 4 wherein said silicon wafer is initially processed utilizing a CMOS processing system so as to form an electrical circuit required to operate said ink jet nozzle arrangement on said silicon wafer. - 8. An ink jet print bead as claimed claim 2 wherein said movable paddle actuator in being actuated to eject a drop of ink, constricts a flow of ink into said nozzle chamber. - 9. An ink jet print head as claimed in claim 1 further including a slot around a substantial portion of said movable paddle actuator, said slot interconnecting said nozzle chamber with an external ambient atmosphere, said slot being dimensioned to provide for fluid movement during operation of said movable paddle actuator mechanism while not allowing for the ejection of fluid out of said nozzle chamber. - 10. An ink jet print head as claimed in claim 1 wherein said movable paddle actuator mechanism includes a thermal actuator for actuation of said mechanism on demand. - 11. An ink jet print head as claimed in claim 10 wherein said thermal actuator comprises a conductive heater layer between layers of a substantially non-conductive material having a high coefficient of thermal expansion. - 12. An ink jet print head as claimed in claim 1 wherein said conductive heater layer is arranged in a serpentine form so that, upon conductive heating of said conductive heater layer, said conductive heater layer forms a concertina so as to allow for substantially unhindered expansion of said substantially non-conductive material. - 13. An ink jet print head as claimed in claim 10 wherein said substantially non-conductive material comprises substantially polytetrafluroethylene. * * * * * ## UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. : 6,260,953 B1 DATED : July 17, 2001 INVENTOR(S) : Kia Silverbrook Page 1 of 1 It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: Title page, Item [22] should read -- Jul. 10, 1998 --. Signed and Sealed this Fourteenth Day of May, 2002 Attest: JAMES E. ROGAN Director of the United States Patent and Trademark Office Attesting Officer