(12) United States Patent

Harris

US006260138B1
(10) Patent No.: US 6,260,138 Bl
45) Date of Patent: Jul. 10, 2001

(54) METHOD AND APPARATUS FOR BRANCH
INSTRUCTION PROCESSING IN A
PROCESSOR

(75) Inventor: Jeremy G Harris, Chalfont St Giles

(GB)

(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 09/118,642
(22) Filed: Jul. 17, 1998

(51) Int. CL7 oo GOG6F 9/38; GOGF 9/32;
GO6F 9/42

(52) US.ClL ..., 712/239; 712/237; 712/234;
711/210

(58) Field of Search 712/236.1, 239,
712/23, 219, 234, 217, 233, 237, 240, 236;
711/218, 200, 210

(56) References Cited

U.S. PATENT DOCUMENTS

5,206,940 * 4/1993 Murakami et al. 711/218
5,461,722 10/1995 Goto .

5,504,914 * 471996 Lal .cocvvvvvevviiiieerriieerrineeerennness 712/226
5,561,776 * 10/1996 Popescu et al. 712/239
5,634,103 5/1997 Dietz et al. .

FOREIGN PATENT DOCUMENTS

0 474 297 11/1992 (EP).
2291513 1/1996 (GB).
WO 98/00778 1/1998 (WO) .

P1

B1—

P2 —

0 1

OTHER PUBLICATTONS

J.J. Yee and C.K. Yuen, “Speculative Processing Mechanism
in a Parallel Lisp Machine: Biddle”, 1993 IEEE, vol. 1,

Abstract page.

Chapter 8, entitled “Processing of Control Transfer Instruc-
tions” from Advanced Computer Architectures—A Design
Space Approach, Deszo Sima et al., Addison—Wesley, 1997,
p. 295-368.

“Speculative Processing Mechanisms In A Parallel Lisp
Machine: Biddle” By 1.J. Yee and C.K. Yuen; 1993 IEEE,
pp. 457-465, vol. 1.

* cited by examiner

Primary Fxaminer—Daniel H. Pan
(74) Attorney, Agent, or Firm—O’Melveny & Myers LLP

(57) ABSTRACT

In processor with multiple execution units and at least one
instruction buffer the dispatch of instructions to available
units 1s prioritised for multiple paths following a conditional
branch. For example, instructions 1n the instruction buffer
relating to a predicted path following a conditional branch
can be dispatched to available execution units 1n preference
to 1nstructions relating to any other path, the instructions
relating to any other paths being dispatched to any execution
units remaining available. Compared to a processor with
conventional predictive branch execution, prioritised dis-
patch of 1nstructions in accordance with prediction priorities
enables optimisation of the use of available execution units.
There 1s a gain 1n efficiency where a non-predicted path
proves to be the correct path without impacting efficiency
where the predicted path proves to be the correct path. This
net gain 1n efficiency can be achieved with a minimum of
additional resources.

15 Claims, 5 Drawing Sheets

P3

PRIORITY TAGS

U.S. Patent Jul. 10, 2001 Sheet 1 of 5 US 6,260,138 B1

SYSTEM BUS 38

1
CACHE conTroLs 114
SYSTEM INTERFACE
PREDECODE 14
36 18

20

INSTRULTION INSTRUCTION CACHE |16
18
.

INSTRUCTION L— 26
BUFFER

DATA TLB o6

30
INTERNAL BUS

48
EU3 EU4 EUS
02

F-P REGISTERS

U.S. Patent Jul. 10, 2001 Sheet 2 of 5 US 6,260,138 B1

SRRE %\fﬁ g Qs
: : . Y
S of
& &

.

O

T

62

PRIOR ART

=
F1G. 2B
FIG. 2C

U.S. Patent Jul. 10, 2001 Sheet 3 of 5 US 6,260,138 B1

P1
B1—
P2 — P3
0 1T PRIORITY TAGS
P1
B1
P2 ~— P3
P4—| P5 P6 P7
— P8 P9
010 000 100 110 111 PRIORITY TAGS

F1G. 6

U.S. Patent Jul. 10, 2001 Sheet 4 of 5 US 6,260,138 B1

90
PREDICT PATHS

ALLOCATE 9
PRIORITIES TO
INSTRUCTIONS

FOR PATHS

DISPATCH 92
INSTRUCTIONS

ACCORDING TO
PRIORITIES

93

PRED PRED OR

NON-PRED ?

NON-PRED

94 95

FIG. 7

U.S. Patent Jul. 10, 2001 Sheet 5 of 5 US 6,260,138 B1

18

INSTRUCTION
BUFFER
26

23
DISPATCH

18
T I B I
EXECUTION EXECUTION | .
BUFFER BUFFER
——————— —————
T j -lll_
127
128 EXECUTION EXECUTION 126
DISPATCH DISPATCH
40 44

EU 1 EU 3

FI1G. 8

US 6,260,138 Bl

1

METHOD AND APPARATUS FOR BRANCH
INSTRUCTION PROCESSING IN A
PROCLESSOR

BACKGROUND OF THE INVENTION

This 1invention relates to apparatus and methods for dis-
patching instructions 1n a processor, and to such a processor.
In particular, the present invention relates to the handling
and 1ssue of branch instructions.

In a pipelined processor, there 1s a penalty for executing
control-flow (branch) instructions. In particular, for condi-
tional branches where the value of a condition 1s not known
at the time of instruction issue, either the 1ssue must be
stalled until the information becomes available, or the
instruction must be issued speculatively based on an
assumed value.

Many different approaches to the handling of conditional
branch instructions are known 1n the prior art.

A general description of pipeline processing architectures
and the handling of branch instructions 1s to be found, for
example, 1n “Advanced Computer Architectures—A Design
Space Approach”, by Messrs D Sima, T Fountain and P
Kacsuk, published by Addison Wesley Longman Limited in
1997 (ISBN 0-201-42291-3). Various aspects of parallel
processing architectures are described. These include paral-
lel processing architectures including multiple execution
units and parallel decoding of instructions in, for example,
superscalar processors, as well as aspects of dependency
checking, etc., associated therewith. Chapter 8 of that book
on pages 295-368 1s directed to the processing of control
transfer instructions. The handling of unresolved conditional
branches 1s discussed. Three basic approaches are 1dentified,
namely blocking branch processing, speculative branch
processing, and multiway branch processing.

Blocking branch processing 1s a trivial approach to cope
with unresolved conditional branches whereby, on detection
of a conditional branch, the conditional branch 1s simply
stalled until the specified condition can be resolved.
Although this approach 1s simple to 1implement, it 1s ineffi-
cient because of the stalling of processing until the resolu-
fion of the condition on which a branch 1s based.

With speculative branch processing, on detection of an
unresolved conditional branch, a guess 1s made as to the
outcome of the condition and execution continues specula-
fively along the guessed path. If it 1s subsequently deter-
mined that the correct guess was made, the speculative
execution can be confirmed and then continued. However, 1f
an 1ncorrect guess was made, all of the speculatively
executed 1nstructions have to be discarded and execution
restart along the correct path. This approach offers higher
performance than blocking branch processing. However,
there 1s still a penalty to be paid when an incorrect guess 1s
made due to the need to restart processing along the correct
path. Various approaches are used to make the “guess” as to
which path to execute speculatively following an unresolved
conditional branch.

The simplest approach 1s to employ a fixed prediction,
whereby the same guess 1s always made, either taking the
branch path, or not taking the branch path. This unsophis-
ficated approach makes use of the time during resolution of
the condition on which the branch i1s to be based by
speculatively executing instructions, but makes no attempt
o assess the relative merits of the individual paths. A more
sophisticated approach 1s to make a true prediction, either in
a static manner on the basis of the object code to be
executed, or dynamically on the basis of an execution

10

15

20

25

30

35

40

45

50

55

60

65

2

history. Although the use of true prediction improves the
chance of selecting the correct path for speculative
execution, 1t does not overcome the problem of having to
execute the alternative path from the branch point when an
incorrect guess 1s made.

Multiway branch processing overcomes the performance
disadvantages described with respect to speculative branch
processing at the cost of duplicating the instruction issue and
execution hardware. In other words, multiple sets of 1nstruc-
tion 1ssue, dispatch and execution units, and typically mul-
tiple instruction buffers, are provided in order to enable
multiple instruction sequences following a branch to be
executed 1n parallel during resolution of the condition for the
branch. On resolution of the condition, the processing of the
path not required 1s stmply halted and the processing of the
path determined by resolution of the condition 1s then
proceeded with. Although the multiway branch processing
does overcome the performance disadvantages of the specu-
lative branch processing described above, it requires an
extensive 1mvestment 1n hardware. Also, where multiple
branch instructions occur in close proximity within a code
sequence, mere duplication of the necessary hardware may
be 1nsufficient 1 order to provide a significant performance
enhancement and accordingly more than two sets of 1nstruc-
tion 1ssue, dispatch and execution units may be required.

Accordingly, an object of the present invention 1s to
mitigate the disadvantages of speculative branch processing
without requiring the additional investment in hardware
required by multiway branch processing.

SUMMARY OF THE INVENTION

Particular and preferred aspects of the mvention are set
out 1n the accompanying independent and dependent claims.
Combinations of features from the dependent claims may be
combined with features of the independent claims as appro-
priate and not merely as explicitly set out 1n the claims.

In accordance with one aspect of the invention, there 1s
provided data processing apparatus including a plurality of
execution units, at least one 1nstruction buffer and an instruc-
tion processing mechanism. The instruction processing
mechanism 1s configured to be operable to allocate respec-
tive priorities to instruction paths (instruction streams) fol-
lowing a conditional branch. The mstruction processing
mechanism 1s further operable to prioritize the dispatch of
instructions for multiple paths to available execution units
for speculative execution according to the allocated priori-
fies.

Thus, for example, instructions in the instruction buffer
relating to a predicted path, or instruction stream, following
a conditional branch can be dispatched to available execu-
fion units 1n preference to instructions relating to any other
paths, or instruction streams, instructions relating to other
paths bemg dispatched to any execution units remaining
available. Further instructions from the predicted path, or
from all or any combination of paths, may be loaded into the
instruction buffer.

By the use of the available execution units for executing,
instructions from a non-predicted path, progress can be
made along a non-predicted path without a performance
penalty compared to conventional speculative execution, yet
without the hardware requirements of conventional multi-
way branch processing. Where a non-predicted path 1s
subsequently shown to be the correct path, at least some
progress can have been made along that path.

In order to identify the instructions for the respective
paths, and accordingly, the respective priorities, priority tags

US 6,260,138 Bl

3

can be associated with the instructions. The instruction
buffer can be operable to receive undecoded, partially
decoded or fully decoded instructions with any associated

priority tag(s).

For dispatching an instruction, a dispatch unit can be
responsive to any priority tags assoclated with instructions
within a window in the instruction buffer to prioritize the
i1ssue of instructions from that window such that an instruc-
tion associated with a higher priority tag is 1ssued 1n prel-
erence to an instruction associated with a lower priority tag.
The window can be smaller than or the same size as the
instruction buffer.

Alternatively, or in addition, where multiple execution
buffers are each associated with one or more execution units
and instructions are held in the execution buifers with any
associated priority tags, an execution dispatch unit associ-
ated with each execution bufler can be responsive to any
priority tags associated with instructions within a window in
the associlated execution buffer to prioritize the issue of

instructions from that window such that an instruction
assoclated with a higher priority tag is issued in preference
fo an 1nstruction associated with a lower priority tag. Once
again, the window can be smaller than or the same size as
the execution buifer.

A predicted path can be either the branch path or the
non-branch path. The predicted path can be determined
using branch prediction logic.

In a preferred embodiment of the invention, a pre-decode
unit 1s operable to determine instruction path priorities and
fo associate a priority tag with each instruction 1n an
instruction cache. A decode unit can be operable to decode
instructions from the instruction cache for transfer to the
instruction bulffer.

In an embodiment of the invention, a highest priority 1s
allocated to a predicted path following a conditional branch.
Priority can be allocated to instruction paths on a fixed
prediction basis. Alternatively, priority can be allocated to
instruction paths on a dynamic prediction basis. Moreover,
priority can be allocated in respect of multiple branches. In
such a case, multi-bit priority tags can be used to indicate
respective priorities for multiple branches. Such an embodi-
ment provides an extremely versatile branch processing
structure which 1s 1deally adapted to modern processing
techniques which employ frequent and complex conditional
branching.

A priority tag with each instruction in the instruction
buffer, or an execution buffer, can be used to annul 1nstruc-
fions relating to a path not taken, on resolution of the branch
condition. Also, 1f the tag 1s 1ssued with the 1nstruction to an
execution unit and maintained therein for the execution
lifetime of the instruction, it can similarly be used to annul
instructions already in execution. This permits early release
of resources, for example output registers.

A preferred application of the 1nvention 1s for superscalar
MICrOProcessors.

The mvention also provides a microprocessor comprising,
a plurality of execution units, at least one instruction bufifer,
and an 1nstruction processing mechanism configured to be
operable to fetch instructions from a plurality of instruction
paths following a conditional branch to allocate respective
priorities to a plurality of instruction paths following a
conditional branch and to prioritize the dispatch of instruc-
tions for speculative instruction to available execution units
according to the allocated priorities.

The 1nvention further provides a method of processing
instructions 1n data processing apparatus comprising, in
response to detection of a conditional branch, steps of:

10

15

20

25

30

35

40

45

50

55

60

65

4

allocating priorities to respective mstruction paths follow-
ing the conditional branch according to a prediction algo-
rithm; and

dispatching of instructions to available execution units
according to the allocated priorities.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present mnvention will be
described heremafter, by way of example only, with refer-
ence to the accompanying drawings 1n which like reference
signs relate to like elements and 1 which:

FIG. 1 1s a schematic block diagram of a processor
implementing an embodiment of the present mnvention;

FIGS. 2A-2C 1illustrate a first example of speculative
branch processing;

FIGS. 3A-3C 1illustrate a second example of speculative
branch processing;

FIGS. 4A—4C 1llustrate multiway branch processing;

FIG. 5 illustrates an example of conditional branch pro-
cessing according to the present invention;

FIG. 6 1llustrates another example of conditional branch
processing according to the present invention;

FIG. 7 1s a flow diagram 1llustrating conditional branch
processing 1n accordance with an embodiment of the present
mmvention; and

FIG. 8 illustrates a modification to the embodiment of the
FIG. 1.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 1s a schematic block diagram of an example of a
processor for implementing an embodiment of the invention.

A processor 10 comprises a system interface 12 for
interfacing the processor with a system bus 38. The system
interface 12 1s also configured to provide cache control for
an 1nstruction cache 16 and a data cache 54. Instructions
received from the system bus 38 via the system interface 12
are passed to a pre-decode unit, or pre-decoder 14. The
pre-decoder partially decodes instructions and labels them
using tags 18, 20. These tags 18, 20 are stored along with
cach 1nstruction 1n the instruction cache 16.

As 1nstructions are loaded into the instruction cache 16,
the pre-decode unit detects branches, determines corre-
sponding branch target addresses and establishes branch
predictions. The branch predictions establish a predicted
path and one or more non-predicted paths following a
conditional branch instruction. Prediction bits indicating
whether an instruction relates to a predicted path or a
non-predicted path following a branch instruction are stored
as tags 18 1n the 1nstruction cache 16. The prediction bits are
updated according to the branch history. The prediction bits
could be stored 1n a branch history table (not shown) which
could be connected to an output of the pre-decoder 14 and
be used by the pre-fetcher 34 for determining instructions to
be fetched. Successor indices 20 and the prediction bits are
held 1n the instruction cache, or alternatively 1n a separate

bufter.

If the predicted path 1s taken, the successor index becomes
the value of the determined branch target address, otherwise
the next sequential address 1s taken as the successor index.
The successor index can then be used as the next mstruction
fetch address, as fetched by a pre-fetch unit, or pre-fetcher
34. The determination as to whether to take a branch or not
1s performed by a branch unit or branching unit 32 which

US 6,260,138 Bl

S

supplies an output to the pre-fetch unit 34. The pre-fetch unit
34 1s operable to modity the prediction bits and successor
indices according to the outcome of the branch decision.
Pre-fetch addresses for subsequent instructions are passed
via an instruction translation look-aside buffer (TLB) 36.

Instructions from the instruction cache 16 are passed to a
decode unit 24 which decodes the instructions and places
those 1nstructions in an instruction buifer 26, along with the
prediction tags 18.

A dispatch unit, or dispatcher, 28 1s operable to dispatch
the 1nstructions from the instruction buifer 26 to the various
execution units EUO-EUS 38-48. In the present instance,
three 1nteger execution units and three floating point execu-
tion units are shown. However, i1t should be noted that any
number and type of execution unit appropriate for a par-
ficular processor may be provided. Thus, for example, a
load/store instruction unit may be provided (in the present
instance as EU0). One or more integer ALUs may be
provided.

[lustrative examples of possible floating point units are
floating point add/subtract, floating point multiply, floating
point divide and/or square root, graphical add/subtract,
ographical multiply. Accordingly, although only six execution
units 38/48 arec shown 1n FIG. 1, it will be appreciated that
this 1s merely an example for the purposes of explanation of
the present embodiment.

The dispatch unit 28 1s operable to reference the predic-
fion bits 18 1n the nstruction buffer and to use those
instruction bits as priority indications for prioritize the
dispatch of the instructions from the instruction buifer 26 to
available execution units. Thus, instructions relating to a
predicted path are 1ssued 1n preference to imstructions relat-
ing to a non-predicted path. This will be explained 1n more
detail later.

As mdicated 1in FIG. 1, the dispatch of the mstructions by
the dispatcher 28 i1s via an internal bus 30 to the various
execution units 38—48. Data for use 1n execution of the
instructions 1s provided from the cache control/system inter-
face 12 to a data cache 54 and to integer and floating point
registers 50 and 52, respectively. The execution units oper-
ate on the data 1n the mteger registers and floating point
registers 50 and 52, and the data cache 54. The output from
the load/store unit EUQ are passed to the data cache 54 and
via a data TLB 56 to the cache control/system interface 12.

Before proceeding further with a description of the opera-
tion of an embodiment of the invention, there follows a brief
description of various conventional branch processing tech-
niques with reference to FIGS. 2—4.

FIGS. 2A-2C 1illustrate conventional speculative branch
processing of a branch path 62 following a branch 60
(branch taken). As represented in FIG. 2B, if it is subse-
quently determined that the branch 60 should not have been
taken, the branch path 62 has to be discarded and it 1s then
necessary to process the other path 64 following the branch
60. In this case, there 1s a penalty to be paid for resetting the
program counter and state at the branch point and for
executing the other path. If, however, it 1s determined that
the path speculatively executed 1s indeed the correct path,
then the results of the speculative execution can be used to
proceed with the original path 62.

FIGS. 3A-3C illustrate conventional speculative branch
processing where speculative processing of the straight path
72 rather than the branch path is performed (branch not
taken). If it is subsequently determined that this was the
correct path to follow, as represented 1in FIG. 3B, then the
results of the speculative execution can be used.

10

15

20

25

30

35

40

45

50

55

60

65

6

Alternatively, however, 1f 1t 1s subsequently determined that
the branch path 74 should have been taken as illustrated in
FIG. 3C, then the instructions speculatively executed cannot
be used, and there i1s a penalty 1n resetting the program
counter and continuing execution from the original branch
point 70.

FIGS. 4A—4C 1illustrate a multiway branch processing
whereby, following a branch point 80, both the straight path
82 and the branch path 84 are executed by respective
instruction 1ssue and execution units with the inherent
additional cost of providing multiple hardware unaits.
Whether the straight path 82 or the branch path 84 1s
determined as the correct path, the penalties described with
respect to FIGS. 2C and 3C are avoided. However, as
indicated above, the penalty 1n this case 1s the cost of the
additional hardware.

In an embodiment of the present invention, 1t 1s possible
to achieve some of the benefits of multiway processing
without the additional hardware required therefor. An
embodiment of the present invention takes advantage of the
presence of the multiple execution units 38—48 which are
typically provided 1mn a modern processor architecture. The
execution units will include execution units for different
specialize functions, general purpose execution units, and
may 1nclude multiple examples of certain of those execution
units. Particularly where there are conditional branch
mstructions 1n the instruction stream, full use of available
execution units may not be possible 1n a conventional
processor. Accordingly, in an embodiment of the invention,
the dispatch unit 28 1s able to dispatch instructions from the
instruction buffer 26 relating to a non-predicted path as well
as 1nstructions from a predicted path following a conditional
branch 1nstruction. Accordingly, an embodiment of the
present mvention can provide a form of enhanced specula-
tive branch processing.

As indicated above, an embodiment of the present 1nven-
tion achieves this through the use of priority tags for the
mstructions in the instruction buffer, which are derived from
priority tags, the prediction tags, in the instruction cache.

With reference to FIG. 5, consider an example of the
operation of an embodiment of the present invention where
simple fixed prediction 1s employed for each conditional
branch, namely that the branch 1s to be taken. Accordingly,
a prediction tag 1s associated with each instruction following
a branch instruction indicative of whether the instruction
relates to the branch being taken (tag=1) or whether the
branch is not taken (tag=0). The pre-decode unit 14 is
operable to set the priority (prediction) tag 18 in the instruc-
tion cache when pre-decoding instructions to be placed 1n
the 1nstruction cache. These priority tags are passed to the
instruction buffer 26 via the decode unit 24. Accordingly, the
dispatch unit 28 1s operable to detect the priority tags
assoclated with the individual instructions and to dispatch
instructions relating to a path for the branch being taken (i.e.
the priority tag=1) rather than instructions relating to a path
for the branch not being taken (tag=0).

This dispatch process could be thought of 1n the sense of
dispatching all instructions within a window 1n the 1nstruc-
tion buffer (sensed by the dispatch unit 28) before dispatch-
ing 1nstructions relating to the non-predicted path. Where
reference 1s made to the dispatch of instructions relating to
the predicted path “before” those for a non-predicted path,
it should be noted that this relates to a matter of priority,
rather than timing. In practice, the dispatch of any non-
predicted path instructions will be effected simultaneously
with that of the predicted path instructions.

US 6,260,138 Bl

7

As 1llustrated 1n FIG. 6, the same principle can be applied
to deal with multiple branches within an instruction path.
Here, multi-level priority 1s allocated to mstruction paths in
response to detection of a multiple branch paths. Thus, for
example, through the use of three priority bits, it 1s possible
to predict, 1n the extreme case, up to eight branches. FIG. 6
assumes, once again, a simple fixed prediction scheme
whereby the predicted path 1s always the branch taken path.

Thus, 1n the example shown 1n FIG. 6, an 1nitial instruc-
tion path P1 1s bifurcated at a conditional branch point Bl
into paths P2 and P3. The P3 path 1s taken to have a higher
priority than the P2 path. Accordingly, using the three bit
nomenclature, path P2 can be said to have a priority 000, and
the P3 path to have a priority 100, whereby instructions
relating to the P3 path will be dispatched 1n preference to
those relating to the P2 path.

At a conditional branch point B2, the path P2 1s bifurcated
into a branch taken path P4 and a branch not taken path PS.
It can be seen from the priority tags indicated that the P4
path 1s given a higher priority 010, than the priority for the
PS5 path, which remains the same as the P2 path at 000.

Similarly, the P3 path 1s bifurcated at a conditional branch
point B3 mto a branch taken path P7 and a branch not taken
path P6. The branch path P7 1s given a higher priority, 110,
than the branch not taken path P6 which retains the priority

100 of the P3 path.

The P7 path 1s once more bifurcated at a conditional
branch point B4 into a branch taken path P9 and a branch not
taken path P8. Once again, the branch taken path P9 is
allocated a higher priority, 111, than the branch not taken

path P8 which retains the priority of the P7 path, namely
110.

It can be seen, therefore, that through the use of three
priority bit tags, 1t 1s possible to accommodate many branch
points with a very effective coding.

Respective priorities are allocated to individual paths at a
branch point with two or more branch paths. Each priority
can be represented by a multi-bit priority tag. Accordingly,
multi-level priority can be allocated to instruction paths in
response to the detection of a branch with two or more
branch paths (e.g., three branch paths from one branch
point).

Returning to FIG. 1, it can be seen that the dispatch unit
28 1s able to use the priority tags to establish a priority for
the dispatch of instructions in the instruction buffer. Instruc-
fions having the highest priority can be allocated to an
execution unit first, and then instructions relating to the next
highest priority and so on. The instructions are then dis-
patched simultaneously to the individual execution units for
execution 1n those units. The dispatch unit 28 1s operable to
dispatch 1nstructions from a window 27 1n the instruction
buffer 26, which window could include all istructions
within the instruction buifer 26, or alternatively only certain
locations therein, for example the last X locations (where X
is a positive number). It can be seen that with a dispatch
process as described, 1n addition to instructions relating to
the predicted path, instructions relating to a non-predicted
path may be 1ssued when free execution units are available,
thereby enabling progress to be made along the predicted
and non-predicted paths pending resolution of the branch
condition. Once the branch condition has been resolved, it 1s
then possible to determine whether to follow the predicted,
or one of the non-predicted paths. It will be appreciated, in
the case shown in FIG. 6, where multiple conditional
branches are present, that the condition for branch B1 will
typically be resolved betfore the condition for the branch B2

10

15

20

25

30

35

40

45

50

55

60

65

3

or B3. Accordingly, if 1t 1s decided that the P3 path 1s taken
from the branch point B1, all instructions relating to paths
P2, P4 and P35 may at that point be annulled. Any results
relating to the speculative execution of instructions relating
to the paths P2, P4 and P5 may then be annulled as well.

In any particular implementation, various solutions to the
annulling of results from instructions relating to a path not
taken may be adopted. For example, the output from an
execution unit may be stored in a temporary register in the
registers 50/52 pending resolution of the branch condition,
and may then be annulled 1n the event that the results relate
to an 1nstruction for a non-taken path.

Also, on determining the resolution of a branch condition,
the dispatch unit 28 can be configured to simply annul (e.g.
delete or ignore) instructions relating to a non-taken path.

A priority tag with each instruction in the instruction
buffer, or an execution buffer, can be used to annul 1nstruc-
fions relating to a path not taken, on resolution of the branch
condition. Also, 1f the tag 1s 1ssued with the 1nstruction to an
execution units and maintained therein for the execution
lifetime of the instruction, it can similarly be used to annul
instructions already 1n execution. This permits early release
of resources, for example output registers.

Thus, where it 1s subsequently determined that the pre-
dicted path i1s the correct path, then the results of the
non-predicted path or paths can be annulled and processing
can continue 1n a conventional manner along the predicted
path. The advantage arises in an embodiment of the present
invention that, where 1t 1s subsequently determined that a
predicted path 1s not correct, 1t 1s typically not necessary to
dispatch all of the 1nstructions starting from the branch point
for processing of the non-predicted path as some progress
will have already been made down that path by execution of
instructions from that path by the available execution units.
Accordingly, the speculatively executed instructions from
the predicted path can be annulled and the execution units
thus freed up can be used for execution of the instructions
from the non-predicted path.

To further illustrate an example of operation of an
example of an embodiment of the present imnvention, refer-
ence 1s made to FIG. 7 which gives an overview of steps 1n
a method where one priority tag 1s employed.

Thus, 1n step 90, on detecting a conditional branch
instruction, priorities are allocated to individual mnstructions
for the paths resulting from the conditional branch point.
Steps 90 and 91 are performed by a pre-decode unit 14 in the
embodiment of FIG. 1. The priorities are recorded 1n respect
of each of the instructions by the use of priority tags
assoclated with the individual 1nstructions, either stored with
those 1nstructions, or in a separate buffer memory.

In step 92, mstructions are dispatched according to the
priority set for those instructions. In other words, instruc-
fions within a given window 1n an instruction buifer are
issued to available execution units and where execution
units remain available, instructions relating to other paths
are dispatched 1n order of priority. In the embodiment shown
in FIG. 1, these steps are performed using the instruction

buffer 26 and the dispatch unit 28.

When the condition for the branch is resolved, (in the
example shown 1 FIG. 7 between the predicted and non-
predicted paths) then, in either step 94 or step 95, the
non-predicted or the predicted path, respectively, 1s
annulled. The evaluation of the branch condition 1s effected
in the embodiment of FIG. 1 1n the branch condition unit 32,
and the annulling of the branches 1s performed by the
dispatch unit 28.

US 6,260,138 Bl

9

Although the flow diagram of FIG. 7 deals specifically
with a decision between a first and a second path (i.e. the
predicted path and the non-predicted path) with the pre-
dicted path being allocated a higher priority than the non-
predicted path, 1t will be appreciated that this process can be
extended to multiple layers of prediction for multiple branch
points as represented 1 FIG. 6.

Also, with reference to FIGS. 5, 6 and 7, 1t will be noted
that the branch not taken path may be the predicted path in
another embodiment, or that a more complex prediction
algorithm based on historical data may be used to predict the
outcome of any branch condition. Accordingly, the priority
tags allocated will depend on the outcome of the prediction
technique employed. Any suitable prediction technique may
be used, for example a prior art prediction technique as
described 1n “Advanced Computer Architectures—A Design
Space Approach”, referenced earlier.

In FIG. 1, a single mstruction buffer 26 1s provided with
a single dispatch unit 28 which dispatches instructions to the
available execution units via the internal bus 30. In such an
embodiment, the dispatch unit 28 will provide conventional
dependency checking on the instructions to ensure that all
data and instruction dependencies 1n the data stream are
taken 1nto account.

FIG. 8 1llustrates a modification to the arrangement shown
i FIG. 1, where, 1n addition to the istruction buffer 26 and
the dispatch unit 28, a further execution buffer and execution
dispatch unit are associated with each of the execution units
or with a group of the execution units. As illustrated 1n FIG.
8, an execution buifer 126 and an execution dispatch unit
128 are associated with each of execution units 40 and
execution units 44. It 1s to be assumed that similar execution
buffers and execution dispatch units are associated with the
other execution units. Such an execution buffer unit can
often be described as a reservation station or a shelving

bufter.

The priority tags (prediction bits) are also passed from the
instruction buffer 26 to the execution buffers 126. Prioritized
dispatch of the instructions from a window 27 1in the
instruction buifer 26 can be provided by the dispatcher 28.
Alternatively, or 1 addition, prioritized dispatch of the
instructions from a window 127 within the individual execu-
tion buffers 126 by the execution dispatch units 128 may be
performed 1n accordance with the priority tags referred to
carlier. The size of the window 127 may correspond to, or be
smaller than, the size of the execution buffer 126.
Accordingly, the prioritized dispatch of the instructions
according to the representative paths may be made at
different levels within the processor, as appropriate to a
particular application or embodiment of the ivention.

It will be appreciated that many alternatives may be
envisaged to the particular embodiments described. Thus,
for example, the overall structure of the processor may be
quite different from that shown 1n FIG. 1. By way of simple
example, the prediction unit need not be provided 1n a
pre-decode unit, but could be provided at another point
within the 1nstruction processing mechanism. Other configu-
rations with different numbers of 1nstruction buffers, execu-
tion units, mternal bus structures, branch determination
units, etc., may be envisaged within the scope of the present
invention.

Also, 1n the example shown, 1t 1s assumed that at any
conditional branch instruction point, only two paths may
result. However, 1t could be that three or more paths may be
available from a branch condition point. In such a case,
individual priorities can be allocated to three or more paths

10

15

20

25

30

35

40

45

50

55

60

65

10

by the use of more than one priority bit for each conditional
branch point. Thus, two bits may provide different priorities
for up to four paths, three bits different priorities for up to
eight parts, and so on.

There has been described embodiments of an invention
which provide for prioritized dispatch of instructions on the
basis of which of a plurality of paths, or instruction streams,
follow a conditional branch point. Thus, 1n an embodiment
of the mmvention, 1nstructions relating to a predicted path are
dispatched from an instruction bufler to respective execution
units, with instructions relating to a non-predicted path or
paths bemng dispatched to any remaining execution units to
take advantage of any excess processing capacity. Making
use of any available execution units for mstructions from a
non-predicted path 1mproves efficiency where the non-
predicted path proves to be the correct path, without impact-
ing efhiciency where the predicted path proves to be the
correct path. This net gain 1n efficiency can be achieved with
a mimmmum of additional resources.

Accordingly, 1t can be seen that an embodiment of the
present invention can provide enhanced performance with
respect to conventional predictive branching without the
additional cost of duplicated hardware as required by mul-
tiway branching.

It will be appreciated that although particular embodi-
ments of the invention have been described, many
modifications/additions and/or substitutions may be made
within the spirit and scope of the present invention as
defined 1n the appended claims.

For example, 1n the particular embodiment described, the
mstruction buffer receives decoded instructions. However,
in other embodiments, the instruction buffer may hold
undecoded, or partially decoded instructions with any asso-
clated priority tags. The decoding or the completion of the

decoding can be effected downstream of the instruction
buffer.

Indeed, the data processing apparatus may have a signifi-
cantly different architecture and structure while still being
able to employ the present invention, and it will be appre-
cilated that the present description i1s merely illustrative of
one possible architecture and structure for an embodiment of
the 1nvention.

What 1s claimed 1s:

1. Data processing apparatus comprising a plurality of
execution units, at least one 1nstruction buffer from which
instructions are dispatched to the plurality of execution
units, and an instruction processing mechanism configured
to be operable to allocate respective priorities to a plurality
of instruction paths following a conditional branch and to
prioritize a dispatch of instructions for multiple paths to
available execution units for speculative execution accord-
ing to the allocated priorities, wherein the instruction pro-
cessing mechanism associates priority tags with instructions,
and wherein the instruction buffer 1s operable to receive
instructions with any associated priority tag.

2. The apparatus of claim 1, comprising a dispatch unat,
the dispatch unit being responsive to any priority tags
associates with instructions within a window 1n the mstruc-
fion buffer to prioritize a 1ssue of instructions from said
window such that an instruction associated with a higher
priority tag 1s 1ssued 1n preference to an instruction associ-
ated with a lower priority tag.

3. The apparatus of claim 2, wherein a size of the window
corresponds to a size of the instruction bulifer.

4. Data processing apparatus comprising a plurality of
execution units, at least one instruction buffer, and an

US 6,260,138 Bl

11

Instruction processing mechanism configured to be operable
to allocate respective priorities to a plurality of instruction
paths following a conditional branch and to prioritize a
dispatch of instructions for multiple paths to available
execution units for speculative execution according to the
allocated priorities, wherein the instruction processing,
mechanism assoclates priority tags with instructions, and
wherein the 1nstruction butfer 1s operable to receive 1nstruc-
fions with any associated prlorlty tag, and said data process-
ing apparatus further comprising multiple execution buifers
assoclated with one or more execution units, instructions
being held 1 the execution buifers with any associated
priority tags, an instruction buffer dispatch unit for dispatch-
ing 1nstructions from the instruction buifer to the multiple
execution buffers, and a plurality of execution dispatch
units, each of Wthh 1s assoclated with each execution buffer
and 1s responsive to any priority tags assoclated with instruc-
tions within each corresponding window 1n each associated
execution bufler to prioritize an issue of instructions from
saild window such that an instruction associated with a
higher priority tag 1s issued 1n preference to an instruction
associated with a lower priority tag.

5. The apparatus of claim 4, wheremn a size of each
window corresponds to a size of each execution buffer.

6. Data processing apparatus comprising a plurality of
execution units, at least one 1nstruction buffer from which
instructions are dispatched to the plurality of execution
units, and an 1nstruction processing mechanism configured
to be operable to allocate respective priorities to a plurality
of instruction paths following a conditional branch and to
prioritize a dispatch of instructions for multiple paths to
available execution units for speculative execution accord-
ing to the allocated priorities, further comprising an 1nstruc-
fion cache and an instruction pre-decode unit, said pre-
decode unit being operable to determine instruction path
priorities and to associate a priority tag with each instruction
in the instruction cache.

7. The apparatus of claim 6, further comprising a decode
unit operable to decode instructions from the instruction
cache for transfer to the instruction buifer.

8. Data processing apparatus comprising a plurality of
execution units, at least one 1nstruction buft

er, and an
instruction processing mechanism configured to be operable
to allocate respective priorities to a plurality of instruction
paths following a conditional branch and to prioritize a
dispatch of instructions for multiple paths to available
execution units for speculative execution according to the
allocated priorities, wherein respective priorities are allo-
cated to individual paths at a branch point with two or more
branch paths, and wherein each priority 1s represented by
multi-bit priority tag.

9. A method of processing mnstructions 1n data processing
apparatus comprising, in response to detection of a condi-
tional branch, steps of:

a) allocating priorities to instruction paths following the
conditional branch according to a prediction algorithm;

b) dispatching of instructions to available execution units
according to the allocated priorities,

wherein step (a) includes associating priority tags with
instructions, and wherein instructions are held with any
priority tags in an instruction buffer.
10. A method of processing instructions 1n data processing
apparatus comprising, in response to detection of a condi-
tional branch, steps of:

a) allocating priorities to instruction paths following the
conditional branch according to a prediction algorithm;

b) dispatching of instructions to available execution units
according to the allocated priorities,

10

15

20

25

30

35

40

45

50

55

60

65

12

wherein step (a) includes associating priority tags with
instructions, and wherein instructions are held with any
priority tags in an istruction buil

er, and further wherein step
(b) comprises responding to any priority tags associated with
instructions within a window 1n the instruction buffer to
priorifize an issue of instructions from said window such
that an 1nstruction associated with a higher priority tag is
1ssued 1n preference to an instruction associated with a lower
priority tag.

11. The method of claim 10, wherein a size of the window
corresponds to a size of the instruction bulifer.

12. Amethod of processing instructions 1n data processing
apparatus comprising, 1n response to detection of a condi-

tional branch, steps of:

a) allocating priorities to instruction paths following the
conditional branch according to a prediction algorithm;

b) dispatching of instructions to available execution units
according to the allocated priorities,

wherein step (a) includes associating priority tags with
instructions, and wherein instructions are held with any
priority tags 1n an 1nstruction buifer, and further
wherein step (b) comprises:
dispatching instructions from the instruction buffer to
multiple execution buffers, each of which 1s associ-
ated with one or more execution units with any
associated priority tags; and
responding to any priority tags associated with instruc-
tions within a window 1n an execution buffer to
prioritize an 1ssue of instructions from said window
such that an instruction associated with a higher
priority tag 1s 1issued in preference to an instruction
associated with a lower priority tag.
13. The method of claim 12, wherein a size of each
window corresponds to a size of each execution buffer.
14. Amethod of processing instructions 1n data processing
apparatus comprising, in response to detection of a condi-
tional branch, steps of:

a) allocating priorities to instruction paths following the
conditional branch according to a prediction algorithm:

b) dispatching of instructions to available execution units
according to the allocated priorities,

wherein step (a) comprises pre-decoding an instruction to
determine a conditional branch and to determine 1nstruction
path priorities for instruction paths resulting from the con-
ditional branch, and associating a priority tag with
instructions, and storing the instructions in an instruction
cache, and further wherein each priority tag associated with
instructions 1s stored in the instruction cache 1n association
with the associated instructions.

15. Amethod of processing instructions 1n data processing
apparatus comprising, in response to detection of a condi-
tional branch, steps of:

a) allocating priorities to instruction paths following the
conditional branch according to a prediction algorithm;

b) dispatching of instructions to available execution units
according to the allocated priorities,

wherein step (a) comprises pre-decoding an instruction to
determine a conditional branch and to determine
instruction path priorities for instruction paths resulting
from the conditional branch, and associating a priority
tag with 1nstructions, and storing the instructions i1n an
instruction cache, and further wherein step (a) com-
prises decoding instructions from the instruction cache

f transfer to an 1nstruction bufter.

	Front Page
	Drawings
	Specification
	Claims

