US006256756B1
12 United States Patent (10) Patent No.: US 6,256,756 B1
Faulk, Jr. 45) Date of Patent: Jul. 3, 2001
(54) EMBEDDED MEMORY BANK SYSTEM (56) Retferences Cited
(75) Inventor: Robert L. Faulk, Jr., Roseville, CA U.s. PAIENT DOCUMENTS
(US) 5,077,737 * 12/1991 Leger et al. wevveoorveeereeeerreeenne. 714/6
5,105,425 *  4/1992 BIEWET ..covvrviriiiiiniiiierierieeeennenns 714/8
(73) Assignee: Hewlett-Packard Company, Palo Alto, 5862314 * 1?:5999 Jelgc;j;h ......................... 395/182.66
CA (US) 6,088,817 * 7/2000 HAUlN weoveeeoeoeeoeeeoeeoeseesee 714/42
(*) Notice:  Subject to any disclaimer, the term of this * cited by examiner
patent 15 extended or adjusted under 35 . . ..
U.S.C. 154(b) by O days. Primary Examiner—Christine T. Tu
(57) ABSTRACT
(21) Appl. No.: 09/205,489
_ A component with embedded memory 1s manufactured. The
(22) Filed: Dec. 4, 1998 component includes a plurality of memory buffers and a
processor. During self-test of the component, the processor
(51) Int. CL7 ..., G11C 29/00; HO2H 3/05 performs testing of the plurality of memory buffers in order
to detect bad memory locations. The processor places 1nto a
(52) US.Cl .o, 714/718; 714/8; 714/42 free bufler list pointers to memory buffers from the plurality
of memory buifers for which no bad memory locations have
(58) Field of Search ... 714/718, 723, been detected.
7147710, 711, 763, 765, 5, 7, 8, 15, 20,
42, 54 22 Claims, 1 Drawing Sheet
51 52

PROCESSOR

ERROR LOG

12

41 FREE BUFFER PTR
42— FREE BUFFER PTR
43— FREE BUFFER PTR

BUFFER
MANAGER

40

13

~54 |~55
16
15
SWITCH
PORTS
~14

54 | BUFFER -

441 FREE BUFFER PTR
45-1 FREE BUFFER PTR

N
~J

56

LIST

BUFFER [|~21
BUFFER [~22
11 BUFFER [|-23
BUFFER [~24
BUFFER [|~25
BUFFER [|-26

MEMORY

BUFFER [|~27
BUFFER [|-28
BUFFER [|~29
BUFFER [|~30
BUFFER |~31
BUFFER |32
BUFFER [|~33



U.S. Patent Jul. 3, 2001 US 6,256,756 B1

o1

52

PROCESSOR BUFFER |~21
BUFFER [~22
11 BUFFER [|~23
BUFFER [|~24
BUFFER |25

BUFFER |26

ERROR LOG

12

41-1 FREE BUFFER PTR
42— FREE BUFFER PTR
43— FREE BUFFER PTR

BUFFER
MANAGER

55 | BUFFER - LIST

40
44 - FREE BUFFER PTR

45-1 FREE BUFFER PTR

13

O
~

BUFFER [|~27
BUFFER [|-28

~54 |~55

BUFFER  [~29
pp— BUFFER  [~30
PORTS 56 BUFFER |- 31

BUFFER [}~32
BUFFER |~33

FIGURE 1



US 6,256,756 Bl

1
EMBEDDED MEMORY BANK SYSTEM

BACKGROUND

The present invention concerns integrated circuits and
pertains particularly to an improved memory bank system
which increases manufacturing component yield.

Many integrated circuits (components) have embedded
memory cells used for the storage of information. When
manufacturing components which have embedded memory,
defects 1n the memory cells make the memory cell unusable.
If the memory errors caused by the defects are uncorrected,
the entire component 1s unusable, and the overall manufac-
turing yield 1s reduced.

A typical memory contains multiple blocks (“banks™).
Each block contains many memory cells. Each memory cell
normally contains a single bit of data, although some tech-
nology permits more than one bit of data per memory cell.
As the size of the memory gets larger there 1s an increased
chance that there 1s an error 1n a memory cell. For example,
if P(G) 1s the probability of a memory bit being good, then
the probability of zero errors in a memory of n bits is P(G)".

For example, if P(G)=0.99 and there are 100 memory
cells, the probability of zero errors is 0.99™°° which is
approximately equal to 0.37. Thus, the probability of zero
errors 1n a large memory can be very, very small.

There are several techniques for working around bit errors
in memory, thus increasing the yield of components with
embedded memory.

For example, memory bank remapping can be performed.
In this method, the manufacturers build 1n additional spare
blocks of memory. When the memory 1s manufactured, all
memory blocks are tested. If a memory block has any bit
errors, the block 1s mapped out and one of the spare blocks
1s mapped 1nto 1ts place. Often called “self-repair”, this
remapping 1s done by disconnecting the failed memory
block and rewiring a spare memory block 1nto 1ts place. If
there are no bit errors, the spare memory blocks are unused.
If there are more blocks with bit errors than there are spare
blocks, the entire component cannot be used, and the yield
1s reduced. However, generally memory bank remapping is
costly and cumbersome to implement.

Another technique used to increase the yield of compo-
nents with embedded memory 1s the use of error correcting
memory. Although many variants exist, each word of error
correcting memory typically has 12 memory cells which
hold the data and the error correction bits. An error-
correction function 1s applied to the data and error correction
code, yielding an 8 bit result. The error correction function
1s typically able to correct a single bit error, and detect 2 bit
errors. Because of its high additional cost, error correcting
memory 1s used primarily 1n mission-critical systems where
very high reliability 1s required. Error correcting memory 1s
not a low cost method of increasing yield.

SUMMARY OF THE INVENTION

In accordance with the preferred embodiment of the
present invention, a component with embedded memory 1s
manufactured. The component includes a plurality of
memory buifers and a processor. The size of these memory
buffers can be determined independently of the size of the
memory banks. During self-test of the component, the
processor performs testing of the plurality of memory buil-
ers 1n order to detect bad memory locations. The processor
places 1nto a free bufler list pointers to memory buifers from
the plurality of memory bulifers for which no bad memory
locations have been detected.

In the preferred embodiment, the processor 1dentifies in
an error log memory buifers 1n which bad memory locations
have been detected. For example, the error log 1s stored in

10

15

20

25

30

35

40

45

50

55

60

65

2

non-volatile memory. This allows the error log to perma-
nently 1dentify memory buflers in which bad memory loca-
tions were detected during testing which was performed as
part of a manufacturing process of the component as well as
by the processor during component self test.

During normal operation of the component, a buffer
manager accesses the free bufler list to determine which
memory bulfers are currently available. Entities within the
component make requests for memory buifers to the buifer
manager. For example, the component 1s a network switch
and the enfities are each a switch port.

The present invention has significant advantages over
prior art solutions. For example, the present invention 1s
superior to the practice of mapping out defective memory
blocks (also called bank swapping), for example, because no
internal “rewiring” 1s needed to swap a good block 1n place
of a defective block. Additionally, in embodiments of the
present mvention there 1s no performance delay, which 1s
often the case with the bank swapping mechanisms.

With bank swapping, the spare memory banks are
unavailable unless they are swapped into the place of a
defective memory block. The present invention allows all
good blocks of memory to be used, which increases effi-
clency.

Another advantage of the described embodiments of the
present 1invention over solutions which map out defective
blocks 1s that for embodiments of the present invention the
block size and number of spare blocks need not be con-
strained by the physical memory organization. For example,
a single large embedded memory can be used, or multiple
smaller memories can be used. The block size can be any
size, as long as there 1s enough room 1n the free buifer list.
With bank swapping, the spare blocks must be tightly
assoclated with the blocks they can replace. If a spare block
1s not tightly coupled with the block 1t replaces, a significant
performance degradation will occur because of the extra
circuitry needed and physical distance between the spare
block and the block it replaces.

Additionally, the disclosed embodiments of the invention
provide a higher level of system reliability over systems
which use bank swapping. In described embodiments of the
present 1nvention, when faults are detected after
manufacture, these faults can be permanently logged. Thus,
intermittent faults are more likely to be detected.

The present 1invention 1s also superior to those prior art
solutions which use error correcting memory. Error correct-
ing memory typically requires the addition of 4 extra bits for
every 8 bits of memory resulting 1n a greater than 50%
increase 1n memory component size. Additionally, error
correcting memory has higher latency because additional
processing must be done for each of the bits read from
memory before the data 1s passed on to other modules 1n the
system. Because of 1ts high cost, error correcting memory 1s
used to increase system reliability, and 1s not generally
considered as a solution to increasing yield.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a simplified block diagram of memory and
memory management logic within a component which uses
embedded memory 1n accordance with a preferred embodi-
ment of the present mnvention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 1s a simplified block diagram which shows a
memory 20 and memory management logic within a com-
ponent. For example, the component 1s an Ethernet switch.
Alternatively, the component 1s any other entity which
utilizes memory buifers.

The memory space of memory 20 i1s broken up into
memory blocks. The memory blocks need not be related to




US 6,256,756 Bl

3

any actual physical structures of memory 20. The preferred
block size varies depending on application and memory
failure characteristics. For an Ethernet switch system using
embedded memory, the preferred block size 1s 128 bytes,
although the optimal size will vary, dependent on the size of
packets present on the particular Ethernet network being,
used. While in the preferred embodiments of the present
invention, memory 20 1s embedded within the component, 1n
alternative embodiments, memory could be separate from
the remainder of the component.

For example, FIG. 1 shows memory 20 including a buffer
21, a buffer 22, a bufler 23, a buffer 24, a buffer 25, a buffer

26, a buffer 27, a buffer 28, a buffer 29, a buffer 30 a buffer
31, a buffer 32 and a bufler 33. Bu ffers 21 through 33 are
only representative. The number of buifers and the size of
cach bufler 1s dependent upon the component and the
application for which the component 1s used.

When the component 1s manufactured, each buffer of
embedded memory 20 1s tested to locate defective memory
locations. As bad memory locations are discovered, the
memory buflers which contain the bad memory locations are
identified 1n an error log 12.

Since error log 12 1s stored within the component, there
1s a record of memory buifers which cannot be used. For
example, error log 12 1s implemented using Flash EEPROM
or some form of one-time-programmable storage such as
fused-link ROM built mto the component. Alternatively,
error log 12 may be located outside the component.

In an alternative embodiment, rather than making a record
in an error log, memory buflers with defective memory
locations can be marked by permanently setting defective
memory locations to a “1” value or a “0” value. This will
assure that during self-test of the component, the memory
locations will always be detected and not used by the
component. By permanently setting the defective memory
locations, this eliminates the opportunity for a defect of an
intermittent nature to later go undetected during the com-
ponent self-test.

If an excessive number of buffers with defective memory
cells are detected, the component 1s discarded. For example,
the manufacturer publishes a data sheet which rates the
component as having at least “n” available memory bulifers.
If there are enough memory buf ‘ers with errors so that the
component no longer has at least “n” available memory
buffers, the component 1s discarded and the manufacturing
yield is thus reduced. When designing the memory buffer, it
1s advisable to include enough extra memory buifers so that
a high percentage of components will have at least “n”
available memory buffers without defective memory cells

When the component 1s 1n normal use, a memory test 1s
also performed. This test detects problems which manifest
themselves after the component has been tested by the
manufacturer. For example the memory test 1s performed as
part of the power-up self-test of the component.

For example, 1n the preferred embodiment of the present
invention, the self-test 1s performed by a processor 11 within
the component. In alternative embodiments, rather than
using a processor, another logic block, such as a state
machine, can be used to replace processor 11.

In the preferred embodiment, processor 11, using a data
path 51, reads the information already recorded 1n error log
12 to determine which buifers have already been marked as
having bad memory locations. Then processor 11 uses a data
path 52 to perform a test of the remaining buffers to
determine if any additional buffers have defective memory
locations. When errors are detected by processor 11, pro-
cessor 11 logs 1n error log 12 which additional buffers have
been discovered to have bad memory locations. As men-
tioned before, error log 12 1s preferably either a non-volatile
memory or a one-time programmable memory. This reduces
the chance of an intermittent failure later going undetected.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Thus once an error is detected for a memory location (either
during manufacturing or subsequently during self-test) the

buffer which contains the defective memory location 1s
permanently marked as unusable.

Once processor 11 has performed the memory test, pro-
cessor 11, via a data path 57, places free bufler pointers
within free buffer list 40. The free buffer pointers point to
those buffers 1n memory 20 for which no bad memory
locations have been detected. For example, 1n FIG. 1, the
free bufller pointers are represented by a free builer poimer
41, a free buller pointer 42, a free buifer pointer 43, a free
buffer pointer 44 and a free buffer pointer 45. In the
preferred embodiment, at mitialization the actual number of
potential free buller pointers 1s equal to the total number of
free buffers (good and bad) within memory 20. However,

buffers which have one or more bad memory locations are
not added to free bufler list 40.

The component 1s considered good as long as there are at
least a predetermined (“n”) number of good buffers remain-
ing n memory 20. The number 1s predetermined, for
example, during the design of the component. When the
number of good memory buffers 1s less than the predeter-
mined number, the component 1s discarded.

During operation, when a memory bufler 1s needed, a
buffer manager 13, obtains a free buifer pomter through a
data path 353, and returns the free buller pointer to a
requesting entlty

For example, when the component 1s an Ethernet switch,
the component will have a plurality of switch ports, repre-
sented mm FIG. 1 by a switch port 14, a switch port 15 and
a switch port 16.

When one of the switch ports needs a bufler to receive a
packet, the switch port, through a buffer request data path
54, requests a builer from buffer manager 13. Buifer man-
ager 13, through data path 53, will check free buifer list 4{
fo see if there are any avaﬂable free buflers. If free buifer list
40 has one or more free buifer pointers, buifer manager 13
removes a free buller pointer from free buffer list 40 and
passes the free buifer pointer, through a data path 3§, to the
requesting switch port.

If there are no free buifer pointers, the packet cannot be
received and will be dropped. Once the switch port has the
free buffer pomter it transfers the packet usmg a data path
56, 1into buifer memory 20. If the packet 1s larger than 128
bytes the switch port will request additional buffers as
needed to {it the entire packet into memory 20. After the
packet 1s received, ownership ot the bu: fer(s) is transferred
to other switch ports 1 the system. The last switch port 1n
the system to finish using a buffer returns the buffer to butfer
manager 13. Buifer manager 13 then, through data path 53,

replaces the associated free buffer pointer back onto free
buffer list 40.

While the embodiment of the present invention shown 1n
FIG. 1 uses a separate buifer manager 13, in alternative
embodiments of the present invention, the functionality of
buffer manager 13 may be performed by a software bufler
management module running on processor 11. The buifer
management module could, for example, be called when
other software modules running on processor 11 need to
obtain memory to accomplish processing tasks.

The foregoing discussion discloses and describes merely
exemplary methods and embodiments of the present inven-
tion. As will be understood by those familiar with the art, the
invention may be embodied in other specific forms without
departing from the spirit or essential characteristics thereof.
Accordingly, the disclosure of the present invention 1s
intended to be illustrative, but not limiting, of the scope of
the 1nvention, which 1s set forth in the following claims.

I claim:

1. A component with embedded memory comprising:
a plurality of memory buflers;




US 6,256,756 Bl

S

a processor, which during self-test of the component,
performs testing of the plurality of memory buifers in
order to detect bad memory locations;

a free buffer list into which the processor places pointers
to memory buifers from the plurality of memory buffers
for which no bad memory locations have been detected,;
and,

a buffer manager which during normal operation of the
component, accesses the free bufler list to determine
which memory bulfers are currently available.

2. A component as 1n claim 1 additionally comprising:

an error log 1nto which the processor 1dentifies memory
buffers in which bad memory locations have been
detected.

3. A component as 1n claim 1 wherein the error log 1s
stored 1n nonvolatile memory.

4. A component as 1 claim 2, wherein the error log
permanently 1dentifies memory buifers in which bad
memory locations were detected during testing which was
performed as part of a manufacturing process of the com-
ponent.

5. A component as 1n claim 1, additionally comprlsmg
additional entities which make requests for memory buffers
to the bufler manager.

6. A component as 1n claim 5, wherein the component 1s
a network switch and the additional entities are switch ports.

7. A method by which a component uses memory, the
method comprising the following steps:

(a) testing a plurality of memory buffers within the
memory, the testing being performed 1n order to detect
bad memory locations within the plurality of memory
buffers;

(b) placing into a free buffer list pointers to memory
buffers from the plurality of memory buifers for which
no bad memory locations have been detected; and,

(¢) accessing, by a buffer manager during normal opera-
tion of the component, the free buffer list to determine
which memory buflers are currently available.

8. A method as 1n claim 7 additionally comprising the
following step:

(d) identifying within an error log, memory buffers in
which bad memory locations have been detected.

9. A method as in claim 7 wherein in step (c) the error log
1s stored 1n non-volatile memory.

10. A method as 1n claim 7, additionally comprising the
following step:

(d) making requests to the buffer manager, by additional
entities within the component, for memory buifers.

11. A method as in claim 10, wherein the component 1s a
network switch and the additional entities are switch ports.

12. A method for manufacturing a component which uses
memory, the method comprising the following steps:

(a) providing within the memory a plurality of memory
buffers;

(b) providing within the component a free buffer list on
which to place pointers to memory buflers from the
plurality of memory buflers for which no bad memory
locations have been detected;

(¢) testing the plurality of memory buffers in order to
detect bad memory locations;

(d) permanently identifying memory buffers which have
bad memory locations; and,

(¢) providing within the component a buffer manager
which during normal operation of the component,
accesses the free bufler list to determine which memory

buffers are currently available.

13. A method as in claim 12 wherein in step (d) the
memory buifers are 1dentified within an error log.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

14. A method as in claim 12 wherein in step (d) the
memory buifers are identified by permanently setting bad
memory locations to a particular value.

15. A method as 1n claim 12 additionally comprising the
following step:

(f) providing within the component a processor, which
during self-test of the component, performs testing of
the plurality of memory buifers 1n order to detect bad
memory locations.

16. A method as in claim 15 wherein in step (e), the

processor places 1nto the free buffer list pointers to memory

buffers from the plurality of memory buifers for which no

bad memory locations have been detected.
17. A method as 1n claim 12, additionally comprising the
following step:

(f) providing within the component additional entities
which make requests to the buifer manager for memory
buifers.

18. A method as 1n claim 12 additionally comprising the
following step:

(f) rejecting the component when there are not a prede-
termined number of memory buifers in which no bad
memory locations have been detected.

19. A method as in claim 12 wherein in step (a) the
memory 1s embedded within the component.

20. A method for manufacturing a component which uses
memory, the method comprising the following steps:

(a) providing within the memory a plurality of memory

buif

ers;

(b) providing within the component a free buffer list on
which to place pointers to memory buflers from the

plurality of memory buflers for which no bad memory
locations have been detected;

(c) testing the plurality of memory buffers in order to
detect bad memory locations; and,

(d) permanently identifying memory buffers which have
bad memory locations wherein the memory bulfers are
identified by permanently setting bad memory loca-
tions to a particular value.

21. A method by which a component uses memory, the

method comprising the following steps:

(a) testing a plurality of memory buffers within the
memory, the testing being performed 1n order to detect
bad memory locations within the plurality of memory
buffers;

(b) placmg into a free buifer list pomnters to memory
buffers from the plurality of memory buifers for which
no bad memory locations have been detected; and,

(c) permanently identifying memory buffers which have
bad memory locations wherein the memory buffers are
identified by permanently setting bad memory loca-
tions to a particular value.

22. A component with embedded memory comprising:

a plurality of memory butf

ers;

a processor, which during seli-test of the component,
performs testing of the plurality of memory buifers 1n
order to detect bad memory locations; and,

a Iree buffer list into which the processor places pointers
to memory buffers from the plurality of memory buifers
for which no bad memory locations have been detected;

wherein memory buffers which have bad memory loca-
tions are permanently 1dentified by permanently setting
bad memory locations to a particular value.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

