(12) United States Patent

Gutta et al.

US006240483B1
(10) Patent No.: US 6,240,483 B1
45) Date of Patent: May 29, 2001

(54)

(75)

(73)

(21)
(22)

(60)
(51)

(52)
(58)

SYSTEM FOR MEMORY BASED
INTERRUPT QUEUE IN A MEMORY OF A
MULTIPROCESSOR SYSTEM

Inventors: Srinivasa Gutta, Allentown, PA (US);
Walter G. Soto, Irvine, CA (US);

Raman Parthasarathy, New
Brunswick, NJ (US)

Assignee: Agere Systems Guardian Corp.,
Miami Lakes, FL (US)

Subject to any disclaimer, the term of this

patent 15 extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

Appl. No.: 09/140,673

Filed: Aug. 26, 1998
Related U.S. Application Data

Provisional application No. 60/065,855, filed on Nov. 14,
1997.

Int. CL7 e GO6F 13/24
US.CL o 71072605 710/263
Field of Searchc.cccovvvvvviiiivinnnnn, 710/260, 263,

7107264, 2068, 269

100

(56) References Cited
U.S. PATENT DOCUMENTS
4,675,865 * 6/1987 DeVries et al.covuvveeievnnnnnnn. 370/85
5,428,794 * 6/1995 Willlamscocooeeviriinninnnnnnn, 7107260
5,664,231 * 9/1997 Postman et al.cccooneneennnne. 710/73
5,675,807 * 10/1997 Iswandhi et al. 7107260

* cited by examiner

Primary Fxaminer—Ario Etienne
(74) Attorney, Agent, or Firm—William H. Bollman

(57) ABSTRACT

An interrupt mechanism which reduces or eliminates the
need for an interrupt status register while at the same time
provides suitable information to a host or other processor
with respect to the cause and parameters surrounding an
interrupt signal. An interrupt queue 1s maintained in shared
memory accessible by both a host and an interrupting agent.
The 1nterrupt queue has a capacity or two or more separate
iterrupt requests, either from a same interrupting agent or
from two different interrupting agents. As interrupting
agents write to the interrupt queue, an agent current interrupt
pointer (ACIP) 1s incremented to a next position in the
mterrupt queue. As the host services interrupts, the current
host pointer 1s mncremented to clear the serviced interrupt
request entry.

22 Claims, 2 Drawing Sheets

MEMORY

INTERRUPT
QUE

110

_~130

AGENT

HOST

150

120

U.S. Patent

May 29, 2001 Sheet 1 of 2

FIG. T

MEMORY

100—L_ [INTERRUPT] 110

QUE

i L~130

US 6,240,483 Bl

AGENT

N

132

AGENT

HOST

130

FIG. 2

INTERRUPT QUE

X + 255 208 ;
X + 254 207 :})
X + 253 206
X + 252 205 —
r 1 \AcIP
X+ 5 ” _2Q§ |
X + 2 202 G—
S\
- 201 CHP
X 200

120

U.S. Patent May 29, 2001 Sheet 2 of 2 US 6,240,483 B1

FIG., 3

INTERRUPT REQUEST ENTRY

299

:

USB - 5B
307 [306 | 305 | 304 [303 [302 [301 | 300
)

FIG. 4
PRIOR ART

HOST

INTERRUPT MASK REGISTER |f557

t - 620
INTERRUPT STATUS REGISTER {660

l 6610

S
I/F o1 1/F

6/0a 6/0b

B30~ AGENT l AGENT (830

US 6,240,483 B1

1

SYSTEM FOR MEMORY BASED

INTERRUPT QUEUE IN A MEMORY OF A
MULTIPROCESSOR SYSTEM

This application claims priority from U.S. Provisional
Application No. 60/065,855 entitled “Multipurpose Digital
Signal Processing System” filed on Nov. 14, 1997, the
specification of which 1s hereby expressly incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the use of interrupts
between a plurality of processors. More particularly, it
relates to an interrupt technique which provides the capa-
bility of a conventional interrupt status register without
requiring an interrupt status register.

2. Background of Related Art

FIG. 4 shows a conventional technique for handling
interrupt signals 670a, 6705 from any of one or more agents
630, 632 (¢.g., a microprocessor, microcontroller or digital
signal processor (DSP)) to a host 620 (e.g., another
microprocessor, microcontroller or DSP).

Conventionally, the interrupt signals 670a, 6706 are
received by appropriate buffering or interfacing circuitry
661a, 661b, and latched for output in an interrupt status
register 660. In the conventional method, the host 620
includes appropriate interface circuitry 661a, 6615 and at
least one bit reserved 1n the interrupt status register 660 for
cach interrupting agent 630, 632. However, more detailed
information relating to the cause of the mterrupt is generally
maintained 1n a set of registers or 1n a {irst-1n, first-out type
memory element 1n the agent generating the interrupt. The
registers are typically addressable by the host either through
an 1nput/output (I/0) address (“I/O mapped™) or through a
memory address (“memory mapped”).

For instance, in an application wherein each agent 630,
632 1s handling a plurality of data streams, any one data
stream (or any time slot within that data stream) can cause
an 1nterrupt. However, conventionally only one interrupt
line 1s provided between the interrupting agent 630 or 632
and the host 620. Additional interrupt lines may complicate
the circuitry and interrupt servicing of the host computer

620.

Thus, to gain additional information with respect to an
interrupt, when one processor (€.g., host 620) is interrupted
by another processor (e.g., agent 630 or 632), the host 620
will typically read its interrupt status register 660 to deter-
mine the source of the mterrupt and, upon servicing of that
interrupt request, read a register or other device 1n the agent
630 or 632 to determine more information regarding the
cause of the interrupt.

After the mterrupt 1s serviced, the host 620 will clear the
interrupt request latched i1n the interrupt status register
typically as part of an interrupt service routine (ISR).

In addition to the interrupt status register 660, the host 620
will typically further include an interrupt mask register 667
to programmably mask off unwanted interrupts.

The necessary circuitry such as the interface circuitry
661a, 661b, the interrupt status register 660, and/or the
mterrupt mask register 667 utilize valuable silicon and
complicate the circuitry of a host 620, particularly where an
agent 630 and/or 632 may cause an interrupt to the host 620
for any of a multitude of reasons, e.g., sourced from any of
a multiple of data streams and/or time slots.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Ideally, particularly 1n a multiple data stream system, the
interrupt status register 660 1n a host 620 or other processor
would reflect at least mimimal information regarding the
exact cause of the interrupt to avoid the need for the host 620
to then inquire of the agent 630 or 632 to determine the
cause, wasting efficiency 1n the overall system architecture.
For instance, in a multiple data stream environment, 1nfor-
mation regarding the identification of the stream number
causing the interrupt 1s considered to be important informa-
tion by the present inventors. However, since all data
streams are typically independent, the resulting causes of a
single agent’s interrupt signal are correspondingly
independent, and essential data stream information may not
be efficiently encoded 1nto the mterrupt status register 660 of
the host 620. Moreover, a significant amount of physical
arca of silicon 1n the host 620 and 1n the agents 630, 632
would be required to provide such mmformation 1n an inter-
rupt signal (e.g., data stream number and interrupt type),
particularly as the number of data streams increases.

There 1s thus a need for an interrupt mechanism and signal
which provides a host with suitable information to 1dentity
the source of the interrupt. There 15 also a need to minimize
the amount of additional circuitry necessary to implement an
informative mterrupt mechanism.

SUMMARY OF THE INVENTION

It 1s an aspect of the invention to provide a multi-
processor system comprising a host, a memory, at least one
agent coupled to the host on an interrupt basis, and an
mterrupt bulfer maintained within the memory. The interrupt
buffer 1s adapted to contain a plurality of interrupt requests
to the host from at least one agent.

A method of handling mterrupts in accordance with the
principles of the present invention comprises establishing an
interrupt queue per interrupting agent 1n a memory location
accessible by a plurality of processors, the mterrupt queue
including at least two locations in the memory. An interrupt
1s requested from a first of the plurality of processors by
writing an encoded interrupt request entry to the interrupt
queue. The interrupt request 1s detected from a second of the
plurality of processors by reading the encoded interrupt
request entry from the interrupt queue.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become apparent to those skilled 1n the art from the follow-
ing description with reference to the drawings, 1n which:

FIG. 1 shows a plurality of agents causing interrupt
signals accessible by a host using an interrupt queue 1n a
block of memory 1n accordance with the principles of the
present 1nvention.

FIG. 2 shows an exemplary interrupt queue having a
capacity of 256 bytes of memory, 1n accordance with the
principles of the present invention.

FIG. 3 shows an exemplary entry in the interrupt queue
shown 1 FIG. 2.

FIG. 4 shows a conventional interrupt mechanism includ-
ing 1nterrupt interface circuitry, an interrupt status register,
and an interrupt mask register.

DETAILED DESCRIPTION OF ILLUSTRAITVE
EMBODIMENTS

In accordance with the principles of the present invention,
existing architecture 1s utilized to implement a suitable
interrupt mechanism which reduces or eliminates the need

US 6,240,483 B1

3

for an interrupt status register while at the same time
provides suitable mformation to a host or other processor
with respect to the cause and parameters surrounding an
interrupt signal.

In particular, FIG. 1 shows an interrupt queue 100 in
shared memory 110 created in shared memory 1n accordance
with the principles of the present invention.

In particular, FIG. 1 shows a host 120 and two agents 130
and 132 which cause interrupts in the host 120. The host and
the agents each may be any processing element, e.g., a
microprocessor, microcontroller, DSP or a direct memory
access (DMA) engine. The host 120 may receive interrupt
request signals from any or all of many devices, e.g., agents

130, 132.

In accordance with the principles of the present invention,
the status of interrupt request signals from any of the agents
130, 132 are maintained by the host 120 1 a block of
memory 100 and queued for execution. It 1s the responsi-
bility of an interrupting agent to write an interrupt request in
the interrupt queue.

The 1nterrupts may relate to a request for any type service
by the host computer. Importantly, rather than relying on the
conventional interrupt signals 670a, 6700, interfacing cir-
cuitry 661a, 661b, interrupt status register 660 and interrupt
mask register 667, ¢.g., as shown 1n FIG. 4, the agents 130
and 132 1n FIG. 1 cause an interrupt to the host 120 using
an mnterrupt queue 100 formed in shared memory 110.

Although located 1n shared memory 1n the disclosed
embodiment, an interrupt queue 100 may be formed 1n any
memory accessible by the host 120.

FIG. 2 shows an example of an imterrupt queue 100
having a capacity of 256 entries 1n accordance with the
principles of the present invention. Although FIG. 2 shows
an 1nterrupt queue having a capacity of 256 entries, the
present invention 1s equally applicable to interrupt queues
having much smaller or much larger capacities. For instance,
the interrupt queue may have as few as two entries or as
many as 1048 or more entries within the principles of the
present invention.

In FIG. 2, the mterrupt queue 100 1s located anywhere
within a memory map or I/O map of the host 120. For
mstance, as shown 1n FIG. 2, the lowest addressable avail-
able memory location 200 utilized by the interrupt queue
100 1s located at memory address x, and the highest addres-
sable available memory location 208 1s offset from memory
address x by 255. The location of the interrupt queue 100,
either 1n memory mapped or in I/O mapped space, including
the starting address and length of the mterrupt queue 100,
are preferably programmable by the host. Of course, the
present invention 1s equally applicable to an interrupt queue
100 having a fixed length and a fixed address.

The host 120 will inform the 1nterrupting agent 130 or 132
of the starting address x and the length of the mterrupt queue
100. It 1s the responsibility of the interrupting agent to make
entries 1nto the interrupt queue 100 and to increment the
address pointer, referred to herein as the agent current
interrupt pointer ACIP shown 1 FIG. 2. The agent thus
makes an interrupt request entry 1n the mterrupt queue 100
and will increment 1ts ACIP. Upon mitialization, the agent
current mnterrupt pointer ACIP will be pointing to the starting
address x, 1.€., to entry 200 as shown 1 FIG. 2.

The host will also inform the interrupting agent 130 or
132 of the current mterrupt request entry in the interrupt
queue 100 that the host has finished servicing by passing an
8-bit offset pointer called the Current Host Pointer CHP.
Upon 1nitialization, the current host pointer CHP will pret-

10

15

20

25

30

35

40

45

50

55

60

65

4

erably contain the address of and thus point to the last entry
in the mterrupt queue 100, 1.¢., to entry 208 as shown 1n FIG.

2

An agent 130, 132 may send an interrupt signal to the host
by writing an interrupt request entry 299 (FIG. 3) to the
mterrupt queue 100 at an address pointed to by the agent
current mterrupt pointer ACIP. The agent current interrupt
pointer ACIP 1s located either at another location in the
shared memory 110 or maintained 1inside the agent’s
memory. The agent can also maintain the agent current
mterrupt pointer ACIP as a dedicated register with a built-in
incrementer. As the interrupt queue 100 becomes utilized,
the agent current interrupt pointer ACIP 1s updated 1 a
circular fashion. Thus, the agent current interrupt pointer
ACIP will incrementally increase its pointed-to address
location as the number of interrupt request entries in the
mterrupt queue 100 increases. When the host services the
mterrupt request entry in the interrupt queue 100, it will
increment 1ts current host pointer CHP to point to the next

address location.

Upon 1nitialization, the current host pointer CHP will be
pointing to the last address and the agent current interrupt
pointer ACIP will be pointing to the starting address of the
mterrupt queue, indicating that the mnterrupt queue 100 is
empty. When the current host pointer CHP and agent current
mterrupt pointer ACIP are equal, 1t implies that the 1nterrupt
queue 100 1s tull. Thus, the current host pointer CHP can be
viewed as a water mark indicating the empty and full status
of the mterrupt queue 100.

FIG. 3 shows an interrupt request entry 299 in more detail.
Of course, the interrupt request entry 299 shown in FIG. 3
1s exemplary only and in no way limiting as to the length

and/or content of an interrupt request entry within the scope
of the present mvention. Use of the individual bits 300 to

307 of the mterrupt request entry 299 will vary based on the
particular application.

For mstance, 1 a first embodiment, the agent 130 or 132
causing an entry i1n the interrupt queue will preferably
always check the current interrupt entry before writing a
new interrupt entry to the imterrupt queue 100. In another
embodiment, the agent 130 or 132 causing an interrupt entry
in the mterrupt queue 100 will not check the current interrupt
entry before writing a new interrupt entry to the interrupt
queue 100 so long as the interrupt queue has room, 1.€., 15 not

full.

In particular, in the first embodiment wherein the imter-
rupting agent first checks the current entry in the interrupt
queue 100, the host 120 provides the interrupting agent 130
or 132 causing an interrupt request to be entered in the
interrupt queue with a 32-bit (or 16-bit or 64-bit depending
upon the particular processors used) starting address x of the
mterrupt queue 100 to indicate the location in the chosen

memory (€.g., I/O or memory space) of the lowest addres-
sable location 200 of the mterrupt queue 100 (FIG. 2). The

host 120 will also provide the interrupting agent 130, 132
with the maximum length of the mterrupt queue 100, e.g. an
8-bit register indicating a maximum length of 256 words. Of
course, the 1nvention 1s equally applicable to mterrupt
queues In any type of memory and of any length, but
preferably allowing more than one entry and more prefer-
ably allowing at least 256 entries.

The interrupt queue 100 may be operable in any of a
plurality of modes. For mnstance, the host 120 may maintain
another location in the memory 100 or a register 1n the host
120 containing one or more bits to indicate whether or not
the 1nterrupting agent 1s to check the current interrupt
request entry before writing a new 1nterrupt request entry.

US 6,240,483 B1

S

An 1nterrupting agent 130 or 132 will cause an interrupt
in the host 120 by writing an interrupt request entry in the
mterrupt queue 100. Preferably, one bit of the interrupt
request entry will be set to a predetermined logic state, e.g.,
with the most significant bit (MSB) set to a “1°. This set bit
will indicate to the host 120 that the relevant interrupt
encoded 1n the remaining bits of the mterrupt request entry

1s pending and that it should be serviced.

Preferably, information relating to the speciific source
and/or cause of the mterrupt will be 1included in the interrupt
request entry made 1n the mterrupt queue 100. For instance,
in the disclosed embodiment including a plurality of data
streams handled by the agents 130, 132, the relevant inter-
rupt request entry in the interrupt queue 100 may include the
data stream number and/or the iterrupt type.

Moreover, or alternatively, the interrupt request entry in
the interrupt queue 100 may include a desired or requested
priority of servicing for the corresponding device or data
stream.

Preferably, the host 120 will clear the MSB of the
interrupt request entry after 1t has completed servicing the
interrupt, and more preferably will clear the mterrupt request
entry by incrementing the current host pointer CHP by one.

Thus, in the first embodiment or mode of operation, the
interrupting agent 130 or 132 requesting servicing of an
interrupt by the host 120 will essentially 1ignore the value of
the current host pointer CHP. Instead, the imterrupting agent
130 or 132 will check the MSB 307 (FIG. 3) or other
designated bit of the current interrupt request entry. If the
MSB 1s 1n a first predetermined state (e.g., at a logic ‘0’), the
agent 130 or 132 will interpret the interrupt request queue
100 as having an empty location and accordingly write the
current interrupt request entry to the mterrupt queue 100. If,
on the other hand, the MSB is in a second state (e.g., at a
logic ‘1’), then the agent 130 or 132 will interpret the
interrupt queue 100 as being full, and thus the agent will not
write to the interrupt queue 100.

In the second embodiment of an interrupt request entry,
the 1nterrupting agent causing an interrupt request entry will
write to the interrupt queue 100 without first checking the
status of the current interrupt request entry (as indicated by
the most significant bit (MSB) of the interrupt request entry)
so long as the mterrupt queue has room, 1.e., 1s not full.
Otherwise, the second embodiment of an mterrupt request
entry operates as described with respect to the first embodi-
ment of an interrupt request entry.

In this embodiment, the host 120, after being interrupted,
preferably services as many interrupt request entries 1n the
mterrupt queue 100 as possible. Alternatively, the host 120
will service only one 1nterrupt request entry 1n the interrupt
queue 100 at a time.

After servicing the interrupts, the host 120 will update the
current host pointer CHP to indicate the location of the last

interrupt entry serviced 1n the mterrupt queue 100.

Other mechanisms may be utilized by the interrupting
agents to determine if and when the interrupt queue 100 1s
full. For mstance, each agent 130 and/or 132 may maintain
a mirror of the current host pointer CHP to compare to the
current host pointer of the host 120. Upon determination that
the mterrupt queue 100 1s full, the agents 130, 132 can not
write additional interrupt request entries to the interrupt
queue 100 until the host services an interrupt request entry
and thus makes room for a new interrupt request entry.

A full mterrupt queue 100 1s considered a catastrophic
event which, upon discovery by an agent 130 or 132, will
stop operation by an agent (e.g., will stop a data stream
transfer) until resolved. The agent may utilize a conventional
interrupt signal or otherwise indicate to the host 120 that
such a catastrophic event has occurred and requires 1mme-

10

15

20

25

30

35

40

45

50

55

60

65

6

diate resolution. When the host mterrupt service request
(ISR) clears the catastrophic event, the agents 130, 132 can
thereafter resume operation, €.g., proceed with processing a
data stream transfer.

In the first described mode of operation of the interrupt
queue 100, the burden 1s on the mterrupting agent to read
and check that the interrupt queue 100 1s empty before
writing an interrupt request entry to the interrupt queue 100.
In the second described mode of operation, the burden 1s on
the host 120 to update the current host pointer CHP.

Conventional mterrupt masking may be handled in soft-
ware resident in the host 120 as desired by the particular
application.

The invention takes advantage of memory already asso-
clated with or embedded 1 a host, €.g., dynamic random
access memory, by providing a memory based interrupt
queue. The present invention generally provides a scaleable
and tlexible architecture without increasing the required area
of silicon, particularly 1n systems or processors which
already 1nclude a shared block of memory.

Advantages of the present invention mclude reduction of
size, 1.€., required silicon, particularly 1in an interrupting
agent, by creating and maintaining a memory based interrupt
queue. Moreover, by maintaining a memory based interrupt
queue 1n accordance with the principles of the present
invention, a single agent can queue up a plurality of interrupt
signals for a host to service. Additionally, use of different
modes of operation of the memory based interrupt queue,
¢.g2., by checking or 1ignoring the current host pointer CHP,
provides flexibility, efficiency and trade-off possibilities in
an overall system design.

While the described embodiment of the present invention
allows for the elimination of an mterrupt status register and
related registers and circuitry with respect to one or more
agents, the present nvention 1s equally applicable to the
combination of an interrupt queue in accordance with the
principles of the present invention with a conventional
interrupt status register for the same or different agents.

While the invention has been described with reference to
the exemplary embodiments thereof, those skilled 1n the art
will be able to make various modifications to the described
embodiments of the invention without departing from the
true spirit and scope of the mvention.

What 1s claimed 1s:

1. A multi-processor system, comprising;:
a host;

a MEmory;

at least one agent coupled to said host on an interrupt
basis; and

an 1terrupt buifer maintained within said memory, said
interrupt butfer being adapted to contain a plurality of
interrupt requests to said host from said at least one
agent wherein said at least one agent writes an interrupt
request 1nto said mterrupt buffer, wherein said at least
one agent writes interrupt requests directly to said
interrupt bufler.

2. The multi-processor system according to claim 1,
wherein:

said 1nterrupt buifer includes at least 8 bits of information
with respect to each mterrupt from said at least one
agent.

3. The multi-processor system according to claim 2,
wherein:

™

said interrupt buffer has a capacity of at least 256 interrupt
requests from said at least one agent.

US 6,240,483 B1

7

4. The multi-processor system according to claim 1,
wherein:
sald memory 1s random access memory.
5. The multi-processor system according to claim 4,
wherein:
sald random access memory 1s dynamic random access
memory.
6. The multi-processor system according to claim 1,
wherein:
sald memory 1s embedded with said host.
7. A method of handling mterrupts, said method compris-
Ing:
establishing an interrupt queue in a memory location
accessible by a plurality of processors, said interrupt
queue 1ncluding at least two locations 1n a memory;

creating an agent current mterrupt pointer configured with
a starting address and a length of said iterrupt queue;

requesting an interrupt from a first of said plurality of
processors by writing an encoded interrupt request
entry to said interrupt queue;

incrementing said agent current mterrupt pointer by said
first of said plurality of processors; and

detecting said interrupt request by a second of said
plurality of processors by reading said encoded inter-
rupt request entry from said interrupt queue.
8. The method of handling interrupts according to claim
7, wherein said encoded interrupt request entry comprises:
a priority of said interrupt.
9. The method of handling interrupts according to claim
8, wherein said encoded interrupt request entry comprises:
a source of said interrupt.
10. The method of handling interrupts according to claim
7, wherein said encoded interrupt request entry comprises:
a cause of said interrupt.

11. The method of handling interrupts according to claim
7, wherein said interrupt queue comprises:

a circular buffer.
12. The method of handling interrupts according to claim
7, further comprising;:
incrementing said agent current interrupt pointer when an
interrupt request entry 1s added to said mterrupt queue.
13. The method of handling interrupts according to claim
7, further comprising:
decrementing said agent current mterrupt pointer when a
pending interrupt request entry 1s serviced.
14. A method of handling interrupts, said method com-
prising:
establishing an interrupt queue in a memory location
accessible by a plurality of processors, said interrupt
queue 1ncluding at least two locations 1n a memory;

creating an agent current mterrupt pointer configured with
a starting address and a length of said interrupt queue;

requesting an interrupt from a first of said plurality of
processors by writing an encoded interrupt request
entry to said interrupt queue;

incrementing said agent current interrupt pointer by said
first of said plurality of processors;

detecting said interrupt request by a second of said
plurality of processors by reading said encoded inter-
rupt request entry from said interrupt queue; and

requesting a second interrupt from said first of said
plurality of processors by writing a second encoded
interrupt request entry to said interrupt queue.

15. An apparatus for handing interrupts, comprising:

interrupt queue means for storing a plurality of interrupt
requests, said interrupt queue means being located 1n a

10

15

20

25

30

35

40

45

50

55

60

65

3

memory area accessible by a plurality of processors,
said 1nterrupt queue means including at least two
locations 1n a memory;

means for creating an agent current interrupt pointer
configured with a starting address and a length of said
Interrupt queue;

means for requesting an interrupt from a first of said
plurality of processors by writing an encoded interrupt
request entry to said interrupt queue means;

means for incrementing said agent current interrupt
pointer by said first of said plurality of processors; and

means for detecting said interrupt request by a second of

said plurality of processors by reading said encoded
interrupt request entry from said interrupt queue means.
16. The apparatus for handling interrupts according to

claim 15, wherein said encoded interrupt request entry
COmMPrises:

a priority of said interrupt.
17. The apparatus for handling interrupts according to

claim 15, wherein said encoded interrupt request entry
COmMPrises:

a source of said interrupt.

18. The apparatus for handling interrupts according to
claim 15, wherein said encoded interrupt request entry
COMPIISES:

a cause of said interrupt.
19. The apparatus for handling interrupts according to
claim 15, wherein said interrupt queue means comprises:

a circular bulifer.
20. The apparatus for handling interrupts according to
claim 15, further comprising:

means for incrementing said means for maintaining said
agent current interrupt pointer when an interrupt
request entry 1s added to said interrupt queue means.

21. The apparatus for handling interrupts according to
claim 15, further comprising:

means for decrementing said means for maintaining said
agent current interrupt pointer when a pending interrupt
request entry 1s serviced.

22. An apparatus for handling interrupts, comprising;:

interrupt queue means for storing a plurality of interrupt
requests, said interrupt queue means being located 1n a
memory area accessible by a plurality of processors,
said 1nterrupt queue means including at least two
locations 1n a memory;

means for creating an agent current interrupt pointer
configured with a starting address and a length of said
Interrupt queue;

means for requesting an interrupt from a first of said
plurality of processors by writing an encoded interrupt
request entry to said interrupt queue means;

means for incrementing said agent current interrupt
pointer by said first of said plurality of processors;

means for detecting said interrupt request by a second of
said plurality of processors by reading said encoded
interrupt request entry from said interrupt queue means,;
and

means for requesting, before said second processor
detects said first encoded interrupt request entry, a
second 1nterrupt from said first of said plurality of
processors by writing a second encoded interrupt
request entry to said interrupt queue means.

	Front Page
	Drawings
	Specification
	Claims

