US006240413B1
a2 United States Patent (10) Patent No.: US 6,240,413 B1
Learmont 45) Date of Patent: May 29, 2001
(54) FINE-GRAINED CONSISTENCY 5,742,813 * 4/1998 Kavanagh et al. ......cc.coen....ee, 707/8
MECHANISM FOR OPTIMISTIC 5,774,731 * 6/1998 Higuchi et al. .......couuenneneene. 395/726
CONCURRENCY CONTROL USING LOCK 5,812,134 9/1998  Pooser et al. .
GROUPS 5,835,910 * 11/1998 Kavanagh et al. .................. 707/103
5,857,197 1/1999 Mullins .....oeeiiiiiiiiiiiinnnn, 707/103
_ : 5,937,409 8/1999 Wetherbee ....ccoovvvvnvevvnnnnnn... 707/103
(75)  Inventor: ;rl}lg)“thy R. Learmont, Palo Alto, CA 5,083,020  11/1999 Sweeney et al. .oovvveerrrrvvene.. 305/705
(73) Assignees: Sun Microsystems, Inc., Palo Alto, CA FOREIGN FATENT DOCUMENTS
(US); BAAN Development, B.V., 0 472 812 Al 3/1992 (EP) .
Barneveld (NL) WO 95/03586  2/1995 (WO).
WO 95/04960  2/1995 (WO) .
(*) Notice:  Subject to any disclaimer, the term of this WO 97/03406 1/1997 (WO) .
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATTIONS
(21) Appl. No.: 09/106,119 SQL Tutorial: Introduction to Structured Query Language,
_ ’ Version 3.63 (May 1998), URL http://w3.one.net/~jhofl-
(22) Filed: Jun. 29, 1998 man/sqltut. htm#Compound Conditions.
Related U.S. Application Data The JDBC Database Access API (Apr. 1998), URL http://
(60) Provisional application No. 60/068,415, filed on Dec. 22, Java.sun.com/products/jdbe.
1997,
(List continued on next page.)
(51) Int. CL7 oo, GO6F 17/30 _ _
Primary Examiner—Thomas Black
(52) U.S.CL oo 707/8; 707/202; 707/103;  Assistant Examiner—Irantz Coby
707/10 (74) Attorney, Agent, or Firm—Finnegan, Henderson,
Farabow, Garrett and Dunner, L.L.P.
(58) Field of Search .............................. 707/8, 10:% 3;)120, (57) ABSTRACT
: A method and system for database concurrency control 1s
(56) References Cited provided that allows lock groups to contain columns of
U.S. PATENT DOCUMENTS different tables and allows an individual column of a table to
4580002 * 5/1986 Matick 364/900 be 1n more than one lock group. While using optimistic
5043.876 * 8/1991 TEITY oo 207/202 concurrency control for monitoring multiple transactions
5,261,069 * 11/1993 Wilkinson et al. v, 707/8  Modifying the same database, it allows the concurrent access
5.263.155 * 11/1993 WANE ooovoovooooeeoeeeeeeeeeeeoeeoeeee 707/8 ol asingle table when the individual columns of the table are
5,280,612 * 1/1994 Lorie et al. covoeeeeveveeeeeeennnne. 707/8 accessed by separate users or applications. This, in turn,
5,291,583 3/1994 Bapat . reduces the delay of waiting for a table to be free for access
5,301,297 = 4/1994 Menon et al. .coooovivrinnnnn. 395/425 and decreases the delay of rolling back transactions that are
5,499,371 371996 Henninger et al. . concurrently accessing a table. The reduction of these delays
g’ggg-‘gié 1% ggg gl[lenontetl al. 395/441 increases the overall data processing efficiency for the
,596, 1 en et al. .
5615362  3/1997 Jensen et al. . System.
5,706,506 1/1998 Jensen et al. .
5,717,924 2/1998 Kawal ....ccccovvvvveiiiiniiininnnnnnnn. 395/613 18 Claims, 3 Drawing Sheets
< STTF&U

560 -] DETERMINE UPDATED COLURNS

L
o9 4 SELECT ALOCK GROUP

i

ANY COLUMNE IN
THE LOCK GREUP
CHANGED?

i

MO

-__,-l—'_‘-\.

20

ADD ALL COLUMNS IN THE LOGK
GRCUP TO THE HASH TABLE

N

- ANY LOCK GROUPS VES
i LEFT T CHECK?

SZLECT & COLUMN IN
THE H&SH TABLE

210 "]

DATABASE VALUE

VWHILE PROCESSING?

216 s}

]
——"TORE COLUMNE?

FOR THIS COLUMN CHANGED

214
)

YES

* ABCRT i

i | WRITE UPDATED DATA
21— T DATABASE

(o )




US 6,240,413 B1
Page 2

OTHER PUBLICAITONS

O’Brien, Stephen K., “Turbo Pascal 5.5: The Complete
Reference”, Osborne/McGraw—Hill (1989), pp. 500-522.
Gosling, Joy, and Steele, “The Java™ Language Speciiica-
tion”, Addison—Wesley (1996).

Hamilton, Cattell, and Fisher, “JDBC Database Access with
Java™”  Addison—Wesley (1997).

R.G.G. Cattell et al., “Object Database Standard: ODMG
2.0”, Morgan Kaufmann Publishers, Inc. (1997).
Campione, Mary and Kathy Walrath, “The Java™ Tutorial”,
Addison—Wesley (1996).

Arnold and Gosling, “The Java™ Programming [Language”,
Addison—Wesley (1996).

Agrawal, D. et al., “Distributed Multi—version Optimistic
Concurrency Control for Relational Database,” Mar. 1986,

pp. 416—421.

Ahad, R. and T. Cheng, “HP OpenODB: An Object—Ori-
ented Database Management System for Commercial Appli-
cations,” Hewlett—Packard Journal vol. 44, No. 3, Jun. 1993,
pp. 20-30.

Alashqur, Abdallah et al.: “O-R Gateway: A system for
Connecting C++ Application Programs and Relational Data-
bases,” USENIX C++ Technical Conference Proceedings,
10-13 Aug. 1992, Portland, OR, U.S., pp. 151-169,
XP000534151.

“Customizable Four Pane Layout for Database Table Defi-
nition,” IBM Technical Disclosure Bulletin, vol. 35, No. 7,
Dec. 1992, pp. 268-269.

“Automatically Revising Function Prototypes in C and C++

Implementations of System Object Model Classes,” IBM
Technical Disclosure Bulletin, vol. 37, No. 08, Aug. 1994,

pp. 363-365.
“The Enterprise Objects Framework,” Enterprise Objects

Framework: Building Reusable Business Objects, Jul. 1994,
pp. 1-13.

“FAST and Secure Stored Procedures for a Client/Server
DBMS.,” IBM Technical Disclosure Bulletin, vol. 38, No.
01, Jan. 1995, pp. 79-82, XP000498695, New York, U.S.

Gantimahapatruni, S. et al., “Enforcing Data Dependencies

in Cooperative Information Systems,” IEEE, May 12, 1993,
pp. 332-341.

Heiler, S. et al.: “Object Views: Extending the Vision,”
Proceedings of the International Conference on Data Engi-

neering, Los Angeles, Feb. 5-9, 1990, No. Cont. 6, Feb. 05,
1990, pp. 86-93, XP000279935.

Kleissner, C., “Enterprise Objects Framework, A Second
Generation Object—Relational Enabler,” Jun. 1995, pp.
4559,

Lindholm, T. and F. Yellin, “The Java Virtual Machine
Specification,” Second Edition, Apr. 1999, pp. 1-473.

Qian, X. et al., “Query Interoperation Among Object—Ori-
ented and Relational Databases,” IEEE, Mar. 6, 1995, pp.

271-8.

“Sun Simplifies Database Programming with Java Blend,”
Press Release, Sun Microsystems, Mountain View, CA,

U.S., Aug. 21, 1997, pp. 1-3.

ToPlink, “The Industry Standard for Persistence Product, A
White Paper: The Object People,” Canada, 1997.

Wang, S., “Improvement of Concurrency Control Within
Object—Oriented Database Systems,” IEEE, Apr. 5, 1990,

pp. 68=70.

Hans Bank, “Evaluation Process,” Memo: OQL., Evaluation
Process, Sep. 15, 1997 (Rev. 0.11), pp. 1-7.

“Applications 1 Java and Extended Java,” Sep. 28, 1998,
pp. 1-21.

* cited by examiner



US 6,240,413 Bl

Sheet 1 of 3

May 29, 2001

100 "
m vl m
m Nd m
vl " " —
" H " 143}
3svavLya K — 200 SN — ™ 30IA30 LNdNI
” 0l 90| 92l gcr | 0el | [ielfoci{cct " an
“ | 3HOVO 319VL HSVH |
“ IN3FO YIOUNYWN | AN “ AV1dSIC
' 1 30IA30 JOVHOLS NOILOVYSNYH.L | “
“ AHOWIN NIVIA ... 1 —

U.S. Patent




U.S. Patent May 29, 2001 Sheet 2 of 3 US 6,240,413 Bl

( START )
200 | DETERMINE UPDATED COLUMNS |

509 SELECT A LOCK GROUP

ANY COLUMNS IN
THE LOCK GROUP
CHANGED?

ADD ALL COLUMNS IN THE LOCK
2006 GROUP TO THE HASH TABLE

ANY LOCK GROUPS
LEFT TO CHECK?

204

YES
208

— NO

T_

SELECT A COLUMN IN
210 ~—"] THE HASH TABLE

214

YES ABORT

DATABASE VALUE
FOR THIS COLUMN CHANGED
WHILE PROCESSING?

212

216 %

| YES MORE COLUMNS?

NO

WRITE UPDATED DATA |
218 TO DATABASE

e

END

FIG. 2




U.S. Patent May 29, 2001 Sheet 3 of 3 US 6,240,413 Bl

T1 UPDATES T1 COMMITS ITS
ATTRIBUTES CHANGES TO
CITY AND STREET CITY AND STREET
Y , 'l' . T1
COMPLETES

T2 UPDATES T2 COMMITS ITS
LASTNAME CHANGES TO LASTNAME

MYCUSTOMERTABLE
LOCK GROUP: ADDRESS T2
COMPLETES

CITY

STREET

AREA CODE T3 ATTEMPTS TO
LOCK GROUP: CUSTOMERNAME T3 UPDATES COMMIT CHANGES

FIRSTNAME AREA CODE TO AREA CODE

LASTNAME
LOCK GROUP: PHONE
AREA CODE ‘_J___J_‘_, T3 DOES NOT
I COMPLETE

PHONE NUMBER

SYSTEM DETECTS

T1'S PRIOR CHANGE

TO LOCK GROUP ADDRESS
AND ABORTS T3

T4 COMMITS

T4 UPDATES CHANGES
PHONE _NUMBER TO PHONE_NUMBER

__J—_—J_. T4

COMPLETES

TIME




US 6,240,413 B1

1

FINE-GRAINED CONSISTENCY
MECHANISM FOR OPTIMISTIC
CONCURRENCY CONTROL USING LOCK
GROUPS

RELATED APPLICATIONS

The following identified U.S. patent applications are
relied upon and are incorporated in their entirety by refer-
ence 1n this application.

Provisional U.S. Patent Application Ser. No. 60/068,415,
entitled System and Method for Mapping Between Objects
and Databases,” filed on Dec. 22, 1997.

U.S. patent application Ser. No. 09/106,186, “Object

Relational Mapping Tool That Processes Views,” and filed
on the same date herewaith.

U.S. patent application Ser. No. 09/106,189, entitled

“Evolution of Object-Relational Mapping Through Source
Code Merging” and filed on the same date herewith.

U.S. patent application Ser. No. 09/105,957, entitled
“Integrating Both Modifications To Source Code and Modi-
fications To A Database Into Source Code By An Object-

Relational Mapping Tool,” and filed on the same date
herewith.

U.S. patent application Ser. No. 09/106,210, entitled

“Rule-Based Approach to Object-Relational Mapping
Strategies,” and filed on the same date herewaith.

U.S. patent application Ser. No. 09/106,212, entitled

“User Interface for the Specification of Lock Groups,” and
filed on the same date herewith.

U.S. patent application Ser. No. 09/106,211, entitled

“User Interface for the Specification of Index Groups Over
Classes,” and filed on the same date herewith.

U.S. patent application Ser. No. 09/106,188, entitled
“Method and Apparatus for Creating Indexes in a Relational
Database Corresponding to Classes in an Object-Oriented
Application,” and filed on the same date herewith.

U.S. patent application Ser. No. 09/106,190, entitled

“Method and Apparatus for Loading Stored Procedures in a
Database Corresponding to Object-Oriented Data
Dependencies,” and filed on the same date herewaith.

U.S. patent application Ser. No. 09/106,046, entitled “An
Integrated Graphical User Interface Method and Apparatus
for Mapping between Objects and Databases,” and filed on
the same date herewith.

U.S. patent application Ser. No. 09/105,955, entitled

“Methods and Apparatus for Efficiently Splitting Query
Execution Across Client and Server 1n an Object-Relational
Mapping,” and filed on the same date herewaith.

FIELD OF THE INVENTION

The present invention generally relates to data processing,
systems and, more particularly, to a method and system for
using lock groups to implement fine-grained consistency for
optimistic concurrency control.

BACKGROUND OF THE INVENTION

Computer systems often use databases to store and man-
age large amounts of data. These databases usually have
multiple clients that use and manipulate this data. Clients
typically manipulate data in the form of various “read” and
“write” operations that either allow the client to retrieve data
from the database or allow the client to modity data in the
database. A typical client transaction may have several read
and write operations, and 1n a database, 1t 1S common for

10

15

20

25

30

35

40

45

50

55

60

65

2

many transactions to concurrently execute to 1mprove pro-
cessing elficiency. In such a case, 1f access to the database
by each transaction 1s allowed freely, the consistency among
the data can be jeopardized.

It 1s common for many database clients, or multiple
procedures on a single client machine, to seek concurrent
access to a database system 1n order to read data from the
database and write data to the database. However, each
client needs to interact with the database free from the

interference of others. That 1s, during the course of a client’s
transaction to the database—reading and modifying a set of
data from the database—that portion of the database must
remain unchanged by other clients. To prevent this problem,
concurrency control 1s used by database systems to govern
concurrent access to the database system. It ensures the
integrity of each transaction 1in a multi-user environment.

One type of concurrency control 1s “optimistic concur-
rency control.” Optimistic concurrency control means that
the check point for collisions between transactions 1s at the
end of a transaction. With optimistic concurrency control, 1t
1s assumed that a transaction will finish before another
transaction attempts to change the same data. The transac-
tion reads the necessary data, mternally makes its data
updates, and finally determines if any of the data has
changed before writing the updates to the database. When
the client 1s ready to actually commit 1ts data modifications
to the database, the system checks if that data has been
modified by any other transaction since the time the client’s
transaction first read the data. If there has been no change to
the particular data, then the client’s transaction can com-
plete. If any data has been changed, then the system rolls
back the client’s updates and notifies the client so that 1t can
retry 1ts transaction, if desired. A “roll back” refers to the
transaction being canceled and all data being restored to its
original state before the transaction started. While optimistic
concurrency control can provide significant performance
improvement by avoiding the delay of initially securing the
data, 1t 1s also possible that the system must roll back a
transaction if another process modifies the same data.

Referring now to object-oriented systems and program-
ming languages, such systems use “classes” containing both
data members that store data and function members (or
methods) that act upon the data. Classes form templates for
the creation of “objects,” representing 1nstances of a class.
Classes also define methods, which are procedures that
operate on objects of the same class. An exemplary object-
oriented programming language 1s the Java™ programming
language described 1n “The Java Programming Language,”
Ken Arnold, James Gosling, Addison-Wesley, 1996, which
1s mncorporated herein by reference. For further description
of the Java language, refer to “The Java Language
Specidication,” James Gosling, Bill Joy, Guy Steele,
Addison-Wesley, 1996, which 1s incorporated herein by
reference.

When accessing databases in object-oriented systems,
some systems use “lock groups” to implement optimistic
concurrency control. With reference to optimistic concur-
rency control, a lock group, despite 1ts name, does not refer
to locking blocks of data. Instead, a lock group provides a
collision detection mechanism. In particular, lock groups
specily one or more fields to be modified by only one client

during a transaction by that client. Lock groups are thus
useful for managing data 1mn a database. For example, 1f a

customer object includes fields for a customer name and

address, a lock group may specify the name and address
fields so that, for example, one client does not change the
data in the name field while another client changes data in



US 6,240,413 B1

3

the corresponding address field. In other words, the data in
the name and address fields can only be changed by one
client during a transaction to avoid, for example, an 1ncor-
rect address being entered for a particular name.

Lock groups are used to determine conflicts when a client
commits the transaction. When a client performs a transac-
tion modifying data 1n a particular object and attempts to
commit the transaction to save the modifications, the system
determines if any lock groups include any of the modified
fields, and if so, 1t further determines if any other application
modified any field of those lock groups. The system does not
commit the transaction and modify the database if another
client made such modifications.

A conventional lock group includes all fields 1n an object.
However, objects may include many fields and a client will
often only modify a small set of fields in an object. Many
conilicts occur when a lock group contains a large number
of fields because only one client may modily data 1n an
entire object during a transaction, which effectively prevents
other clients from modifying any data in the object during
the transaction.

Conventional object-oriented systems using optimistic
concurrency control to access a database do not allow the
client to modify some fields of an object without stopping
other transactions from simultaneously modifying other
fields 1in the same object. In conventional systems, 1f one
transaction modifies a field of an object, no other transaction
may modify another field in the same object. Consequently,
conventional systems do not allow a field to simultaneously
belong to more than one lock group. Additionally, conven-
tional lock groups do not contain fields of different classes.
These limitations slow the system by stopping different
applications from simultancously accessing different fields
of the same object. It 1s therefore desirable to improve such
systems.

SUMMARY

Methods and systems consistent with the present inven-
tfion satisly this and other desires by providing a method for
allowing lock groups to contain fields in different classes and
allowing a field to be 1 more than one lock group.

In accordance with methods consistent with the present
invention, a method 1s provided 1 a data processing system
having lock groups and classes with fields. This method

receives an indication of a lock group specitying that the
lock group contains a first field from a first class and a
second field from a second class and creates the specified
lock group. It further receives a request to commit a trans-
action affecting a value for one of the fields 1n the lock
oroup, and determines whether to commit the transaction
based on whether at least one of the fields 1n the lock group
was modified during the transaction.

Methods and systems consistent with the present inven-
tion allow the concurrent access of a single object when the
individual fields of the object are accessed by separate
clients. This, in turn, reduces the delay of waiting for an
object to be free for access and decreases the delay of rolling
back transactions that are concurrently accessing an object.
The reduction of these delays increases the overall data
processing efficiency for the system.

The above features, other features and advantages of the
present nvention will be readily appreciated by one of
ordinary skill 1n the art from the following detailed descrip-
tion of the preferred implementations when taken 1n con-
nection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate an

10

15

20

25

30

35

40

45

50

55

60

65

4

implementation of the invention and, together with the
description, serve to explain the advantages and principles
of the mvention. In the drawings,

FIG. 1 1s a diagram of a computer system 1n accordance
with methods and systems consistent with the present inven-
tion;

FIG. 2 1s a flowchart of a method for committing a

transaction 1 accordance with methods and systems con-
sistent with the present invention; and

FIG. 3 1s a diagram of an example of concurrent trans-
actions 1n accordance with methods and systems consistent
with the present mvention.

DETAILED DESCRIPTION

Introduction

Methods and systems consistent with the present mnven-
fion use optimistic concurrency control and allow multiple
clients to simultaneously modity the same object provided
that they modify fields in different lock groups. They further
allow an optimistic concurrency control lock group to con-
tain fields of different classes. Additionally, they allow a
single field to be 1n more than one lock group. These systems
allow “fine-gramned” consistency for concurrent access to a
database. Fine-grained consistency refers to the fact that
individual fields of an object may be locked locking the
entire object, thereby allowing other transactions to concur-
rently access other fields of the object. Methods and systems
consistent with the present invention allow increased con-
current access to objects. They reduce the delay of waiting

for all fields of an object to be free for access and, 1n turn,
reduce transaction roll backs.

Generally, lock groups are used to specily related data
items within an object. While a user modifies data within an
object, the user may not affect the entire object. If the data
1s also part of a lock group, the transaction only impacts the
set of fields indicated by the lock group. Other processes are
free to access and update data within the same object, as long
as that data 1s outside of the lock group. For example, it
might be possible for some other process to change fields 1n
the object without conflicting with the transaction’s changes.

When ready to commit data changes, the system checks
the original, unmodified copy of the data against the current
data (at commit time) in the database. If the data is the same,
the transaction commits 1its changes to the database.
However, if it detects a difference, then the system scans the
lock groups for this object and checks for a collision. That
1s, 1t checks to determine whether 1t 1s about to commit a
change to a field that 1s specified within a lock group, and
during the time since 1t read the data and prepared to commiut
its changes, some other client has modified either the same
field or another field also specified within the lock group. It
so, this 1s a collision condition and the process does not
commit 1ts changes. Note that there can be multiple lock
ogroups for an object, and these lock groups may overlap.

In one embodiment, a client using a system consistent
with the present invention establishes the lock group as a
oroup of fields that are interdependent. A lock group can
correspond to a single field or any combination of fields in
any number of classes. The user can specify those fields that
together should be treated as a lock group, and often those
fields whose values depend on each other are grouped
together. When an application modifies a field, its transac-
fion may be adversely aflected if another application modi-
fies or updates any field that belongs to any lock group that
contains the specified field.




US 6,240,413 B1

S

In one 1mplementation of the present invention, the sys-
tem operates 1n an object-relational mapping tool that maps

relational database information into objects and vice versa
where the techniques described below are performed when
fransactions are committed. Such a mapping tool 1s further
described 1n co-pending U.S. application Ser. No. 09/106,
212, entitled “User Interface for the Specification of Lock
Groups,” which has previously been mcorporated by refer-
ence.

Such a mapping tool generates source code from a schema
in a relational database containing tables. The generated
source code contains classes that contain fields, and these
classes and fields are generated from the tables and columns
of the relational database. The mapping tool maps a table to
a class and maps each column of the table to a field in the
class. Users can use the mapping tool to define lock groups
on the fields of the classes, however, these lock groups are
actually effectuated by lock groups on the corresponding
columns i1n the tables corresponding to the objects. For
purposes of clarity, the lock groups will be described below
as bemng defined on the columns of tables 1n the database.
However, one skilled 1n the art will appreciate that the lock
groups can also be viewed as being implemented on fields of
a class or other elements 1n a data structure.

System Details

FIG. 1 1s a block diagram of a data processing system 100
suitable for use with methods and systems consistent with
the present invention. The data processing system 100
comprises a computer system 101 connected to the Internet
103. Computer system 101 includes a central processing unit
(CPU) 104, a main memory 106, and a secondary storage
device 110 mterconnected via bus 102. Additionally, the
computer system 100 includes a display 112, and an 1nput
device 114. The main memory 106 contains a virtual
machine (VM) 120 such as the Java™ Virtual Machine
(JVM), a hash table 122, a client 126, and a transaction
manager 128. The transaction manager 128 also contains a
cache 130 used to temporarily store updated data before
committing it to the database. As described below, the hash
table 122 may be implemented as any form of temporary
storage and 1s used to temporarily store columns of tables
belonging to lock groups. The Java™ Virtual Machine 1s a
well-known execution vehicle for computer programs and 1s

described 1n greater detail 1n Lindholm and Yellin, The Java
Virtual Machine Specitfication, Addison-Wesley, 1996,

which 1s incorporated herein by reference. The VM 120 1s
contained a Java Runtime Environment (JRE) 121. The
client 126 utilizes the database 124 by using the transaction
manager 128. The transaction manager 128 performs trans-
actions on the database 124 using fine-grained concurrency
control as will be further described below. The database 124
stores data against which transactions may be performed.
This database 124 may reside on a server computer (not
shown) or, in another implementation consistent with the
present mvention, may also reside on the computer 101.

One skilled 1n the art will appreciate that the hash table
122 and other aspects of methods and systems consistent
with the present invention may be stored on or read from any
other computer readable media besides memory like sec-
ondary storage devices, such as hard disks, floppy disks, and
CD ROM, or a carrier wave from a network 103, such as the
Internet. Although the hash table 122 1s described as oper-
ating in a VM 120, one skilled 1n the art will appreciate that
the hash table 122 may operate in other programs, like
operating systems, and may operate in other object-oriented
or non-object oriented programming environments.

10

15

20

25

30

35

40

45

50

55

60

65

6

Additionally, one skilled 1n the art will also appreciate that
data processing system 100 may contain additional or dif-
ferent components.

Method

FIG. 2 depicts a flowchart of the steps performed by the
transaction manager 128 when implementing lock group
transactions consistent with the present invention. The trans-
action manager 128 receives a transaction request from a
client 126. During a transaction, the transaction manager
128 stores local copies of the columns in memory (i.e., a
cache) and performs operations on these copies of the
columns, using the well-known technique of caching. Only
at commuit time does the transaction manager 128 update the
copy of the columns 1n the database 124. Generally, when 1t
1s time for the transaction to commit, 1f a column of a lock
group 1s to be updated, the transaction manager 128 checks
whether all columns 1n that lock group remained unchanged
in the database 124 during the transaction. If so, the trans-
action manager 128 commuts the transaction. Otherwise, the
transaction manager 128 rolls back the transaction.

When it 1s time to commit the changes to the database
124, the first step performed by the transaction manager 128
1s to determine which columns were updated 1n the cache
130 by the transaction (operation 200). To accomplish this,
the transaction manager 128 at the beginning of the trans-
action cached the initial value of the columns on which the
transaction 1s to operate and now compares these values with
the current values of the columns 1n the cache 130; columns
that do not have the same value have been updated 1n the

cache 130.

Next, the transaction manager 128 selects a lock group
(operation 202) and determines if any of the columns of the
lock group were updated in the cache 130 during the
transaction (operation 204). If any of the columns of the lock
oroup were changed, all of the columns of that lock group
are added to the hash table 122 (operation 206), and if there
are more lock groups to process (operation 208), processing
confinues to operation 202.

Otherwise, the hash table 122 has been populated with
columns from the lock groups that have changed, and the
transaction manager 128 selects a column from the hash
table (operation 210). The transaction manager 128 then
determines whether the database value for this column has
changed 1n the database 124 during the processing of the
transaction (operation 212). To make this determination, the
fransaction manager 128 compares what the database value
for the column was at the beginning of the transaction with
the database value for the column at the end of the trans-
action (commit time). If the database value for the column
has changed 1n the database 124 during the transaction, the
transaction manager 128 rolls back the transaction by abort-
ing it (operation 214). If, however, the value has not
changed, another column is selected (operation 216). If none
of the columns 1n the hash table 122 had database values that
changed in the database 124 during the transaction, the
fransaction manager 128 commuts the transaction, and then
updates the columns 1n the database based on the value of
the columns in the cache 130 (operation 218).

EXAMPLE

For example, a customer table might consist of the
columns lastname, firstname, street, city, zip_ code, area__
code, phone_ number, and sales_ representative. It might
not make sense to define a lock group that contains both
lastname and sales_ representative because, 1n most



US 6,240,413 B1

7

environments, changes to the values of these two columns
would be independent of each other. (However, if a customer
were assigned a sales representative based simply on last

name, then these columns would be dependent on each
other.)

However, because the address components—street, city,
z1p_ code, area_ code, and phone_number—are
interrelated, they might be placed together in one lock
oroup. Having this information in the same lock group
ensures that if two clients were simultancously updating
address information for the same customer, one client would
not be updating the phone_ number while the other client
was updating the customer’s area_ code. However, two
processes can simultaneously update the same customer
table provided that the data they access 1s not 1n the same
lock group, thus improving concurrent access. Since the
same column can be 1n multiple lock groups, in the above
example, the area_ code might be in both the Phone and
Address lock groups.

FIG. 3 1llustrates multiple transactions accessing the same
table using lock groups 1n an optimistic concurrency control
situation 1n accordance with methods and systems consistent
with the present invention. In this example, MyCustomer-
Table has six data members divided into three lock groups
(Phone, Address, and CustomerName). Four transactions
(T1-T4) simultancously access different attributes within
the same MyCustomerTable instance. Transaction T1 modi-
fies two attributes—<city and street, while transaction T2
modifies lastname. They both complete because T1 commits
before any changes are committed by any of the other
fransactions, and none of the columns modified by T1
belong to any lock group containing the columns modified
by T2.

However, the system does not let transaction T3 complete
its modification to area_ code because other attributes in
lock group Address changed after T3 read area_ code, but
before 1t completed 1ts modifications. These changes were
committed to the database 124 by T1.

Note, though, that the system allows T4 to commit
because there are no conflicting changes. If T4 had
attempted to change areca_ code, there would have been a
conilict because arca_code belongs to the lock groups
Address and Phone, and T1 already changed other attributes
that belong to Address.

Transaction T3 and transaction T4 potentially had a
conilict because of modifications to attributes 1n lock group
Phone, which has the attributes area_ code and phone
number. T4 can commit its changes to phone_ number
because the database values for the attributes in lock group
Phone remain unchanged from when T4 read them—due to
13’s failed attempt to modily area_ code. However, had T3
succeeded, then T4 would have failed.

Conclusion

Methods and systems consistent with the present inven-
tion allow a lock group to contain individual columns of
different tables. They also allow a column 1n a table to
belong to more than one lock group. This permits transac-
fions to concurrently access a single table 1n the database 1t
the mdividual columns of the lock groups do not overlap.
The concurrent access of a single table 1n the database
increases the overall data processing efficiency by reducing
the delay of transaction roll backs and the delay of waiting
for an table to be released from a lock group.

The foregoing description of an implementation of the
invention has been presented for purposes of 1llustration and

10

15

20

25

30

35

40

45

50

55

60

65

3

description. It 1s not exhaustive and does not limit the
invention to the precise form disclosed. Modifications and
variations are possible 1n light of the above teaching or may
be acquired from practicing of the invention. The scope of
the 1nvention 1s defined by the claims and their equivalents.

What 1s claimed 1s:

1. Amethod 1n a data processing system having a database
and classes with fields, the method comprising:

receiving an indication of a lock group specifying a first
field from a first class and a second field from a second
class such that the first class has at least one other field
that 1s not contained by the lock group;

receiving a request to commit a transaction to the database
alfecting a value for one of the fields in the lock group;
and

determining whether to commit the transaction to the
database based on whether at least one of the fields 1n
the lock group was modified by another transaction
during performance of the transaction.
2. The method of claim 1, wherein the determining further
includes:

aborting the transaction when at least one of the fields of
the lock group was modified during the transaction.
3. The method of claim 1, wherein the determining further
includes:

committing the transaction when the fields of the lock
oroup were unchanged during the transaction.
4. The method of claim 1, wherein the class 1s a table and
the fields are columns, and wherein the receiving further
includes:

receiving an indication of a lock group specifying that the
lock group contains a first column from a first table and
a second column from a second table.
5. Amethod 1n a data processing system having a database
and a class with fields, the method comprising;:

receiving an 1ndication of two lock groups specilying that
the two lock groups each share a first of the fields such
that the class has at least one other field that is not 1
at least one of the lock groups;

receiving a request to commit a transaction to the database
alfecting a value of a second off the fields in one of the
lock groups; and

determining whether to commit the transaction based on
whether at least one of the fields 1n the one lock group
was modified during the transaction.
6. The method of claim 5, wherein the determining further
includes:

aborting the transaction when at least one of the fields of

the one lock group was modified during the transaction.

7. The method of claim 5, wherein the determining further
includes:

committing the transaction when the fields of the one lock
ogroup were unchanged during the transaction.
8. Amethod 1n a data processing system having a database
with database classes and a hash table, the method compris-
ng:

™

specifying a lock group with fields from different database
classes such that at least one of the classes has at least

one field not contained in the lock group;

initiating a transaction by a client such that at least one of
the fields 1n the lock group 1s updated;

receiving a request to commit the transaction, further
including the steps of:
determining which of the fields were updated by the
transaction;




US 6,240,413 B1

9

determining which of the lock groups contain the
updated fields;
adding the updated ficlds of the determined lock groups

to the hash table;
determining whether the added fields were updated 1n
the database by another client during the transaction;

aborting the transaction when 1t 1s determined that at least
one of the added fields was updated 1n the database by
another client during the transaction; and

committing the transaction when it 1s determined that the
added fields remained unchanged 1n the database dur-

ing the transaction.
9. A computer-readable memory device comprising:

a first class with a first field defined to be a member of a
lock group, the first class having at least one other field
not contained 1n the lock group; and

a second class with a second field defined to be a member
of the lock group such that a determination of whether

5

10

15

to commit a transaction requested by a client 1s based

on whether the first field or the second field were
updated by another client during the transaction.
10. A data processing system having a database with
database classes and a hash table, the data processing system
comprising:

means for specitying a lock group with fields from
different database classes such that at least one of the
classes having at least one field not contained i the
lock group;

means for initiating a transaction by a client such that at
least one of the fields 1 the lock group 1s updated;

means for receiving a request to commit the transaction,

further including:

means for determining which of the fields were updated
by the transaction;

means for determining which of the lock groups con-
tain the updated fields;

means for adding the updated fields of the determined
lock groups to the hash table;

means for determining whether the added fields were
updated in the database by another client during the
transaction;

means for aborting the transaction when 1t 1s determined
that at least one of the added fields was updated 1n the
database by another client during the transaction; and

means for committing the transaction when 1t 1s deter-
mined that the added fields remained unchanged in the
database during the transaction.

11. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method, the data processing system having a database and
classes with fields, the method comprising;:

receiving an 1ndication of a lock group specitying a first
field from a first class and a second field from a second
class such that the first class has at least one other field

that 1s not contained by the lock group;

receiving a request to commit a transaction to the database
alfecting a value for one of the fields in the lock group;
and

determining whether to commit the transaction to the
database based on whether at least one of the fields 1n
the lock group was modified during the performance of
transaction.

25

30

35

40

45

50

55

60

10

12. The computer-readable medium of claim 11, wherein
the determining step of the method further mcludes:

aborting the transaction when at least one of the fields of
the lock group was modified during the transaction.
13. The computer-readable medium of claim 11, wherein
the determining step of the method further includes:

committing the transaction when the fields of the lock

ogroup were unchanged during the transaction.

14. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method, the data processing system having a database and a
class with fields, the method comprising:

receiving an 1ndication of two lock groups specitying that
the two lock groups each share a first of the fields such
that the class has at least one other field that is not 1
at least one of the lock groups;

receiving a request to commit a transaction to the database
alfecting a value of a second of the fields in one of the
lock groups; and

determining whether to commit the transaction based on
whether at least one of the fields 1n the one lock group
was modified during the transaction.

15. The computer-readable medium of claim 13, wherein

the determining step of the method further includes:

aborting the transaction when at least one of the fields of

the one lock group was modified during the transaction.

16. The method of claim 14, wherein the determining step
further 1ncludes:

committing the transaction when the fields of the one lock
oroup were unchanged during the transaction.
17. A data processing system comprising:

a secondary storage device with a database containing
classes with fields;

a memory further mncluding:

a transaction manager configured to receive a definition
of a lock group containing a field 1n a first class and
a field 1n a second class such that the first class has
at least one other field that 1s not contained by the
lock group, configured to receive from a client a
request to commit a transaction wherein a first one of
the fields of the lock group 1s modified, and config-
ured to abort the transaction when a second one of
the fields of the lock group is changed 1n the database
by another client during the transaction; and

a processor for running the transaction manager.
18. A data processing system comprising:

a secondary storage device with a database containing
classes with fields;

a memory further mncluding:

a transaction manager configured to receive a definition
of two lock groups sharing a first one of the fields of
a class such that the class has at least one other field
that 1s not 1n at least one of the lock groups, config-
ured to receive from a client a request to commit a
transaction wherein a second one of the fields of one
of the two lock groups 1s modified, and configured to
abort the transaction when a third one of the fields of
the one lock group containing the second one of the
fields 1s changed 1n the database by another client
during the transaction; and

a processor configured to run the transaction manager.




UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,240,413 Bl Page 1 of 1
DATED : May 29, 2001
INVENTOR(S) : Timothy R. Learmont

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 8,
Line 42, “off” should read -- of --.

Signed and Sealed this

Fourteenth Day of May, 2002

Attest:

JAMES E. ROGAN
Atntesting Officer Director of the United States Patent and Trademark Office



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

