(12) United States Patent

Kumar et al.

(10) Patent No.:
45) Date of Patent:

US006237064B1
US 6,237,064 B1

*May 22, 2001

(54)

(75)

(73)

(21)
(22)
(51)

(52)
(58)

CACHE MEMORY WITH REDUCED

LATENCY

(56)

Inventors: Harsh Kumar, Freemont; Gunjeet D. 5 949 78D
Baweja, Sunnyvale; Cheng-Feng 5 577 977
Chang, Cupertino, all of CA (US) 5,623,632

5,745,729

Assignee: Intel Corporation, Santa Clara, CA 5,943,686

(US)

* 9/
* 11/]
* 4]
* 4]
* 8/

References Cited

1993
1996
1997
1998

1999

* cited by examiner

Notice: This patent 1ssued on a continued pros-

ccution application filed under 37 CFR
1.53(d), and 1s subject to the twenty year
patent term provisions of 35 U.S.C.

154(a)(2).

Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 09/027,539

Filed: Feb. 23, 1998

GO6F 12/00; GO6F 12/08
ceveeneenenneee 11171225 711/146
711/122, 146;

Zatman LLP
(57)

U.S. PATENT DOCUMENTS

SEEETS ovvvviriiinniiiiiieieeenanes 71
Finnell et al. .oovvvevveneiennnnenns 71]
Liu et al. oeeereeeeeeeeeaanenns 71]

Greenley et al. .................... 71
Arimillt et al. ...l 71

Primary Fxaminer—Matthew Kim
Assistant Examiner—Matthew D. Anderson
(74) Attorney, Agent, or Firm—3Blakely, Sokolo:

ABSTRACT

1/122
1/122

/144
/131

/146

1, Taylor &

The present mvention provides a method and a data pro-

cessing system for accessing a memory of a data processing
system, the data processing system including a first and at
least a second level memory for storing information. The
method 1ncludes 1ssuing a memory request to the first level
memory, and 1ssuing the memory request to the second level

395/287

CPU CORE

EXECUTION UNIT
180

LO

QUEUE
157

LO

ARRAY

L2

TAG
135

ke

12 TAG
QUEUE

I

145

;

Y

CACHE

L1

160

19 Claims, 3 Drawing Sheets

memory at substantially the same time the memory request
1s 1ssued to the first level memory.

______________

DATA
ARRAY

140

/

CACHE
155

—

QUEUE

L1

142

*

h 4

FSB

QUEUE
168

'

QUEUE [™ =
)

1 SNOOP

BUS CONTROLLER

130

190

100

FRONT SIDE BUS>

............................................................................

MEMORY <::> MEMORY
CONTROLLER

110

105




US 6,237,064 B1

Sheet 1 of 3

May 22, 2001

U.S. Patent

. o L 4dMOl4

a3 T10481NOD
AJONWHN AMOW3N SNg 4dIS LINOdH

NIVIN om._‘_

e o e o e e el D e e i T A e o e ] R T A e R A e R e e S e

0S|
HITI0HINOD SN
891
9D a4
m_mwmo C 5 3N3IND
" 9 3

mirTEmaTd—44ELLiLLLES 2L [ -—-r-
.
.

oVl
NG 59l - JHOVD
0z}

el

...............................................................................................................................................

St T bttt ek bl e o T MR g s ey TCIE TR Dol T b B ol sk e e e e B ol et B e L T T, e e e e e U gt e e e e e T L e L e e e el I e e e T I e T e e T e L B e

L mm L e e e e R T e e SR S T e L L e T L L L T e e T T T o B S T B e ol PR e e P et o R M e R R ety R o o e e R e et e e b B, kS e b e R R g
..............................................................................................

El A TR e T R R e e e T e e e e e e e e e e e T B e e B B o e L e o ey kndelmiln Y R P by

..-....................................................1...................”._.....””....”.”.”....”._.n.n.n.n....uun.”.”..u..”........”.L..””.”-.......................1...................1..........................".............................................“...........
g laSattl s el e T L Il o, %D D DSl D N D o Dl D e S e e e el L e e T e e e e s T R T e e e Dl e e e e e i e L
S R T T g e e R s e e e A T e e T R R e T S T T T LA A R R T T R T e e L

GGl
JHOVO

1)
s e
V.ivd
¢l
T IR
AVHHY
I -7
C1
3|0 FHOVO

111111111111111111111111111111

O1

LGl
3N3N0O

01

08l
LINN NOILNDO3X4

4400 NdO




US 6,237,064 B1

Sheet 2 of 3

May 22, 2001

U.S. Patent

V¢ 4dN9ld

_ OVL

8 L O G 174
AN3N0O 9S4
(Q.LNOD) 1 ~
«— 4AN3dNO dSg
| [ -
ALIMOIML AVHEY 9DV1
2 SSIN ¢l
/1] ]
- —
L1INN | AVHSY V.1vd _
NOILNOIX3 1]
0101 ALIordd
¥ SSIN
/1IH

1 NOILAD3IX3 Ol

4N3dNO
OVL C

L]

INM

- -}

AVERY || | vy

V.1vd
01

3IN3NO |, JALIFOINd

1] | 2 SSIN
/1IH
01
0] 1
1 1 SS300V
2nano | |AHOWIN
0]




US 6,237,064 B1

Sheet 3 of 3

May 22, 2001

U.S. Patent

81l Ll

Ol

LINM NOILNOAX
% 211710701

LINMN NOILNOIXS
2'11°010L

d¢ ddMOld

L1 0l 5
dng 3ais tNoyd |

(dIHD 440) AVHYY Yivad 27




US 6,237,064 Bl

1

CACHE MEMORY WITH REDUCED
LATENCY

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1nvention relates generally to the field of data pro-
cessing systems, and, more particularly, to cache memory
used 1n data processing systems. Specifically, the present
invention relates to a cache memory with reduced latency.

2. Description of the Related Art

The demand for quicker and more powerful personal
computers has led to many technological advances 1n the
computer industry, including the development of faster
memories. Historically, the performance of a personal com-
puter has been directly linked to the efficiency by which data
can be accessed from memory, often referred to as the
memory access time. Generally, the performance of a central
processing unit (CPU or microprocessor), which functions at
a high speed, has been hindered by slow memory access
times. Therefore, to expedite the access to main memory
data, cache memories have been developed for storing
frequently used information.

A cache 1s a relatively small high-speed memory that 1s
used to hold the contents of the most recently utilized blocks
of main storage. A cache bridges the gap between fast
processor cycle time and slow memory access time. Using
this very fast memory, the microprocessor can reduce the
number of wait states that are interposed during memory
accesses. When the processor 1ssues the load instructions to
the cache, the cache checks its contents to determine if the
data 1s present. If the data 1s already present 1n the cache
(termed a “hit”), the data is forwarded to the CPU with
practically no wait. If, however, the data 1s not present
(termed a “miss”), the cache must retrieve the data from a
slower, secondary memory source, which may be the main
memory or another cache, mm a multi-level cache memory
system. In addition, the retrieved information is also copied
(i.e. stored) into the cache memory so that it 1s readily
available to the microprocessor for future use.

Most cache memories have a similar physical structure.
Caches generally have two major subsystems, a tag sub-
system (also referred to as a cache tag array) and memory
subsystem (also known as cache data array). A tag sub-
system holds the addresses and determines where there 1s a
match for a requested datum, and a memory subsystem
stores and delivers the data upon request. Thus, typically,
cach tag entry 1s associated with a data array entry, where
cach tag entry stores 1ndex 1information relating to each data
array enfry. Some data processing systems have several
cache memories (i.e. a multi-level cache system), in which
case, cach data array will have a corresponding tag array to
store addresses.

Utilizing a multi-level cache memory system can gener-
ally improve the proficiency of a central processing unit. In
a multi-level cache infrastructure, a series of caches LO, L1,
[.2 can be linked together, where each cache 1s accessed
serially by the microprocessor. For example, 1n a three-level
cache system, the microprocessor will first access the LO
cache for data, and 1n case of a miss, 1t will access cache L1.
If .1 does not contain the data, 1t will access the 1.2 cache
before accessing the main memory. Since caches are typi-
cally smaller and faster than the main memory, the general
frend 1s to design modem computers using a multi-level
cache system.

Even a multi-level cache system, however, can sometimes
hamper the performance of a computer because of the serial

10

15

20

25

30

35

40

45

50

55

60

65

2

manner 1n which the caches 1in a multi-level cache system are
accessed. The overall cache latency of the multi-level cache
system tends to be high because each cache performs a
lookup of a memory request before forwarding the memory
request to the next level cache. Thus, what 1s needed 1s a
method and apparatus for reducing the overall cache latency
of a cache memory system.

The present mvention 1s directed to overcoming, or at
least reducing the effects of, one or more of the problems set
forth above.

SUMMARY OF THE INVENTION

In one aspect of the present invention, a method i1s
provided for accessing a memory ol a data processing
system, the data processing system including a first and at
least a second level memory for storing information. The
method includes 1ssuing a memory request to the first level
memory, and 1ssuing the memory request to the second level
memory at substantially the same time the memory request
1s 1ssued to the first level memory.

In another aspect of the instant invention, a data process-
ing system 1s provided having a first level memory, at least
a second level memory, and an execution unit adapted to
Issue a memory request to the first level memory and
adapted to 1ssue the memory request at substantially the
same time to the second level memory.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the drawings 1n which:

FIG. 11s a block diagram of an embodiment of the present
mvention;

FIG. 2A 1s a pipeline diagram of the embodiment of FIG.
1 1n accordance with the method and system of the present
invention; and

FIG. 2B 1s a continuation of the pipeline diagram of FIG.
2A.

While the i1nvention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thercof
have been shown by way of example 1n the drawings and are
herein described 1n detail. It should be understood, however,
that the description herein of specific embodiments 1s not
intended to Ilimit the invention to the particular forms
disclosed, but on the contrary, the mtention 1s to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[llustrative embodiments of the mvention are described
below. In the interest of clarity, not all features of an actual
implementation are described 1n this specification. It will of
course be appreciated that 1in the development of any such
actual embodiment, numerous 1mplementation-specific
decisions must be made to achieve the developers” speciiic
goals, such as compliance with system-related and business-
related constraints, which will vary from one implementa-
tion to another. Moreover, it will be appreciated that such a
development effort might be complex and time-consuming,
but would nevertheless be a routine undertaking for those of
ordinary skill 1n the art having the benefit of this disclosure.

With reference now to the figures, and in particular to
FIG. 1, there 1s shown an embodiment of the present




US 6,237,064 Bl

3

invention, which includes a CPU core 100, a main memory
105, a memory controller 110, a cache die 115, an L2 data
array 120, a backside bus 125, a bus controller 130, an 1.2
tag array 135, an L1 cache 140, an L1 cache queue 142, an
L2 tag queue 145, a backside bus (BSB) queue 170, an LO
cache 155, an LO cache queue 157, a multiplexer 160, a
snoop queue 165, a frontside bus (FSB) queue 168, and an
execution unit 180.

FIG. 1 illustrates a three-level pipelined cache memory
architecture, where the first level cache, 1.0, 155, the second
level cache, L1, 140, and the L2 tag array 135 of the third
level cache, L2, reside on the CPU core 100. The 1.2 cache
data array 120 1s off the CPU core 100, and 1s resident on the
cache die 115. The L2 data array 120 1s coupled to the CPU
core 100 by a backside bus 125. The main memory 105 1is
coupled to the memory controller 110, which 1s further
coupled to the bus controller 130 over the front side bus 190.

The LO, L1, L2 tag, BSB, and the FSB queues 157, 142,
145, 170, and 168 hold and track memory requests 1ssued by
the execution umt 180 to the LO cache, L1 cache, L2 tag
array, L2 data array, and main memory, 155, 140, 135, 120,
and 105, respectively. Each queued memory transaction held
in the L.O, L1, L2 tag, BSB, or the FSB queue 157, 142, 145,
170, and 168 may have other associated entries such as the
memory address, access type (i.e. read/write), and a variety
of status bits (i.e. priority bit, hit/miss bit, invalidate bit,
etc.). It should be apparent to those skilled in the art that the
particulars of a queue may vary from one configuration to
another, depending on the system requirements and design.

The present invention substantially deserializes the
method 1n which the execution unit 180 accesses 1nforma-
fion from the caches 135, 140, 155 and the main memory
105. The present invention can be better illustrated with
reference to FIGS. 2A and 2B, which depict a pipeline
diagram of the three-level cache memory architecture of
FIG. 1 in accordance with the method and apparatus of the
present invention. As can be seen, FIG. 2B 1s a continuation
of the pipeline diagram of FIG. 2A, and, hence, both figures
combined represent all the stages of the pipeline diagram of
the cache memory architecture of FIG. 1.

The present mvention reduces cache latency by parallel-
Ing various memory accesses initiated by the execution unit
180. At stage 0, the execution unit 180 1ssues a memory
request to the LO queue 157 of the LO cache 155, which
receives the request during stage 1 of the pipeline 300. To
reduce latency, and thereby conserve clock cycles, the same
memory request 1s simultaneously 1ssued to the next-level
cache memory, the L1 queue 142 of the L1 cache 140. In the
prior art, the LL1 cache 140 would receive the memory
request only after 1t was processed by the LLO cache 155. At
stage 1, an LO tag (not shown) of the LLO cache 155
determines whether the memory request was a hit or a miss,
and passes that information to the L1 queue 142. The LO tag
of the LLO cache 155 may also pass other information to the
L1 queue 142 as well, such as the priority of the memory
request, for example. Alternatively, a priority level of a
memory request can also be propagated to the L1 queue
directly from the execution unit 180, as opposed to from the
L0 tag of the LO cache 155. A queue 1n general processes
memory requests/transactions based on their priority, where
the transaction having the highest priority 1s processed first.

At stages 2 and 3, the L1 queue 142 forwards the memory
request to an LL1 tag (not shown) of the L1 cache 140, as well
as to the L2 tag queue 145 of the L2 tag array 135. At stage
4, the L1 tag of the L1 cache 140 determines whether the
memory request was a hit or a miss, and passes that

10

15

20

25

30

35

40

45

50

55

60

65

4

information to the L2 tag queue 145. The priority of the
memory request may also be passed to the L2 tag queue 1435.

At stage 5, the L2 tag array 135, BSB queue 170, and FSB
queue 168 receive the memory request from the L2 tag
queue 145. During stages 6 through 8, the L2 tag array 135
determines whether the memory request was a hit or a miss,
and passes that information to the BSB and the FSB queues
170, 168. The priority of the memory request may also be
transmitted to the BSB and FSB queues 170, 168. The BSB
queue 170 tracks the memory requests submitted to the
off-chip L2 data array 120 of the L2 cache, while the FSB
queue 168 tracks the memory requests submitted to the main
memory 105.

As can be seen from the pipeline diagram, the execution
unit 180 issues the memory request to the current-level
memory and the next-level memory 1n parallel, thus reduc-
ing the overall memory latency. In accordance with the
present invention, a control logic (not shown) of each queue
tracks all the memory requests/transactions. The control
logic 1s capable of dequeuing a memory request or 1gnoring
the information retrieved 1if the information 1s found earlier
in the memory hierarchy.

One possible control logic algorithm may be as follows:
If the requested information is found (i.e. a hit) in the LO
cache 155, then the information will be directly forwarded
from the LO data array (not shown) of the L.O cache 155 to
the execution unit 180, as seen 1n stages 2 and 3 of the
pipeline 300. In addition, because the requested information
has already been supplied to the execution unit 180, the
corresponding memory request currently pending in the
subsequent memory levels (i.e. L1, L2 tag, BSB, and FSB
queues 142, 145, 170, 168) will be aborted (i.e. dequeued).
If, however, one or more of the subsequent memory levels
process the memory request before 1t can be dequeued, then
the retrieved information will be 1gnored by the control logic
of the queues that receive the information.

[f the requested information is not found (i.e. a miss) in
the LO cache 155 but is in the L1 cache (i.e. a hit) 140, then
the information will be fetched from the .1 data array (not
shown) of the .1 cache 140 and forwarded to the execution
unit 180 as well as to the LO cache 155, as shown 1n stages
7 and 8 of the pipeline 300. Any outstanding memory
requests 1n the L2 tag, BSB, or FSB queues 145, 170, 168
will be aborted, if possible. If the requested mmformation 1s
retrieved from the subsequent memory levels before the
memory requests are aborted, then the control logic of the

queue receiving the information will ignore the retrieved
information.

If the requested information 1s a miss 1n the LLO and L1
caches 155, 140 but 1s a hit in the L2 tag array 135, then the
information will be fetched from the L2 data array 120 and
forwarded to the execution unit 180 as well as to the O and
L1 caches 155, 140, as shown 1n stages 12 through 18 of the
pipeline 300. Any outstanding memory requests 1n the FSB
queue 168 will be aborted, 1f possible. If the requested
information 1s retrieved from the main memory 105 before
the memory request 1n the FSB queue 168 can be aborted,
then the control logic of the FSB queue 168 will 1ignore the
retrieved 1nformation.

If the requested information does not reside 1n the 1O, L1,
or L2 caches (i.e. L2 tag array) 155, 140, 135 then the

information will be fetched from the main memory 105 and
forwarded to the execution unit as well as to the L.O, L.1, and

[.2 caches 155, 140, 135, as shown 1n stages 8 through 18 of
the pipeline 300.

To ensure that the caches 155, 140, 135 and main memory
105 are coherent, the present mnvention includes snoop logic




US 6,237,064 Bl

S

(not shown) that monitors all the addresses that are snooped,
and if 1t determines a match to any pending memory
accesses 1n the cache queues 157, 142, 145, 170, 168, then
the snoop logic will invalidate that entry 1n the cache queue

157,142,145, 170, 168. The queue control logic will 1ignore
any pending entry that was invalidated by the snoop logic.

It should be noted that the present invention of reducing,
cache latency 1s applicable to any cache memory architec-
ture and 1s not limited to the cache memory architecture of
FIG. 1. For example, although FIG. 1 illustrates a three-level
cache memory architecture, the present invention 1s appli-
cable to any variety of cache levels, regardless of whether a

particular cache tag and its corresponding data array reside
“on” or “off” the CPU core 100. Furthermore, although the

present mnvention reduces cache latency by utilizing queues
157,142, 145, 170, 168 having the requisite control logic, it
1s envisioned that 1t 1s also possible to reduce cache latency
without queues 157, 142, 145, 170, 168 by implementing

similar control logic elsewhere in the cache memory archi-
tecture.

It will be appreciated by those of ordinary skill in the art
having the benefit of this disclosure that numerous variations
from the foregoing illustration will be possible without
departing from the inventive concept described herein.
Accordingly, 1t 1s the claims set forth below, and not merely
the foregoing illustration, which are intended to define the
exclusive rights of the invention.

What 1s claimed 1s:
1. A method for accessing a memory of a data processing
system, comprising:
Issuing a memory request to a first level memory and a
second level memory at substantially the same time;

retrieving information from both the first and second level
memories it there were hits in both the first and second

level memories 1n response to the memory request; and

subsequently 1gnoring the mformation retrieved from the

second level memory.

2. The method of claim 1, wherein 1ssuing a memory
request to the first level memory comprises 1ssuing to a first
queue of the first level memory.

3. The method of claim 2, wherein 1ssuing a memory
request to the second level memory comprises 1ssuing to a
second queue of the second level memory.

4. The method of claim 3, further comprising determining,
whether the memory request corresponds to an entry in the
first level memory.

5. The method of claim 4, further comprising forwarding,
information 1n response to the memory request to an execu-
tion unit 1f the memory request corresponds to an entry 1n the
first level memory.

6. The method of claim 3, further comprising:

monitoring snoop addresses; and

determining if a snoop address corresponds to an entry in

the first queue and the second queue.

7. The method of claim 6, further comprising invalidating,
the entry 1n the first queue and the second queue 1if the entry
corresponds to the snoop address.

8. The method of claim 1, further comprising 1ssuing the
memory request to a third level memory at substantially the
same time the memory request 1s 1ssued to the second level
memory.

10

15

20

25

30

35

40

45

50

55

6

9. An apparatus, comprising:
a first level memory;
a second level memory; and

an execution unit coupled to the first and second level
memories to 1ssue a memory request to the first and
second level memories at substantially the same time,
to retrieve information from both the first and second
level memories 1f there were hits 1n both the first and
second level memories 1n response to the request, and
to subsequently 1gnore the information retrieved from
the second level memory.

10. The apparatus of claim 9, further comprising a first
queue of the first level memory, wherein the execution unit
1s to 1ssue the memory request to the first queue of the first
level memory.

11. The apparatus of claim 9, further comprising a second
queue of the second level memory, wherein the execution
unit 1s to 1ssue the memory request to the second queue of
the second level memory.

12. The apparatus of claim 9, further comprising snoop
logic to monitor snoop addresses, determine 1f one the snoop
addresses corresponds to an entry 1n the first queue and the
second queue, and 1nvalidate the entry in the first queue and

the second queue 1f the entry corresponds to one of the snoop
addresses.

13. The apparatus of claim 9, wherein the first level
memory 1s a cache memory.

14. The apparatus of claim 9, wherein the second level
memory 1s a cache memory.

15. The apparatus of claim 9, further comprising a third
level memory, wherein the third level memory 1s a cache
memory.

16. The apparatus of claim 15, further including a fourth
level memory, wherein the a fourth level memory 1s a main
memory.

17. A computer system, comprising:

a main memory;
a memory controller coupled to the main memory; and

a CPU core coupled to the memory controller and 1nclud-

Ing:

a first level cache memory;

a second level cache memory; and

an execution unit coupled to the first and second level
cache memories to 1ssue a memory request to the
first and second level memories at substantially the
same time, to retrieve information from both the first
and second level memories if there was a hit 1n both
the first and second level memories in response to the
request, and to subsequently 1gnore the information
retrieved from the second level memory.

18. The computer system of claim 17, wherein the first
level cache memory includes a first queue to receive the
memory request issued from the execution unit.

19. The computer system of claim 17, wherein the second
level cache memory includes a second queue to receive the
memory request issued from the execution unit.



	Front Page
	Drawings
	Specification
	Claims

