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dfix T_sample(8, 6);
dfix T_acc (8, 6);
dfix T—bit (1, O, ns);

Sheet 10 of 21

double hardwired_coef = § 0.5, 0.2, —0.3, 0.15

fsm correlator: :define(clk &

i

sig_array coef (4, ck, T_sample);
sig__array sample (4, ck, T_sample);
SiQ accu (ck, T_accu );
Sig sample_in (T_somple );
sig coef_in (T_saomple );
sig corr_out (T_sample );
fe oad (ck, T_bit ):
sig oad_ctr  (T_bit );

sfg initialize__coefs;
for (i = 0; 1 < 4; i++)

coefli] = W(T_sample, hardwired_coef|i] );

sfq load_coef_Q;
input(coef_in);
coef[0] = in_coef_in;

sfq correl _1;

_ck)

US 6,233,540 Bl

FIG. 11

accu = cast(T_acc, coef[0] * sample[0] + coef[1] * sample[1]);

sfqg correl _2;

corr = accu + cast{T_acc,

output(corr);

sfg read_sample;

input(sample_in);

for (i = 3; i >=0; i——)
if (i)

sampleli] = sampleli—1];

else
sample[i] = sample_in;

sfg read_control;
input(load_ctr);
load = load_ctr;

fsm myfsm;
initial rst;
state phase_1
state phase_Z2

rst << olwoys <<
phasel << qlways <<
<<
phase2 << !cnd(load) <<
<<
phase?2 << cnd(load) <<
<KL
<<

return mysfm;

initiglize_coefs
read__control

correl _1
correl_2
read _sample
correl _2

read_sample
load_coef_0O

<< phasel;
<< phaseZ;

<< phasel;

<< phasel;

coef(2] * sample[2] + coef[3] * sample[3] );
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Sig Class

class sig i
Value value;
char *name;

public:
sig(value v);
sig operator + (sig v);
virtual Value simulate ();
virtual void gen_code (ostream &os);

;

sig siq: :operator + (sig v)

sigadd s;

add.left = &v;
add.right = this;
return qodd; -

E

Value sig: :simulate()
return value;

i

sig: :gen_code (ostream &os)

0S << nagme;

;
Derived Operator Class

class sigadd : public sig
sig *left;
sig  *right;

public:

Value simulate();
void gen_code (ostream &os);

::

Value sigadd: :simulate()

return left—>eval() +
right—>eval();

Value sig: :simulate()

os << left—>cq()

<< +
<<  right—>cqg();

|

FIG. 16
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leof /sfg3 /stq’
eof /sfg2 ‘
fsm f;
initial  sO;
state si
sO << dallways << sfgl << si;

s1 << cnd(eof) << sfg2 << sl
s1 << lend(eof) << sfgd << s0;

Fig. 18
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DESIGN ENVIRONMENT AND A METHOD
FOR GENERATING AN IMPLEMENTABLE
DESCRIPTION OF A DIGITAL SYSTEM

RELATED APPLICATIONS

This application claims the benefit of priority under 35
U.S.C. §120 to the following U.S. provisional patent appli-
cations: “Design Environment and a Method for Datatlow
Support and Refinement of Dataflow for Hardware Design
and Hardware/software Co-design,” application Ser. No.
60/039,078, and filed on Mar. 14, 1997; “Design Environ-
ment and a Method for Generating an Implementable
Description of a Digital System,” application Ser. No.
60/039,079, and filed on Mar. 14, 1997; “Design Environ-
ment and a Method for Generating an Implementable

Description of a Digital System,” application Ser. No.
60/041,121, and filed on Mar. 20, 1997.

COPYRIGHTED SUBJECT MATTER

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it
appears 1n the Patent and Trademark Office patent file or

records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1mvention 1s situated in the field of design
environments for digital systems, generating implementable
descriptions of said system. The invention 1s based on object
modeling and mechanisms to refine abstract descriptions to
more concrete description of the system.

2. State of the Art

Currently there 1s a high mterest in digital communication
equipment for public access networks. Examples are
modems for Asymmetric Digital Subscriber Loop (ADSL)
applications, and up- and downstream Hybrid Fiber-Coax
(HFC) communication. These modems are preferably imple-
mented 1n all-digital hardware using digital signal process-
ing (DSP) techniques. This is because of the complexity of
the data processing that they require. Besides this, these
systems also need short development cycles. This calls for a
design methodology that starts at high level and that pro-
vides for design automation as much as possible. A more
ogeneralized view of the field of the invention reveals that 1n
most applications where dedicated processors and other
digital hardware are used, demand for new systems 1s rising
and development time 1s shortening.

The most used modeling description language 1s VHDL
(VHSIC Hardware Description Language), which has been
accepted as an IEEE standard since 1987. VHDL 1s a
programming environment that produces a description of a
piece of hardware. Additions to standard VHDL can be to
implement features of Object Oriented Programming Lan-
cuages mto VHDL. This was described mm OO-VHDL
(Computer, October 1995, pages 18-26).

A number of commercially available systems support the
design of complex DSP systems.

MATLAB of Mathworks Inc offers the possibility of
exploration at the algorithmic level. It uses the data-vector
as the basic semantical feature. However, the developed
MATLAB description has no relationship to a digital hard-
ware 1mplementation, nor does MATLAB support the syn-
thesis of digital circuits.
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2

SPW of Alta Group offers a toolkit for the simulation of
these kind of systems. SPW 1s typically used to simulate
data-flow semantics. Data-flow semantics define explicit
algorithmic 1teration, whereas data-vector semantics do not.

SPW relies on an extensive library and toolkit to develop
systems. Unlike MATLAB, the 1nitial description 1s a block-

based description. Each block used 1n the systems appears 1n
two different formats, (a simulatable and a synthesizable
version) which results in possible inconsistency.

COSSAP of Synopsys performs the same kind of system
exploration as SPW.

DC and BC are products of Synopsys that support system
synthesis. These products do not provide sufficient algorithm
exploration functions.

Because all of these tools support only part of the desired
functionality, contemporary systems are designed typically
with a mix of these environments. For example, a designer
might do algorithmic exploration in MATLAB, then do
architecture definition with SPW, and finally map the archi-
tecture definition to an implementation 1n DC.

One primary aim of the invention 1s a design environment
that makes 1t possible to design a digital systems from a data
vector description to an implementable level such a VHDL.
A further aim 1s to perform this design within the same
object oriented environment. Another aim 1s to provide a
means comprised 1n said design environment for simulating
behaviour at any level of development.

SUMMARY OF THE INVENTION

A first aspect of the present invention concerns a design
apparatus compiled on a computer environment for gener-
ating from a behavioral description of a system comprising
at least one digital system part, an implementable descrip-
tion for said system, said behavioral description being
represented on said computer environment as a first set of
objects with a first set of relations therebetween, said imple-
mentable description being represented on said computer
environment as a second set of objects with a second set of
relations therebetween, said first and second set of objects
being part of a design environment.

A behavioral description 1s a description which substan-
tiates the desired behavior of a system in a formal way. In
ogeneral, a behavioral description 1s not readily implement-
able since 1t 1s a high-level description, and 1t only describes
an abstract version of the system that can be simulated. An
implementable description 1s a more concrete description
that 1s, 1n contrast to a behavioral description, detailed
enough to be 1mplemented i1n software to provide an
approximative simulation of real-life behavior or in hard-
ware to provide a working semiconductor circuit.

A design environment 1s an environment in which algo-
rithms can be produced and run by interpretion or compi-
lation.

An object 15 a data structure which shows all the charac-
teristics of an object from an object oriented programming
language, such as described in “Object Oriented Design” (G.

Booch, Benjamin/Cummings Publishing, Redwood City,
Calif., 1991).

Said first and second set of objects are preferably part of
a single design environment. Said design environment com-
prises preferably an Object Oriented Programming Lan-

guage (OOPL). Said OOPL can be C++.

Said design environment 1s preferably an open environ-
ment wherein new objects can be created. A closed envi-
ronment will not provide the flexibility that can be obtained
with an open environment and will limit the possibilities of
the user.
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Preferably, at least part of the i1nput signals and output
signals of said first set of objects are at least part of the input
signals and output signals of said second set of objects.
Essentially all of the 1input signals and output signals of said
first set of objects can be essentially all of the 1input signals
and output signals of said second set of objects.

At least part of the 1nput signals and output signals of said
behavioral description are preferably at least part of the
input signals and output signals of said implementable
description. Essentially all of the input signals and output
signals of said behavioral description can be essentially all
of the 1nput signals and output signals of said implementable
description.

Said first set of objects has preferably first semantics and
said second set of objects has preferably second semantics.
With semantics 1s meant the model of computation. Said first
semantics 1s preferably a data-vector model and/or a data-
flow model. Said second semantics 1s preferably a signal
flow graph (SFG) data structure.

Preferably, the impact in said implementable description
of at least a part of the objects of said second set of objects
1s essentially the same as the impact 1n said behavioral
description of at least a part of the objects of said first set of
objects.

Preferably, the impact in said implementable description
of essentially all of the objects of said second set of objects
1s essenfially the same as the impact in said behavioral
description of essentially all of the objects of said first set of
objects.

Impact can 1include not only function, but also the way the
object interacts with 1ts environment from an external point
of view. A way of rephrasing this 1s that the same interface
for providing mput and collecting output 1s present. This
does not mean that the actual implementation of the data-
processing between input and output 1s the same. The
implementation 1s embodied by objects, which can be com-
pletely different but perform a same function. In an OOPL,
the use of methods of an object without knowing its actual
implementation 1s referred to as information hiding.

The design apparatus preferably further comprises means
for simulating the behavior of said system said means
simulating the behavior of said behavioral description, said
implementable description or any mtermediate description
therebetween. Said intermediate description can be obtained
after one or several refining steps from said behavioral
description.

Preferably, at least part of said second set of objects 1s
derived from objects belonging to said first set of objects.
This can be done by using the inheritance functionalities
provided i an OOPL. Essentially all of said second set of
objects can be derived from objects belonging to said first set
of objects.

Said 1mplementable description can be at least partly
obtained by refining said behavioral description. Said imple-
mentable description can be essentially obtained by refining
said behavioral description. Preferably, said refining com-
prises the refining of objects.

The design apparatus can further comprise means to
derive said first set of objects from a vector description,
preferably a MATLAB description, describing said system
as a set of operations on data vectors, means for simulating
statically or demand-driven scheduled dataflow on said
dataflow description and/or means for clock-cycle true simu-
lating said digital system using said datatlow description
and/or one or more of said SFG data structures.

In a preferred embodiment, said 1implementable descrip-
fion 1s an architecture description of said system, said system
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advantageously further comprising means for translating
said architecture description into a synthesizable description
of said system, said synthesizable description being directly
implementable 1n hardware. Said synthesizable description
1s preferably a netlist of hardware building blocks. Said
hardware 1s preferably a semiconductor chip or a electronic
circuit comprising semiconductor chips.

A synthesizable description 1s a description of the archi-
tecture of a semiconductor that can be synthesized without
further processing of the description. An example 1s a VHDL
description.

Said means for translating said architecture description
into a synthesizable description can be Cathedral-3 or Syn-
opsys DC.

A second aspect of the present invention 1s a method for
designing a system comprising at least one digital part,
comprising a refining step wherein a behavioral description
of said system 1s transformed 1nto an implementable descrip-
fion of said system, said behavioral description being rep-
resented as a first set of objects with a first set of relations
therebetween and said implementable description being rep-

resented as a second set of objects with a second set of
relations therebetween.

Said refining step preferably comprises translating behav-
1oral characteristics at least partly into structural character-
istics. Said refining step can comprise translating behavioral
characteristics completely into structural characteristics.

Said method can further comprise a simulation step 1n
which the behavior of said behavioral description, said
implementable description and/or any intermediate descrip-
tion therebetween 1s simulated.

Said refining step can comprises the addition of new
objects, permitting interaction with existing objects, and
adjustments to said existing objects allowing said interac-
tion.

Preferably, said refining step 1s performed in an open
environment and comprises expansion of existing objects.
Expansion of existing objects can include the addition to an
object of methods that create new objects. Said object 1s said
to be expanded with the new objects. The use of expandable
objects allows to use meta-code generation: creating
expandable objects implies an indirect creation of the new
objects.

Said behavioral description and said implementable
description are preferably represented 1in a single design
environment, said single design environment advanta-
ogeously being an Object Oriented Programming Language,
preferably C++.

Preferably, said first set of objects has first semantics and
sald second set of objects has second semantics. Said first
semantics 1s preferably a data-vector model and/or a data-
flow model. Said second semantics 1s preferably an SFG
data structure.

The refining step comprises preferably a first refining step
wherein said behavioral description being a data-vector
model 1s at least partly transformed 1nto a data-flow model.
Advantageously, said data-flow model 1s an untimed floating
point data-flow model.

Said refining step preferably further comprises a second

refining step wherein said data-flow model 1s at least partly
transformed 1nto an SFG model. Said data-flow model can

be completely transformed mto an SFG model.

In a preferred embodiment, said first refining step com-
prises the steps of determining the input vector lengths of
input, output and intermediate signals, determining the



US 6,233,540 Bl

S

amount of parallelism of operations that process input
signals to output signals, determination of actors, edges and
tokens of said data- flow model, and determining the
wordlength of said tokens. Said step of determining the
amount of parallelism can preferably comprises determining
the amount of parallelism for every data vector and reducing
the unspecified communication bandwidth of said data-
vector model to a fixed number of communication buses in
said dataflow model. Said step of determination of actors,
edges and tokens of said data- flow model preferably com-
prises deflning one or a group of data vectors 1n said first
data-vector model as actors; defining data precedences
crossing actor bounds, as edges, said edges behaving like
queues and transporting tokens between actors; construct a
system schedule and run a simulation on a computer envi-
ronment.

Said second refining step comprises preferably transtorm-
ing said tokens from floating point to fixed point.

Preferably, said SFG model 1s a timed fixed point SFG
model.

Said second set of objects with said second set of relations
therebetween are preferably at least partly derived from said
first set of objects with said first set of relations therebe-
tween.

Objects belonging to said second set of objects are
preferably new objects, 1dentical with and/or derived by
inheritance from objects from said first set of objects, or a
combination thereof.

Several of said SFG models can be combined with a finite
state machine description resulting in an 1mplementable
description.

Said implementable description can be transformed to

synthesizable code, said synthesizable code preferably being
VHDL code.

Another aspect of the present mvention 1s a method for
simulating a system, wherein a description of a system 1s
transformed 1nto compilable C++ code. Preferably, said
description 1s an SFG data structure and said compilable
C++ code 1s used to perform clock cycle true simulations.

Several SFG data structures can be combined with a finite
state machine description resulting in an implementable
description, said implementable description being said com-
pilable C++ code suitable for simulating said system as
software.

Another aspect of the present invention uses one or more
SFG data structures. Said Clock-cycle true stmulation can be
an ecxpectation-based simulation, said expectation-based
simulation comprising the steps of: annotating a token age to

every token; annotating a queue age to every queue; Increas-
ing token age according to the token aging rules and with the
travel delay for every queue that has transported the token;
increasing queue age with the iteration time of the actor
steering the queue, and; checking whether token age 1s never
smaller than queue age throughout the simulation.

Another aspect of the present invention 1s a hardware
circuit or a software simulation of a hardware circuit
designed with the design apparatus as recited higher.

Another aspect of the present invention i1s a hardware
circuit or a software simulation of a hardware circuit
designed with the method as recited higher.

BRIEF DESCRIPTION OF THE DRAWINGS

In FIG. 1, the overall development methodology 1s
described.

In FIG. 2, the targeted architecture 1s described.
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In FIG. 3, the C++ modeling levels are depicted.

In FIG. 4, an SDF model of the PN correlator 1s shown.

In FIG. 5, a CSDF model
described.

In FIG. 6, a MATLAB Dataflow model of the PN corr-
elator 1s shown.

of the PN correlator 1s

In FIG. 7, the SFG modeling concepts are depicted.

In FIG. 8, the implied description of the max actor 1s
described.

In FIG. 9, example implementations for different expec-
tations are given.

In FIG. 10, an overview of expectation based simulation
1s shown.

In FIG. 11, the code 1n OCAPI for a correlator processor
1s given.

In FIG. 12, the resulting circuit for datapath and controller
1s hierarchically drawn.

FIG. 13 describes a DECT Base station setup.

FIG. 14 shows the front-end processing of the DECT
fransceiver.

In FIG. 15, a part of the central VLIW controller descrip-
tion for the DECT transceiver ASIC 1s shown.

In FIG. 16, the use of overloading to construct the signal
flowgraph data structure 1s shown.

In FIG. 17, an example C++ code fragment and 1ifs
corresponding data structure 1s described.

In FIG. 18, a graphical and C++-textual description of the
same FSM 1s shown.

In FIG. 19, the final system architecture of the DECT
transceiver 1s shown.

In FIG. 20, a datatlow target architecture 1s shown.

In FIG. 21, the simulation of one cycle 1n a system with
three components 1s shown.

In FIG. 22, the implementation and simulation strategy 1s
depicted.

In FIG. 23, the translation flow from C++ to HDL 1s
shown.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention will be further explained by means
of examples, which does not limait the scope of the mnvention
as claimed.

EXAMPLE 1

The present mvention can be described as a design
environment for performing subsequent gradual refinement
of descriptions of digital systems within one and the same
object oriented programming language environment. The
lowest level 1s semantically equivalent to a behavioral
description at the register transfer (RT) level. This way,
combined semantic and syntactic translations 1n the design
flow are avoided.

A preferred embodiment of the mnvention comprising the
design method according to the invention 1s called OCAPI.
It includes both a design environment 1n an object oriented
programming language and a design method. OCAPI dit-
ferentiates from current systems that support architecture
definition (SPW, COSSAP) in the way a designer is guided
from the MATLAB level to the register transfer level.

the designer 1s offered a single coding framework in an
object oriented programming language, such as C++, to
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express refinements to the behavior. An open environ-
ment 1S used, rather than the usual interface-and-
module approach.

The coding framework 1s a container of design concepts,
used 1n ftraditional design practice. Some example
design concepts currently supported are simulation
queues, linite state machines, signal flowgraphs, hybrid
floating/fixed point data types, operation proiiling and
signal range statistics. The concepts take the form of
object oriented programming language objects
(referred to as object in the remainder of this text), that

can be 1stantiated and related to each other.

with this set of objects, a gradual refinement design route
1s offered: more abstract design concepts can be
replaced with more detailed ones in a gradual way.
Also, design concepts are combined 1n an orthogonal
way: quantization effects and clock cycles (operation/
operator mapping) for instance are two architecture
features that can be investigated separately. Next, the
different design hierarchies can be freely intermixed
because of this object-oriented approach. For instance,
it 1s possible to stmulate half of the description at fixed
point level, while the other half 1s still 1n floating point.

The use of a single object oriented programming language
framework 1 OCAPI allows fast design 1iteration,
which 1s not possible 1n the typical nowadays hybrid
approach.

Comparing to existing dataflow-based systems like SPW
and COSSAP we sece that the algorithm iterations can be
freely chosen. Comparing to existing hardware design envi-
ronments like DC or BC, we see that we can start from a
specification level that 1s more abstract than the connection
of blocks.

Two new concepts introduced are scaleable parallelism
and expectation based simulation. The designer 1s given an
environment to check the feasibility of what the designer
thinks that can be done. In the development process, the
designer creates his library of Signal FlowGraph (SFG)
versions of abstract MATLAB operations.

In the design of a telecommunication system (FIG. 1), we
distinguish four phases: link design, algorithm design, archi-
tecture design and circuit design. These phases are used to
define and model the three key components of a communi-
cation system: a transmitter, a channel model, and a receiver.

The link design (1) is the requirement capture phase.
Based on telecommunication properties such as trans-
mission bandwidth, power, and data throughput (the
link requirements), the system design space is explored
using small subsystem simulations. The design space
includes all algorithms which can be used by a
transmitter/receiver pair to meet the link requirements.
Out of receiver and transmitter algorithms with an
identical functionality, those with minimal complexity
are preferred. Besides this exploration, any expected
transmission 1impairment must also be modeled 1nto a
software channel model.

The algorithm design (2) phase selects and interconnects
the algorithms i1dentified 1n the link design phase. The
output 1s a software algorithmic description in C++ of
digital transmitter and receiver parts 1 terms of floating
point operations. To express parallelism 1n the trans-
mitter and receiver algorithms, a data-tlow data model
1s used. Also, the transmission 1mperfections intro-
duced by analog parts such as the RF front-ends are
annotated to the channel model.

The architecture design (3) refines the data model of the
transmitter or receiver. The target architectural style 1s
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optimized for high speed execution, uses distributed
control semantics and pipeline mechanisms. The result-
ing description 1s a fixed point, cycle true C++ descrip-
tion of the algorithms in terms of execution on bit-
parallel operators. The architecture design 1s finished

with a translation of this description to synthesizable
VHDL.

Finally, circuit design (4) refines the bit-parallel imple-
mentation to circuit level, including technology
binding, the introduction of test hardware, and design
rule checks.

Target Architecture

The target architecture (5), shown in FIG. 2, consists of a
network of interconnected application specific processors.
Each processor 1s made up of bit-parallel data-paths. When
hardware sharing 1s applied, also a local control component
1s needed to perform 1nstruction sequencing. The processors
arc obtained by behavioral synthesis tools or RT level
synthesis tools. In either case, circuits with a low amount of
hardware sharing are targeted. The network 1s steered by one
or multiple clocks. Each clock signal defines a clock region.
Inside a clock region the phase relations between all register
clocks are manifest. Clock division circuits are used to
derive the appropriate clock for each processor.

In between each processor, a hardware queue 1s present to
transport data signals. They increase parallelism 1nside a
clock region and maintain consistency between different
streams of data arriving at one processor.

Across clock region boundaries, synchronization inter-
faces are used. These interfaces detect the presence of data
at the clock region boundary and gate clock signals for the
clock region that they feed. This way, non-manifest and
variable data rates in between clock regions are supported.

The ensemble of clock dividers and handshake circuits
forms a parallel scheduler in hardware, synchronizing the
processes running on the bit-parallel processor.

Overview of the C++ Modeling Levels

An overview of the distinct C++ modeling levels used by
OCAPI 1s given 1 FIG. 3. The C++ modeling spans three
subsequent levels 1n the design flow: the link level, the
algorithm level and the architecture level. The transition to
the last level, the circuit level, 1s made by automated means
trough code generation. Usually, VHDL 1s used as the design
language 1n this lowest level.

The link level 1s available through data-vector modeling.
Using a design mechanism called parallelism scaling, this
level 1s refined to the algorithm level. The algorithm level
uses data-tlow semantics. Using two distinct refining mecha-
nisms 1n the data-flow level, we can refine this level to a
register transfer level.

The two refining mechanisms are clock cycle true mod-
eling and fixed point modeling. Clock cycle true modeling
1s achieved by allocating cycle budgets and operators for
cach algorithm. To help the designer 1n this decision, opera-
tion profiling 1s foreseen. Fixed point modeling restricts the
dynamic range of variables in the algorithms to a range for
which a hardware operator can be devised. Signal statistics
are returned by the design to help the designer with this.

The last level, the architecture model, uses a signal
flowgraph to provide a behavioral description. Using this
description synthesizable code 1s generated. The resulting
code then can be mapped onto gates using a register-transfer
design tool such as DC of Synopsys.
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Data-vector Modeling

The upper level of representation of a communication
system 1s the link level. It has the following properties:

It uses pure mathematical manipulation of functions.
Time 1s explicitly manipulated and results 1n 1rregular-
flow descriptions.

It uses abstraction of all telecommunication aspects that

are not relevant to the problem at hand.

In this representation level, MATLAB 1s used for simu-
lation. MATLAB uses the data-vector as the basic data
object. To represent time functions 1n MATLAB, they are
sampled at an appropriate rate. Time 1s present as one of the
many vector dimensions. For example, the MATLAB vector
addition

a=b+c;

can mean both sequential addition in time (if the b and c
vectors are thought of as time-sequential), or parallel addi-
tion (if b and ¢ happen to be defined at one moment in time).
MATLAB simply make no distinction between these two
cases.

Besides this time-space feature, MATLAB has a lot of
other properties that makes 1t the tool-of-choice within this
design level:

The ease with which wrregular flow of data 1s expressed
with vector operations. For example, the operation
max(vector), or std(vector).

The flexibility of operations. A maximum operation on a
vector of 10 elements or 1000 elements looks 1denti-
cally: max(vector).

The interactivity of the tool, and the transparency of data
object management.

The extended library of operations, that allow very dense
description of functionality.

Graphics and simulation speed.

This data-vector restriction 1s to be refined to a data-flow
oraph representation of the system. Definition of the data-
flow graph requires definition of all actors in the graph (actor
contents as well as actor firing rules) and definition of the
ograph layout.

In order to design systems effectively with the OCAPI
design flow, a smooth transition between the data-vector
level and the data-flow level 1s needed. A script to perform
this task 1s constructed as can be seen in the following
example.

EXAMPLE 1

Initial Data-Vector Description

We consider a pseudonoise (PN) code correlator 1nside a
direct sequence spread-spectrum (DS/SS) modem as an
example.

% input data
in=[12133412]

% spreading code

c=[1-11-1];

% correlate

ot=corr (in, ¢)
% find correlation peak
[max, maxpos|=max (ot);

A vector of mnput data 1n 1s defined containing 8 elements.
These are subsequent samples taken from the chip demodu-
lator 1n the spread spectrum modem. The dimension of in
thus corresponds to the time dimension. The input vector in
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1s 1n principle infinite 1n length. For simulation purposes, 1t
1s restricted to a data set which has the same average
properties (distribution) as the expected received data.

The samples of 1n are correlated with the PN-code vector
of length 4, c. The output vector ot thus contains 5 samples,
corresponding to the five positions of 1n at which ¢ can be
aligned to. The max function locates the maximum value
and position inside the correlated data. The position maxpos
1s subsequently used to synchronize the PN-code vector with
the incoming data and thus 1s the desired output value of the
algorithm.

This code 1s an elegant and compact specification, yet it
offers some open questions for the PN-correlator designer:

The algorithm has an 1mplicit startup-efiect. The first
correlation value can only be evaluated after 4 input
samples are available. From then on, each input sample
yields an additional correlation value.

The algorithm misses the common algorithmic iteration
found 1n digital signal processing applications: each
statement 1s executed only once.

For the implementation, no statement 1s made regarding,
the available cycle budget. This 1s however an 1mpor-
tant specification for the attainable acquisition speed of
the modem.

All of these questions are caused by the parallelism of the
data-vector description.

We now propose a way to make the parallelism of the
operations more visible. Each of the MATLAB operations 1s
casily interpreted. Inside the MATLAB simulation, the
length of the operands will first be determined 1n order to
select the correct operation behavior. For example,

'max, maxpos|=max(ot)

determines the maximum on a vector of length 5 (which is
the length of the operand ot). It needs at least 4 scalar
comparisons to evaluate the result. If ot would for example
have a longer length, more scalar comparisons would be
needed. To indicate this 1n the description, we explicitly
annotate each specific 1nstance of the generic operations
with the length of the mput vectors.

% input data
in=[1213341 2]

% spreading code
c=[1-11-1];

% correlate
ot=corr (in, C)
584

% find correlation peak
[max, maxpos|=max (ot);
15

This little annotation helps us to see the complexity of the
operations more clearly. We will use this when considering
implementation of the description in hardware. It 1s of
course not the intention to force a user to do this (MATLAB
does this already for him/her).

When thinking about the implementation of this
correlator, one can 1imagine different realizations each hav-
ing a different amount of parallelism, that 1s, the mapping of
all the operations inside corr( ) and max( ) onto a time/space
axis. This 1s the topic of the next section.
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Scaled Description

Consider again the definition of the PN code, as 1n:

% spreading code

c=[1-11-1];
4

This MATLAB description defines the variable ¢ to be a
data-vector containing 4 different values. This vector assign-
ment corresponds to 4 concurrent scalar assignments. We
therefore say that the maximal attainable parallelism in this
statement 1s 4.

In order to achieve this parallelism 1n the implementation,
there must be hardware available to perform 4 concurrent
scalar assignments. Since a scalar assignment 1n hardware
corresponds to driving a data bus to a certain state, we need
4 busses 1n the maximal parallel implementation. If only one
bus would be desired, then we would have to indicate this.
For each of the statements 1inside the MATLAB description,
a similar story can be constructed. The indication of the
amount of parallelism 1s an essential step 1n the transition
from data-vectors to data-flow. We call this the scaling of
parallelism. It involves a restriction of the unspecified com-
munication bandwidth 1n the MATLAB description to a

fixed number of communication busses. It 1s indicated as
follows 1n the MATLAB description.

% input data
in=[1213341 2]

8@1
% spreading code
c=[1-11 -1}
4(@4

% correlate
ot=corr (in, ¢)

S@8,4

% find correlation peak
[max, maxpos|=max (ot);
1@l 5

As 1s seen, each assignment 1s extended with a (@1
annotation, that indicates how the parallelism 1n the data
vectors 1s ordened onto a time axis. For example, the 8 input
values 1nside 1n are provided sequentially by writing 8(@1.
The 4 values of ¢ on the other hand, are provided concur-
rently. We see that, whatever implementation of the corr
operation we might use, at least 8 iterations will be required,
simply to provide the data to the operation.

At this moment, the description 1s getting closer to the
data-flow level, that uses explicit iteration. One more step 1s
required to get to the data flow graph level. This 1s the topic
of the next section.

Data Flow Graph Definition

In order to obtain a graph, the actors and edges inside this
oraph must be defined. Inside the annotated MATLAB
description, data precedences are already present through
the presence of the names of the vectors. The only thing that
1s missing 1s the definition of actor boundaries; edges will
then be defined automatically by the data precedences going
across the actor boundaries.

This can be done by a new annotation to the MATLAB
description. Three actors will be defined in the DS/SS
correlator.
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actorl {

% input data
in=[12133412];

8@1
)
actor2 {
% spreading code
c=[1-11-1];
4(@4

% correlate
ot=corr (in, ¢)
5@1 8,4
j

actor3 {

% find correlation peak
[max, maxpos|=max (ot);
1@l 5
h
Again the annotation should be seen as purely conceptual;
1t 1s not intended for the user to write this code. Given these
annotations, a data flow graph can be extracted from the

scaled MATLAB description 1n an unambiguous way.
actor]l 1s an actor with no iput, and one output, called 1n.

actor2 1s an actor with 1 mput in and one output ot.

actor3 1s an actor with 1 input ot and outputs maxpos and

max.

Furthermore, the simulation uses queues to transport
signals 1n between the actors. We need three queues, called
in, ot and maxpos.

The missing piece of information for simulation of this
dataflow graph are the firing rules (or equivalently the
definition of productions and consumptions on each edge).
A naive data flow model is shown in FIG. 4: actorl (10)
produces 8 values, which are correlated by actor2 (11), while
the maximum 1is selected inside actor3 (12).

This would however mask the parallelism scaling opera-
tion inside the MATLAB description. For example, 1t was
chosen to provide the 8 values of the 1n vector 1n a sequential
way over a parallel bus. It 1s believed that the multi-rate SDF
model therefore 1s not a good container for the annotated
MATLAB description.

Another approach 1s a cyclostatic description. In this case
we have a graph as in FIG. 5.

We see that the determination of production patterns
involves examining the latencies of operations internal to the
actor. This increases the complexity of the design script. It
1s simpler to perform a demand driven scheduling of all
actors. The firing rule only has to examine the availability of
input tokens.

The desired dataflow format as in FIG. 6 1s thus situated
in between the multirate SDF level and the cyclostatic SDF
level. It 1s proposed to annotate consumptions and produc-
tions 1n the same way as 1t was written down 1n the matlab
description:

8(@1 1s the production of actorl. It means: 8 samples are
produced one at a time.

8@1 and 5@1 1s the consumption and production of
actor2 respectively.

51 and 1(@1, 1(@1 are the consumption and productions
for actor3.

Data-Flow Simulation

Given an annotated matlab description, a simulation can
now be constructed by writing a high-level model for each
actor, interconnecting these with queues and constructing a



US 6,233,540 Bl

13

system schedule. OCAPI provides both a static scheduler
and a demand-driven scheduler. Out of this simulation,
several statistics are gathered:

On each queue, put and get counts are observed, as well
as signal statistics (minimum and maximum values).
The signal statistics provide an i1dea of the required
buswidths of communication busses.

The scheduler counts the firings per actor, and operation
executions (+, —, *, . . .) per actor. This profiling helps
the designer 1n deciding cycle budgets and hardware
operator allocation for each actor.

These statistics are gathered through a C++ operator
overloading mechanism, so the designer gets them for free
if he uses the appropriate C++ objects (schedule, queue and
token class types) for simulation.

We are next interested in the detailed clock-cycle true
behavior of the actors and the required storage and hand-
shake protocol circuits on the communication busses. This 1s
the topic of the next step, the actor definition.

Actor Definition

The actor definition 1s based on two elements:

Signal-flowgraph representation of behavior.

Time-verification of the system.
The two problems can be solved independently using the

annotated MATLAB code as specification. In OCAPI:

The actor RT modeling proceeds in C++ and can be freely
intermixed with high level descriptions regarding both
operator wordlength effects and clock-cycle true tim-
Ing.

The time-verification approach allows the system feasi-
bility to be checked at all times by warning the designer
for deadlock and/or causality violations of the commu-
nication.

Signal Flowgraph Definition

Within the OCAPI design flow, a class library was devel-
oped to simulate behavior at RT-level. It allows

To express the behavior of an algorithm with arbitrary

implementation parallelism by setting up an signal flow
graph (SFG) data structure.

To simulate the behavior of an actor at a clock-cycle true
level by interpreting this SFG data structure with
instantiated token values.

To specily wordlength characteristics of operations
regarding sign, overflow and rounding behavior.
Through explicit modeling of the quantization charac-
teristic rather than the bit-vector representation (as in
SPW), efficient simulation runtimes are obtained.

To generate C++ code for this actor, and hence perform
the clock cycle true simulation with compiled code.

To generate VHDL code for this actor, and synthesize an
implementation with Synopsys DC.

To generate DSFG code for this actor, and synthesize an
implementation with Cathedral-3. It was observed that
Cathedral-3 performs a better job with relation to both
critical path and area of the obtained circuits than
Synopsys DC. The best synthesis results are obtained
by first using Cathedral-3 to generate a circuit at gate
level and then Synopsys-DC to perform additional
logic optimization as a postprocessing.

An 1mportant observation was made regarding stimulation

speed. For equivalent descriptions at different granularities,
the following relative runtimes were found:
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the MATLAB simulation.

the untimed, high level C++ data flow description.

1 for

2 for
4 for the timed, fixed point C++ description (compiled
code).

40 for the procedural, word-level VHDL description.

It 1s thus concluded that RT-modeling of systems within

OCAPI 1s possible within half an order of magnitude of the
highest level of description. VHDL modeling however, 1s
much slower. Currently the figure of 40 times MATLAB 1s
even considered an under-estimate. Future clock-cycle
based VHDL simulators can only solve half of this problem,
since they still use bit-vector based simulation of tokens
rather then quantization based simulation.
Next, the modeling 1ssues in C++ are shown in more
detail. The C++ signal-flowgraph representation uses a sig-
nal data-type, that can be either a registered or else an
immediate value. With this data-type, expressions are
formed using the conventional scalar operations. (+, —, *,
shifts and logical operations). Expressions are grouped
together 1n a signal flowgraph. A signal flowgraph interfaces
with the system through the data-flow simulation queues.
Several signal-flowgraphs can be grouped together to a
SFG-sequence. A SFG sequence 1s an expression of behav-
ior that spans several cycles. The specification i1s done
through a finite state machine model, for which transition
conditions can be expressed. The concept of SFG modeling
1s pictured 1n FIG. 7.

The combination of different SFG’s 1n combination with
a finite state machine make up the clock-cycle true actor
model. Within the actor, SFG communication proceeds
through registered signals. Communication over the bound-
aries of an actor proceeds through simulation queues.

When the actor 1s specified in this way, and all signal
wordlengths are annotated to the description, an automated
path to synthesis 1s available. Several different SFG’s can be
assigned to one datapath. Synthesizable code 1s generated 1n
such a way that hardware sharing between different sfg’s 1s
possible. A finite state machine (FSM ) description is first
translated to SFG format to generate synthesizable code in
the same way. There 1s an implicit hierarchy available with
this method: by assigning different FSM-SFG’s to one
datapath, an overall processor architecture 1s obtained that
again has a mode port and therefore looks like a (multicycle)
datapath. For macro control problems (such as acquisition/
tracking algorithm switching in modems), this is a necessity.

Although the distance between the annotated MATLAB
level and this R1-level SFG seems large, it 1s reasonable on
the actor level. Consider for example

actor3 {

% find correlation peak
[max, maxpos|=max (ot);
1@1 5
;

We are asked here to write time the max( ) operation with
an SFG. actor2 has scaled the parallelism of ot to 5@1.
A solution 1s presented 1n actual C++ code.

1
FB qin(“qin”); //input queue
FB glout(“gout™); //output queue

FB g2out(“qout™); //output queue

FB start(“start™); //the start pin of the
pProcessor

clock ck;

_sig currmax(ck,dfix(0); //registry holding current
maximuim
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_sig maxpos(ck,diix(0)); //registry holding position
of max

_sig currpos(ck,dfix(0)); //current position

__s1g 1mputvalue; //holds mput values
__s1g maxout;

__S1g maxposout;

_sig one(dfix(1)); //a constant

SFG ste0, stel, stg2; //we use 3 sig’s
sfg0.starts( ); //code after this is for sfg0
currmax=inputvalue;

Mmaxpos=0ne;

CUITPOS=0N¢;
//mext, give sfg0 a mode and
an mnput queue

sfg0<<“m0” <<ip(inputvalue,qin);

sfgl.starts( ); //code after this is for sfgl
//this 1s a conditional
assignment

currmax=(inputvalue>currmax).cassign(inputvalue,
currmax);

maxpos=(inputvalue>currmax).cassign(currpos,
Maxpos);

CUITPOS=CUITPOS+1;
sfgl<<“m1”<<ip(inputvalue,qin);
sfg2.starts( ); //the last SFG

maxposout=(inputvalue>currmax).cassign(__sig(dfix(4)),
Maxpos);

maxout=(inputvalue>currmax).cassign(inputvalue,
currmax);

sfg2<<“m2”<<op(maxout,qout)<<op(maxposout,q2out);
state sO(*s07), s1(“s1”), s2(“s2”), s3(“s3”)
sO>>!cnd(start)>>s0;

sO>>cnd(start)>>sfg0s1;
sl>>allways>>sfgl>>s2;

s2>>allways>>sfgl>>s3;
s3>>allways>>stg2>>s0;

j

As an aid to interpret the C++ code, the equivalent
behavior 1s shown 1n FIG. 8. The behavior 1s modeled as a
4-cycle description. Three SFG’s (13,14,15) are needed, in
addition to a 4-state controller (16). The controller 1s mod-
cled as a Mealy machine.

The C++ description also illustrates some of the main
contributions of OCAPI: register-transier level aspects
(signals, clocks, registers), as well as dataflow aspects
simulation queues) are freely intermixed and used as appro-
priate. By making use of C++ operator overloading and
classes, these different design concepts are represented 1n a
compact syntax format. Compactness 1s a major design
Issue.

Having this specification, we have all information to
proceed with the detailed architectural design of the actor.
This 1s however only part of the system design solution: we
are also interested 1n how to incorporate the cycle-true result
in the overall system.

Time Verification

The introduction of time (clock cycles) in the simulation
uses an expectation-based approach. It allows to use either
a high level or else an SFG-type description of the actor, and
simulate the complete system clock-cycle true. The simula-
tion helps the designer 1n finding whether his ‘high-level’
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description matches the SFG description, and secondly,
whether the system 1s realizable.

A summary of the expectation based simulation 1s given
in FIG. 10 and 1s used to illustrate the i1deas mentioned
below.

This 1s a different approach then when analysis 1s used
(e.g. the evaluation of a compile-time schedule and token
lifetimes) to force restrictions onto the actor implementa-
tion. This traditional approach gives the designer no clue on
whether he 1s actually writing down a reasonable descrip-
tion.

Each token 1n the simulation 1s annotated with a time
when 1t 1s created: the token age. Initial tokens are born at
age 0, and grow older as they proceed through the dataflow
oraph. The unit of time 1s the clock cycle.

Additionally, each queue 1n the stimulation holds a queue
age (say, ‘the present’) that is used to check the causality of
the simulation: a token entering a queue should not be
younger than this boundary. A queue 1s only able to delay
tokens (registers), and therefore can only work with tokens
that are older than the queue age.

If such a consistency violation i1s detected, a warning,
message 1s 1ssued and the token age 1s adapted to that of the

queue. Otherwise, the time boundary of the queue 1s updated
with the token age after the token is installed on the queue.

The queue age 1s steered by the actor that drives 1t. For
cach actor the designer formulates an iteration time. The
iteration time corresponds the cycle budget that the designer
expects to need for the detailed actor description. Upon each
actor firing, the queues driven by the actor are aged with the
iteration time.

At the same time, the actor operations also increase the
age of the tokens they process. For normal operations, the
resulting token age 1s equal to the maximum of the operand
token ages. For registered signals (only present in SFG-level
actor descriptions), the token age is increased by one.
Besides aging by operation, aging inside of the queues 1s
also possible by attaching a travel delay to each queue.

Like the high-level actor description, a queue 1s also
annotated with a number of expectations. These annotations
reflect what the implementation of the queue as a set of
communication busses should look like.

A communication bus contains one or more registers to
provide 1ntermediate storage, and optionally also a
handshake-protocol circuit. A queue then maps to one or
more (for parallel communication) of these communication
busses.

The expectations for a stmulation queue are:

The token concurrency, that expresses how many tokens
of the same age can be present on one queue. To
communicate a MATLAB vector annotated with 8@?
for example requires two communication busses. This
1s reflected 1n the high level queue model by setting the
token concurrency to two.

In case the token concurrency is 1, 1t can be required that
subsequent tokens are separated by a determined num-
ber of clock cycles. In combination with the travel
delay, this determines how many registers are needed
on a communication bus. This expectation 1s called the

token latency.
Example implementations for di
shown 1n FIG. 9.
When the token concurrency 1s different from one, the
token latency cannot be bigger than one. If 1t would, then the
actor that provides the tokens can be designed more etfec-

™

‘erent expectations are
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fively using hardware sharing, and thus reducing the token
concurrency. A summary of the expectation based simula-
fion 1s put as follows. First, there are several implicit
adaptations to token ages and queue ages.

An actor description increases the queue age upon each
actor 1teration with the iteration time.

A queue 1ncreases the age of communicated tokens with
the travel delay.

An SFG description increases token ages through the
operations. The token age after a register 1s 1ncreased
by one, all other operations generate a token with age
equal to the maximum of the operand ages.

The set of operations that modify the token age are

referred to as token aging rules.

Next, a number of checks are active to verily the consis-

tency of the simulation.

Atoken age cannot be younger (smaller) then a queue age.
The token concurrency on a queue cannot be exceeded.

The token latency on a queue cannot be exceeded.

A successtul clock-cycle true simulation should never fail
any ol these checks. In the case of such success, the
expectations on the queue can be investigated more closely
to devise a communication bus for it. In this description we
did not mention the use of handshake protocol circuits. A
handshake protocol circuit can be used to synchronize
tokens of different age at the mnput of an actor.

Implementation

The current library of OCAPI allows to describe a system
in C++ by building on a set of basic classes.

A simulation queue class that transports a token class and
allows to perform expectation-checks.

An SFG/FSM class that allows clock cycle true
specification, simulation and code generation.

A token class that allows to simulate both floating point-

type representation and fixed point type representation.

One can simulate the MATLAB data-vector data-type

with C++ simulation queues. For the common MATLAB

operations, one can develop a library of SFG descriptions

that reflect different flavors of parallelism. For instance, a
C++ version of the description

% input data
in=[1213341 2]

% spreading code
c=[1-11-1];

% correlate
ot=corr (in, ¢)

% find correlation peak
[max, maxpos|=max (ot);

looks, after scaling of the parallelism and defining the
actor boundaries, like
FB 1n, ot, maxp;

in.delay(1,0); //iteration time, travel delay
ot.delay(1,0);
maxp.delay(4,0);

in.expect(1,1); //travel time, concurrency,
latency

ot.expect(1,1);

maxp.expect(1,4);

in vector(1, 2, 1, 3, 3, 4, 1, 2);
ot=corr(8, 4, in, vector(1, -1, 1, -1))
maxp=maxpos(4, ot);
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This C++ description contains all information necessary
to stmulate the system 1n mind at clock cycle true level and
to generate the synthesizable code for the system and the
individual actors.

Thus, the data-flow level has become transparent—it 1s
not explicitly seen by the designer but rather it 1s 1mplied
through the expectations (pragma’s) and the library.

EXAMPLE 2

An example of processor design 1s given next to experi-
ence hardware design when using OCAPI. The task 1s to
design a 4-tap correlator processor that evaluates a correla-
tion value each two cycles. One coelflicient of the correlation
pattern needs to be programmable and needs to be read in
after a control signal 1s asserted. The listing in FIG. 11 gives
the complete FSMD model of this processor.

The top of the listing shows how types are declared 1n
OCAPI. For example, the type T__sample 1s 8 bits wide and
has 6 bits beyond the binary point.

For such a type declaration, a signed, wrap-around and
truncating representation 1s assumed by default. This can be
casily changed, as for instance 1n

/Mloating point
diix T__sample;

/funsigned
dfix T_sample(8, 6, ns);

/funsigned, rounding
dfix T sample(8, 6, ns, rd);

Below the type declarations we see coefficient declara-
tions. These are specified as plain double types, since they
will be automatically quantized when read i1n into the
coellicient registers. It 1s possible to intermix existing C/C++
constructs and types with new ones.

Following the coeflicients, the FSMD definition of the
correlator processor 1s shown. This definition requires: the
specification of the instruction set that 1s processed by this
processor, and a specification of the control behavior of the
processor. For each of these, OCAPI uses dedicated objects.

First, the instruction set 1s defined. Each instruction
performs data processing on signals, which must be defined
first. The definitions include plain signals (sample in and
corr__out), registers (accu), and register arrays (coef] ] and
sample]| |).

Next, each of the instructions are defined. A definition 1s
started by creating a SFG object. All signal expressions that
come after such an SFG definition are considered to make up
part of it. A SFG definition 1s closed simply by defining a
new SFG object.

The first instruction, 1initialize coefs, initializes the coet-
ficient registers coef] |. The for loop allows to express the
initialization 1n a compact way. Thus, the 1nitialize_ coefs
instruction 1s also equivalent to

coef| 0]=W(T __coef, hardwired coef]0]);
coef] 1 ]=W(T__coef, hardwired coef] 1]);
coef] 2|=W(T __coef, hardwired coef] 2]);
coef] 3]=W(T__coef, hardwired coef] 3]);

The second instruction programs the value of the first
coellicient. The new value, coef__1n, 1s read from an 1nput
port of the FSMD with the same name. Beyond this port, we
are ‘outside’ of the timed FSMD description and use data-
flow semantics, and communicate via queues. The third and
fourth instruction, correl 1 and correl 2 describe the two
phases of the correlation. It 1s very easy to express complex
expressions just by using C++ operators. Also, a cast opera-
tion 1s included that limits the precision of the intermediate
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expression result. Although this 1s for minor importance for
simulation, it has strong mnfluence on the hardware synthesis
result.

The 1nstruction read__sample shifts the data delay line. In
addition to a for loop, an if expression 1s used to express the
boundary value for the delay line. Use of simple C++
constructs such as these allow to express signal flow graph
structure 1n a compact an elegant way. It 1s especially useful
in parametric design.

The last instruction, read_ control, reads 1n the control
value that will decide whether the first correlation coefficient
needs to be refreshed.

Below all SFG definitions, the control behavior of the
correlator processor 1s described. An FSM with tree states 1s
defined, using one 1nitial state rst, and two normal states
phase 1 and phase_ 2. Next, four transitions are defined
between those three states. Each transition specifies a start
state, the transition condition, a set of 1nstructions to
execute, and a target state. For a designer used to finite state
machine specification, this 1s a very compact and efficient
notation. The transition condition always i1s always true,
while a transition condition like cnd(load) will be true
whenever the register load contains a one.

The resulting fsm description is returned to OCAPI by the
last return statement. The simulator and code generator can
now process the object hierarchy 1n order to perform seman-
tfical checks, simulation, and code generation.

The translation to synthesizable VHDL and Cathedral-3
code 1s automatic and needs no extra designer effort. The
resulting circuit for datapath and controller 1s shown 1n FIG.
12. The hierarchy of the generated code that 1s provided by
OCAPI 1s also indicated. Each controller and datapath are
interlinked using a link cell. The link cell itself can be
embedded 1nto an automatically generated testbench or also
in the system link cell that interconnects all components.

EXAMPLE 3

Design of Complex High Speed ASICs

The design of a 75 Kgate DECT transceiver 1s used as an
example. The design consists of a digital radiolink trans-
ceiver ASIC, residing in a DECT base station (20)(FIG. 13).
The chip processes DECT burst signals, received through a
radio frequency front-end RF (21). The signals are equalized
to remove the multipath distortions introduced 1n the radio
link (22). Next, they are passed to a wire-link driver DR
(23), that establishes communication with the base station
controller BSC (24). The system is also controlled locally by
means of a control component CTL (25).

The specifications that come with the design of the digital
transceiver ASIC 1n this system are as follows:

The equalization involves complex signal processing, and
1s described and verified inside a high level design

environment such as MATLAB.

The interfacing towards the control component CTL and
the wire-link driver DR on the other hand 1s described
as a detailed clock-cycle true protocol.

The allowed processing latency 1s, due to the real time
operation requirements, very low: a delay of only 29
DECT symbols (25.2 useconds) is allowed. The com-
plexity of the equalization algorithm, on the other hand,
requires up to 152 data multiplies per DECT symbol to
be performed. This 1mplies the use of parallel data
processing, and introduces a severe control problem.

The scheduled design time to arrive from the heteroge-
neous set of specifications to the verified gate level
netlist, 1s 18 person-weeks.

10

15

20

25

30

35

40

45

50

55

60

65

20

The most important degree of freedom 1in this design
process 1s the target architecture, which must be chosen such
that the requirements are met. Due to the critical design time,
a maximum of control over the design process 1s required.
To achieve this, a programming approach to implementation
1s used, 1n which the system 1s modelled in C++. The object
oriented features of this language allows to mix high-level
descriptions of undesigned components with detailed clock-
cycle true, bit-true descriptions. In addition, appropriate
object modelling allows the detailed descriptions to be
translated to synthesizable HDL automatically. Finally, veri-
fication testbenches can be generated automatically in cor-
respondence with the C++ simulation.

The result of this design effort 1s a 75 Kgate chip with a
VLIW architecture, including 22 datapaths, each decoding
between 2 and 57 instructions, and including 7 RAM cells.
The chip has a 194 die area 1n 0.7 CMOS technology.

The C++ programming environment allows to obtain
results faster then existing approaches. Related to register
transfer design environments such as, 1t will be shown that
C++ allows to obtain more compact, and consequently less
error prone descriptions of hardware. High level synthesis
environments could solve this problem but have to fix the
target architecture on beforehand. As will be described 1n the
case of the DECT ftransceiver design, sudden changes in
target architecture can occur due to hard initial requirements,
that can be verified only at system implementation.

First, the system machine model 1s introduced This model
includes two types of description: high-level untimed ones
and detailed timed blocks. Using such a model, a stmulation
mechanism 1s constructed. It will be shown that the proposed
approach outperforms current synthesis environments in
code size and simulation speed. Following this, HDL code

ogeneration 1ssues and hardware synthesis strategies are
described.

System Machine Model

Due to the high data processing parallelism, the DECT
transceiver 1s best described with a set of concurrent pro-
cesses. Each process translates to one component 1n the final
system 1mplementation.

At the system level, processes execute using data flow
simulation semantics. That 1s, a process 1s described as an
iterative behavior, where 1nputs are read 1n at the start of an
iteration, and outputs are produced at the end. Process
execution can start as soon as the required mnput values are
available.

Inside of each process, two types of description are
possible. The first one 1s a high level description, and can be

expressed using procedural C++ constructs. A firing rule 1s
also added to allow datatlow simulation.

The second flavour of processes 1s described at register
transier level. These processes operate synchronously to the
system clock. One 1teration of such a process corresponds to
one clock cycle of processing.

For system simulation, two schedulers are available. A
dataflow scheduler 1s used to stmulate a system that contains
only untimed blocks. This scheduler repeatedly checks pro-
cess firing rules, selecting processes for execution as their
inputs are available.

When the system also contains timed blocks, a cycle
scheduler 1s used instead. The cycle scheduler manages to
interleave execution of multi-cycle descriptions, but can
incorporate untimed blocks as well.

FIG. 14 shows the front-end processing of the DECT
transceiver, and the difference between data-flow and cycle
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scheduling. At the top, the front-end processing 1s seen. The
received signals are sampled by and A/D, and correlated
with a unique header pattern in the header correlator HCOR.
The resulting correlations are detected inside a header
detector block HDET. A stimulation with high level descrip-
fions uses the datatlow scheduler. An example datatlow
schedule 1s seen 1n the middle of the figure. The A/D high
level description produces 3 tokens, which are put onto the
interconnect communication queue. Next, the correlator
high level description can be fired three times, followed by
the detector processing.

When a cycle true description of the A/D and header
correlator on the other hand 1s available, this system can be
simulated with the cycle scheduler as shown on the bottom
of the figure. This time, behavior of the A/D block and
correlator block are interleaved. As shown for the HCOR
block, executions can take multiple cycles to perform. The
remaining high level block, the detector, contains a firing
rule and 1s executed as required. Related to the global clock
orid, 1t appears as a combinatorial function.

Detailed process descriptions reflect the hardware behav-
1or of a component at the same level of the implementation.
To gain simulation performance and coding effort, several
abstractions are made.

Finite Wordlength effects are simulated with a C++ fixed
point library. It has been shown that the simulation of these
clfects 1s easy 1n C++. Also, the simulation of the quanti-
zation rather than the bitvector representation allows sig-
nificant simulation speedups.

The behavior 1s modelled with a mixed control/data
processing description, under the form of a finite state
machine coupled to a datapath. This model 1s common 1n the
synthesis community. In high throughput telecommunica-
fions circuits such as the ones in the DECT transceiver
ASIC, 1t most often occurs that the desired component
architecture 1s known before the hardware description 1s
made. The FSMD model works well for these type of
components.

The two aspects, wordlength modelling and cycle true
modelling, are available 1 the programming environment as
separate class hierarchies. Therefore, fixed point modelling
can be applied equally well to high level descriptions.

As an 1llustration of cycle true modelling, a part of the
central VLIW controller description for the DECT trans-
ceiver ASIC 1s shown 1n FIG. 15. The top shows a Mealy
type finite state machine (30). As actions, the signal flow-
graph descriptions (31) below it are executed. The two states
execute and hold correspond to operational and idle states of
the DECT system respectively. The conditions are stored in
registers 1nside the signal flowgraphs. In this case, the
condition holdrequest 1s related to an external pin.

In execute state, instructions are distributed to the data-
paths. Instructions are retrieved out of a lookup table,
addressed by a program counter. When holdrequest 1s
asserted, the current 1nstruction 1s delayed for execution, and
the program counter PC 1s stored in an internal register.
During a hold, a nop instruction 1s distributed to the data-
paths to freeze the datapath state. As soon as holdrequest 1s
removed, the stored program counter holdpc addresses the
lookup table, and the interrupted instruction 1s 1ssued to the
datapaths for execution.

Signals and Signal Flow Graphs

Signals are the information carriers used 1n construction
of a timed description. Signals are stmulated using C++ sig
objects. These are either plain signals or else registered
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signals. In the latter case the signals have a current value and
next value, which 1s accessed at signal reference and assign-
ment respectively. Registered signals are related to a clock
object clk that controls signal update. Both types of signals
can be either floating point values or else simulated fixed
point values.

Using operations, signals are assembled to expressions.
By using the overloading mechanism as shown in FIG. 16,

the parser of the C++ compiler 1s reused to construct the
signal flowgraph data structure.

An example of this 1s shown 1n FIG. 17. The top of the
figure shows a C++ fragment (40). Executing this yields the
data structure (41) shown below it. It is seen that

the signal flowgraph consists both of user defined nodes
and operation nodes. Operation nodes keep track of
their operands through pointers. The user defined sig-
nals are atomic and have null operand pointers.

The assignment operations use reversed pointers allowing,
to find the start of the expression tree that defines a
signal.

A set of sig expressions can be assembled 1n a signal flow
graph (SFG). In addition, the desired inputs and outputs of
the signal flowgraph have to be indicated. This allows to do
semantical checks such as dangling mput and dead code
detection, which warn the user of code inconsistency.

An SFG has well defined simulation semantics and rep-
resents one clock cycle of behavior.

Finite State Machines

After all instructions are described as SFG objects, the
control behavior of the component has to be described. We
use a Mealy-type FSM model to do this.

Again, the use of C++ objects allow to obtain very
compact and efficient descriptions. FIG. 18 shows a graphi-
cal and C++-textual description of the same FSM. The
correspondence 1s obvious. To describe an equivalent FSM
in an event driven HDL, one usually has to follow the HDL
simulator semantics, and for example use multi-process
modelling. By using C++ on the other hand, the semantics
can be adapted depending on the type of object processed,
all within the same piece of source code.

Architectural Freedom

An 1mportant property of the combined control/data
model 1s the architectural freedom 1t offers. As an example,
the final system architecture of the DECT transceiver is
shown in FIG. 19. It consists of a central (VLIW) controller
(50), a program counter controller (51) and 22 datapath
blocks. Each of these are modelled with the combined
control/data processing shown above. They exchange data
signals that, depending on the particular block, are inter-
preted as 1nstructions, conditions or signal values. By means
of these interconnected FSMD machines, a more complex
machine 1s constructed.

It 1s now motivated why this architectural freedom 1s
necessary. For the DECT transceiver, there 1s a severe
latency requirement. Originally, a dataflow target architec-
ture was chosen (FIG. 20), which is common for this type of
telecommunications signal processing. In such an
architecture, the individual components are controlled
locally and data driven. For example, the header detector
processor signals a DECT header start (a correlation
maximum), as soon as it is sure that a global maximum is
reached.

Because of the latency requirement however, extra delay
in this component cannot be allowed, and it must signal the
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first available correlation maximum as a valid DECT header.
In case a new and better maximum arrives, the header
detector block must then raise an exception to subsequent
blocks to indicate that processing should be restarted. Such
an exception has global impact. In a data driven architecture
however, such global exceptions are very difficult to imple-
ment. This 1s far more easy 1n a central control architecture,
where 1t will take the form of a jump 1n the mnstruction ROM.
Because of these difficulties, the target architecture was
changed from data driven to central control. The FSMD
machine model allowed to reuse the datapath descriptions
and only required the control descriptions to be reworked.
This architectural change was done during the 18-week
design cycle.

The Cycle Scheduler

Whenever a timed description 1s to be simulated, a cycle
scheduler 1s used instead of a dataflow scheduler. The cycle
scheduler creates the 1llusion of concurrency between com-
ponents on a clock cycle basis.

The operation of the cycle scheduler 1s best illustrated
with an example. In FIG. 21, the simulation of one cycle 1n
a system with three components 1s shown. The first two,
components 1 (60) and 2 (61), are timed descriptions con-
structed using fsm and sfg objects. Component 3 (62) on the
other hand 1s decribed at high level using a firing rule and a
behavior. In the DECT transceiver, such a loop of detailed
(timed) and high level (untimed) components occurs for
instance in the RAM cells that are attached to the datapaths.
In that case, the RAM cells are described at high level while
the datapaths are described at clock cycle true level.

The simulation of one clock cycle 1s done 1n three phases.
Traditional RT simulation uses only two; the first being an
evaluation phase, and the second being a register update
phase.

The three phases used by the cycle scheduler are a token
production phase, an evaluation phase and a register update
phase. The three-phase simulation mechanism is needed to
avold apparent deadlocks that might exist at the system
level. Indeed, 1n the example there 1s a circular dependency
in between components 1, 2, and 3, and a dataflow scheduler
can no longer select which of the three components should
be executed first. In datatflow simulation, this 1s solved by
introducing initial tokens on the data dependencies. Doing
so would however require us to devise a bulfer implemen-
tation for the system interconnect, and introduce an extra
code generator 1n the system.

The cycle scheduler avoids this by creating the required
initial tokens 1 the token production phase. Each of the
phases operates as follows.

0] Each the start of clock cycle, the sfg descriptions to be
executed 1n the current clock cycle are selected. In each
fsm description, a transition is selected, and the stg related
to this transition are marked for execution.

| 1] Token production phase. For each marked sfg, look into
the dependency graph, and 1dentify the outputs that solely
depend on registered signals and/or constant signals.
Evaluate these outputs and put the obtained tokens onto
the system interconnect.

[2] (a) Evaluation phase (case a). In the second phase,
schedule marked sfg and untimed blocks for execution
until all marked sfg have fired. Output tokens are pro-
duced 1if they are directly dependent on mput tokens for
timed sfg descriptions, or else if they are outputs of
untimed blocks.

[2] (b) Evaluation phase (case b). Outputs that are however
only dependent on registered signals or constants will not
be produced m the evaluation phase.

3] Register update phase. For all registered signals in
marked stg, copy the next-value to the current-value.
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The evaluation phase of the three-phase simulation 1s an
iterative process. If a pre-set amount of iterations have

passed, and there are still unfired components, then the
system 1s declared to be deadlocked. This way, the cycle
scheduler identifies combinatorial loops 1n the system.

Code Generation and Simulation Strategy

The clock-cycle true, bit-true description of system com-
ponents serves a dual purpose. First, the descriptions have to
be stmulated 1n order to validate them. Next, the descriptions

have also to be translated to an equivalent, synthesizable
HDL description.

In view of these requirements, the C++ description itself
can be treated 1n two ways 1n the programming environment.
In case of a compiled code approach, the C++ description 1s
translated to directly executable code. In case of an inter-
preted approach, the C++ description 1s preprocessed by the
design system and stored as a data structure in memory.

Both approaches have different advantages and uses. For
simulation, execution speed 1s of primary importance.
Theretore, compiled code stimulation 1s needed. On the other
hand, HDL code generation requires the C++ description to
be available as a data structure that can be processed by a
code generator. Therefore, a code generator requires an
interpreted approach.

We solve this dual goal by using a strategy as shown 1n
FIG. 22. The clock-cycle true and bit-true description of the
system 1s compiled and executed. The description uses C++
objects such as signals and finite state machine descriptions
which translate themselves to a control/data flow data struc-
ture.

This data structure can next be interpreted by a simulator
for quick verification purposes. The same data structure 1s
also processed by a code generator to yield two different
descriptions.

A C++ description can be regenerated to yield an
application-speciiic and optimized compiled code simulator.
This simulator 1s used for extensive verification of the
design because of the efficient stmulation runtimes.

A synthesizable HDL description can also be generated to
arrive at a gate-level implementation.

The simulation performance difference between these
three formats (interpreted C++ objects, compiled C++, and
HDL) is illustrated in table 1. Simulation results are shown
for the DECT header correlator processor, and also the
complete DECT transceiver ASIC.

The C++ modelling gains a factor of 5 in code size (for the
interpreted-object approach) over RT-VHDL modeling. This
1s an 1mportant advantage given the short design cycle for
the system. Compiled code C++ on the other hand provides
faster simulation and smaller process size then RT-VHDL.

For reference, results of netlist-level VHDL and Verilog
simulations are given.

TABLE 1

Source Simulation Process

Size Code Speed Size
Design (Gates) Type (# lines) (cycles/s)  (Mb)
HCOR 6K C++(interpreted obyj) 230 69 3.8
C++ (compiled) 1700 819 2.7
VHDL (RT) 1600 251 11.9
VHDL (Netlist) 77000 2.7 81.5

DECT 75K C++(interpreted obj) 8000 2.9 20
C++ (compiled) 26000 60 5.1

Verilog (Netlist) 59000 18.3 100

Synthesis Strategy

Finally, we document the synthesis approach that was
used for the DECT transceiver. As shown 1n FIG. 23, the
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clock-cycle true, bit-true C++ description can be translated
from within the programming environment into equivalent

HDL.

For each component, a controller description and a data-
path description 1s generated, 1n correspondence with the
C++ description. This 1s done because we rely on separate
synthesis tools for both parts, each one optimized towards
controller or else datapath synthesis tasks.

For datapath synthesis, we rely on the Cathedral-3 back-
end datapath synthesis tools, that allow to obtain a bitparallel
hardware implementation starting from a set of signal flow-
oraphs. These tools allow operator sharing at word level, and
result 1n run times less than 15 minutes even for the most
complex, 57-1nstruction data path of the DECT transceiver.

Controller synthesis on the other hand 1s done by logic
synthesis such as Synopsys DC. For pure logic synthesis
such as FSM synthesis, this tool produces efficient results.
The combined netlists of datapath and controller are also
post-optimized by Synopsys DC to perform gate-level netlist
optimizations. This divide and conquer strategy towards
synthesis allows each tool to be applied at the right place.

During system simulation, the system stimuli are also
translated into testbenches that allow to verity the synthesis
result of each component. After interconnecting all synthe-
sized components into the system netlist, the final 1mple-
mentation can also be verified using a generated system
testbench.

Attached hereto as an Appendix enfitled, “OCAPI/RT
User Manual, Version 0.6” which includes further data,
information and description related to the invention
described herein. The owner of this User Manual retains any
and all copyright rights this work. Therefore, except as
provided for in 37 C.FR. § 1.71(¢), any copying,
distributing, reproducing, or any other act or right protected

by the copyright laws of the United States 1s strictly pro-
hibited.

The invention may be embodied in other specific forms
without departing from 1ts spirit or essential characteristics.
The described embodiments are to be considered in all
respects only as 1llustrative and not restrictive. The scope of
the mvention 1s, therefore, indicated by the appended claims,
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What 1s claimed 1s:

1. Amethod of designing a system comprising at least one
digital part, comprising refining, wherein a behavioral
description of said system 1s transformed 1nto an implement-
able description of said system, said behavioral description
being represented as a first set of objects with a first set of
relations therebetween and said implementable description
being represented as a second set of objects with a second set
of relations therebetween, and wherein said refining com-
prises translating behavioral characteristics at least partly
into structural characteristics, and wherein said refining
comprises first refining, wherein said behavioral description
1s a data-vector model and 1s at least partly transformed 1nto
a data-flow model.

2. The method of claim 1, further comprising simulating
in which the behavior of said behavioral description, said
implementable description and/or any intermediate descrip-
tion therebetween 1s simulated.

3. The method of claim 1, wherein said refining comprises
the addition of new objects, permitting interaction with
existing objects, and adjustments to said existing objects
allowing said interaction.
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4. The method of claam 1, wherein said refining 1s
performed 1n an open environment and comprises expansion
of existing objects.

5. The method of claim 1, wheremn said refining further
comprises second refining, wherein said data-flow model 1s
at least partly transformed 1nto an SFG model.

6. The method of claim 1, wherein said refining comprises
first refining, said first reflining comprising;:

determining the input vector lengths of mput, output and
intermediate signals;

determining the amount of parallelism of operations that
process 1nput signals to output signals;

determining actors, edges and tokens of said data-[ Jflow
model; and

determining the wordlength of said tokens.

7. The method of claim 1, wherein said second set of
objects with said second set of relations therebetween are at
least partly derived from said first set of objects with said
first set of relations therebetween.

8. The method of claim 1, wherein objects belonging to
said second set of objects are new objects, 1identical with
and/or derived by 1nheritance from objects from said first set
of objects, or a combination thereof.

9. The method of claim 35, further comprising combining
several of said SFG models with a finite state machine
description resulting 1n an implementable description.

10. The method of claim 9, further comprising transform-
ing said implementable description to synthesizable code.

11. The method of claim 10, wherein said synthesizable
code 1s VHDL code.

12. A method of simulating a system comprising at least
onc digital part, the method comprising transforming a
description of a system having structural characteristics into
compilable C++ code, wherein said description comprises
the combination of several SFG data structures with a finite
state machine description resulting in an implementable
description, said implementable description being said com-
pilable C++ code suitable for simulating said system as
software and wherein behavioral characteristics are trans-
formed at least partly into structural characteristics.

13. A method of simulating a system comprising at least
onc digital part, the method comprising transforming a
description of a system having structural characteristics into
compilable C++ code, wherein said simulating comprises a
clock-cycle true simulation of said system being an
expectation-based simulation using one or more SFG data
structures, and wherein behavioral characteristics are trans-
formed at least partly into structural characteristics said
expectation-based simulation comprising;

annotating a token age to every token;
annotating a queue age to every queue;

increasing token age according to the token aging rules
and with the travel delay for every queue that has
transported the token;

increasing queue age with the iteration time of the actor
steering the queue; and

checking whether token age 1s never smaller than queue

age throughout the simulation.

14. A hardware circuit or a software simulation of a
hardware circuit designed with the method of claim 1.

15. A method of designing a system comprising at least
one digital part, comprising refining wherein a behavioral
description of said system 1s transformed 1nto an implement-
able description of said system, said behavioral description
being represented as a first set of objects with a first set of
relations therebetween and said implementable description
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being represented as a second set of objects with a second set
of relations therebetween, wherein said refining comprises:

determining the 1nput vector lengths of 1input, output and
intermediate signals;

determining the amount of parallelism of operations that
process 1nput signals to output signals;

determining actors, edges and tokens of said data-flow
model; and

determining the wordlength of said tokens,

wherein said second set of objects with said second set of
relations therebetween are at least partly derived from
said first set of objects with said first set of relations
therebetween.

16. A method of designing a system comprising at least
one digital part, comprising refining wherein a behavioral
description of said system 1s transformed 1nto an implement-
able description of said system, said behavioral description
being represented as a first set of objects with a first set of
relations therebetween and said implementable description
being represented as a second set of objects with a second set
of relations therebetween, wherein said refining comprises:

determining the 1nput vector lengths of 1nput, output and
intermediate signals;

determining the amount of parallelism of operations that
process mput signals to output signals;

determining actors, edges and tokens of said data-flow
model; and

determining the wordlength of said tokens,

wherein objects belonging to said second set of objects
are new objects, 1dentical with and/or derived by 1nher-
itance from objects from said first set of objects, or a
combination thereof.

17. A method of designing a system comprising at least
one digital part, comprising reflning wherein a behavioral
description of said system 1s transformed 1nto an implement-
able description of said system, said behavioral description
being represented as a first set of objects with a first set of
relations therebetween and said implementable description
being represented as a second set of objects with a second set
of relations therebetween, wherein said refining comprises:

determining the 1nput vector lengths of 1nput, output and
intermediate signals:

determining the amount of parallelism of operations that
process input signals to output signals;

determining actors, edges and tokens of said data-flow
model; and

determining the wordlength of said tokens,

wherein said determining the amount of parallelism com-
prises determining the amount of parallelism for every
data vector and reducing the unspecified communica-
tion bandwidth of said data-vector model to a fixed
number of communication buses 1n said datatlow
model.

18. A method of designing a system comprising at least
one digital part, comprising reflning wherein a behavioral
description of said system 1s transformed 1nto an implement-
able description of said system, said behavioral description
being represented as a first set of objects with a first set of
relations therebetween and said implementable description
being represented as a second set of objects with a second set
of relations therebetween, wherein said refining comprises:

determining the 1nput vector lengths of 1nput, output and
intermediate signals;

determining the amount of parallelism of operations that
process input signals to output signals;

10

15

20

25

30

35

40

45

50

55

60

65

23

determining actors, edges and tokens of said data-flow
model; and

determining the wordlength of said tokens,

wherein said determination of actors, edges and tokens of
said data-flow model comprises defining one or a group
of data vectors 1n said first data-vector model as actors;
defining data precedences crossing actor bounds, as
edges, said edges behaving like queues and transport-
ing tokens between actors; constructing a system
schedule; and running a simulation on a computer
environment.

19. A method of designing a system comprising at least

one digital part, comprising:

refining, wherein a behavioral description of said system
1s transformed into an implementable description of
said system, said behavioral description being repre-
sented as a first set of objects with a first set of relations
therebetween and said implementable description being,
represented as a second set of objects with a second set
of relations therebetween,

wherein said refining comprises first refining wherein said
behavioral description 1s a data-vector model and 1s at
least partly transformed 1nto a data-flow model,

wherein said refining further comprises second refining
wherein said data-flow model 1s at least partly trans-
formed 1mto an SFG model, and

wherein said second reflning comprises transforming
tokens from floating point to fixed point, wherein said
second set of objects with said second set of relations
therebetween are at least partly derived from said first
set of objects with said first set of relations therebe-
tween.

20. The method of claim 19, wherein objects belonging to
sald second set of objects are new objects, 1identical with
and/or dertved by inheritance from objects from said first set
of objects, or a combination thereof.

21. A method of designing a system comprising at least
one digital part, comprising:

refining, wherein a behavioral description of said system

1s transformed into an implementable description of
said system, said behavioral description being repre-
sented as a first set of objects with a first set of relations
therebetween and said implementable description being
represented as a second set of objects with a second set
of relations therebetween,

wherein said refining comprises {irst refining, wherein
said behavioral description 1s a data-vector model and
1s at least partly transformed 1nto a data-flow model,

wherein said refining further comprises second refining,
wherein said data-flow model 1s at least partly trans-
formed 1mto an SFG model, and

wheremn saild SFG model 1s a timed fixed point SFG

model.

22. The method of claim 21, wherein said second set of
objects with said second set of relations therebetween are at
least partly derived from said first set of objects with said
first set of relations therebetween.

23. The method of claim 21, wherein objects belonging to
said second set of objects are new objects, 1dentical with
and/or dertved by inheritance from objects from said first set
of objects, or a combination thereof.

24. A method of designing a system comprising at least
one digital part, comprising:

refining, wherein a behavioral description of said system

1s transformed into an implementable description of
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said system, said behavioral description being repre-
sented as a first set of objects with a first set of relations
therebetween and said implementable description being
represented as a second set of objects with a second set
of relations therebetween,

wherein said refining comprises first refining wherein said
behavioral description 1s a data-vector model and 1s at
least partly transformed into a data-flow model,

wherein said refining further comprises second refining
wherein said data-flow model 1s at least partly trans-
formed 1nto an SFG model, and

combining several of said SFG models with a finite state
machine description resulting in an implementable
description.
25. The method of claim 24, further comprising the step
of transforming said implementable description to synthe-
sizable code.

26. The method of claim 24, wherein said synthesizable
code 1s VHDL code.

10

15

30

27. A method of designing a system comprising at least
one digital part, comprising refining, wherein a behavioral
description of said system 1s transformed 1nto an implement-
able description of said system, said behavioral description
being represented as a first set of objects with a first set of
relations therebetween and said implementable description
being represented as a second set of objects with a second set
of relations therebetween, wherein said refining comprises
first refining wherein said behavioral description 1s a data-
vector model and 1s at least partly transformed into a
data-flow model, and wherein said data-flow model 1s an
untimed floating point data-flow model, and wherein behav-
ioral characteristics are transformed at least partly into
structural characteristics, wherein said refining further com-
prises second refining wherein said data-flow model 1s at
least partly transtormed into an SFG model.
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