US006230316B1
a2 United States Patent (10) Patent No.: US 6,230,316 B1
Nachenberg 45) Date of Patent: *May 3, 2001
(54) PATCHING REBASED AND REALIGNED FOREIGN PATENT DOCUMENTS
EARCUTABLE FILES WO 93/00633 1/1993 (WO) oooevveeeeeeveereerennnn. GO6F/11/34

(75) Inventor: Carey Nachenberg, Northridge, CA WO 97/12508 4/1997 (WO) .

(US) OTHER PUBLICATIONS
(73) Assignee: Symantec Corporation, Cupertino, CA Beem, C.; “Iransforming Algebraically-Based Object Mod-
(US) els mto a Canonical Form for Design Refinement”. Air Force
Institute of Technology, Wright—Patterson AFB, OH, Jun.
*) Notice: This patent issued on a continued pros- 1995.%
(p P

ecution application filed under 37 CFR Hinchey, M.; Cahill, T.; “Towards a canonical specification
1.53(d), and is subject to the twenty year of document structures”. ACM Digital Library [online].

patent term provisions of 35 U.S.C. Proceedings of the 10th annual international conference on
154(a)(2). systems documentation in SIGDOC 1992, Feb. 1997.*
Subject to any disclaimer, the term of this (List continued on next page.)
patent 1s extended or adjusted under 35 Primary Examiner—James P. Trammell
U.S.C. 154(b) by 0 days. Assistant Examiner—Kelvin Booker

(74) Attorney, Agent, or Firm—Fenwick & West LLP

(21) Appl. No.: 09/062,516
(22) Filed: Apr. 17, 1998

(57) ABSTRACT

Incremental updating of a file (100) that has been rebased or

(51) Int. CL7 o GO6Lk 9/45 realigned is accomplished through the use of a canonical
(52) US. Cl e, 717/5; 717/7 form (100B). In terms of rebasing, a canonical form (100B)
(58) Field of Searchccoocccovvvvevvnnn.. 395/703, 705, 1s one that has been rebased to a predetermined base address

395/707; 717/7, 5 (104). In one embodiment this predetermined base address

(104) is zero. In terms of realigning, a canonical form

(56) References Cited (100B) 1s one that has been realigned in a predetermined
way. In one embodiment, the segments (110) of the file (100)

U.S. PAIENT DOCUMENTS are realigned such that there is no gap (114) between the end

5.359.730 * 10/1994 MAITON vrvvoeeeeeeeeeeeeeoeeeeeeeeereon 71711 of one segment (110) and the start of the next segment (110).
5,450,589 * 9/1995 Maebayashi et al. 717/7 In another embodiment, the segments (110) of the file (100)
5,481,713 * 1/1996 Wetmore et al.cccevveeeeueenene. 717/5 are realigned to page boundaries (112) of a predetermined
5?497?492 * 3/1996 Zbikowski et al.eenennneen. 713/2 s1Zze. An mcecremental update (124) for the file (100) 1S
3,946,586 : 8/1996 Wetmore et al. ..cc.oovuvcvinnnenes. 71775 determined that transforms the file from the canonical form
g’gg’ggg . 1 é/ggg ?Lleb.rew etal e ;;/g (100B) to the desired update form (100C). The process of
Sk -’ / . CAMILET covocvveeeinncnnseeinnceneeeen . / updating the file (100) comprises transforming the file (100)
5,588,143 * 12/1996 Stupek, Jr. et al.ccceennnnnene. 717/5 . . .
P . 1A/ ’ # to the canonical form (100B) and applving the incremental
5,694,566 * 12/1997 NAZAE eoveeeereeereeeererrererereenn. 711/1 _ PPLYILE
5,699,275 * 12/1997 Beasley et al. .ovvevrvvveee...... 700221 update (124) to the canonical form (100B).
5732275 * 3/1998 Kullick et al. .oooovvveverrrrrno 717/11
5,835,701 * 11/1998 HasStings ...ccceeeeeeeeereereeeveeneeennnn. 717/5 43 Claims, 7 DI‘EIWillg Sheets
Application Application Application
Files Files Files
100 100 100
A B c
| ;
Canonical Update Buikder
qu;?jﬂer 122
— v
Update File
Software Publisher 124
118 CB
o o Update File
Apr;i}z; Appﬁ;lic?t Eﬁ

D B ‘i i
Updater

Canonical J

Converter Application

120 Files
100
C

Users Computer
126

US 6,230,316 Bl
Page 2

OTHER PUBLICAITONS

Auerbach, J.; “TACT: A Protocol Conversion Toolkit”,

IEEE/IEE Electronic Library [online]. IEEE Journal on
Selected Areas 1n Communications, vol 8, Iss. 1, pp.
143-159, Jan. 1990.*

Taylor et al.; “Optimization: App Build Process”. Microsoft

Corporation, Microsoft Developer Network Library|online |,
Feb. 1998.%

Cygnus Solutions; “Debuging with GDB: The GNU

source—level debugger”. Cyenus Technical Publications,
Accessed online Jun. 2, 1999, Retrieved from the Internet:

http://www.cygnus.com., Apr. 1993.%
Coppieters, K: “A Cross—Platform Binary Diff,” Dr. Dobb’s

Journal, May 1995, pp. 32+35-36.
O’Leary, Michael J., “Portable Executable Format”,
Microsoft Developer Supoort, Nov., 1997.

* cited by examiner

U.S. Patent May 8, 2001 Sheet 1 of 7 US 6,230,316 B1

100 104

\‘ Address File Data

0000h
Header Block

A00Oh LEA EAX, [BOOOh] 102

A008h JMP [A010h] 103

o --

' A010h MOV EAX. EBX

BOOOh Data Byte 1
. B0OO1h Data Byte 2
o --

File With Executable Code

Fig. 1

U.S. Patent May 8, 2001 Sheet 2 of 7 US 6,230,316 B1

200 204

\‘ Address File Data

3000h

Header Block

206 Header Info

4000h LEA EAX, [BOOOh]le—— 102

4008h

JMP [A010h] - 103

Code Segment

<
O
<

4010h

5000h
5001h
Data Segment

, EBX

Data Byte 1
Data Byte 2

Faulty File

Fig. 2

U.S. Patent May 8, 2001 Sheet 3 of 7 US 6,230,316 B1

300 304

\‘ Address File Data

3000h
Header Block

4000h LEA EAX, [5000h] 302

4008h JMP [4010h] 303

e _

~ 4010h MOV EAX, EBX

5000h Data Byte 1
5001h Data Byte 2
o -

Rebased File

Fig. 3

U.S. Patent May 8, 2001 Sheet 4 of 7 US 6,230,316 B1

400

\ 404
Address File Data

~ 0000h

Header Block Header Info

406

1000h LEA EAX, [2000h] 402

1008h JMP [1010h] 403

Code Segment

1010h

2000h
Data Segment .

MOV EAX, EBX

Data Byte 1
Data Byte 2

Canonical Form of File

Fig. 4

U.S. Patent May 8, 2001 Sheet 5 of 7 US 6,230,316 B1

500 600

Header Block
606

Header Block
206

Gap 522

4Kb
516
Code Segment
210 Code Segment
910
Gap 524
8Kb
Code Segment 518

512

Code Segment

512
Gap 526

12KDb
Data Segment 520
514
Data Segment
514
Unaligned File Realigned File

Fig. 5 Fig. 6

U.S. Patent May 8, 2001 Sheet 6 of 7 US 6,230,316 B1

700

e

Header Block
706

Code Segment 4Kb 516
910
Code Segment
912
8Kb
518

Data Segment

214

Canonical Form of File

Fig. 7

U.S. Patent May 8, 2001 Sheet 7 of 7 US 6,230,316 B1

Application
Files
100

A

Application
Files

Application
Files
100

B

Canonical Update Builder
Converter 122
120

Update File
Software Publisher 124

118 C-B

Update File
124
C-B

Updater
128

Application
Files

Application Application
Files Files
100 100

D B

p—

Canonical

Converter
120

User's Computer
126

US 6,230,316 Bl

1

PATCHING REBASED AND REALIGNED
EXECUTABLE FILES

FIELD OF INVENTION

This mvention pertains to the field of software updating.
More specifically, this invention pertains to a system and
method for performing an update to an executable file which
has undergone rebasing or realigning.

BACKGROUND OF THE INVENTION

Some computer software publishers update their software
applications (computer programs and data files associated
with the programs) frequently. These updates often add new
features to the applications as well as remove existing bugs.
Several methods are commonly used to update software
applications. The simplest of these 1s to distribute one entire
software application to replace an older one. This full update
method 1s simple, but expensive and inconvenient. Typically
the software 1s distributed on some type of removable media,
such as floppy disks or CD-ROMs, which are costly to
produce and distribute. The time an end user must wait for
the removable medium to arrive and the time 1t takes for the
software application to install itself on a computer system
are 1nconvenient. This inconvenience 1s compounded where
updates occur frequently.

Because of the large size of many software applications it
1s generally not feasible to distribute such updates over
computer networks, such as the Internet. When full updates
of larger applications are distributed over the Internet, they
often cause such high loads on servers that other users suftfer
slow-downs on the network, and the servers have trouble
meeting the demands.

In order to bypass many of the problems associated with
this type of software updating, some software publishers
distribute incremental updates. These updates do not contain
entire software applications, but rather they contain that
information which 1s necessary to transform a particular
version of a software application to a newer version. Among,
the methods available to perform such incremental software
updating 1s binary patching, performed by programs such as
RTPatch, published by Pocket Soft, Inc. A binary patcher
changes those binary bits of a software application which are
different 1n a newer version. Because many software updates
involve changes to only a small portion of a software
application, a binary patcher needs, in addition to the old
software application, only a small data file which includes
the differences between the two versions. The smaller data
files distributed for a binary patch update are often less than
1% of the s1ze of a tull update, taking advantage of the large
amount of redundancy in the two versions.

The use of incremental update methods allows for smaller
updates which can be distributed by means which are not
conducive to the distribution of full updates, such as distri-
bution over the Internet. The smaller incremental updates
also make distribution by floppy disk more feasible where a
full update would have required many disks, and an 1ncre-
mental update may require only one.

Conventional incremental update methods, however,
require that application files being updated conform exactly
to a known pre-update version. Because binary updating
occurs by moving and replacing selected bits of a file, any
differences between the file being updated and the expected
pre-update file can produce unpredictable results.

There are a variety of ways 1 which files containing
executable code modules can be modified 1n order to operate

5

10

15

20

25

30

35

40

45

50

55

60

65

2

more eflectively on a particular operating system or a
particular computer system. Two of these ways are “rebas-
ing” and “realigning.” Rebasing i1s the changing of infor-
mation 1n a file m order to accommodate the file being
loaded 1nto memory at a new base address. Typically,
rebasing 1nvolves changing absolute memory addresses
which appear in code and data segments, so that the correct
memory addresses appear. Realigning 1s the moving of code
and data segments within a file such that the segments begin
on particular numerical boundaries. Rebasing and realigning
are explained 1n more detail below. Both of these forms of
file manipulation create files which can be different from the
original files installed on the system. When a software
publisher wishes to update earlier versions of an application
to a new version through incremental updating, the publisher
ogenerally assumes that the files being updated match one of
a definite number of past versions. Update patches for these
known versions can be produced and sent to users. If some
of the application files have been rebased, realigned, or both,
these application files will not be 1n a recognizable format
for updating with the incremental update. Because the
rebased or realigned file will generally not be available to the
publisher of the incremental update, conventional incremen-
tal update methods are 1nsuthicient.

What 1s needed 1s a system for performing incremental
updates to application files which have been rebased,
realigned, or both.

SUMMARY OF THE INVENTION

The present 1nvention 1s a system, computer implemented
method, and computer readable medium for allowing incre-
mental updating of a file (100) which has been rebased or
realigned. A canonical form (100B) is provided. In terms of
rebasing, a canonical form (100B) is one which has been
rebased to a predetermined base address (104). In one
embodiment this predetermined base address (104) is zero.
In terms of realigning, a canonical form (100B) is one which
has been realigned 1n a predetermined way. In one
embodiment, the segments (110) of the file (100) are
realigned such that there are no unused memory locations
(114) between the end of one segment (110) and the start of
the next segment (110). In another embodiment, the seg-
ments (110) of the file (100) are realigned to page boundaries
(112) of a predetermined size.

An incremental update (124) for the file (100) is deter-
mined which transforms the file (100) from the canonical
form (100B) to the desired update form (100C). The process
of updating the file (100) comprises transforming the file
(100) to the canonical form (100B) and applying the incre-

mental update (124) to the canonical form (100B), resulting
in the desire update form (100C).

BRIEF DESCRIPTION OF THE DRAWINGS

These and other more detailed and specific objects and
features of the present invention are more fully disclosed in
the following specification, reference being had to the
accompanying drawings, in which:

FIG. 1 1s an 1illustration of a file 100 which includes
executable code.

FIG. 2 1s an illustration of a file 100 for which the base

address 104 has been changed without changing references
102 to absolute memory addresses.

FIG. 3 1s an 1illustration of a file 100 which has been
rebased.

FIG. 4 1s an illustration of a file 100 which conforms to
the canonical form of the illustrative embodiment.

US 6,230,316 Bl

3

FIG. 5 1s an illustration of a file 100 which does not have
secgments 110 aligned on page boundaries 112.

FIG. 6 1s an illustration of a file 100 which has been
realigned.

FIG. 7 1s an 1illustration of a file 100 which conforms to
the canonical form of the illustrative embodiment.

FIG. 8 1s an 1llustration of one embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

To overcome the problem of incrementally updating files
which have been rebased, realigned, or both, a canonical
form 1s utilized. A canonical form 1s a predetermined form
such that, given a set of files which are each equivalent to the
others 1n the set, the canonical form of any file 1n the set 1s
identical to the canonical form of any other file 1n the set.
The utility of a canonical form 1s that non-identical files, 1t
equivalent to each other, are i1dentical when put 1nto a
canonical form. A file which 1s rebased 1s functionally
cequivalent to the original file; the executable code 1n the file
operates the 1n the same manner before and after rebasing.
Similarly, a file which has been realigned 1s functionally
cequivalent to the original form of the file. A file put mnto a
canonical form will be 1dentical to an equivalent file that has
been put 1nto the canonical form, regardless of any rebasing,
or realigning that had been performed on the files prior to
being put into the canonical form. Because a canonical form
1s designed to eliminate the differences between equivalent
files, the definition of any particular canonical form depends
on the form of equivalence being preserved. In the 1llustra-
five embodiment, equivalences between rebased {files and
equivalences between realigned files are utilized. Other
equivalences will be apparent to those skilled in the art.

All updating 1s performed on files which have been put
into a canonical form. In order to explain the attributes of the
canonical forms in the illustrative embodiment of the present
invention, 1t 1s necessary to first describe rebasing and
realigning 1n some detail.

Rebasing

Referring now to FIG. 1, file 100 (which may be, for
example, a standard executable file or a dynamic link
library) contains executable code which contains references
102 to absolute memory addresses which are within the
memory intended to be occupied by file 100. These refer-
ences 102 are premised on the assumption that file 100 will
be loaded into memory at a particular predetermined address

104 (the “base™). In the case of file 100 in FIG. 1, base
address 104 is 9000h (all addresses in hexadecimal).
Sometimes, however, 1t 1s not possible to accommodate file
100 by loading 1t 1nto the intended base address 104. For
example, 1f one dynamic link library i1s already loaded at
base address 104 and file 100 1s being loaded, file 100 cannot
be loaded at address 104. As illustrated 1n FIG. 2, changing,
the base address 104, without modifying absolute memory
references 102, would result in the code failing to function
properly. Where data 1s read from a fixed address, the wrong,
data will be read. A jump to a fixed address will begin
executing the wrong code. Therefore, such file 100 1is
rebased, if possible, to accommodate being loaded at a
different base address 104. The rebasing can take place 1n
Random Access Memory (RAM) at run-time, or it can be
performed once, with the rebased file being saved 1n place

of the original file 100.

As 15 typical of files which are capable of being rebased,
file 100 contains a header block 106 at the beginning of file

10

15

20

25

30

35

40

45

50

55

60

65

4

100 which indicates which memory references 102 within
file 100 need to be modified to account for the change 1n base
address 104. The rebasing 1s carried out by reading header
block 106 and modifying each such memory reference 102
to reflect the new base address 104. FIG. 3 illustrates a
properly rebased form of file 100 from FIG. 1. The differ-
ence between the old base address 104 and the new base
address 104 has been applied to all absolute memory refer-
ences 102. Executable files and dynamic link libraries con-
forming to the Portable Executable (“PE”) format generally
can be rebased 1n this way. The rebasing process takes a
period of time which, when performed at run-time, 1s
undesirable. When the rebasing 1s carried out by an operat-
Ing system at run-time, the effect 1s that the execution of the

code within file 100 1s delayed.

The run-time delay associated with rebasing can be
avolded by rebasing file 100 such that it loads at a base
address 104 which 1s expected to be vacant, and saving the
rebased version of file 100 1n place of the original version.
When loaded, this new file 100 will generally not need to be
rebased again. This kind of rebasing can be carried out on
particular files by using a rebasing tool such as the
“REBASE.EXE” utility produced by Microsoft Corp. A
system optimization program might also be used to rebase
all executable files and dynamic link libraries on a computer
system 1n such a way as to minimize the run-time rebasing
required. Such functionality might even be built mto an
operating system, which would rebase files on a local file
system to avoid the instances of run-time rebasing.

In order to ensure that file 100 1s 1n an expected form
before being updated, 1t 1s converted to the canonical form.
In the 1llustrative embodiment, a file 100 1s 1n the canonical
form when 1t has been rebased to a predetermined value.
This predetermined value can be 1included with an update, or
can be set when file 100 1s first published. In FIG. 4, the
canonical form 1s one 1 which file 100 has been rebased to
a base address 104 of zero. In other embodiments, file 100
may be rebased to any predetermined value. Although file
100 1n the canonical form might not be the same as the form
in which file 100 was originally distributed, this canonical
form 1s useful as a common starting point.

Realigning

Referring now to FIG. 5§, many files 100 containing
executable code include multiple code and data segments
110. In a typical file format, these code and data segments
110 follow header block 106 at the beginning of file 100. In
an operating system which maps file 100 to memory and
uses memory pages of fixed size to move portions of file 100
in and out of memory, 1t 1s efficient for code and data
secoments 110 within file 100 to be aligned on memory
boundaries 112 equal to the page size. For example, 1if the
operating system uses memory pages of 4 Kb 1n size, and a
4 Kb code segment 110 (such as second Code Segment 110
in FIG. 5) begins at the 6 Kb address in file 100, the
operating system will need to move two 4 Kb portions (4 Kb
to 12 Kb) of file 100 into memory in order to load that code
secgment 110. If the code segment 110 were located at the &
Kb boundary, as 1n FIG. 6, the segment 110 could be loaded
into just one 4 Kb page of memory. By aligning code and
data segments 110 i1n file 100 on page boundaries 112,
loading of files 100 containing executable code can be
accomplished more quickly.

Many files 100 containing executable code are produced
which do not have code and data segments 110 aligned on
page boundaries 112 corresponding to a particular operating

US 6,230,316 Bl

S

system. Part of the reason might be that the page size of the
operating system on which the application 1s to run may not
be known at the time files 100 are compiled and linked.
Some applications are produced in which no attempt 1s made
to align segments 110 on any particular page boundaries 112.

Files 100 which are not aligned for a particular operating,
system can be realigned for efficient use by that operating
system after being installed on the system. The process of
moving segments 110 within file 100 containing executable
code 1s similar to the process of rebasing. Information about
the location of code and data segments 110 within file 100
1s generally contained 1n header block 106. As 1llustrated in
FIG. 6, by adding or deleting slack space 114 between
secgments 110, segments 110 can be made to coincide with
particular page boundaries 112. After segments 110 are
realigned, header block 106 1s updated with the new segment
addresses, and any necessary changes are made to absolute
memory references 102, so that the code will function
properly. This realigned file 100 then replaces the original
file 100, allowing file 100 to be more quickly loaded into
memory.

As 1llustrated 1n FIG. 7, one canonical form of file 100 1s
one 1n which all segments 110 have been moved to be
contiguous. This would be analogous to realigning file 100
to one byte boundaries 112. Alternatively, any particular
boundaries 112 may be determined at the time an incremen-
tal update 1s being calculated. Segments 110 are aligned on
these boundaries 112 in the canonical form. In another
embodiment, boundaries 112 are not fixed with respect to
file 100, but rather are fixed with respect to the preceding
scoment 110. In such an embodiment, unused memory
portions 114 would be specified as being a predetermined
size.

Incremental Updating

Referring now to FIG. 8, software publisher 118 intends
to update a first version of an application file 100A to a new
version 100C. Because users may have files 100 which
correspond to version 100A but which have been rebased or
realigned, the publisher uses canonical converter 120 to
produce a version 100B file from a version 100A file.
Version 100B conforms to the canonical form of version
100A. Rebasing and realigning techniques such as those
described above can be used by canonical converter 120. An
update builder 122 then calculates the binary differences
between file 100B and file 100C. Update builder 122 can be
any conventional binary patch file builder which produces
binary update files 124 from two versions of a file 100. The
differences are used to create update file 124C-B.

Update file 124C-B 1s then distributed to a user who
installs 1t on computer 126. Computer 126 also includes
canonical converter 120. The pre-update version of file 100
on computer 126 has been rebased and realigned, such that
it 1s 1n state 100D. Canonical converter 120 on computer 126
takes file 100D and produces canonical version 100B there-
from. Then update file 124C-B can be used by updater 128
to produce desired version 100C of the file. Updater 128 can
be any conventional binary patcher which can apply patches

124 produced by update builder 122.

By converting file 100, which has been rebased,
realigned, or both, to a canonical form, problems associated
with returning file 100 to the original form are avoided.
Because file 100 might not contain information sufficient to
determine the original form, a process which operates by
returning file 100 to the original form would require that
patch 124 include a lot of information relating to the original

10

15

20

25

30

35

40

45

50

55

60

65

6

form. The present invention overcomes such a situation by
using an 1ndependent canonical form.

Transformations other than rebasing and realigning can
o1ve rise to equivalence and, therefore, canonical forms. For
example, the code and data segments may be rearranged
within a file. A canonical form which takes this into account
can order the segments based on the numerical order off any
distinct tags associated with the segments. Alternatively, the
segments can be ordered numerically based on the content of
the segments.

The above description 1s included to 1llustrate the opera-
tion of an exemplary embodiment and 1s not meant to limait
the scope of the mvention. The scope of the invention 1s to
be limited only by the following claims. From the above
description, many variations will be apparent to one skilled

in the art that would be encompassed by the spirit and scope
of the present invention.

What 1s claimed is:

1. A method for incrementally updating a file containing
executable code which has undergone at least one of
rebasing, realigning and rearranging, the method comprising
the steps of:

converting the file to a non-original predetermined form
which does not include the changes made to the execut-
able file during the rebasing, realigning and/or rear-
ranging; and

applying to the predetermined form a patch that 1s adapted

to convert a file from the predetermined form to the
new form.

2. The method of claam 1, wherein the predetermined
form 1s one 1n which code that i1s capable of being rebased
1s rebased to a predetermined base address.

3. The method of claim 2, wherein the predetermined base
address 1s zero.

4. The method of claim 1, wherein the file comprises at
least one segment, and the predetermined form 1s one in
which each segment 1s located at one of a set of predeter-
mined segment boundary addresses.

5. The method of claim 4, wherein the predetermined
form 1s one 1n which code that 1s capable of being rebased
1s rebased to a predetermined base address.

6. The method of claim 5, wherein the predetermined base
address 1s zero.

7. The method of claim 1, wherein the file comprises at
least one segment, and the predetermined form 1s one 1n
which each segment 1s located at a predetermined position
with respect to any preceding segment.

8. The method of claim 7, wherein the predetermined
form 1s one 1n which there 1s no unused memory between
consecutive segments.

9. The method of claim 7, wheremn the predetermined
form 1s one 1n which code that i1s capable of being rebased
1s rebased to a predetermined base address.

10. The method of claim 9, wherein the predetermined
base address 1s zero.

11. The method of claim 1, wherein the file comprises at

least one segment, and the predetermined form 1s one 1n
which:

there 1s no unused memory between consecutive seg-
ments; and

code that 1s capable of being rebased 1s rebased to a base
address of zero.

12. A system for incrementally updating a file containing

executable code which has undergone at least one of

rebasing, realigning and rearranging, the system comprising:

a lile converter having access to the executable file, for
producing therefrom a file of a non-original predeter-

US 6,230,316 Bl

7

mined form which does not include the changes made
to the executable file during the rebasing, realigning
and/or rearranging; and

an update module coupled to the file converter, for receiv-
ing the predetermined form therefrom, for receiving an
update patch containing information about the differ-
ences between the predetermined form and the new
form, and for producing therefrom a file of the new
form.
13. The system of claim 12, wherein the predetermined
form 1s one 1n which code that is capable of being rebased

1s rebased to a predetermined base address.

14. The system of claim 13, wherein the predetermined
base address 1s zero.

15. The system of claim 12, wherein the file comprises at
least one segment, and the predetermined form 1s one 1n
which each segment 1s located at one of a set of predeter-
mined segment boundary addresses.

16. The system of claim 12, wherein the file comprises at
least one segment, and the predetermined form 1s one in
which each segment 1s located at a predetermine position
with respect to any preceding segment.

17. A system for creating an update patch for transforming
files containing executable code to a new form, the files
having undergone at least one of rebasing, realigning and
rearranging and the system comprising:

a file converter having access to a file, for producing
therefrom a file of a non-original predetermined form
which does not include the changes made to the execut-
able files during the rebasing, realigning and/or rear-
ranging; and

an update builder module coupled to the file converter, for
receiving the predetermined form therefrom, for receiv-
ing a file of the new form, and for producing therefrom
an update patch containing information about the dif-
ferences between the predetermined form and the new
form.

18. The system of claim 17, wherein the predetermined
form 1s one 1n which code that is capable of being rebased
1s rebased to a predetermined base address.

19. The system of claim 17, wherein the file comprises at
least one segment, and the predetermined form 1s one in
which each segment 1s located at one of a set of predeter-
mined segment boundary addresses.

20. The system of claim 17, wherein the file comprises at
least one segment, and the predetermined form 1s one in
which each segment 1s located at a predetermined position
with respect to any preceding segment.

21. A computer readable medium containing a computer
program for incrementally updating a file containing execut-
able code which has undergone at least one of rebasing,
realigning, and rearranging, the file update comprising the
steps of:

converting the file to a non-original predetermined form
which does not include the changes made to the execut-
able file during the rebasing, realigning and/or rear-
ranging; and

applying to the predetermined form a patch that 1s adapted

to convert a file from the predetermined form to the
new form.

22. The computer readable medium of claim 21, wherein
the predetermined form 1s one 1n which code that 1s capable
of being rebased 1s rebased to a predetermined base address.

23. The computer readable medium of claim 21, wherein
the file comprises at least one segment, and the predeter-
mined form 1s one 1n which each segment 1s located at one
of a set of predetermined segment boundary addresses.

10

15

20

25

30

35

40

45

50

55

60

65

3

24. The computer readable medium of claim 21, wherein
the file comprises at least one segment, and the predeter-
mined form 1s one 1n which each segment 1s located at a
predetermined position with respect to any preceding seg-
ment.

25. The method of claim 1, wherein the step of converting
comprises eliminating the changes made to the executable
file during the rebasing, realigning and/or rearranging.

26. The system of claim 12, wherein the file converter
climinates the changes made to the executable file during the
rebasing, realigning and/or rearranging.

27. The system of claim 17, wherein the file converter
climinates the changes made to the executable file during the
rebasing, realigning and/or rearranging.

28. The computer readable medium of claim 21, wherein
the step of converting comprises eliminating the changes
made to the executable file during the rebasing, realigning

and/or rearranging.

29. A method for incrementally updating a user’s file
containing executable code which has undergone at least one
of rebasing, realigning and rearranging, the method com-
prising the steps of:

creating a patch containing incremental update data;

sending the patch to user;

converting the user’s file to a predetermined form which
does not include the changes made to the user’s file
during at least one of the rebasing, realigning and
rearranging; and

applying the patch to the predetermined form of the user’s
file to thereby convert the user’s file from the prede-
termined form to a new form.

30. The method of claim 29, wherein the predetermined
form of the user’s file 1s one 1n which code that 1s capable
of being rebased 1s rebased to a predetermined base address.

31. The method of claim 29, wherein the user’s file
comprises at least one segment, and the predetermined form
of the user’s file 1s one 1n which each segment 1s located at
one of a set of predetermined segment boundary addresses.

32. The method of claim 31, wherein the predetermined
form of the user’s file 1s one 1n which there 1s no unused
memory between consecutive segments.

33. The method of claim 29, wherein the file comprises at
least one segment, and the predetermined form of the user’s
file 1s one 1n which:

there 1s no unused memory between consecutive scg-
ments; and

code that 1s capable of being rebased 1s rebased to a base
address of zero.

34. A system for incrementally updating a user’s file of a
first form, the user’s file containing executable code which
has undergone at least one of rebasing, realigning and
rearranging, the system comprising:

a 1ile converter operatively associated with the first form
of the user’s file, the file converter converting the user’s
file from the first form to a second form which does not
include the changes made to the user’s file during the
at least one of rebasing, realigning and rearranging; and

an update module coupled to the file converter, for receiv-
ing the second form of the user’s file, for receiving
from a remote source an update patch containing infor-
mation about the differences between the second form
of the user’s file and a third form of the user’s file, and
for converting the second form of the user’s file into the
third form.
35. The system of claim 34, wherein the second form 1s
one 1n which code that 1s capable of being rebased 1s rebased
to a predetermined base address.

US 6,230,316 Bl

9

36. The system of claam 34, wherein the user’s file
comprises at least one segment, and the second form 1s one
in which each segment 1s located at one of a set of prede-
termined segment boundary addresses.

7. The system of claim 34, wherein the user’s file
comprises at least one segment, and the second form 1s one
in which each segment 1s located at a predetermined position
with respect to any preceding segment.

38. A method of incrementally updating a user’s file
containing executable code which has undergone at least one
of rebasing, realigning, and rearranging, the method com-
prising the steps of:

receiving from a remote source a patch containing incre-
mental update data;

converting the user’s file to a predetermined form which
does not include the changes made to the user’s file
during the at least one of rebasing, realigning and
rearranging; and

applying the patch to the predetermined form of the user’s
file to thereby convert the user’s file from the prede-
termined form to an updated form.

10

15

20

10

39. The method of claim 38, wherein the predetermined
form of the user’s file 1s one 1 which code that is capable
of being rebased 1s rebased to a predetermined base address.

40. The method of claim 39, wherein the user’s file
comprises at least one segment and the predetermined form
of the user’s file 1s one 1n which each segment 1s located at
one of a set of predetermined segment boundary addresses.

41. The method of claim 39, wherein the user’s file
comprises at least one segment and the predetermined form
of the user’s file 1s one 1n which each segment 1s located at
a predetermined position with respect to any preceding
segment.

42. The method of claim 39, wherein the step of convert-
ing comprises eliminating the changes made to the execut-
able file during the at least one of rebasing, realigning and
rearranging.

43. The method of claim 39, wherein the step of convert-
Ing comprises returning the executable file to 1ts original
form.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,230,316 Bl Page 1 of 1
DATED : May 8, 2001
INVENTOR(S) : Carey Nachenberg

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Tatle page,

References Cited, U.S. PATENT DOCUMENTS, add the following reterence:
4,956,809 *9/1990 Georgeetal.ooovvriiinniiain. 364/900

Claim 16,

Line 3, delete “predetermine” and insert -- predetermined --.

Signed and Sealed this

Fifth Day of February, 2002

Attest:

JAMES E. ROGAN
Anesting Officer Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

