US006230242B1
12 United States Patent (10) Patent No.: US 6,230,242 B1
Arimilli et al. 45) Date of Patent: May 3, 2001
(54) STORE INSTRUCTION HAVING VERTICAL 5,386,547 171995 JOUPPL creorrevveeeerersesrorsreeee 711/122
MEMORY HIERARCHY CONTROL. BITS 5579.493 * 11/1996 Kiuchi et al. wovovoovvreervvrooon 712/207
5,623,627 4/1997 WILL +oeeveeevereereeereerere s e 711/122
(75) Inventors: Ravi Kumar Arimi]]i? Austin; John 5,721,864 * 2/1998 Chiarot et al.ccovvevenrvnnnnenn. 712,207
Steve DOdSOll, Pﬂugervﬂle; Guy Lynn 5,724,549 * 3/1998 Selgas et al.coveeveerneeeenens 711/141
Guthrie, Austin, all of TX (US) 5,774,685 * 6/1998 DUDEY .oeovvreeeeeereeeeeereeenene. 712/205
5,809,522 * 9/1998 Novak et al. ...covevveevnnnnnnnnenn. 711/118
(73) Assignee: International Business Machines 5.820.038 * 10/1998 Merrell et al. .ovovvvvevevnne... 711/143

Corporation, Armonk, NY (US)
* cited by examiner

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days. Primary Examiner—David L. Robertson

(74) Attorney, Agent, or Firm—Casimer K. Salys; Felsman,

(21) Appl. No.: 09/368,753 Bradley, Vaden, Gunter & Dillon, LLP
(22) Filed: Aug. 5, 1999 (57) ABSTRACT
(51) Int. CL7 e GO6F 13/14 A STORE instruction having vertical memory hierarchy
(52) US.CL .o, 71171225 712/225 control bits 1s disclosed. The STORE 1nstruction comprises
(58) Field of Search ..., 711/122; 712/207, anoperation code ficld, a write-through field, and a vertical

712/225, 228 write-through level field. The vertical write-through level
field indicates a vertical memory level within a memory
(56) References Cited hierarchy to which the STORE operation should be applied,

when the write-through field 1s set.
U.S. PATENT DOCUMENTS

4,429,363 * 1/1984 Duke et al. ...cccoeevrvininennnnnn.n. 711/122 15 Claims, 2 Drawing Sheets

11p
CPU
12p
13a 13b 13h
L2 CACHE L2 CACHE L2 CACHE
e ¢ ¢ & o
l4a 144
L3 CACHE L3 CACHE

SYSTEM MEMORY

-
'w
F

£33
-—
-—

-
ol
O

-
W
-

U.S. Patent

=
O
O

12p

120

12n

12m

12d

12¢

12b

12a

May 8, 2001

L2 CACHE

L2 CACHE

L2 CACHE

L2 CACHE

(0

Sheet 1 of 2

L3 CACHE

L3 CACHE

US 6,230,242 B1

Fig. 1

>
oC
O
=
LLJ
=
p=
Lil
—
v
>-
N

05

US 6,230,242 B1

Sheet 2 of 2

May 8, 2001

U.S. Patent

9¢

Z ‘hp

§5¢ & ¢ C ¢é- L ¢

omw

US 6,230,242 Bl

1

STORE INSTRUCTION HAVING VERTICAL
MEMORY HIERARCHY CONTROL BITS

RELATED PATENT APPLICATTIONS

The present patent application 1s related to copending
applications:

1. U.S. Ser. No. 09/368,754, filed on even date, entitled “A
STORE INSTRUCTION HAVING HORIZONTAL
MEMORY HIERARCHY CONTROL BITS”;

2. U.S. Ser. No. 09/368,755, filed on even date, entitled
“AN APPARATUS FOR ADJUSTING A STORE
INSTRUCTION HAVING MEMORY HIERARCHY
CONTROL BITS”; and

3. U.S. Ser. No. 09/368,756, filed on even date, entitled
“AN OPTIMIZING COMPILER FOR GENERATING
STORE INSTRUCTIONS HAVING MEMORY
HIERARCHY CONTROL BITS”.

BACKGROUND OF THE INVENTION

1. Technical Field

The present i1nvention relates to a data processing in
ogeneral, and 1n particular to a STORE 1nstruction to be
utilized within a data processing system. Still more
particularly, the present invention relates to a STORE
instruction having vertical memory hierarchy control bits to
be utilized within a data processing system.

2. Description of the Prior Art

Typically, Reduced Instruction Set Computing (RISC)
processors have fewer instructions than therr Complex
Instruction Set Computing (CISC) counterparts. Thus, to a
certain extent, RISC technology simplifies the task of writ-
ing compilers for processors that utilize a RISC 1instruction
set. Moreover, from a processor design standpoint, focus can
be placed on implementing and optimizing those 1important
and frequently-used instructions rather than having some
complex but seldom-used instructions constrain the maxi-
mum operating efficiency. Because of the above-mentioned
reasons and others, RISC processors are gaining popularity
among workstation and even some lower-end computer
manufacturers.

For RISC processors, 1t 1s common that very few instruc-
fions are actually memory access instructions. In fact, some
implementations may have only two instructions, LOAD
and STORE, that access memories. Typically, a few spe-
clalized “atomic” operations may also be supported by the
RISC processor for synchronization and memory updates
via concurrent processes. Even 1n such cases, LOAD and
STORE i1nstructions are by far the most frequently-used
memory access 1nstructions for RISC processors. The
execution of a LOAD istruction will cause a processor
register to be written with data associated with 1n a specified
main memory address. Conversely, the execution of a
STORE mstruction will cause data resident 1n a processor
register to be written to a memory hierarchy 1n association
with a main memory address. The present invention 1s
related to a STORE i1nstruction for updating data within a
memory hierarchy of data processing system.

SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the present
invention, a STORE instruction comprises an operation code
field, a write-through field, and a vertical write-through level
field. The vertical write-through level field indicates a ver-
tical memory level within a memory hierarchy to which the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

STORE operation should be applied, when the write-
through field 1s set.

All objects, features, and advantages of the present inven-
tion will become apparent 1n the following detailed written
description.

BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention itself, as well as a preferred mode of use,
further objects, and advantages thereof, will best be under-
stood by reference to the following detalled description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 1s a block diagram of a data processing system 1n

which a preferred embodiment of the present invention 1s
incorporated; and

FIG. 2 1s a block diagram of a STORE 1nstruction having,
vertical memory hierarchy control bits to be utilized within
the data processing system from FIG. 1, in accordance with
a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

For the purpose of illustration, the present invention 1s
demonstrated using a multiprocessor data processing system
having three levels of cache memory. However, it should be
understood that the features of the present invention may be
applicable 1n any data processing system having multiple
levels of cache memory.

Referring now to the drawings and, in particular, to FIG.
1, there 1s depicted a block diagram of a multiprocessor data
processing system 10 1n which a preferred embodiment of
the present mvention i1s incorporated. As shown, data pro-
cessing system 10 includes multiple central processor units
(CPUs) 11a-11p, and each of CPUs 11a—11p contains a level
one (L.1) cache. For example, CPU 11a contains an L1 cache
12a, and CPU 11b contains an I.1 cache 125. Each of CPUs
11a—11p (including L1 caches 12a-12p) is coupled to a
respective one of level two (LL.2) caches 13a—13/4. Similarly,
cach of L2 caches 12a—124 1s coupled to a respective one of
level three (IL3) caches 14a—14d. The lowest level of the
memory hierarchy as shown 1n FIG. 1 1s a system memory

16.

Each succeeding lower level from L1 caches 12a—12p of
the memory hierarchy 1s capable of storing a larger amount
of mmformation than upper levels, but at a higher access
latency. For example, L1 caches 12a—12p may each have
512 64-byte cache lines for a total storage capacity of 32
kilobytes, all at a single cycle latency. L2 caches 13a—134
may each have 2048 128-byte cache lines for a total storage
capacity of 256 kilobytes, all at a latency of approximately
10-20 cycles. L3 caches 14a—-14d may each have 4096
256-byte cache lines for a total storage capacity of one
megabyte, all at a latency of approximately 40-60 cycles.
Finally, system memory 16 can store tens or hundreds of
megabytes of data at a latency of at least 300 cycles. Given
the large disparity 1n access latencies between the various
levels of memories within the memory hierarchy, it 1s
advantageous to reduce the frequency of access to lower
levels of memories within the memory hierarchy such as
system memory 16.

CPUs 11a—-11p, L1 caches 12a—-12p, L2 caches 13a—134,

and L3 caches 14a—14d are coupled to system memory 16
via an 1interconnect 15. Interconnect 15, which can be either
a bus or a cross-point switch, serves as a conduit for
communication transactions between CPUs 11a—11p and

US 6,230,242 Bl

3

other snoopers coupled to interconnect 15. A typical trans-
action on interconnect 15 begins with a request, which may
include a transaction field indicating the type of transaction,
source and destination tags indicating the source and
intended recipient(s) of the transaction, respectively, and an
address and/or data. Each component connected to intercon-
nect 15 preferably snoops all transactions on interconnect 15
and, if appropriate, responds to the request with a snoop
response.

Those skilled 1n the art will appreciate that data process-
ing system 10 can include many additional components,
such as bus bridges, input/output devices, non-volatile stor-
age devices, ports for connection to networks, etc. Because
those additional components are not necessary for an under-
standing of the present invention, they are not illustrated in
FIG. 1 or discussed further herein. Although a preferred
embodiment of a multiprocessor data processing system 1s
described 1 FIG. 1, 1t should be understood that the present
invention can be implemented 1n a variety of system con-
figurations.

With reference now to FIG. 2, there 1s 1llustrated a block
diagram of a STORE instruction having a group of vertical
memory hierarchy control bits to be utilized within the data
processing system from FIG. 1, in accordance with a pre-
ferred embodiment of the present invention. As shown, a
STORE 1nstruction 20 includes a Vertical Write Through
Level (VWTL) field 21, a Write-Through (WT) field 22, a
Store__but _do_ Not_Allocate (SNA) field 23, a Store
And_ Flush (SAF) field 24, a reserved field 25, and an

operational code (opcode) field 26.

VWTL field 21, having two bits 1n this implementation, 1s
valid when WT field 22 equals one. VWTL field 21 indicates

the vertical memory level within a memory hierarchy to
which a STORE operation should be applied. With the

memory hierarchy as shown in FIG. 1, the bits of VWTL
field 21 are preferably assigned as shown in Table 1.

TABLE 1
VWTL bits operation
00 store down to an L1 cache memory
01 store down to an L2 cache memory
10 store down to an 1.3 cache memory
11 store down to a system memory

For example, when the bits within VWTL field 21 of a
STORE 1nstruction are “00,” the data associated with the
STORE instruction is coherently placed (i.e., cache states of
other cache memories will be adjusted accordingly to reflect
the new state) in an L1 cache memory (such as one of L1
caches 12a-12p from FIG. 1) that i1s associated with the
mitiating CPU. As another example, when the bits within
VWTL field 21 of a STORE instruction are “11,” the data
from the STORE instruction i1s placed mn an L1 cache

memory, an L2 cache memory (such as one of L2 caches
13a-13/ from FIG. 1), and an L3 cache memory (such as

one of L3 caches 14a—14d from FIG. 1) that are associated
with the initiating CPU as well as a system memory (such as
system memory 16 from FIG. 1). The number of bits within
VWTL field 21 depends on the number of levels of memo-
ries within a memory hierarchy.

WT field 22, having one bit, indicates whether or not there
should be a write-through at a cache memory. The bits
within WT field 22 are preferably assigned as shown in

Table II.

10

15

20

25

30

35

40

45

50

55

60

65

4

TABLE 11

WT bit operation

0 if hit, store into current level of cache
if miss, allocate entry and store into current level of cache

1 if (hit AND VWTL <> current level of cache), store into
current level of cache and forward STORE to a lower level
cache;
if (hit AND VWTL = current level of cache), store into current
level or cache;
if (miss AND VWTL <> current level of cache), conditionally
allocate entry and store into current level of cache and forward

store to lower level cache;
if (miss AND VWTL = current level of cache), allocate entry
and store into current level of cache

When the WT bit equals zero (meaning no write-through),
the data associated with a STORE instruction 1s stored 1n the
current level of a cache memory 1f there 1s a cache “hit” at
the current level; otherwise, the data 1s stored 1n the current
level of the cache memory after a cache line has been
allocated 1f there 1s a cache “miss” at the current level.
When the WT bit equals one (meaning write-through), the
data associated with a STORE instruction 1s stored in the
current level of a cache memory if there 1s a cache “hit” and
the VWTL bits point to the current level of the cache
memory; otherwise, the data 1s also forwarded to the next
lower level of the cache memory 1f there 1s a cache “hit” and
the VWTL bits do not point to the current level of the cache
memory. However, if there 1s a cache “miss” and the VWTL
bits point to the current level of the cache memory, the data

1s stored 1n the current level of the cache memory after a
cache line has been allocated.

Otherwise, if there 1s a cache “miss” and the VWTL bits
do not point to the current level of the cache memory, the
data may be stored in the current level of the cache memory
after a cache line has been allocated, depending on the status

of SNA field 23 and SAF field 24 described infra, and the
data 1s also forwarded to the next lower level of the cache
memory.

SNA field 23, having a single bit, indicates whether data
should be stored 1n the current level of a memory hierarchy
when there 1s a cache “miss.” The bits of SNA field 23 are
preferably assigned as shown 1n Table III. When the SNA bit
equals zero, the data associated with a STORE 1nstruction 1s
stored 1n the current level of a cache memory regardless of
whether there 1s a cache “hit” or “miss.” When the SNA bit
equals one, the data 1s stored 1n the current level of a cache
memory 1f there 1s a cache “hit.”

If there 1s a cache “miss” when the SNA bit equals one,
the data 1s stored 1n the current level of the cache memory
after a cache line has been allocated when the VWTL bits
point to the current level of the cache memory. However,
when the VWTL bits do not point to the current level of the
cache memory, the data 1s forwarded to the next lower level
of the cache memory, without storing at the current level of
the cache memory.

TABLE 111
SNA bit operation
0 if hit, store into current level of cache
if miss, store 1nto current level of cache
1 if hit, store into current level of cache

if (miss AND VWTL <> current level of cache), do NOT store
into current level of cache and pass store to lower level of cache

if (miss AND VWTL = current level of cache), allocate entry
and store into current level of cache

SAF field 24, having a single bit, indicates the level of a
memory hierarchy at which the data from a STORE 1nstruc-

US 6,230,242 Bl

S

tion should be stored, above which whether the data should
be flushed. The bits of SAF field 24 are preferably assigned
as shown 1n Table I'V. When the SAF bit equals zero, the data
assoclated with a STORE instruction 1s stored 1n the current
level of a cache memory if there 1s a cache “hit;” otherwise,
the data 1s stored in the current level of the cache memory
after a cache line has been allocated 1f there 1s a cache
“miss.”

TABLE IV

SAF bit operation

0 if hit, store into current level of cache
if miss, allocate entry and store into current level of cache

1 if (hit AND VWTL <> current level of cache), store into
current level of cache then cast out the line to the lower
level cache;
if (hit AND VWTL = current level of cache), store into current
level or cache;
if (miss AND VWTL <> current level of cache), pass store
to lower level cache (don’t allocate current cache level)
if (miss AND VWTL = current level of cache), allocate entry
and store into current level of cache

When the SAF bit equals one, the data associated with a
STORE instruction 1s stored 1n the current level of the cache

memory 1f there 1s a cache “hit” and the VWTL bits point to
the current level of the cache memory; otherwise, the data 1s
stored 1n the current level and then the cache line 1s cast out
to the next lower level of the cache memory 1f there 1s a
cache “hit” and the VWTL bits do not point to the current
level of the cache memory. However, if there 1s a cache
“miss” and the VWTL bits point to the current level of the
cache memory, the data 1s stored 1n the current level of the
cache memory after a cache line has been allocated;
otherwise, the data 1s forwarded to the next lower level of the
cache memory without allocating a cache line at the current
level of the cache memory 1f there 1s a cache “miss™ and the
VWTL bits do not point to the current level of the cache
memory.

Reserved field 25 reserves a number of bits within instruc-
tion 20 for future usage. Opcode field 26 defines the mstruc-
tion type and operation of instruction 20.

As has been described, the present invention provides a
STORE 1nstruction having vertical memory hierarchy con-
trol bits to be utilized within a data processing system. With
the present invention, a more versatile control of the storing
of data 1 each level of memory within a memory hierarchy
can be provided via a STORE 1nstruction.

While the invention has been particularly shown and
described with reference to a preferred embodiment, 1t will
be understood by those skilled 1n the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the mvention.

What 1s claimed 1s:

1. A data processing system, comprising:

a multi-level memory hierarchy having a plurality levels
of cache memories and a system memory; and

an 1nstruction for updating data within said multi-level
memory hierarchy, wherein said instruction mcludes:
an operation code field; and
a vertical write-through level field for indicating a
vertical memory level within said multi-level
memory hierarchy to which said updating operation
should be applied.

2. The data processing system according to claim 1,
wherein said instruction further includes a write-through
field for indicating said updating operation should be applied
when said write-through field 1s set.

10

15

20

25

30

35

40

45

50

55

60

65

6

3. The data processing system according to claim 1,
whereln said imstruction further includes a store but do not
allocate field for indicating whether data should be stored 1n
a current level of said multi-level memory hierarchy when
there 1s a cache “miss.”

4. The data processing system according to claim 1,
wherein said 1nstruction further includes a store and flush
field for a indicating a level of said multi-level memory

hierarchy at which said data should be stored, above which
whether said data should be flushed.

5. The data processing system according to claim 1,
whereln said instruction 1s a STORE 1nstruction.

6. A method for updating data within a multi-level
memory hierarchy within a data processing system, said
method comprising the steps of:

providing an instruction;

providing an operation code field within said instruction

for indicating an updating operation; and

providing a vertical write-through level field within said

instruction for indicating a vertical memory level
within said multi-level memory hierarchy to which said
updating operation should be applied.

7. The method according to claim 6, wherein said method
further includes a step of providing a write-through field for
indicating said updating operation should be applied when
said write-through field 1s set.

8. The method according to claim 6, wherein said method
further i1ncludes a step of providing a store but do not
allocate field for indicating whether data should be stored 1n
a current level of said multi-level memory hierarchy when
there 1s a cache “miss.”

9. The method according to claim 6, wherein said method
further includes a step of providing a store and flush field for
indicating a level of said multi-level memory hierarchy at
which said data should be stored, above which whether said
data should be flushed.

10. The method according to claim 6, wherein said
instruction 1s a STORE 1instruction.

11. An 1nstruction to be utilized within a data processing
system having a multi-level memory hierarchy, comprising:

an operation code field; and

a vertical write-through level field for indicating a vertical
memory level within said multi-level memory hierar-
chy to which said updating operation should be applied.

12. The 1instruction according to claim 11, wherein said
instruction further icludes a write-through field for indi-
cating said updating operation should be applied when said
write-through field 1s set.

13. The 1instruction according to claim 11, wherein said
instruction further includes a store but do not allocate field
for indicating whether data should be stored 1n a current
level of said multi-level memory hierarchy when there 1s a
cache “miss.”

14. The instruction according to claim 11, wherein said
instruction further includes a store and flush field for i1ndi-
cating a level of said multi-level memory hierarchy at which
sald data should be stored, above which whether said data
should be flushed.

15. The 1instruction according to claim 11, wherein said
instruction 1s a STORE 1instruction.

	Front Page
	Drawings
	Specification
	Claims

