US006226694B1
a2 United States Patent (10) Patent No.: US 6,226,694 Bl
Constant et al. 45) Date of Patent: *May 1, 2001
(54) ACHIEVING CONSISTENCY AND (58) Field of Searchcccoeoevvini 709/400, 300,
SYNCHRONIZATION AMONG MULTIPLE 709/100, 102, 104, 105; 711/141; 707/203
DATA STORES THAT COOPERATE WITHIN
A SINGLE SYSTEM IN THE ABSENCE OF (56) References Cited
TRANSACTION MONITORING US PATENT DOCUMENTS
(75) Inventors: Steven J. Constant; Toni Atkinson; 4,369,494 * 1/1983 Bienvenu et al. ..oooveuee...... 364/200
Stephen C. Booth; James R. Greuel, 4,502,116 * 2/1985 Fowler et al.ccecovvervennene. 364/200
all of Fort Collins; Paul H. Price, 5,239.641 * 8/1993 HOISt cevveverrieieeeiieeeeeveneens 395/550
Loveland; Robert 1. Schett]er; Darren 5,481,747 * 1/1996 Kametaniccoeeceeeeenevnnennns 395/800
D. Smith, both of Fort Collins; John T. g,,gzgjggi * éﬁggg éomet t] ;ggﬁgé
913, * 1 reen et al. .oooevviiiiiiinninnn.n,
Ward, Lovcland, all of CO (US) 6.021.473 * 2/2000 Davis et al. wooovvveovoooroooon 711/141
(73) Assignee: Heuzlett)—Packard Company, Palo Alto, * cited by examiner
CA (US
Primary Examiner—Robert Beausoleil
(*) Notice: This patent issued on a continued pros- Assistant Examiner—Rita Ziemer
ccution application filed under 37 CFR
1.53(d), and 1s subject to the twenty year (57) ABSTRACT
patent term provisions of 35 U.S.C. A system and method synchronizes multiple data stores and
154(a)(2). achieves data consistency 1n a non-transactional multipro-
_ o _ cessing computer system. Processes are paused and later
Subject to any disclaimer, the term of this resumed according to their position in a dependency tree of
patent 1s extended or adjusted under 35 the system. The data input sources of the system are in effect
U.S.C. 154(b) by 0 days. disabled and any data flow currently in progress in the
system 1s flushed out the various data flow paths to the
(21) Appl. No.: 09/069,481 different data stores. When this process is complete, each of
(22) TFiled: Apr. 29, 1998 the mulﬂple data stores 1s synchronized and the data 1s 1n a
consistent state.
(51) Int. CL7 e, GO6F 1/12
(52) US.ClL .. 709/400; 711/141 15 Claims, 7 Drawing Sheets
“ DATA INPUT DATA INPUT
DATA INPUT DATAINPUT DATA INPUT DATA INPUT
SOURCE 142 SOURCE 144 SOURGE 146 SOURCE 148 SOURCE 148 SOURCE 148
106
102 104 t & +
1928~ 192b~ N\152c-1f,.ﬁ

- / N / / N
" PROCESS PROCESS | "PROCESS

lo) |

. A A . A

MANAGEMENT
PROXY
PROCESS

160

162a}f ~
MANAGEMENT PROCESS

PROXY

PROCESS

US 6,226,694 Bl

Sheet 1 of 7

May 1, 2001

U.S. Patent

i ..tm,..... \
SEA
S~ Loz
B o $9300Yd
dP). S AXOYd
$53004 INTWIOVNYI
~ - LB
29/ M1
921
$$3004d
AXOYd
INIWIOYNYM
7 ¢ \ 7 .,\{...f
h,,,wmoog_ h,,mwsog\w ﬁwmogn_\ l
N AT W T AT (>
b0} 20!
90!
g71 30¥N0S 87 30¥NOS 8FJ 30M¥NOS — e —
9F) 304N0S Pyl 304N0S 271 394N0S
LNdNIYLYQ LNdNIYLYQ LNdNI YLYQ 10dNI ¥1YG | ndN| Y1V LN LY

US 6,226,694 Bl

Sheet 2 of 7

May 1, 2001

U.S. Patent

06}

It

04}

13A31 IS3M01

13A31 1S3HDIR

U.S. Patent May 1, 2001 Sheet 3 of 7 US 6,226,694 B1

300

PAUSE PROCESSES WHICH ARE NOT INVOKEDD
ANY OTHER PROCESS AND WHICH OPERATE AS A

FIRST POINT OF SOURCE FOR RECEIVING DATA
INPUT FROM ONE OR MORE DATA INPUT SOURCES ,

704

o N
/" DETERAINE NEXT SET OF PROCESSES. WHICH

INCLUDE THOSE UNPAUSED PROCESSES THAT ARE
POTENTIALLY INVOKED BY ANY PAUSED PROCESS,
BUT WHICH IS NOT POTENTIALLY INVOKED BY

__ANY AS-YET UNPAUSED PROCESS -/
306
— TN
PAUSE EACH PROCESS IN THE NEXT SET
OF PROCESSES iy
306

YES

REMAINING UNPAUSED
PROCESSES
?

NO

6. 3

U.S. Patent May 1, 2001 Sheet 4 of 7 US 6,226,694 B1

400 407

/" RESUME PROCESSES WHICH LIE IN A DATA FLOW
" PATH AND WHICH DOES NOT POTENTIALLY INVOKE
_ANY CURRENTLY PAUSED PROCESS)

404

DETERINE NEXT SET OF PROCESSES, WHICH)\

INCLUDE THOSE REMAINING PAUSED PROCESSES
THAT POTENTIALLY INVOKE A RESUMED PROCESS,

BUT WHICH DO NOT POTENTIALLY INVOKE
_ANY CURRENTLY PAUSED PROCESS -/

106
5

i} TN
RESUME EACH PROCESS IN THE NEXT SEI
Of PROCESSES -
408

YES
REMAINING PAUSED

PROCESSES
?

NO

PAUSE COMPLETE

He. 4

US 6,226,694 Bl

Sheet 5 of 7

May 1, 2001

U.S. Patent

N

763
1401S V1Vd
JIINVW3S

ANV

J1d7A0)510 51
INIWZ 17 XOOMLIZN AN

1J7(60

905

§53)0dd
H01S 13040

13Z11V41IN3)

[/

s
§53)0dd
INIW313

A43A0)510

NJOMIIN

dINdIl12d 177180 AN 10 0/

/9

§53)0dd
INIWIIVNYW
A3010d01

0I5 1IN
1380 7040 2000
AW AVIISI
0/ 1571074
T OIS 0%

zom__“ﬁ__z__wﬁ__ $3004d YIOVNVW

0L VS0 7000 A7 fm\ NOLLVINIS I

VRV ™ apy worvmisand svodn 4V IV

55770dd 479VNVW
AJ010401 SWEOIN
S3770dd Ad7A0)510

1743

TN

OIS VIV
3y sy ol irgo| A3010d01

AIN INISI 24015 <

D

VIVd A201040/
0/ 700N A7N 44V

U.S. Patent

600

F o T e .

May 1, 2001 Sheet 6 of 7

GRAPHICAL MAP
PRESENTATION
MANAGER PROCESS

NETWORK
DISCOVERY
ELEMENT
PROCESS
507

US 6,226,694 Bl

T0POLOGY
MANAGEMENT

PROCESS
M |

CENTRALIZED
OBJECT STORE
PROCESS
506

tHe. 6

US 6,226,694 Bl

Sheet 7 of 7

May 1, 2001

U.S. Patent

y0s

§531)04d
INIWIIVNYW
A3010401

pl/

5%

318V1N)3X1
3$NVd

{14

0/

8lL,

0ts
§53)0Ud

INIWIIVNVW

1V4IN1)

/ It

70%
§53)04d
101 1380
(13Z11V41N1)

/74

ol/

y0/

474

474

ors
§5330dd
AX04d

INIWIIVNYW

(/74

80/

§53)0dd
INIW113
A43A0JS1C

g0s
§53)04d d3IVNVW
NOI1VIN3S 1dd
dVW 1V)iHdVd)

US 6,226,694 B1

1

ACHIEVING CONSISTENCY AND
SYNCHRONIZATION AMONG MULTIPLE
DATA STORES THAT COOPERATE WITHIN
A SINGLE SYSTEM IN THE ABSENCE OF
TRANSACTION MONITORING

FIELD OF THE INVENTION

The present invention pertains generally to the field of
multiprocessing computer systems, and more particularly, to
a system and method for achieving consistency and syn-
chronization among multiple data stores in a single non-
fransactional processing system.

BACKGROUND OF THE INVENTION

A multiprocessing computer system executes multiple
processes simultaneously. Each process performs a particu-
lar task, and the processes, taken as a whole, perform a larger
task, called an application. These processes may be execut-
ing on a single central computer or may be running on
separate computers which are connected to each other via a
communication link, 1.e., a distributed environment. Multi-
processing computer systems often include multiple data
stores. Each data store 1s typically directly accessed by one
or only a few of the multiple processes 1n the system.

In order for the applications to function correctly, the
separate processes must be coordinated via inter-process
communication. Inter-process communication 1s typically
implemented as a message passing system, which 1s char-
acterized by processes sending messages to, and receiving
messages from, other processes. If a failure occurs in one of
the processes, often the enftire application must be
reinitialized, because each process i1s dependent on the
successtul operation of the other processes. In such a case,
cach of the processes must be rolled back to the beginning
of execution.

In a multiple data store multiprocessing system, the
multiple data stores may be updated by system applications
at different times. Accordingly, at any given time the various
data stores may be 1n a state of inconsistency due to the fact
that some of them have been updated to reflect the current
progress of the application, and some have not (which
reflects the portion of the application that has not yet
completed). For some applications, data inconsistency 1is
problematic. For example, a backup application requires the
data 1n different data stores to be 1n a state that can support
a Tunctioning system when restored from the backup
medium. To achieve this, the data stores must be 1n a
consistent state during the backup.

Consistency and synchronization among multiple data
stores 1s achieved 1n some prior art systems via transactional
processing. In a transactional processing system, an appli-
cation 1s made up of multiple “transactions”. A transaction
1s a series of mdependent operations done 1 a speciiic
sequence to accomplish a specific goal. A transaction does
not complete until each operation in the transaction has
completed. An operation may be performed 1n another
process. Accordingly, if a process has i1nvoked another
process, the invoking process suspends until the mmvoked
process completes. Thus, a transactional processing system
guarantees that a set of operations 1s autonomous, 1.€., the set
of operations succeeds or fails as a group. Accordingly, 1f
one of the operations included i1n the set of operations
defined by a particular transaction fails, the entire transac-
tfion 1s easily rolled back to a consistent state by undoing
cach operation, in reverse order of invocation, 1n the reverse
sequence 1n which 1t was performed.

10

15

20

25

30

35

40

45

50

55

60

65

2

In non-transactional multiprocessing systems, applica-
tions can perform “high-level operations” (HLOs). An HLO
1s defined as a series of tasks that are accomplished by using
the services provided by a set of lower level processes.
HI.Os are similar to transactions 1n a transactional system 1in
that a plurality of processes, each of which performs a
lower-level task, are coordinated to accomplish a larger task.
However, unlike a transaction, which sequences through a
set of processes 1n a speciiic order, a reversal of the sequence
of operations will not necessarily restore a consistent state
among the multiple data stores of the system. Moreover,
multiple HLOs may execute simultancously and a
synchronously, and no provision exists for keeping track of
which HLO, and 1n what order each HLO, updated any given
data store.

In non-transactional, multiple data store multiprocessing
systems, a different approach to achieving consistency and
synchronization among multiple data stores 1s required. In
present day non-transactional multiple-data-store processing,
systems, synchronization and data consistency can only be
achieved by shutting the entire system down. However, this
approach, which results i loss of service and time, 1s
inconvenient, and for some users, unacceptable.
Accordingly, a need exists for a system and method for
achieving synchronization and consistency among multiple
data stores of a non-transactional processing system which
allows the system to remain running, and which minimizes
the loss of time and service to its users.

SUMMARY OF THE INVENTION

The present invention, which 1s a system and method for
synchronizing multiple data stores and achieving data con-
sistency 1n a non-transactional multiprocessing computer
system, solves the problems of the prior art. In a system that
includes multiple data stores, one or more data input
sources, and multiple simultaneously executing processes
included 1n a dependency tree comprising all processes that
lie 1n a dependency path between at least one data input
source and at least one data store, synchronization of data 1s
accomplished as follows: A first subset of processes that lie
in the dependency tree are paused. When a process pauses,
it stops accepting service requests that result in modification
of any of the data stores, completes all pending tasks that
result in modification of any of the data stores, and flushes
all internally-cached data to an unpaused process or to one
or more of the data stores. The first subset includes all of the
processes 1n the dependency tree that are not invoked by any
other process 1n the dependency tree and which also receives
data directly from at least one data input source. A succeed-
ing subset of processes lying in the dependency tree are
paused next. The succeeding subset includes at least one
process that 1s invoked by an already paused process and that
1s not mmvoked by any as-yet unpaused process. As each
process 1s paused, or alternatively, as each subset of pro-
cesses are all paused, another succeeding subset of processes
1s selected based on the same criteria and then paused. This
process continues until all of the processes 1n the depen-
dency tree are paused. When all processes 1 the dependency
tree are paused, the data 1in each of the multiple data stores
1s both synchronized and consistent.

Normal operation of the system 1s resumed by resuming
cach of the paused processes 1n the reverse order in which
they were paused. A last subset of processes that lie 1n the
dependency tree are resumed. The last subset includes all
processes that lie in a dependency path that directly accesses
at least one data store. A preceding subset of processes lying,
in the dependency tree are paused next. The preceding

US 6,226,694 B1

3

subset mncludes at least one process that invokes one or more
already resumed processes and that does not invoke any
currently paused processes. As each process 1s resumed, or
alternatively, as each subset of processes are all resumed,
another preceding subset of processes 1s selected based on
the same criteria and then resumed. This process continues
until all of the processes that lie 1n the dependency tree are
resumed. A process resumes by beginning to accept service
requests that result 1n modification of at least one of the data
stores.

In systems that include indirect processes that cannot
communicate with the synchronizing means, but that also lie
in a dependency path between at least one data input source
and at least one data store, a proxy process 1s provided to
translate pause requests 1into proxy pause requests to which
the 1ndirect process responds.

BRIEF DESCRIPTION OF THE DRAWING

The mvention will be better understood from a reading of
the following detailed description taken in conjunction with
the drawing 1in which like reference designators are used to
designate like elements, and in which:

FIG. 1 1s a block diagram of a non-transactional multiple-
data-store processing system 1n accordance with the inven-

tion;
FIG. 2 1s a dependency tree of the system of FIG. 1;

FIG. 3 1s a flowchart of a method for pausing processes in
a system 1n accordance with the mvention;

FIG. 4 1s a flowchart of a method for resuming paused
processes 1 a system in accordance with the invention;

FIG. 5 1s a block diagram of a system 1n accordance with
the invention which 1illustrates the sequential flow of a

high-level operation (HLO);
FIG. 6 1s a dependency tree of the system of FIG. 5; and

FIG. 7 1s a flow diagram 1illustrating the order of pause
notifications through the system of FIG. 5.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 1s a block diagram of an illustrative example of a
non-transactional multiple-data-store processing system
100. System 100 includes a plurality of processes 102, 104,
106, 108, 112, 130, 150, 152a, 152b, 152¢, 160, 162a and
1626 with various inter-dependencies among one another.
Processes 102, 104, 106, 108, 112, 150, 1524, 1525, 152c¢,
160 162a and 162b execute simultaneously 1n the same or a
distributed environment. System 100 also includes a plural-
ity of data stores 120, 122, 124, 126, 128 that are directly
accessed by only one or a small few of the plurality of
processes. In the illustrative embodiment, data store 122 1s
directly accessed only by process 106; data store 124 1is
directly accessed only by process 102 and 108; data store
126 1s directly accessed only by processes 110 and 1524,
152b, 152¢; data store 128 1s directly accessed only by
processes 110 and 112; and data store 120 1s directly
accessed only by processes 162a and 162b.

In system 100, data 1s maintained 1n multiple independent,
but related, data stores 120, 122, 124, 126, 128. No data
replication 1s provided by the data stores 120-128.
Furthermore, processes 102, 104, 106, 108, 112 operate
autonomously such that no transaction control exists to
synchronize operations among the individual processes.

System 100 includes a central management process 130,
which 1s configured to understand the inter-dependencies

10

15

20

25

30

35

40

45

50

55

60

65

4

among processes 102, 104, 106, 108, 112, 150 and 160.
Central management process 130 includes means to pause
and resume each of processes 102, 104, 106, 108, 112 in an
order that complies with the inter-dependencies of each of
the processes 102, 104, 106, 108, 112. This ensures that the

different data stores are synchronized to maintain data
consistency of each of data stores 120, 122, 124, 126, 128.

System 100 may include processes that modity data stores
and or that require synchronization, but do not or cannot
interact directly with central management process 130.
These types of processes, hereinafter termed “indirect
processes’, are shown 1n system 100 as indirect processes
152a, 152b, 152¢, 162a and 162b. Indirect processes are
“indirect” because they implement a different communica-
tion protocol than that recognized by central management
process 130. Processes 152a, 1525, and 152c¢ are three
separate 1nstances of an identical process A. For example,
processes 152a, 152b, and 152¢ may be the result of three
different operators starting up separate instances of a user
interface process. Likewise, process 162a and 162b are two
separate mstances of a different 1dentical process B.

Because central management process 130 cannot com-
municate directly with mdirect processes 152a, 1525, and
152¢ or 162a and 162b, management proxy process 150 and
160 are employed to interface between the central manage-
ment process 130 and respective indirect processes 1524,
152b, 152¢, 162a and 162b. Management proxy processes
150 and 160 translate “pause” nofifications and “resume”
notifications from central management process 130 into
proxy “pause” notifications and proxy “resume” notifica-
fions using communication protocols that are recognized by
respective 1ndirect processes 152a, 152b, 152¢, 162a and

162b.

Data may be flowing from multiple data input sources due
to multiple stmultaneously running asynchronous HLOs. As
an example, consider that a system may receive user 1nput
as a source of changing the data stores, while
simultaneously, the system may be capturing system events
which result 1n a modification to one or more different data
stores 120, 122, 124, 126, 128. Each of these data input
sources 142, 144, 146 gencrate a flow of data through
different paths (and therefore a different order of processes)
in system 100.

Central management process 130 does not keep track of
what 1s happening among the different processes 102, 104,
106, 108, 112 at any given time. However, central manage-
ment process 130 1s configured to keep track of which
processes lie in a dependency path between an input data
source and a data store, and also the ordered sequence that
the data 1s manipulated in by the various processes in the
dependency.

In the illustrative embodiment, this i1s accomplished by
creating a dependency tree that 1s derived from process
dependency declarations. Each process 102, 104, 106, 108,
112, 150 and 160 declares 1ts dependency with respect to
cach of the other processes. The process designer under-
stands the processes’ relationship to other processes and
other data stores 1n the system. The declared inter-
dependencies of each process are stored 1n an 1inter-
dependency configuration file. Central management process
130 reads the inter-dependency configuration file and math-
ematically creates a dependency tree that reflects the struc-
ture of the different processes of system 100.

As a result of the provided dependency tree, process 102
declares that 1t makes calls to processes 108 and 112; process
104 declares that it makes calls to processes 108 and 110;

US 6,226,694 B1

S

process 106 declares that 1t makes calls to process 110;
process 108 declares that 1t does not call any other process;

process 110 declares that 1t makes calls to indirect processes
152a, 152b, and 152¢; and process 112 declares that it does

not invoke any other process; management proxy process
150 declares that 1t makes calls to indirect processes 152a,
152b, and 152¢; and management proxy process 160
declares that 1t makes calls to indirect processes 162a and

162b.

FIG. 2 1s a dependency tree 200 1illustrating the inter-
dependencies among the different processes 1n system 100

that 1s created from the dependency declarations 1n pro-
cesses 102-112, 150 and 160. Dependencies are 1n the

direction of the arrows. Processes 152a, 152b, 152¢, 162a
and 162b are not included 1n FIG. 2 because they do not
communicate directly with central management process 130.
Process 110 depends on process 150 because process 110
depends on indirect processes 152a, 1525 and 152¢. Pro-
cesses 106 and 104 cach depend on process 110. Process 104
and 102 each depend on process 108. Process 102 depends
on process 112. Processes 102, 104, 106 and 160 depend on

no other processes.

In accordance with the invention, synchronization and
data consistency are achieved by pausing and resuming
processes 102, 104, 106, 108, 110, 112 and 150, 160 in an
order which conforms to the defined inter-dependent rela-
tionships among the different processes (i.e., the level of the
processes’ position in dependency tree 200). The inter-
dependencies among the different processes are the same
regardless of what HLLOs are being performed by system
100. The ordering of pauses and resumes are inherent in how
the processes behave, which data stores each particular
process modifies, which processes receive direct input from
data 1nput sources, and where each process resides 1n the
dependency tree. Because central management process 130
understands the inter-dependencies of, and communicates
with, each of processes 102, 104, 106, 108, 112, 150 and
160, 1t has the ability to control the order of pause operations
of the different processes 102, 104, 106, 108, 110, 112, 150
and 160.

The “pause” operation of the mnvention 1s analogous to the
stop operation 1n a transactional processing system.
Accordingly, central management process 130 contacts each
of the processes 1 the same order 1t would stop each process
during a normal shutdown, and it tells them to do everything
but stop. The order 1n which each process 1s paused 1s
mapped directly to the order 1n which a stop would be
ordered—that 1s, according to the defined process inter-
dependencies.

When a proxy management process 150 or 160 receives
a “pause” nofification from central management process
130, it sends a proxy “pause” notification to each indirect
process that 1t communicates with. Each management proxy
process 150 and 160 understands the dependencies of its
respective 1ndirect processes, and pauses them 1n order of
dependency. When an 1ndirect process 152a, 1525 and 152c¢
or 162a and 162b receives a proxy “pause” notification, it
pauses 1tself, if possible, and 1nforms the respective man-
agement proxy process 150 or 160 of its pause success
status. One reason that an indirect process may not be
successtul 1n performing a pause operation 1s if 1t has clients
(i.e., other processes that potentially invoke it) that are
unable to pause at the requested time. If any of an indirect
process’s clients are unable to pause at the requested time,
the indirect process informs the appropriate management
proxy process 150 or 160. Management proxy process 150
or 160 then responds to central management process 130. It

10

15

20

25

30

35

40

45

50

55

60

65

6

1s the responsibility of central management process 130 to
Issue a “resume” nofification to any indirect processes that
it directed to pause. Central management process 130 then
responds to an unsuccessiul pause by resuming any paused
processes and then informing the HLO that requested the
synchronization.

As will be appreciated by those skilled 1n the art, the
invention essentially operates to cut off the data input
sources 1nto the system and to flush any current data flow in
progress out the various data flow paths to the different data
stores. When this process 1s complete, each of the multiple
data stores 1s synchronized and the data 1s 1n a consistent
state. The invention operates to guarantee consistency in any
similarly modeled system regardless of its number of 1nput
data sources, different data flow paths, and process depen-
dencies.

FIG. 3 1s a flowchart of the method 300 for pausing a
plurality of processes which lie in the dependency paths of
a system 1n accordance with the invention. Method 300
requires that each process which lies 1n the dependency tree
to mclude means for receiving and acting upon a “pause”
notification from the central management process 130. The
details of what each process does after receiving the “pause”
notification depends on the function of the particular process
and can therefore vary from process to process. However,
upon receiving a “pause” notification, each process must, at
a minimum, stop accepting requests or commands for ser-
vice that will result in a modification of a data store,
complete all pending tasks that will modify a data store, and
flush internally-cached data to the data store. Once a process
has completed these steps (and whatever other steps the
pause function of that particular process 1s designed to
perform), the process notifies the central management pro-
cess 130, via a “pause complete” response, that it has
fulfilled the requirements of the “pause” notification. It 1s the
responsibility of the central management process 130 to
understand which processes 1n the system must be notified
of the pending management operation, and 1n what order to
notify them.

According to the method 300 of the invention, when the
different data stores of a system must be synchronized,
central management process 130, 1 step 302, pauses each
process which lies in a dependency path and which 1s not
invoked by any other such process and which operates as a
first point of source 1n the system for receiving data input
from at least one data input sources.

Once one or more of the processes 1s paused, central
management process 130 determines, 1n step 304, a next
subset of processes which includes those remaining
unpaused processes that are potentially invoked by a paused
process and that are not potentially invoked by any as yet
unpaused process.

In step 306, central management process 130 pauses each
of the next subset of processes. In step 308, the central
management process 130 determines whether any process 1n
the dependency tree remains unpaused. If not, method 300
1s complete. Otherwise, steps 304 through 308 are repeated
until each process in the dependency tree has been paused 1n
proper order such that all data has been flushed to the
different data stores.

Applying method 300 to system 100, the order 1n which
processes 102, 104, 106, 108, 112, 150 and 160 are paused

1s as follows: pause processes 102, 104, 106 and 160; when
process 102 responds to central management process 130,
pause process 112; when both processes 102 and 104 have
completed pausing and respond to central management

US 6,226,694 B1

7

process 130, pause process 108; when both processes 104
and 106 have completed pausing and respond to central
management process 130, pause process 110; when process
110 has completed pausing and responds to central manage-
ment process 130, pause process 150; when all “pause
complete” responses have been received by central manage-
ment process 130, the system 1s paused.

FIG. 4 1s a flowchart of a method 400 for resuming a
plurality of paused processes which lie in the dependency
free of a system 1n accordance with the mvention. Method
400 requires each process that lies 1n the dependency tree to
include means for recewving and acting upon a “resume”
notification from the central management process 130. Upon
recelving a “resume” notification, the receiving process

begins accepting and processing requests or commands for
service. “Resume” notifications are sent out 1n the same
order as ‘“start” notifications, and the reverse order of
“pause” nofifications. Once a process has completed this
step (and any other steps the process must complete in order
to complete the process’s resume function), the process
notifies central management process 130 via a “resume
complete” response. It 1s the responsibility of central man-
agement process 130 to understand which processes 1n the
system 100, and 1n what order, to resume each of the
processes. In the preferred embodiment, this 1s determined
via the dependency tree.

According to method 400, when the different paused
processes of a system are to be resumed, central manage-
ment process 130 begins, 1n step 402, by resuming each
process which does not 1nvoke any currently paused ones of
the processes 1n the dependency tree. This 1s accomplished
by sending a “resume” notification to the lowest level
processes 1n the dependency tree. Central management pro-

cess 130 waits until 1t receives a “resume complete”
response from at least one of these processes.

Once one or more of the processes located on the lowest
level of the dependency tree i1s resumed, in step 404 the
central management process 130 determines a next set of
processes which 1ncludes those remaining paused processes
that potentially mvoke a resumed process and that do not
potentially invoke any as yet paused process. In the 1llus-
frative embodiment, each process on the next level of the
dependency tree 1s checked to determine whether each of the
processes that i1t potentially invokes has returned a “resume
complete” response.

In step 406, central management process 130 resumes
cach of the next set of processes. In the 1illustrative
embodiment, this 1s accomplished by sending a “resume”
notification to each of the next set of processes and waiting
for a “resume complete” response.

In step 408, central management process 130 determines
whether any process which lies 1n the dependency tree
remains paused. If not, method 400 i1s complete and the
system 1s resumed. Otherwise, steps 404 through 408 arc
repeated until each process which lies 1n the dependency tree
has been resumed 1n proper order as defined by the depen-
dency tree.

To resume normal operation, processes 102, 104, 106,
108, 112, 150 and 160 are resumed 1n reverse order with
respect to paused order. Accordingly, resume processes 108,
112, 150 and 160; resume process 110 after process 150 has
completed resuming; resume process 102 after process 112
and 108 have completed resuming; resume process 104 after
process 108 and process 110 have completed resuming;
resume process 106 after process 110 has completed resum-
ing. When all “resume complete” responses have been
received by central management process 130, the system 1s
resumed.

10

15

20

25

30

35

40

45

50

55

60

65

3

FIG. 5 1s a block diagram of a network management
system 3500 which illustrates a specific example of the
operation of the invention. System 500 includes a plurality
of software processes, each designed to handle a speciiic
part of an example “Discover_ Network_ Element” HLO,
which discovers a new network element and adds it to a
oraphical map. System 500 includes a discovery manager
process 502 for discovering new elements, a topology man-
agement process 504, a centralized object storage process
506 (1.e., a semantic information manager), and a graphical
map presentation manager process 308 for displaying new
clements. Discover_ Network_ Element HLO performs the
following ordered sequence of operations: (1) discovery
manager process 502 discovers new network element; (2)
discovery manager process 5302 informs topology manager
process 504 about the new network element; (3) topology
manager process 504 contacts central object store process
506 to update it with new information; (4) topology manager
process 504 updates its own data store; (5) topology man-
ager process 504 contacts presentation manager process 508
to add the new element to a graphical map; and (6) presen-
tation manager process 308 updates its data store.

Network management system 500 1s a non-transactional
multiple-data-store processing system. Specifically, data is
maintained in multiple independent, but related, data stores
514, 516, 518. Specifically, topology management process
504 maintains 1ts own topology data store 514, centralized
object store process 506 maintains 1ts own semantic data
store 518, and presentation manager process 508 maintains
its own graphical map presentation data store 516. In this
embodiment, high-level operations (HLOs) require updating
the different multiple data stores 514, 516, 518 via APIs to
the software processes 504, 506, 508, which control access
to the respective data stores 514, 516, 518. Furthermore,
processes 502, 504, 506, 508 operate autonomously such
that no transaction control exists to synchronize operations
among the individual processes. Finally data stores 514,
516, 518 provide no data replication (i.e., redundancy). In
this environment, the tasks of Discover Network Element
HI.O flow through system 500 unchecked due to the absence
of any overall transaction control. Furthermore, there may
be multiple different HLOs flowing through system 300
simultaneously, each contacting its required set of processes
(and potentially updating the different data stores 514, 516,
518). For example, a different “Add_New_ Node” HLO
(not shown) might allow an operator to add new nodes
directly via the graphical map presentation manger process
508. Adding a node using this HLO results in a data flow
path through system 500 1n the opposite direction from what

1s described by the 1llustrated Discover_ Network Element
HLO of FIG. 5.

Even though each process 1s independent of the others 1n
the way that 1t manages data, dependencies exist among the
data 1n the various data stores. For example, 1in network
management system 500, a managed node 1s represented 1n
topology data store 514, graphical map presentation data
store 516, and semantic data store 518. The common key
among the data stores 1s an object identifier, or name, as
illustrated 1in FIG. §. In this embodiment, the object ID binds
the topology information, semantic information, and pre-
sentation information together. As new object data 1s added
to network management system 500 (e.g., a new network
node being added to network management system 500),
topology management process 504 and graphical map pre-
sentation manager process 308 are contacted in a sequential
order. Accordingly, as an HL.O proceeds to completion, the
various data stores 514, 516, 518 may be 1n a state of

US 6,226,694 B1

9

inconsistency due to the fact that some of them have been
updated to reflect the existence of the new node, and some
have not.

An example HLO which requires synchronized data 1s a
backup HLO. Synchronization of data stores 514, 516, 518
1s achieved by disallowing other HL.Os, which 1invoke pro-
cesses that lie 1in the dependency tree, to execute while the
backup 1s 1n progress. All processes that lie 1n a dependency
tree 1nclude means for receiving a “pause” nofification,

which informs them to prepare for synchronization. Once all
processes have received and acted upon a “pause”
notification, all the multiple data stores of the system are
considered to be in a consistent state (1.e., there exist no
broken dependencies among the multiple data stores), and
therefore those data stores can be backed up.

FIG. 6 1s a dependency tree 600 of system 500. Graphical
map presentation manager process 308 1s an indirect process
that does not communicate directly with a central manage-
ment process 330 (shown in FIG. 7). In this example, a
management proxy process 540 (also shown in FIG. 7) has
supplied inter-dependency information about its client pro-
cess (1.e., presentation manager process 308), which indi-
cates that presentation manager process 308 1s at the highest
level 602 of the dependency tree 600 because no other
processes 1n the dependency tree invokes 1t. Since network
clement discover process 502 1s the only direct process in
system 500 which directly receives data mput from a data
input source, discovery process 502 1s located at the next
level 604 of the dependency tree 600. Since topology
management process 504 1s the only process that receives
requests from discover process 502, it resides at the next
level 606 1n the dependency tree 600. Finally, since central-
1zed object store process 506 1s the only process remaining
that receives requests from topology management process

504, 1t resides at the next level 608 1n the dependency tree
600.

FIG. 7 1s a flow diagram 1illustrating the order of “pause”
notifications through system 700 for synchronizing the data
in each of the different data stores 514, 516, 518 in FIG. 5.
System 700 includes central management process 330 which
understands the dependencies between processes 502, 504,
506, 508 of the system such that 1t can start, stop, pause, and
resume the processes 1in an order that ensures data consis-
tency 1s maintained. System 700 also includes management
proxy process 340. Since presentation manager process 508
1s at the highest level 602 of dependency tree 600, 1t must be
paused first via management proxy process 540 to ensure
that any client processes of presentation manager process
508 are 1n a pausable state at the requested time.

The method for synchronizing the data 1n data stores 514,
516, 518 begins with a first step 702 1n which a pause
executable 550 of a process which requires synchronized
data requests that central management process 530 begin
notifying processes to prepare for synchronization. In step
704, central management process 530 sends a “pause”
notification to management proxy process 340. In step 7060,
management proxy process 540 then forwards a proxy
“pause” notification to each of its client processes (not
shown). In practice, there may be multiple instances of a
process type (such as the graphical map presentation process
508). There may also be many different types of manage-
ment proxy processes 340 in a system, each tuned to proxy
for a specific type of client (e.g., Graphical User Interfaces
(GUIs), or SNMP agents). The purpose of management
proxy process 540 i1s to support processes that do not
communicate with central management process 530. Man-
agement proxy process 540 receives commands from central

10

15

20

25

30

35

40

45

50

55

60

65

10

management process 530 with a defined protocol, then
communicates with its client processes (i.e., presentation
process 508) using a protocol (e.g., API) that they under-
stand. In step 708, graphical map presentation process 508
prepares for synchronization by flushing any pending map
changes to 1ts data store 518. Once 1ts pause function 1is
complete, presentation process 508 responds to management
proxy process 540 with a proxy “pause complete” response.
Any process that receives a proxy “pause” nofification can
return a negative acknowledgement back to the management
proxy process 540, in which case, central management
process 330 aborts the entire pause operation by sending a
“resume” notification to all processes.

If management proxy process 540 receives a positive
acknowledgement (i.€., a proxy “pause complete” response)
from presentation process 508, it returns a “pause complete”
response to central management process 530 1n step 710.
Central management process 3530 then sends a “pause”
notification to all other processes according to the order
defined by the dependency tree 600. Accordingly, 1n step
712, central management process 330 sends a “pause”
notification to discovery process 502 and receives a “pause
complete” response 1n step 714. Central management pro-
cess 530 then sends a “pause” notification to centralized
object store process 506 1n step 716 and receives a “pause
complete” response 1n step 718. In step 720, central man-
agement process 330 sends a “pause” notification to topol-
ogy management process 504, and receives a “pause com-
plete” response 1n step 722. Once the central management
process 330 has contacted each process and has received a
“pause complete” response from each process, the central
management process 330 returns, 1n step 724, a “system
paused” message to the pause executable 550 indicating that
the system, and all of i1ts data, 1s now 1n a consistent state.

It will be appreciated by those skilled 1n the art that the
present mvention does not limit the number of levels that a
“pause” notification or “resume” notification may travel.
The present mvention describes an N-level pause/resume
hierarchy, where each level provides a mechanism to for-
ward messages and receive responses to and from the next
level. For example, the graphical map presentation process
508 described herein may support communication with other
applications that, through an API, can augment the map. It
may be necessary for these applications to also receive the
proxy “pause” notification so that they can prepare for
synchronization (i.e., the applications may be storing map
changes 1n memory where those changes should be sent to
oraphical map presentation process 508 prior to the
synchronization). In this example, the graphical map pre-
sentation process 508 would forward the “pause” notifica-
tion to any applications that are connected. Thus, graphical
map presentation process 508 determines its ability to com-
ply with a “pause” nofification 1n large part by the ability of
its clients to comply.

Once all processes have been notified to pause and have
all responded back to central management process 3530,
operations such as backup or data check pointing can be
performed. After the completion of such operations, it 1s the
responsibility of central management process 530 to inform
the paused processes to resume normal operations. It does
this by sending a “resume” notification to those processes 1n
the reverse order that 1t sends “startup” notifications.

The system and method for synchronizing multiple data
stores 1n a non-transactional processing has been described
in detail above. Although the mmvention has been described
in terms of the illustrative embodiments, 1t will be appreci-
ated by those skilled 1n the art that various changes and

US 6,226,694 B1

11

modifications may be made to the illustrative embodiments
without departing from the spirit or scope of the mvention.
It 1s intended that the scope of the invention not be limited
in any way to the 1illustrative embodiment shown and
described but that the invention be limited only by the claims
appended hereto.

What 1s claimed 1s:

1. A method for synchronizing multiple data stores and
achieving data consistency in a non-transactional multipro-
cessing computer system, said system comprising a plurality
of data stores, one or more data input sources, and a plurality
of processes that lie 1n a dependency path between at least
one of said one or more data input sources and at least one
of said plurality of data stores, at least one of said plurality
of processes having a data dependency on at least one other
of said plurality of processes, said method comprising the
steps of:

(a) pausing a first subset of said plurality of processes to
flush all data from said first subset of processes to one
or more of said data stores or to one or more unpaused
processes, said first subset comprising each process of
said plurality of processes that 1s not invoked by any
other of said plurality of processes and which receives
data directly from at least one of said one or more data
Input sources;

(b) pausing a succeeding subset of said plurality of
processes to flush all data from said succeeding subset
of processes to one or more of said data stores or to one
or more unpaused processes, said succeeding subset
comprising at least one process of said plurality of

processes that 1s invoked by a paused process and that

1s not 1nvoked by any unpaused ones of said plurality

of processes; and

(c) repeating step (b) until each of said plurality of
processes remains unpaused.
2. A method 1n accordance with claim 1, wherein:

cach said process of said first subset and said succeeding,
subset of said plurality of processes pauses by perform-
ing the steps of:
(d) stopping acceptance of service requests that result
in modification of any of said plurality of data stores;
(¢) completing all pending tasks that result in modifi-
cation of any of said plurality of data stores; and
(f) flushing all internally-cached data to an unpaused
process or one or more of said plurality of data
stores.
3. A method 1n accordance with claim 1, comprising:

(g) resuming a last subset of said plurality of processes,
said last subset comprising each process of said plu-
rality of processes that does not invoke any currently
paused ones of said plurality of processes;

(h) resuming a preceding subset of said plurality of
processes, said preceding subset comprising at least
one process of said plurality of processes that invokes
one or more resumed ones of said plurality of processes
and does not mnvoke any currently paused ones of said
plurality of processes; and

(1) repeating step (h) if any of said plurality of processes
remains unresumed.

4. A method 1 accordance with claim 3, wherein:

cach said process of said last subset and said preceding
subset of said plurality of processes resumes by per-
forming the steps of:
(1) allowing acceptance of service requests that result in
modification of at least one of said plurality of data
stores.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. A method 1n accordance with claim 4, wherein:

cach said process of said first subset and said succeeding,
subset of said plurality of processes pauses by perform-
ing the steps of:
(k) stopping acceptance of service requests that result
in modification of any of said plurality of data stores;
(1) completing all pending tasks that result in modifi-
cation of any of said plurality of data stores; and
(m) flushing all internally-cached data to an unpaused
process or one or more of said plurality of data
stores.
6. A non-transactional multiple-data-store processing
system, comprising;:
a plurality of data stores;
one or more data mput sources;

a plurality of processes that lie in a dependency path
between at least one of said one or more data input
sources and at least one of said plurality of data stores,
at least one of said plurality of processes having a data
dependency on at least one other of said plurality of
processes, each process of said plurality of processes
comprising pausing means for stopping acceptance of
service requests that result 1n modification of said
plurality of data stores, completing all pending tasks
that result 1n a modification of said plurality of data
stores, and flushing all internally-cached data to either
an unpaused one of said plurality of processes or to one
or more of said plurality of data stores; and

a central management process operable to pause each of
said plurality of processes, 1n order, by pausing a first
subset of said plurality of processes to flush all data
from said first subset of processes to one or more of
said data stores or to one or more unpaused processes,
said first subset comprising each process of said plu-
rality of processes that 1s not invoked by any other of
said plurality of processes and which receives data
directly from at least one of said one or more data input
sources; and 1teratively pausing a succeeding subset of
said plurality of processes to flush all data from said
succeeding subset of processes to one or more of said
data stores or to one or more unpaused processes, said
succeeding subset comprising at least one process of
said plurality of processes that 1s invoked by a paused
one of said plurality of processes and that 1s not
invoked by any unpaused ones of said plurality of
processes unfil none of said plurality of processes
remains unpaused.

7. A system 1n accordance with claim 6, wherein:

cach process of said plurality of processes comprises
resuming means for allowing acceptance of service
requests that result 1n modification of one or more of
said plurality of data stores.

8. A system 1n accordance with claim 7, wherein:

sald synchronizing means 1s operable to resume each
process of said plurality of processes, in order, by
resuming a last subset of processes of said plurality of
processes, said last subset comprising each of said
plurality of processes that does not mvoke any cur-
rently paused ones of said plurality of processes; and by
iteratively resuming a preceding subset of said plurality
ol processes, said preceding subset comprising at least
one of said plurality of processes that invokes one or
more resumed ones of said plurality of processes and
does not mmvoke any paused ones of said plurality of
processes, until none of said plurality of processes
remains paused.

US 6,226,694 B1

13

9. A system 1 accordance with claim 6, comprising:

an indirect process that lies in a dependency path between
at least one of said one or more data input sources and
at least one of said plurality of data stores, said indirect
process being responsive to a proxy process to stop
acceptance ol service requests that result 1n modifica-
tion of said plurality of data stores and to flush all
internally-cached data to either an unpaused one of said
plurality of processes or to one or more of said plurality
of data stores; and

a proxy process that 1s responsive to a pause request by
generating and sending a proxy pause request to said
indirect process.

wherein said synchronizing means sends a pause request
to said proxy process when said indirect process 1s to be
paused.

10. A system 1n accordance with claim 9, wherein:

said 1ndirect process interacts with one or more client
processes and performs a pause 1n response to a proxy
pause request only 1f said one or more client processes
are currently pausable when said proxy pause request 1s
received.

11. A synchronizing process for synchronizing a plurality
of data stores 1n a non-transactional multiple-data-store
processing system comprising a plurality of data stores, one
or more data input sources, and a plurality of processes that
lie 1n a dependency path between at least one of said one or
more data mput sources and at least one of said plurality of
data stores, at least one of said plurality of processes having
a data dependency on at least one other of said plurality of
processes, each of said plurality of processes comprising,
pausing means for stopping acceptance of service requests
that result 1n modification of said plurality of data stores,
completing all pending tasks that result in a modification of
said plurality of data stores, and flushing all internally-
cached data to either an unpaused one of said plurality of
processes or to one or more of said plurality of data stores,
said synchronizing process comprising:

a pause function responsive to a pause request to pause
cach of said plurality of processes, 1n order, by pausing
a first subset of said plurality of processes to flush all
data from said first subset of processes to one or more
of said data stores or to one or more unpaused
processes, said first subset comprising each process of
said plurality of processes that 1s not invoked by any
other of said plurality of processes and which receives
data directly from at least one of said one or more data
mnput sources; and 1iteratively pausing a succeeding
subset of said plurality of processes to flush all data
from said succeeding subset of processes to one or
more of said data stores or to one or more unpaused
processes, sald succeeding subset comprising at least
one process of said plurality of processes that 1s
invoked by a paused one of said plurality of processes

5

10

15

20

25

30

35

40

45

50

14

and that 1s not 1nvoked by any unpaused ones of said
plurality of processes until none of said plurality of
processes remains unpaused.

12. A synchronizing process in accordance with claim 11,

comprising:

a proxy process responsive to said pause function which
generates and sends a proxy pause request to an indirect
process that lies in a dependency path between at least
one of said one or more data input sources and at least

one of said plurality of data stores, said indirect process
being responsive to said proxy process to stop accep-
tance of service requests that result in modification of
said plurality of data stores and to flush all internally-
cached data to either an unpaused one of said plurality
ol processes or to one or more of said plurality of data
stores.

13. A synchronizing process in accordance with claim 11,

comprising:

a resume function operable to resume each process of said
plurality of processes, 1n order, by resuming a last
subset of processes of said plurality of processes, said
last subset comprising each of said plurality of pro-
cesses that does not invoke any currently paused ones
of said plurality of processes; and by iteratively resum-
ing a preceding subset of said plurality of processes,
said preceding subset comprising at least one of said
plurality of processes that invokes one or more resumed
ones of said plurality of processes and does not 1nvoke
any paused ones of said plurality of processes, until
none of said plurality of processes remains paused.

14. A synchronizing process 1n accordance with claim 13,

comprising:

a Proxy process responsive to said resume function which
generates and sends a proxy resume request to an
indirect process that lies in a dependency path between
at least one of said one or more data mput sources and
at least one of said plurality of data stores, said indirect
process being responsive to said proxy process to
resume acceptance of service requests that result in
modification of said plurality of data stores.

15. A synchronizing process 1n accordance with claim 14,

comprising:

a proxy process responsive to said pause function which
generates and sends a proxy pause request to an indirect
process that lies in a dependency path between at least
one of said one or more data input sources and at least
one of said plurality of data stores, said indirect process
being responsive to said proxy process to stop accep-
tance of service requests that result 1n modification of
said plurality of data stores and to flush all internally-
cached data to either an unpaused one of said plurality
of processes or to one or more of said plurality of data
stores.

	Front Page
	Drawings
	Specification
	Claims

