US006223275B1
(12) United States Patent (10) Patent No.: US 6,223,275 B1
Goto et al. 45) Date of Patent: Apr. 24, 2001
(54) MICROPROCESSOR WITH REDUCED (56) References Cited

INSTRUCTION SET LIMITING THE
ADDRESS SPACE TO UPPER 2 MBYTES
AND EXECUTING A LONG TYPE REGISTER
BRANCH INSTRUCTION IN THREE
INTERMEDIATE INSTRUCTIONS

(75) Inventors: Masaru Goto, Saitama; Hiroaki
Miyachi, Tokyo; Yukihiro Sakamoto,
Kanagawa, all of (JP)

(73) Assignee: Sony Corporation, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/096,584
(22) Filed: Jun. 12, 1998
(30) Foreign Application Priority Data

U.S. PATENT DOCUMENTS

4,530,050 * 7/1985 Fukunaga et al. ................... 712/210
5,420,809 * 5/1995 Read et al. ...oouvveeeervvnnnnnnnnnne, 708/200
5,420,992 * 571995 Killian et al. ................... 395/500.48
5,764,939 * 6/1998 Caulk et al. ....cceeevvvnnnnnnnnene, 712/205
5,930,523 * 7/1999 Kawasaki et al. .................... 712/32

* cited by examiner

Primary FExaminer—Meng-Al T. An

Assistant Examiner—INabil El-Hady
(74) Attorney, Agent, or Firm—Ronald P. Kananen; Rader,
Fishman & Grauer

(57) ABSTRACT

A 32-bit RISC processor 1s disclosed. The bit length of the
instruction set 1s fixed to 16 bits. SLLIL and SLIH instructions

that cause the address space of 4 Gbytes to be limited to

Jun. 20, 1997  (IP) it ceeeeenreeeeaee e, 0-164358 upper 2 Mbytes and that execute a long type register branch
(51) Int. CL7 oo, GO6F 15/00 instruction are provided. Thus, a register branch instruction
(52) US.CL . 712/200; 712/32; 712/33;  can be executed with three instructions rather than five

712/34; 712/41; 712/201; 712/202; 712/203 instructions unlike with a related art reference.
(58) Field of Search .............................. 712/32, 33, 34,

712/41, 200-203 12 Claims, 16 Drawing Sheets

15 10 9 O
I T R T T T B R I
1 OpCODE | t | immediate | | |
6 10
<FORMAT>
SLIL, #imm10

{DESCRIPTION>

LOADS THE VALUE OF AN IMMEDIATE TO THE ACC
CORRESPONDING THE BYTE POSITION BP.
STORES THE CONTENT OF

NON-DESIGNATED BYTE OF THE ACC.

15 10 9 O
BRI B
i OpCODE 1 1+ | Immediate | | |
6 10
<FORMATY
SLIH, #imm10

<DESCRIPTION>

LOADS THE VALUE OF AN IMMEDIATE TO THE ACC
CORRESPONDING THE BYTE POSITION BP.
STORES THE CONTENT OF

NON-DESIGNATED BYTE OF THE ACC.



US 6,223,275 Bl

Sheet 1 of 16

Apr. 24, 2001

U.S. Patent

SNg HOSSID0Hd 09

‘019

'NOILONN4 L40ddNs 30l
3 T1041NOD 1dNdyd3iNI TOHLINOO LdNYYILNI
'SNLVLS 0l x S118 ¢€
'SHY3LSID3Y TOHLINOD d31vIId3d

TOYLNOD MO0 13S3d

(S3T1DAD Ol NS LIG 91/91
43NOI IV VLG (S3T0AD 81 NHS.Lig ¢€/¢¢

HNANSHON 'J0IA3A DNIQIAIA MALAHS |
033dS HOMH LEEISLE

SNg NOILONILSNI

9

1O041NOO ANIiddid

H3A0D3Ad NOILONH LSNI

ce xS1lg2e¢
(MZH?2)S1HOd Vv

‘NOILHYOd SSVdAd H31SI1D3Y

"(FTIDAD INO NDSLIE 91 x 91 Ny
‘IDIATA DNIATDILTININ
A33dS HHIH

SN vV.ivd é

| b

ONILVY 1N 1VO
SIS ta[€[€)

1S50ddNd 1VHINID




U.S. Patent Apr. 24, 2001 Sheet 2 of 16 US 6,223,275 Bl

Fig. 2

INTERRUPT INPUT, RESET, CLOCK o

CPU 1

22 COPROCESSOR

-
N

MEMORY CONTROLLER 21



U.S. Patent

Apr. 24, 2001

Sheet 3 of 16

Fig. 3

CPU REGISTERS

GENERAL PURPOSE REGISTERS

G
—l

A 0101010
Oy W

AJ
~J

N —

O

ACC

R10
R11
R12
R13
R14
R195
R16
R17
R18
R18
20
R2
R2
23
R24
R25
R26
R27
R28
R29
R3O0 SP
R31 ISP

A

A
N

MULTIPLY/DIVIDING REGISTERS

37 O
H |

LO

US 6,223,275 Bl



U.S. Patent Apr. 24, 2001 Sheet 4 of 16 US 6,223,275 Bl

Fig. 4

COPROCESSOR REGISTERS

Cop0O REGISTERS Copl! REGISTERS

31 0 31 0 31 0 31 0
G WoR
2 BR
6RO G4 DABR
G B G6__ WOMRO

G5 FMWR

G10__DABRI
G11 IBP1 C11 G11  DAMRI
61z 8P
21 c2

c23
G24 C24 G24 C24
25
G26 C26 G26 C26
o 27

C28
G29 C29 G29 C29

536
31 3



US 6,223,275 Bl

Sheet 5 of 16

Apr. 24, 2001

U.S. Patent

IEEIEE.EE“E
4 & S o oL LI ¢t €L ¥L Gl

G b4



US 6,223,275 Bl

Sheet 6 of 16

Apr. 24, 2001

U.S. Patent

‘OIUOWIIU BWES SI XX ‘XXY S| dANleJ8L Nd

HOOYd
*/ZNd/ING
*ZN8/3INd

HO0Od HO084 HOOV 8
NAIQ AIG NLTNIN
HO0O6 HO086 HOOV6
AOW dNOD NIdNOD
HO0OL HOO8L HOOVL
Id'1 '] AVHS
HO0OS HOO084 HOOVS
d4S 2ddyv Nisaayv
HO0OL HOOBt HOOPE
JON d0X q0

HOOQO | HOO8 1 HOOV |

HI1S NdNQO 14

HO0O

101N
HO0OO

001N
HOOOV

NAMH'1
HO0O8

ngi
HO0O9Y

ATIS
HOOOV

NS
HO0O¢

Ndns
HOQO0

x VI

HO08

LO4W
HO08O

004N
HOO8Y

MS
HO088

M
HO089

vdS
HOO8Y

IS
HOO08¢

ans
HO080

HOOV

LOMS
HOOVO

lOM']
HOOVYV

MHS
HOOVS

MH1
HOOVY

189S
HOOVPY

dOO
HOOV ¢

naayvy
HOOVO

Odavr

HO0O03

OOMS
HO00O

OOM]
HOOOV

dS
HO0O08

a1
HO009

T1S
HOOOV

1S
HO0O0¢

aay
HOOOO0

1VI0ddS



US 6,223,275 Bl

Sheet 7 of 16

Apr. 24, 2001

U.S. Patent

H4 100

O1LA
HL100

SX4
H4000

ONRS
HL3E0

RIEte

H3 100

O 14A
HI 100

X3
H3000

d18
H9OEO0

134

HA 100

IHLA
HG4E0

AV 3440
HA000

S18
HG3E0

Avi4as

HO 100

IHAWN
H¥ 100

d0X
HO000

14
HY3¢0

TIVOSAS

HE100
d ViVl
d1v3or

HE000

Sd
HEOOO

SHXJ

/ 'biH

H8 100
4Z7M/43r
dZ2r/4d3ar

H¢ 100
d 1var
d1VLIP

H6 100

HZNI /43N
dZNI/43INC

H¢ 100 H1 100 HOL0O
H0r/4ar HONC/43vr g3V
d11r SED 4190
HV000 H6000 H8000
MHO X 1M alb
HZ000 H1000 HOOO0O0
ZHX4 d3431S dON

00000099 = [ 04:G1 ] IVIO3dS




US 6,223,275 Bl

Sheet 8 of 16

Apr. 24, 2001

U.S. Patent

HALVP

HLLVY

al=10)47

HLOVY

HO L b E
HY L b E
HOObY E
HYObY E

g 'bi4

HY LY

HC Ly

HVOVY

HCOVY

H6 VY

HLLYY

2 [610)747%

HILOVY

1040

H8 LYY

HO LV

H80VvY

HOOV Y
1010

10001099 = [ 01'Gl ] 10D



US 6,223,275 Bl

Sheet 9 of 16

Apr. 24, 2001

U.S. Patent

HE(Oﬁ 3IVO | dIvd |dIVdd
O L ¢ & 14 G

dlAN | N3Ol E

el vl Gl



U.S. Patent

Apr. 24, 2001

PMI
NMI
CpUQ
CpUT
SYSBK
BK

DBK
OVF

SStep
IBPO

IBP1

IBP2Z

Exint0
Exint1
Exint2
Exint3
Exint4
Exintd
Exint6
Exint7

RESET ADDRESS = FFFFFEBOH

O0H
04H
08H
OCH
10H
14H
18H
1CH
20H
2CH
30H
34H
40H
44H
48H
4CH
o0H
94H
58H
SCH

Sheet 10 of 16 US 6,223,275 Bl

Fig. 10

INTERRUPT VEGTOR ADDRESS OFFSET

CPU SPACGCE : INSTRUCTION/DATA 4GB

RESET ADDRESS
VECTOR ADDRESS

FFFFFESOH
FFFFFEOOH

00000000H

64 WORDS I/0

VECTOR ADDRESS ={IBR[ 31:8 ], VECTOR ADDRESS OFFSET }

IBR [31:8 ] = FFFFFEH (INITIAL VALUE)



U.S. Patent

Apr. 24, 2001

Fig.

Sheet 11 of 16

11

TYPES OF INTERRUPTS AND PRICRITY

HIGH

LOW

INTERRUPT

SStep (Single Step)

FPMI

NM|

CpUQ (Coprocessor 0)
CpU1 (Coprocessor 1)
SYSBK

DBK

OVF (Over Flow)

BK

IBPO (Instruction break 0)
IBP1 (Instruction break 1)
IBP2 (Instruction break 2)
Exint0

Exint]

Exint?2

Exint3

Exint4

Exintd

Exint6

Exint?/

US 6,223,275 Bl

VECTOR ADDRESS OFFSET

20H
O0H
04H
O8H
0CH
10H
14H
18H
1CH
2CH
30H
34H
40H
44H
48H
4CH
S0H
54H
58H
SCH

VECTOR ADDRESS =(IBR [ 31:8 ], VECTOR ADDRESS OFFSET |

Fig.

12

INTERRUPT SAVE ADDRESS

PMI [ISP-4]<—CURRENT INSTRUCTION
NMI [ISP-4]—CURRENT INSTRUCTION
CpUO [ISP-4]—NEXT INSTRUCTION
CpU1 [ISP-4]«—NEXT INSTRUCTION
SYSBK ISP-4]«—NEXT INSTRUCTION

BK [ISP-4]—NEXT INSTRUCTION
DBK [ISP-4]«—NEXT INSTRUCTION
OVF [ISP-4]—NEXT, NEXT INSTRUCTION
IBPO-2 ISP-4]—NEXT INSTRUCTION
Exint0-7 [ISP-4]—CURRENT INSTRUCTION




U.S. Patent Apr. 24, 2001 Sheet 12 of 16 US 6,223,275 Bl

Fig. 13A

15 10 9 O
I S T T N T T R N T R
 OpCODE | | | iImmediate | | |
o 10
{FORMAT>
SLIL, #imm10

CDESCRIPTION>

LOADS THE VALUE OF AN IMMEDIATE TO THE ACC
CORRESPONDING THE BYTE POSITION BP.
STORES THE CONTENT OF

NON-DESIGNATED BYTE OF THE ACC.

Fig. 13B

31 1110 1 O

{OPERATION>

[ACCl—immediate #imm10



U.S. Patent Apr. 24, 2001 Sheet 13 of 16 US 6,223,275 Bl

Fig. 14A

15 10 9 O
T I S IR E T R N N D I
1 OpCODE | i 1 | Immediate | | |
6 10
FORMAT>
SLIH, #1imm10

{DESCRIPTION>

LOADS THE VALUE OF AN IMMEDIATE TO THE ACC
CORRESPONDING THE BYTE POSITION BP.
STORES THE CONTENT OF

NON-DESIGNATED BYTE OF THE ACC.

Fig. 148

31 2120 1110 0
. VALUE IS
(OPERATION>

[ACCJ<—immediate #imm10



U.S. Patent Apr. 24, 2001 Sheet 14 of 16 US 6,223,275 Bl

Fig. 15

MEMORY MAP

FFFF_FFFF

][ 2MBYTE

4GBYTE

FFEO_0000

0000 0002
0000_0000

%’_._J
2BYTE



US 6,223,275 Bl

Sheet 15 of 16
_____________“____T_
0
I~
©

Apr. 24, 2001

U.S. Patent

D & & 0TIV

00011 11001 1 00O0O0OO0OOOOOOOOOOOOO0O0O OO0 O q@h Q\H\

0 L ¢ € v S 9 L 8 6 0L1LeLELVLGLOLLLBLO6LOE!IE e EC Ve Ge 9C LE 8¢ 660t IE



U.S. Patent Apr. 24, 2001 Sheet 16 of 16 US 6,223,275 Bl

Fig. 17A

15 108 8 7/ O

| || I [ L e
i OpCODE ﬂ | Immediate | | |

6 2 8
<FORMAT>

LPI LL, #imm8
LPl LH, #imm8
LPI HL, #imm38
LPI HH, #imm8

{DESCRIPTION>

LOADS THE VALUE OF AN IMMEDIATE TO THE ACC
CORRESPONDING THE BYTE POSITION BP.

STORES THE CONTENT OF NON-DESIGNATED BYTE OF
THE ACC.

Fig. 178

31 2423 1615 8 7 O

COPERATIOND>

|[ACC]—immediate BYTE DATA



US 6,223,275 Bl

1

MICROPROCESSOR WITH REDUCED
INSTRUCTION SET LIMITING THE
ADDRESS SPACE TO UPPER 2 MBYTES
AND EXECUTING A LONG TYPE REGISTER
BRANCH INSTRUCTION IN THREE
INTERMEDIATE INSTRUCTIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a RISC (Reduced Instruc-
tion Set Computer) type microprocessor.

2. Description of the Related Art

A RISC processor has a set of 1nstructions that allows the
number of calculations to become minimum. A pipeline
process of the RISC processor allows all instructions to be
executed 1n the same and short time period. The bit length
of 1nstructions of a 32-bit RISC processor 1s fixed to 32 bits.
Thus, 1n the RISC processor, the bit length of instructions 1s
fixed and the instructions are simplified. With inter-register
operations, most 1nstructions can be executed 1n one clock
cycle and thereby the pipeline process can be easily per-
formed.

In the conventional 32-bit RISC processor, the bit length
of 1nstructions 1s fixed to 32 bits. However, the code
ciiciency of instructions of 32-bit fixed length 1s not high.
In a RISC processor having variable length istructions, the
load applied to the decoding portion becomes large. In
addition, 1t takes a long time to perform a pipeline process
for variable length instructions. To solve this problem, a
branch cache 1s required. Thus, the circuit scale becomes
large. To solve such a problem, the applicant of the present
invention has proposed a RISC processor having 16-bit fixed
instructions for improving code efficiency.

A 32-bit RISC processor has an address space of 4
Gigabytes (Gbytes). In the RISC processor, when a logical
address 1s converted 1nto a physical address, for mapping the
address to a space of 4 Gbytes, a 1p.X macro 1nstruction 1s
provided. Conventionally, the 1p.x macro instruction 1s
performed by dividing an LPI 1nstruction mto four instruc-
tions. Thus, a long type (32 bit) register branch 1nstruction
requires five instructions for 10 bytes.

In other words, conventionally, an LPI (Load Position
Immediate) instruction as shown in FIGS. 17A and 17B is
used. The LPI instruction 1s composed of 16 bits as shown
in FIG. 17A. In the instruction LPI, the high order six bits
represent an operation code. The next two-bits BP represent
the position of the bit pattern as shown 1n FIG. 17B. When
the value of BP 1s “117, it represents the highest position
(HH). When the value of BP is “107, it represents the next
highest position (HL). When the value of BP is “017, it
represents the third highest position (LH). When the value of
BP is “007, it represents the lowest position (LL). As shown
in FIG. 17A, the next eight bits represent an operand
designated by the value of an immediate. Thus, 1n the long
type register branch instruction, the instruction LPI 1is
divided into four instructions each of which i1s composed of
eight bits. Thus, at least five instructions are required as a
long type register branch instruction.

OBJECTS AND SUMMARY OF THE
INVENTION

Therefore, an object of the present invention 1s to provide
a microprocessor that allows a register branch instruction to
be shortened and thereby to 1improve code efficiency.

The present invention 1s a reduced instruction set
microprocessor, comprising an 1instruction decoder for

10

15

20

25

30

35

40

45

50

55

60

65

2

dividing a task of an instruction process 1nto simple stages
and decoding the task through a pipeline process, an arith-
metic and logic unit for performing arithmetic operations, a
register group, a high speed multiplication/division unit for
performing multiplications and divisions at high speed, an
mterrupt controller for performing an interrupt process, and
an 1nstruction set for limiting the all address space into an
upper address space and executing a long type register
branch instruction.

The high speed multiplication/division unit performs mul-
tiplications and divisions independent from the arithmetic
and logic unit. The register group 1s composed of a dedicated
control register group and a general purpose register group.
The general purpose register group includes an accumulator,
a stack pointer, and an interrupt stack pointer.

The general purpose register group further includes
coprocessor registers. The coprocessor registers include
registers for allowing a branch instruction to be changed and
thereby a plurality of instructions to be executed with the
same operation code and registers for accomplishing a
simple stack.

All the address space 1s 4 Gbytes. The bit length of the
instruction set 1s fixed to 16 bits. The limited address space
is 2 Megabytes (Mbytes).

Thus, according to the present invention, SLIL and SLLIH
instructions that allow the all address space to be limited to
an upper address space are provided. With the SLIL and
SLIH instructions, the address space 1s limited to the upper
2 Mbytes so as to execute a long type register branch
instruction with three instructions.

These and other objects, features and advantages of the
present invention will become more apparent in light of the
following detailed description of a best mode embodiment
thereof, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing the internal structure
of a microprocessor according to the present invention;

FIG. 2 1s a block diagram for explaining an external
interface of the microprocessor according to the present
mvention;

FIG. 3 1s a schematic diagram for explaining general
purpose registers of the microprocessor according to the
present 1nvention;

FIG. 4 1s a schematic diagram for explaining coprocessor
registers of the microprocessor according to the present
mvention;

FIG. 5 1s a schematic diagram for explaining MCR
(Machine Control Register) of the coprocessors of the
microprocessor according to the present invention;

FIG. 6 1s a schematic diagram for explaining an operation
code map of the microprocessor according to the present
mvention;

FIG. 7 1s a schematic diagram for explaining the operation
code map of the microprocessor according to the present
mvention;

FIG. 8 1s a schematic diagram for explaining the operation
code map of the microprocessor according to the present
mvention;

FIG. 9 1s a schematic diagram for explaining a memory
space of the microprocessor according to the present inven-
tion;

FIG. 10 1s a schematic diagram for explaining interrupts
of the microprocessor according to the present invention;



US 6,223,275 Bl

3

FIG. 11 1s a schematic diagram for explaining interrupts
of the microprocessor according to the present invention;

FIG. 12 1s a schematic diagram for explaining interrupts
of the microprocessor according to the present invention;

FIGS. 13A and 13B are schematic diagrams for explain-
ing a command of the microprocessor according to the
present mvention;

FIGS. 14A and 14B are schematic diagrams for explain-
ing a command of the microprocessor according to the
present mvention;

FIG. 15 1s a schematic diagram for explaining a memory
space of the microprocessor according to the present inven-
tion;

FIGS. 16A and 16B are schematic diagrams for explain-

ing a command of the microprocessor according to the
present mvention; and

FIGS. 17A and 17B are schematic diagrams for explain-
ing a command of the microprocessor according to the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Next, an embodiment of the present invention will be
described 1n the order that follows.

1. Outline of processor
2. Structure of processor
3. Five-staged pipeline
4. Registers
5. Address space
0. Interrupt process
/. Single step function

. Instruction set

8
9. Inter-register branch instruction

1. Outline of processor

The microprocessor according to the present invention 1s
a RISC (Reduced Instruction Set Computer) type 32-bit
ProCesSor.

In a RISC processor, the instruction set 1s limited to a
minimum number of instructions. All the instructions are
executed nearly 1n the same time period. In the micropro-
cessor according to the present invention, the bit length of
the mstructions 1s fixed to 16 bits. A code efficiency oriented
orthogonal mstruction set 1s provided. In the orthogonal
Instruction set, each instruction executes a very basic task.
Each orthogonal instruction does not overlap with another
instruction. The instruction set includes for example 1mme-
diate instructions, a register transfer instruction, arithmetic
instructions, comparison 1nstructions, logic instructions,
shift instructions, exchange/extension instructions, an NOP
instruction, bit process instructions, multiplication/division
instructions, memory transfer 1nstructions, COpProcessor
transfer mstructions, and branch instructions.

In the RISC processor, when a source operand of an
arithmetic 1nstruction 1s read and a calculated result 1s
written, a register 1s used instead of a memory. Most
instructions are executed 1n one clock cycle. Thus, mstruc-
fions can be casily pipelined. The RISC processor has 32
general purpose registers.

The microprocessor performs a five-staged pipeline pro-
cess. For an ALU, the microprocessor has a barrel shifter of
one cycle. In addition, the microprocessor has a high speed

multiplication/division device that executes a multiplication
of (16x16) in one cycle and a division of (16 (32)+16 (32))

in 10 (18) cycles.

10

15

20

25

30

35

40

45

50

55

60

65

4

In addition to technologies of RISC, the microprocessor
employs technologies of CISC (Complex Instruction Set
Computer) and DSP (Digital Signal Processor), thereby
remarkably 1mproving code efficiency, bit process, and
operations of multiplication/division, interrupt process, and
so forth.

Since the microprocessor has the following features:

1) vector instruction table,
2) interrupt stack pointer, and

3) dedicated register for storing results of division
instruction, the microprocessor performs an interrupt
process at high speed and in multiple levels.

With the vector instruction table, when the microproces-
sor accepts an interrupt, it 1s directly fetched to the vector
instruction table through the five-staged pipeline. A branch
instruction 1s directly written to the vector instruction table.
Thus, the microprocessor can accept an interrupt at high
speed. In addition, with an interrupt stack pointer and a
return instruction, the microprocessor can accept an inter-
rupt 1n multiple levels. When the microprocessor accepts an
interrupt, only the PC (Program Counter) 1s automatically
saved. With the return instruction, only the PC at the stack
pointer 1s written back to the internal PC. The result of a long
division 1nstruction 1s stored in a dedicated register so that
another interrupt can be accepted. Other instructions are
executed on a one-instruction one-clock-cycle basis.
However, 1n a delay slot period, an interrupt 1s prohibited.

The microprocessor has a powertul debug supporting
function. With the debug supporting function, a target
debugger 1s easily accomplished without need to use an
external circuit. The debug supporting function features:

1) single step function with five-staged pipeline,
two break instructions,
three channels of address breaks,

two channels of data breaks, and

5) ICE (In-Circuit Emulator) break terminal.

With the single step function in CISC, the processor can
casily execute a program step by step. However, at a delay
slot, the next 1nstruction results in a break. With two break
instructions having different vector addresses, when a break
mstruction 1s written to a RAM area, an unlimited number
of break points can be designated. With three channels of
address break pointers executed in the five-staged pipeline,
a break pointer can be designated to a ROM area where the
above-described two break instructions cannot be used. In
addition, with two channels of data break pointers executed
in the five-staged pipeline, a break pointer can be casily
designated to a built-in RAM. With the ICE break terminal,
the control can be easily transferred from the outside to ICE.
In addition, a coprocessor defined by the user can be
connected to the microprocessor.

2. Structure of processor

FIG. 1 shows the structure of a microprocessor 1 accord-
ing to the present invention. In FIG. 1, the microprocessor
1 1s connected to a data bus 2, an 1nstruction bus 3, and a
coprocessor bus 4. The microprocessor 1 has a terminal
oroup 5 that are a reset terminal, a clock terminal, an
external interrupt (7:0) terminal, an NMI (Non-Maskable
Interrupt) terminal, and a PMI (Power Management
Interrupt) terminal.

When a system 1s structured with the microprocessor 1, as
shown 1n FIG. 2, the microprocessor 1 1s connected to a
memory controller 21 through the data bus 2 and the
mstruction bus 3. In addition, the microprocessor 1 1is
connected to a coprocessor 22 through the coprocessor bus

4.




US 6,223,275 Bl

S

Referring to FIG. 1, the microprocessor 1 comprises an
instruction decoder 6, a dedicated control register group 7,

an 1nterrupt controller 8, a general purpose register group 9,
a bypass logic 10, an ALU (Arithmetic and Logic Unit) 11,
a multiplication/division calculating portion 12, and an
address calculating portion 13.

The 1nstruction decoder 6 performs a pipeline process.
The pipeline process divides a task of an imstruction into
simple stages of a fetching operation, an ALU calculation, a
memory access operation, and a write-back operation. When
an 1nstruction 1s transferred from one stage to another stage,
the next instruction 1s placed in the blank stage. When
Instructions are processed stage by stage, before one 1struc-
tfion 1s completed, another instruction can be processed. As
described above, the microprocessor according to the
present mvention uses a five-staged pipeline.

The dedicated control register group 7 has ten 32-bit
registers. The dedicated control register group 7 1s used for
a status function, an interrupt controlling function, and an
ICE support function.

The 1nterrupt controller 8 performs an interrupt process.
In the mterrupt process, a vector instruction table and an
interrupt stack pointer are used. The interrupt response
function is accomplished in one cycle (minimum) to three
cycles (maximum). When an interrupt is accepted, it is
directly fetched to the interrupt vector instruction table
through the five-staged pipeline. A branch instruction 1is
written to the vector instruction table.

The general purpose register group 9 has 32 32-bit
registers (RO to R31). The register R1 is an accumulator
(ACC). The register R30 is a stack pointer (SP). The register
R31 is an interrupt stack pointer (ISP). The ISP is used for
a stack pomnter for the interrupt process, the exception
process, the interrupt return process, and so forth. The 1nitial
values of the general purpose registers R0 to R31 including
the ACC, SP, and ISP are undefined.

The bypass logic 10 1s a logic for performing the five-
staged pipeline process. The ALU 11 has a barrel shifter in
one cycle. The multiplication/division calculating unit 12
has a high speed multiplying device of 16x16 bits in one
cycle and a high speed dividing device of 16 (32)+16 (32)
bits in 10 (18) cycles. Thus, since a division is performed by
such an independent device, while a division 1s being
calculated, another 1nstruction can be executed. The address
calculating portion 13 includes a program counter (PC), an
increment portion, and a data aligner.

3. Five-staged pipeline

The microprocessor 1 performs a five-staged pipeline
process. The instruction bus 3, the data bus, and the copro-
cessor bus 4 are provided with independent input and output.
These buses are connected to external cache (buffers) and
COProcessor registers.

In the pipeline process, a task of an instructions 1s
processed 1n stages of a fetch operation, an ALU calculating,
operation, a memory access operafion, and a write-back
operation. There are three types of delay slots for a branch
mstruction, a load instruction, and a return instruction. For
example, when a branch instruction 1s decoded and
analyzed, the address of the next instruction 1s generated.
This situation 1s referred to as branch delay slot. When a load
instruction 1s executed, load data 1s present on the external
bus 1n the ALU cycle of the next load instruction. In a load
instruction, the register that has been just loaded with the
preceding instruction cannot be accessed. This situation 1s
referred to as load delay slot. When a return instruction 1is
executed, the value of the program counter (PC) obtained
from the stack cannot be used for the pipeline process. This
situation 1s referred to as return slot.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

A branch 1nstruction has one delay slot. A load instruction
has one delay slot. A return instruction has three slots.

4. Registers

4-1. General purpose registers

FIG. 3 shows the structure of general purpose registers.
As shown 1n FIG. 3, the microprocessor according to the
present invention has 32 general purpose registers RO to
R31. Since 1instructions are structured considering
orthogonality, they can be used as registers for calculations
except for special instructions. The R1 register 1s an accu-
mulator (ACC) that is used for an operand of an immediate/
bit process 1nstruction. As an exception, the R30 register 1s
a stack pointer (SP) that is used for a stack pointer of a call
instruction and a return instruction. The R31 register 1s an
interrupt stack pointer (ISP) that is used for a stack pointer
of an interrupt process, an exception process, and an 1nter-
rupt return process. The initial values of the ACC, SP, and
ISP are undefined.

4-2. Coprocessor registers

FIG. 4 shows the structure of coprocessor registers. As
shown 1n FIG. 4, a total of 128 coprocessor registers G0 to
G31 and CO to C31 as Cop0 registers and GO to G31 and C0
to C31 as Copl registers can be used. Instructions for
transferring data between the coprocessor registers and the
general purpose registers have been defined.

The GO to G31 registers of the Copl registers have a total
of 10 system control coprocessor registers. The rest of the
registers are reserved for future use. The system control
processor registers have the following functions.

Cop0 GO: SR (Status Register) Stores a flag.

Cop0 G1: MCR (Machine Control Register) Controls a
machine.

Cop0 G2: IBR (Interrupt Base Register) Sets an interrupt
vector base address.

Cop0 G3: ICR (Interrupt Control Register) Controls an
interrupt.

Cop0 G4: IMRO (Interrupt Mode Register 0) Controls
external mterrupt mode 0.

Cop0 G5: IMR1 (Interrupt Mode Register 1) Controls
external mterrupt mode 1.

Cop0 G6: JBR (Jump Base Register) Sets a special jump
base address.

Cop0 G10: IBPO (Interrupt Break Point 0) Sets an instruc-
tion break address.

Cop0 G11: IBP1 (Interrupt Break Point 1) Sets an instruc-
tion break address.

Cop0 G12: IBP2 (Interrupt Break Point 2) Sets an instruc-

tion break address.

The G1 register of the Copl registers 1s an MCR
(Machine Control Register). With the MCR, by changing a
branch 1nstruction, the same operation code allows four
instructions to be executed.

FIG. 5 shows the structure of the G1 register of the Copl
registers. The G1 register 1s the MCR.

The bit length of the MCR 1s 16 bits. The most significant
bit 15 1s D32En. With D32En, a 32-bit division can be
performed. When D32En 1s “07, a 32-bit division 1s dis-
abled. When D32En 1s “17, a 32-bit division 1s enabled. The
bits 14, 13, and 12 of the MCR are SGS, BCS, and JCS,
respectively. The SGS 1s Segment Selection. The BCS and
JCS are Code Selection. With the SGS, BCS, and JCS, the
same operation code allows four 1nstructions to be executed.

The bit 10 1s SSE that 1s Single Step Enable. When SSE
1s “0”, the single step function 1s disabled. When SSE 1s “17,
the single step function 1s enabled. The bit 11 1s DBSSE that



US 6,223,275 Bl

7

1s Debug Break Single Step Enable. When DBSSE 1s “07,
the debug break single step function 1s disabled. When
DBSSE 1s “17, the debug break single step function 1is
enabled. The bits 5 to 3 are CKDMD that represents the
frequency division of the CPU clock.

The bit 2 1s AIDEn that represents a change of a load/store
instruction corresponding to a control bit. When AIDEn 1s
“1”, a post-increment load/post-decrement store operation 1s
performed. When AIDEn 1s “0”, a normal load/store opera-
fion 1s performed.

FIGS. 6 to 8 show maps of operation codes. In FIGS. 6 to
8, with respect to mstructions with “*”, with a change of a
branch instruction, the same operation code allows a plu-
rality of instructions to be executed.

The G3 register of the Cop0 registers is ICR (Interrupt
Control Register). The ICR can be used as a simple stack.

FIG. 9 shows the G3 register of the Copl registers. The
bit 15 of the G3 register (ICR) represents an interrupt test.
When the bit 15 1s not set, read-only mode takes place. When
the bit 15 1s set, write-enable mode takes place. With the bit
15, an mterrupt test can be performed.

The bit 14 of the G3 register 1s IICEN. The bit 14
represents whether an internal interrupt controller or an
external mterrupt controller 1s used.

The bit 13 of the G3 register 1s MNIP that 1s a pending bat.
The bits 12 to § of the G3 register are IntP(7:0) that are
interrupt pending bits.

The bits 4, 3, 2, 1, and 0 of the G3 register are BPAIE,
PAIE, OAIE, OAIE, and AIE, respectively, that accomplish
simple stacks.

The BPAIE, PAIE, OAIE, JOAIE, and AIE are four-level
interrupt enable stacks. When an interrupt 1s executed, the
flags are shifted leftward as follows and “0” 1s placed 1n the
LSB.

PAIE - - - >BPAIE

OAIE - - - >PAIE

JOAIE - - - >OAIE

0--->AlE

When the RETI instruction 1s executed, the flags are
shifted rightward as follows.

AlE < - - - JOAIE

JOAIE < - - - OAIE

OAIE < - - - PAIE

PAIE < - - - BPAIE

When an interrupt i1s processed, the PC 1s automatically
saved. The interrupt control register should be saved by
software. However, up to four-level multiple interrupts, with
the BPAIE, PAIE, OAIE, JOAIE, and AIE at the bit 4 to bat
0, an interrupt control bit 1s automatically saved.

With two channels CH (0 and CH 1, an interrupt of a data
access uses the following coprocessors.

Copl G4: DABRO (Data Address Break Register 0)
Includes a data address at an interrupt to be executed.

Copl GS: WDBRO (Write Data Break Register 0)
Includes the value of data of an mterrupt to be executed.

Copl G6: WDMRO (Write Data Mask Register 0) Con-
trols a mask.

Copl G7: DBCRO (Data Break Control Register 0) Sets
data access mode.

Copl G8: DBRRO (Data Break Run Register 0) Runs data
break.

Copl G9: FMWR (Flash Memory Write Register) Write-
selects a flash memory.

Copl G10: DABR1 (Data Address Break Register 1)
Includes the data address of an interrupt to be executed.

Copl GI11: DAMRI1 (Data Address Mask Register 1)

Controls a mask.

10

15

20

25

30

35

40

45

50

55

60

65

3

Copl G12: WDBR1 (Write Data Break Register 1)
Includes the address of an interrupt to be executed.

Copl G13: WDMRI1 (Write Data Mask Register 1) Con-
trols a mask.

Copl G14: DBCR1 (Data Break Control Register 1) Sets
data access mode.

Copl G15: DBRR1 (Data Break Run Register 1) Runs
data break.

5. Address space

FIG. 10 shows an address space of the microprocessor 1.
The address space of the microprocessor 1 1s 4 Gbytes for
cach of instructions and data. The microprocessor 1
exchanges data and instructions with the external coproces-
sor through a 64-word external register.

When an external reset 1s detected, the control branches to
FFFF__FE60h and an instruction thereof 1s executed. Vector
addresses are designated at intervals of two words (four
words). The first one word 1s a branch instruction. The
second one word 1s a delay slot. Based on an interrupt base
register (IBR) (Cop0 G2), a vector address can be designated
at any position in the boundary of 256 bytes. Instructions/
data are mapped 1n the same space. With a conventional load
instruction, a value can be obtained from the ROM space.

0. Interrupt process

FIG. 11 shows the priority of mterrupts. In FIG. 11, an
SSTEP (Single Step) interrupt is designated the highest
priority. The SSTEP interrupt 1s followed by a PMI (Power
management Interrupt), an NMI (Non-Maskable Interrupt),
and so forth. There are eight external interrupts Eximt0 to
Exint7. Each interrupt has a vector address offset. With a
vector address offset, a vector address 1s obtained as follows.

Vector Address={IBR[31:8], Vector Address Offset}

IBR[31:8] is an interrupt base register (IBR(Cop G2) that

designates the base of the interrupt vector table. When a
SYSCALL/BREAK/DEBREAK instruction 1s executed, the

control branches to the vector address thereof. The branch
instruction 1s directly written to the vector instruction table.
When an interrupt 1s accepted, the vector address of the
vector mstruction table 1s directly fetched through the five-
staged pipeline. Thus, a high speed interrupt 1n at least one
cycle can be performed.

When an interrupt 1s accepted, the AIE flag of the ICR
(Cop0 G3) is disabled. An interrupt is accepted in one clock
cycle except for an interrupt prohibition period. Examples of
the 1nterrupt prohibition period are a return delay slot and a
branch delay slot. In a PMI imterrupt period, another inter-
rupt 1s prohibited until a return delay slot. In an NMI
mterrupt period, only a PMI interrupt is accepted until a
return delay slot. The PMI interrupt and the NMI interrupt
are accepted when a predetermined change point 1s detected.
The other interrupts are accepted when a predetermined
level 1s detected. When an interrupt 1s accepted, a save
address 1s designated as shown 1n FIG. 12.

Interrupts corresponding to data accesses are executed as
follows.

1) To execute an interrupt corresponding to a compared
result of a data address 1n data read state:

A data address of an interrupt to be executed 1s written to
DABRO (Copl G4). “1” and “0” are set to MRD and MWR

of DBCRO (Copl G7). Aread method (SB, SHW, or SW) is
selected with BE[3:0] of DBCRO0. “1” is set to RUN of
DBRRO (Copl G8).

2) To execute an interrupt corresponding to a compared
result of a data address 1n data write state:

A data address of an interrupt to be executed 1s written to
DABRO. “1” and “0” are set to MWR and MRD of DBCRO.

A write method (LBU, LB, LHWU, LHW, or LW) is




US 6,223,275 Bl

9

selected with BE[3:0] of DBCRO. To ignore a data com-
parison condition, “0s” are masked to all bits of WDMRUO.
“1” 1s set to RUN of DBRRO.

3) To execute an interrupt corresponding to a compared
result of data in data write state:

A data address of an mterrupt to be executed 1s written to
DABRO. “1” and “0” are set to MWR and MRD of DBCRAO.

A write method (LBU, LB, LHWU, LHW, or LW) is
selected with BE[3:0] of DBCRO0O. A data value of an
mterrupt to be executed 1s written to WDBRO0. To mask a
particular bit, “0” 1s set to the relevant bit of WDMRO. “1”
1s set to RUN of DBRRO.

4) To execute an interrupt corresponding to only a com-
pared result of a data address 1n data read/write state:

A data address of an mterrupt to be executed 1s written to
DABRO. “1” 1s set to both MRD and MWR of DBCRAO.

Read/write methods (SB/LBU/LB, SHW/LHWU/LHW, or
SW/LW) are selected with BE[3:0] of DBCRO. To ignore a
data comparison condition, “0Os” are masked to all bits of
WDMRO. “1” 1s set to RUN of DBRRO.

5) To execute an interrupt corresponding to a compared
result of a data address 1n data read state and to a compared
result of data 1n data write state:

A data address of an mterrupt to be executed 1s written to
DABRO. “1” 1s set to both MWR and MRD of DBCRAO.
Read/write methods (SB/LBU/LB, SHW/LHWU/LHW, or
SW/LW) are selected with BE[3:0] of DBCRO. To mask a
particular bit, “0” 1s set to the relevant bit of WDMRO0. “1”
1s set to RUN of DBRR0. When interrupts take place on both
CH 0 and CH 1, the control jumps to the same vector
address. RUN of DBRRUO represents the channel on which an
interrupt has taken place.

/. Single step function

The microprocessor 1 has a single step function for
causing an exception process to take place for each instruc-

tion. When DBSSE (Debug Break Single Step Enable Bit) of
MCR (Cop0 G1) is set and then the DBREAK instruction is
executed, the control enters into a single step exception
process loop. At this point, all interrupts are prohibited from
being executed.

A single step exception process routine 1s programmed 1n
the following manner.

1) The start address of a main program to be executed for
the single step function 1s set to the interrupt stack pointer
(ISP (R31)).

2) The SSE flag of MCR[10] 1s set.

3) When the RETI instruction i1s executed, the control
branches to the address of the main program to be executed
for the single step function through three slots.

4) When one instruction of the main program is executed,
the control automatically returns to the single step exception
process routine. At this point, the SSE flag of MCR[10] is
cleared.

5) Thereafter, in the single step exception process routine,
the SSE flag of MCR|10] 1s set and the RETTI instruction is
executed. Thus, the control branches to the address of the
next imnstruction of the main program to be executed for
single step function.

Unless the control exits from the single step exception
process routine, the above-described process 1s repeated. To
exit from the single step process routine, the SSE flag is
disabled 1n the single step exception process routine. A
program to be executed 1s written to the program counter and
then the RETI instruction 1s executed.

8. Instruction set

The microprocessor 1 has a code efficiency oriented
orthogonal 1nstruction set. The bit length of the mstructions

10

15

20

25

30

35

40

45

50

55

60

65

10

1s fixed to 16 bits. The bit length of operation codes 1s fixed
to six bits. In an inter-register instruction, five bits are
assigned to the operand thereof. Since there are 32 general
purpose registers, with an operand of five bits, a code can be
ciiectively defined.

There are 1mmediate instructions, a register transfer
instruction, arithmetic instructions, comparison instructions,
logic 1instructions, shift instructions, exchange/extension
instructions, an NOP 1nstruction, bit process instructions,
multiplication/division 1nstructions, memory transfer

instructions, coprocessor transier instructions, and branch
istructions.

1) Immediate instructions

LPI: Loads the value of an immediate to the accumulator
corresponding to the byte position. Stores the content of a
non-designated byte of the accumulator.

LI: Loads the value of an immediate to the accumulator
corresponding to a selected word byte.

LSI, LSIU: Load the value of an immediate to a desig-
nated general purpose register.

SLIL, SLIH: Load the value of an immediate to the
accumulator corresponding to the byte position. Store the
content of a non-designated byte of the accumulator.

2) Register transfer instruction

MOYV: Transfers data between general purpose registers.

3) Arithmetic instructions

ADDSI, ADDSIU: Immediate addition instructions

ADD, ADDC: Inter-register addition instructions

ADDU: Inter-register unsigned addition instruction

SUB, SUBB: Inter-register subtraction instructions

SUBU: Inter-register unsigned subtraction instruction

4) Comparison instructions

COMPI, COMPIU: Immediate comparison instructions

COMP: Inter-register comparison instruction.

Same function as SUB mstruction. Does not return the
result to DESTI.

COMPU: Inter-register unsigned comparison instruction.
Same function as SUBU instruction. Does not return the
result to DESTI.

5) Logical instructions

AND, OR, XOR, NOR: Logical arithmetic instructions

6) Shift instructions

SLLV, SRLV, SRAV: Indirect shift instructions. SLLV 1s
a register indirect logical left shift instruction. SRLV 1s a
register indirect logical right shift instruction. SRAV 1s a
register indirect arithmetic right shift instruction.

SLL, SRL, SRA: Immediate shift instructions. SLL 1s an
immediate logical left shift instruction. SRA 1s an immediate
logical right shift instruction. SRA 1s an immediate arith-
metic right shift istruction.

RR: Executes the right shift operation including a carry
the number of times denoted by the immediate. Stores a
shifted-out bit (LSB before execution) to the carry. MSB
stores the value of the carry.

RL: Executes the left shift operation including a carry.
Stores a shifted-out bit MSB before execution) to the carry.
MSB stores the value of the carry.

7) Exchange/extension instructions

XCB: Exchange instruction between SRC[15:8] and
SRC1[7:0]

EXU: Zero extension instruction for a low order byte
EXS: Sign extension instruction for a low order byte

XCHW: Exchange instruction between SRC[OPS:16] and
SRC1[15:0]

EXHZ: Zero extension instruction for a low order half
word

EXHS: Sign extension instruction for a low order half
word




US 6,223,275 Bl

11

8) NOP instruction
NOP: No operation

9) Bit process instructions
BS, BT, BTR, BTS, BTC: Bit process 1nstructions
10) Multiplication/division instructions

MULTU: Unsigned multiplication instruction for SRC1
[15:0] and SRC2[15:0]

DIVU: Unsigned division instruction for SRC1 and SRC2

MULT: Multiplication instruction for SRC1[15:0] and
SRC2[15:0]

DIV: Division instruction for SRC1 and SRC2

MTHI: Transfer mstruction from a general purpose reg-
ister to a HI register

MTLO: Transfer instruction from a general purpose reg-
ister to a LO register

MFHI: Transfer instruction from a HI register to a general
purpose register

MFHO: Transfer instruction from a LO register to a
general purpose register

11) Memory transfer instructions

SW, SHW, SB: Store data to an address of a memory
space represented by an index.

LW, LHW, LB: Load data from an address of a memory
space represented by an index.

LHWU, LBU: Load data from an address of a memory
space represented by an index.

12) Coprocessor transfer instructions

CTC1: Transfer instruction from the accumulator to a
coprocessor control register 1

CFC1: Transfer instruction from a coprocessor control
register 1 to the accumulator

MTCO: Transfer instruction from a general purpose reg-
ister to a coprocessor general purpose register ()

MTCI1: Transfer instruction from a general purpose reg-
ister to a coprocessor general purpose register 1

MFCO: Transfer instruction from a coprocessor general
purpose register ) to a general purpose register

MFC1: Transfer instruction from a coprocessor general
purpose register 1 to a general purpose register

SWC0, SWC1: Store mstructions from a coprocessor
general purpose register to an address of a memory space
represented by an index

LWCO0, LWCI1: Load mstructions from an address of a
memory space represented by an index to a coprocessor
general purpose register

13) Branch instructions

<1> Program counter relative

RJ, RJAL: Program counter relative branch instructions.
RJAL stores the value of the program counter to an address
represented by the pre-decremented stack pointer and then
branches. A return instruction causes the control to return to
the next instruction of the RJAL instruction.

RBEQ/RBZ, RBNE/RBNZ: Conditional PC relative
branch 1nstructions

RBLE, RBGE: Conditional program counter relative
branch instructions

RBLT, RBGT: Conditional program counter relative
branch instructions

RBLTAL, RBGEAL.: Conditional program counter rela-
five branch instructions

RBBE, RBAE: Conditional program counter relative
branch instructions

RBBL, RBAB: Conditional program counter relative
branch instructions

RBBLAT, RBAEL; Conditional program counter relative
branch instructions

10

15

20

25

30

35

40

45

50

55

60

65

12

<2> Register mdirect

JR, JLR: Register indirect branch instructions

JER/JZR, INER/INZR: Conditional register indirect
branch 1nstructions

JLER, JGER: Conditional register indirect branch instruc-
tions

JLTR, JGTR: Conditional register indirect branch instruc-
tions

JLTALR, JGEALR; Conditional register indirect branch
Instructions

JER/JZR, INER/INZR: Conditional register indirect
branch 1nstructions

JBER, JAER/JNCR: Conditional register indirect branch
Instructions

JBR/JCR, JAR: Conditional register indirect branch
instructions

JBALAR, JAEAILR: Conditional register indirect branch
instructions

<3> Program counter segment

J, JAL: Program counter branch instructions
BEQ/BZ, BNE/BNZ: Conditional program counter seg-

ment branch instructions

BLE, BGE: Conditional program counter segment branch
Instructions

BLT, BGT: Conditional segment branch instructions

BLTAL, BGEAL: Conditional program counter segment
branch 1nstructions

BEQ/BZ, BNE/BNZ: Conditional program counter seg-
ment branch instructions

BBE, BAE: Conditional program counter segment branch
instructions

BL, BAB: Conditional program counter segment branch
instructions

BBLAL, BAEAL,; Conditional program counter segment
branch instructions

<4> System call and return instructions

RET: Used i jump and link states. After storing the value
of the address memory represented by the stack pointer to
the program counter, post-increments the stack pointer. The
RET 1nstruction causes the control to return to the next
instruction of the branch instruction.

SYSCALL, BREAK, DBREAK: Software interrupt
(exception process) instructions. After storing the value of
the program counter to an address represented by the pre-
decremented ISP (Instruction Stack Pointer), shifts the four-
level interrupt enable flag of the ICR to the left. The RETI
instruction causes the control to return to the next instruc-
fion.

RETI: Causes the control to return from the exception
process of the SYSCALL/BREAK/DBREAK 1nstruction.
After storing the value of a memory represented by the ISP
to the program counter, post-decrements the ISP and shifts
the four-level interrupt enable flag of the ICR to the right.
The RETT instruction causes the control to return to the next
instruction of the SYSCALL/BREAK/DBREAK 1nstruc-
tion.

JIBIO: Branch instruction to {JBR[31:11], segment
address[ 9:0],0}

9. Inter-register branch instructions

As described above, the instruction set of the micropro-
cessor according to the present invention includes SLIL
(Small Load Immediate Low) and SLIH (Small Load Imme-
diate High) that load the value of an immediate to the
accumulator corresponding to the byte position. As shown 1n
FIGS. 13A and 14A, the bit length of the SLIL and SLIH
instructions are 16 bits. The high order six bits of these
instructions are an operation code. The next ten bits are an



US 6,223,275 Bl

13

operand of an immediate. The SLIL and SLIH instructions
cause the value of an 1immediate to be stored to the accu-
mulator corresponding to the byte position.

As shown 1n FIG. 13B, the bit 0 of the SLIL 1nstruction
1s fixed to “0”. The bit 1 to bit 10 are a 10-bit immediate of
the operand. The bit 11 to bit 31 are all “0Os”. As shown 1n
FIG. 14B, the bit 11 to bit 20 of the SLLIH 1nstruction are a
10-bit immediate of the operand. The bit 21 to bit 31 are all
“1s”.

As shown 1 FIG. 15, the 32-bit RISC processor has an
address space of 4 Gbytes (0000 0000 to FFFF__FFFF).
With the SLIL and SLIH instructions, the address space 1s
limited to the upper 2 Mbytes (FFEO__0000 to FFFF__FFFF)
and a long type branch instruction 1s executed with three
instructions.

When the control 1s branched to FFE4 5678h,
conventionally, the following five instructions are used.

LPI LL, #/8h

LPI LH, #56h

LPI HL, #E4h

LLPI HH, #FFh

JR ACC (inter-register branch instruction)

On the other hand, with the SLIL and SLIH 1nstructions,
such an operation can be executed with the following three

Instructions.
SLIL, #33Ch

SLIH, #08Ah

JR ACC (inter-register branch instruction)

In other words, the address immediate FFE4 5678 to be
branched 1s denoted 1n binary notation as follows.

11111111 1110_0100_0101_0110_0111__1000

33Ch given to the immediate of the SLIL instruction 1s
denoted by ten bits as follows.

11_0011_1100

When 08Ah given to the immediate value of the SLIH
instruction 1s denoted by ten bits as follows.

00__1000__1010

Thus, the bit position of 33Ch with the SLIL instruction
can be denoted as shown in FIG. 16A. In addition, the bit
position of 08Ah with the SLIH instruction can be denoted
as shown 1n FIG. 16B. Thus, the value of the accumulator
becomes:
1111_1111_1110_0100_0101,5; 0110_0111_1000.
Consequently, the control can be branched to FFE4_ 5678.

Thus, with the SLIL and SLIH 1instructions, the address
space 15 limited to the upper 2 Mbytes and a long type
register branch instruction 1s executed with three instruc-
fions. For code compatibility, a compiler option for allocat-
ing the code space of a program to the upper 2 Mbytes
(FFEOOOOh to FFFFFFFFh) is disposed.

According to the present invention, with the SLIL and
SLIH instructions, the address space 1s limited to the upper
2 Mbytes and a long type register branch instruction is
executed with three instructions. Since conventional five
mstructions are reduced to three instructions, the code
efficiency 1s 1mproved. In a program with many branch
instructions, the performance can be improved for around
five percent.

In addition, according to the present invention, the reg-
ister group 1ncludes coprocessor registers. The coprocessor
registers include registers that allow a branch 1nstruction to
be changed and a plurality of instructions to be executed
with the same operation code. Thus, with the same operation

5

10

15

20

25

30

35

40

45

50

55

60

14

code, a plurality of instructions can be defined. Moreover,
the coprocessor registers include registers that accomplish a
simple stack with which an interrupt control bit can be
automatically saved.

Although the present invention has been shown and
described with respect to a best mode embodiment thereof,
it should be understood by those skilled in the art that the
foregoing and various other changes, omissions, and addi-
tions 1n the form and detail thereof may be made therein
without departing from the spirit and scope of the present
invention.

What 1s claimed 1s:

1. A reduced struction set microprocessor, comprising:

an instruction decoder for (1) dividing a task of an
instruction process into simple stages and (2) decoding
the task through a pipeline process;

an arithmetic and logic unit for performing arithmetic
operations;

a register group;
a high speed multiplication/division unit for performing
multiplications and divisions at high speed;

an 1nterrupt controller for performing an interrupt process;
and

an instruction set for (1) limiting an address space into an
upper address space and (2) executing a long type
register branch instruction in less than five instructions.
2. The microprocessor as set forth 1in claim 1,

wherein said high speed multiplication/division unit per-
forms multiplications and divisions independent from
said arithmetic and logic unit.

3. The microprocessor as set forth in claim 1, wherein said
register group comprises a dedicated control register group
and a general purpose register group.

4. The microprocessor as set forth 1n claim 3,

wherein the general purpose register group includes an
accumulator.

5. The microprocessor as set forth in claim 3,

wherein the general purpose register group includes a
stack pointer.
6. The microprocessor as set forth 1n claim 3,

wherein the general purpose register group includes an
interrupt stack pointer.
7. The microprocessor as set forth i claim 3,

wherein the general purpose register group further

includes coprocessor registers.

8. The microprocessor as set forth 1n claim 7, wherein the
coprocessor registers include registers for allowing a branch
instruction to be changed and thereby a plurality of instruc-
fions to be executed with a same operation code.

9. The microprocessor as set forth 1n claim 7,

wherein the coprocessor registers include registers for

accomplishing a simple stack.
10. The microprocessor as set forth 1n claim 1, wherein

the address space 1s 4 Gbytes.
11. The microprocessor as set forth 1n claim 1, wherein a

bit length of said instruction set 1s fixed to 16 bits.
12. The microprocessor as set forth 1in claim 1,

wherein the limited address space 1s 2 Mbytes.

G ex x = e



	Front Page
	Drawings
	Specification
	Claims

