(12) United States Patent
Fuh et al.

US006219662B1
(10) Patent No.: US 6,219,662 Bl
45) Date of Patent: Apr. 17, 2001

(54) SUPPORTING DATABASE INDEXES BASED
ON A GENERALIZED B-TREE INDEX

(75) Inventors: Gene Y. C. Fuh; Stefan Dessloch, both

of San Jose; Daniel Tsunfang Lee,
Fremont; Ping Li, San Jose; Nelson

Mendonca Mattos, San Jose;
Shahrokh Talmoud, San Jose; Yun

Wang, Saratoga, all of CA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/112,723

(22) Filed:  Jul. 9, 1998

Related U.S. Application Data

rovisional application No. ,180, filed on Jul. 10,
(60) Provisional application No. 60/052,180, filed Jul. 10
1997,

(51)  Inte CL7 oooooooeoeeeeeeeeeeeeeeeeeeeeee e GO6F 17/30

(52) US.ClL .o, 707/3; 707/8; 707/10;
707/102; 707/103; 707/104; 707/204; 707/2006

(58) Field of Search ............c.ccccccevennnnnns 707/1, 2, 3, 4,
707/8, 10, 103, 104, 204, 100, 102, 206

(56) References Cited

U.S. PATENT DOCUMENTS

7/1985 Knapman .........eceeeeeeeeeeeeeeeneenens 707/5
6/1989 Hakim et al. .....cccevvveeeennnnnee. 707/3

4,531,186
4,841,433

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0650 131 A1 4/1995 (DE).

OTHER PUBLICATTONS

IEEE publication, “Constructing Optimal Search Trees 1n
Optimal Time”, by S.Q. Zheng and M. Sun, pp. 738-743,

Jul. 1999.%

“Heirarchical Data Model for a Relational Database based

Geographic Information System”, IBM® Technical Disclo-
sure Bulletin, 40(03):107-116 (Mar. 1997).

Lynch, C. et al., “Extended User—Defined Indexing with

Application to Textual Databases”, Proceedings of the 14th
VLDB Conference, pp. 306-317 (1988).

Rudolt Bayer, “The Universal B—Tree for Multidimen-
sional Indexing: General Concepts”, Worldwide Computing
and Its Applications, International Conference, WWCA "97,
Tsukuba, Japan, (Mar. 1997), pp. 198-209.

Faloutsos, C. et al.,, “Fast Map: A Fast Algorithm {for
Indexing, Data—Mining and Visualization of Traditional

and Multimedia Datasets”, Proc. of ACM SIGMOD, pp.
163—-174 (May 1995).

Ouksel, M. et al., “Multidimensional B—trees: Analysis of
Dynamic Behavior”, Dept. of Elec. Eng. and Computer
Science, Northwestern Univ., Evanston, IlI, BIT 21, pp.

401-418 (1981).

(List continued on next page.)

Primary Examiner—Paul R. Lintz
Assistant Examiner—Diane D. Mizrahi

(74) Attorney, Agent, or Firm—Pretty & Schroeder, P.C.
(57) ABSTRACT

A method, apparatus, and article of manufacture for
computer-implemented support of database immdexes based
on a generalized B-tree index. The mdex 1s stored 1n a B-tree
on a data storage device connected to a computer. In
particular, multiple key sources are processed using key
transformation. Then, a plurality of key targets are generated
based on the processed key sources.

24 Claims, 6 Drawing Sheets

[KEY SOURCES)

Input 1,

Y

Input 2,

602
L

Y Y

output],

output2, « - -

{ KEY TRANSFORMATION EXPRESSIONS }
ell ), e?( )

ell )

(KEY TARGETS)



US 6,219,662 B1

Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATTONS
5,043,872 8/1991 Cheng et al. ......cccevvvevveeneennnee. 70772 Klaus} F. et al_? “Flexiblej Runtime Efhcient Fector—R adix
5,261,088 * 11/1993 Baird et al. ......covvvvvivnnnnnnene. 707/206 Algorithms For Multidimensional Fast Fourier Transform”,
5?276?870 * 1/994 Shan et al. ............................... 707/2 SPIE, VO]. 2247! S@HSOI'S ElIld COIltI'Ol fOI' AlltOII]EltiOIl, pp
5,299,123 3/1994 W:fmg et al. oo, 707/2 216-226 (1994).
5,327,543 7/1994 Miura et al. .o.ovenvieniinninnn, 712/224 9 , o , ,
5367675 * 11/1994 Cheng et al. ooovoovvvvvvveeenn 7072 Sang, K.S. et al,, “Applicability of genetic algorithms to
5.404.510  4/1995 Smith et al. woeoveveeverrerrererrnn. 70772~ optimal evaluation of path predicates in object—oriented
5,454,039  9/1995 Coppersmith et al. ................ 380/28  queries”, Information Processing Letters,vol. 58, No. 3, pp.
5,544,357  8/1996 HUEL .cooeovrvrrirerereeeeieriere s 707/2 123-128 (abstract), (May 1996).
5,546,576 8/1996 Cochrane et al. ................... 707/104 Byungwook? K. et al., “A new indexing scheme Supporting
5,553,281 9/1996 Brown et al. ....cccvvvvverennnnnn 707/104 multi—attribute database applications: MAX”, Journal of
5?5905325 12/996 KOltOIl et Ell. ........................ 707/04 SYStGII]S Architecture, VO]. 42? NO. 2? (EletI'ElCt), (Sep 1996),
5,604,892 2/:997 Nuttall et ‘al. .......................... 703/18 page 1.
610,09 41997 Malkemus cCal oo 70772 Silberschats, A. et al, “Managing Class Types”, SPI Data-
5,630,125  5/1997 ZellWEZET veeveveererreeeree. 707/103  Dbase of Software Technologies, 6 pages, (May 1977).
5,630,127 5/1997 Moore et al. .eooeeeeeeeeeennn... 707/104 Scheuermann, P. et al., “Multidimensional B—Trees For
5,765,147 * 6/1998 Mattos et al. .....c.ccvvevvvernrennne. 707/4 Associative Searching In Database Systems”, Inform. Sys-
5,848,408 * 12/1998 Jakobsson et al. ....cooeeeunennneen... 707/3 tems, vol. 7, No. 2, pp. 123—137 (1982)_
5,852,822 * 12/1998 Srinivasan et al. ......coveeeenenee... 707/4
6,061,678 * 572000 Klein et al. ..oveveenrvvereennrinnnnnnn. 707/3 * cited by examiner



U.S. Patent Apr. 17, 2001 Sheet 1 of 6 US 6,219,662 B1

118

MONITOR

COMPUTER 102 106
TERMINAL
INTERFACE
108
\ 110 112 116

OTHER
RELATIONAL COMPONENTS
DATA
DATABASE MANAGER
SYSTEM BUFFER
MANAGER

114

USER 104

AND
SYSTEM
TABLES

FIG. |
PRIOR ART



U.S. Patent Apr. 17, 2001 Sheet 2 of 6 US 6,219,662 B1

USER INPUT 202
OF QUERY

INTERPRET SQL 204

AND OPTIMIZE

GENERATE 206
APPLICATION
PLAN

EXECUTE 208
APPLICATION
PLAN

OUTPUT 210

RESULTS
TO USER

FG. 2



U.S. Patent Apr. 17, 2001 Sheet 3 of 6 US 6,219,662 B1

302
SOURCE CODE
304
PRE-COMPILE
306 308
MODIFIED EXTRACTED SQL
SOURCE (DBRM|
310 314
COMPILE AND OPTIMIZE
LINK-EDIT AND BIND
312 316
APPLICATION
LOAD MODULE DLAN
318
EXECUTE

FIG. 3



U.S. Patent Apr. 17, 2001 Sheet 4 of 6 US 6,219,662 B1

404
402
QUERY PREDICATE
SPECIFICATION
400 a
COMPILER INDEX
EXPLOITATION
428 430 432
DROP CREATE/REBUILD INSERT/DELETE/UPDATE
7\
450
(RDS/DMS) 408 426
RECORD BUFFER m ARSGESEA%QTS RDSFILTER
436 oy
440 [IDX)

KEY RANGE
TRANSFORMER PRODUCER DMSHILTER
4472
SEARCH RECORD
(INDEX KEY. RID] RANGE BUFFER

434 446
2\

FG. 4



U.S. Patent Apr. 17, 2001 Sheet 5 of 6

Ve 500
COMPILER

DROP CREATE/REBUILD INSERT/DELETE/UPDATE
7\

(RDS/DMS)

RECORD BUFFER m
502

(IDX)

(INDEXKEY, RID )

504

506

US 6,219,662 Bl

FIG. 5
PRIOR ART



U.S. Patent Apr. 17, 2001 Sheet 6 of 6 US 6,219,662 B1

(KEY SOURCES )

Input 1, Input2, +-+- Inpuim,

602

( KEY TRANSFORMATION EXPRESSIONS))
ell ), e2( ) o el( )

_—604
output1l, output2, ---  oulpuin, '

FIG. 6

700
PROCESS MULTIPLE

KEY SOURCES USING
KEY TRANSFORMATION FUNCTIONS

702
GENERATE KEY TARGETS

BASED ON THE
PROCESSED INPUTS

HG. /



US 6,219,662 B1

1

SUPPORTING DATABASE INDEXES BASED
ON A GENERALIZED B-TREE INDEX

PROVISIONAL APPLICATION

This application claims the benefit of U.S. Provisional
application No. 60/052,180, enfitled “User Delfined Search
in Relational Database Management Systems,” filed on Jul.
10, 1997, by Gene Y. C. Fuh et al., attorney’s reference
number ST9-97-046, which 1s incorporated by reference
herein.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to the following copending and
commonly-assigned patent applications:

Application Ser. No. 08/914,394 entitled “User-Defined

Scarch 1n Relational Database Management Systems,” filed
on same date herewith, by Gene Y. C. Fuh, et al., attorney’s

docket number ST9-97-046;

Application Ser. No. 09/112,301, entitled “Multiple-Stage
Evaluation of User-Defined Predicates,” filed on same date
herewith, by Gene Y. C. Fuh, et al., attorney’s docket
number ST9-98-022;

Application Ser. No. 09/112,307, entitled “A Generalized
Model for the Exploitation of Database Indexes,” filed on
same date herewith, by Gene Y. C. Fuh, et al., attorney’s

docket number ST9-98-023;

Application Ser. No. 09/113,802, entitled “Run-time Sup-
port for User-Delfined Index Ranges and Index Filters,” filed

on same date herewith, by Michelle Jou, et al., attorney’s
docket number ST9-98-025;

Application Ser. No. 09/112,302, entitled “A Fully Inte-
orated Architecture for User-Delfined Search,” filed on same
date herewith, by Gene Y. C. Fuh, et al., attorney’s docket
number ST9-98-026;

Application Ser. No. 08/786,605, enfitled “A Database
Management System, Method and Program for Supporting
the Mutation of a Composite Object Without Read/Write and
Write/Write Conflicts,” filed on Jan. 21, 1997, now U.S. Pat.
No. 5,857,182 by Linda G. DeMichiel, et al., attorney’s
docket number ST9-97-001; and

Application Ser. No. 08/914,394, entitled “An Optimal
Storage Mechanism for Persistent Objects in DBMS,” filed
on Aug. 19, 1997, now U.S. Pat. No. 6,065,013 by Gene Y.
C. Fuh, et al., attorney’s docket number ST9-97-088;

all of which are incorporated by reference herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1invention relates 1n general to computer-
implemented database systems, and, in particular, to sup-
porting database indexes based on a generalized B-tree
index.

2. Description of Related Art

Databases are computerized information storage and
retrieval systems. A Relational Database Management Sys-
tem (RDBMS) is a database management system (DBMS)
which uses relational techniques for storing and retrieving,
data. Relational databases are organized into tables which
consist of rows and columns of data. The rows are formally
called tuples or records. A database will typically have many
tables and each table will typically have multiple tuples and
multiple columns. The tables are typically stored on direct
access storage devices (DASD), such as magnetic or optical
disk drives for semipermanent storage.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Many traditional business transaction processing 1s done
using a RDBMS. Since the inclusion of RDBMSs in
business, user-defined data types and user-defined functions
have been brought into RDBMSs to enrich the data model-
ing and data processing power. User-defined data based on
the user-defined data types may include audio, video, 1mage,
text, spatial data (e.g., shape, point, line, polygon, etc.), time
series data, OLE documents, Java objects, C++ objects, etc.

A table 1n a database can be accessed using an 1ndex. An
index 1s an ordered set of references (e.g., pointers) to the
records or rows 1n a database file or table. The 1ndex 1s used
to access each record in the file using a key (i.e., one of the
fields of the record or attributes of the row). Without an
index, finding a record would require a scan (e.g., linearly)
of an entire table. Indexes provide an alternate technique to
accessing data 1n a table. Users can create indexes on a table
after the table 1s built. An 1ndex 1s based on one or more
columns of the table. A B-tree 1s a binary tree that may be
used to store the references to the records 1n a table.

When a table contains user-defined data, conventional
systems typically do not provide adequate support for data-
base indexes based on a generalized B-tree index. Therefore,
there 1s a need 1n the art for an 1mproved technique for
supporting database indexes based on a generalized B-tree
index.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a method,
apparatus, and article of manufacture for supporting data-
base indexes based on a generalized B-tree mdex.

In accordance with the present invention, an index i1s
stored 1n a B-tree, which is stored on a data storage device
connected to a computer. In particular, multiple key sources
are processed using key transformation. Then, a plurality of
key targets are generated based on the processed key
SOUICES.

An object of the mvention 1s to support database mndexes
based on a generalized B-tree index. Another object of the
invention 1s to provide a “m-1-n” model for key transforma-
fion.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates an exemplary computer hardware envi-
ronment that could be used 1n accordance with the present
mvention;

FIG. 2 1s a flowchart illustrating the steps necessary for

the interpretation and execution of SQL statements in an
interactive environment according to the present invention;

FIG. 3 1s a flowchart illustrating the steps necessary for
the interpretation and execution of SQL statements embed-
ded 1n source code according to the present invention;

FIG. 4 illustrates a compiler of the present invention;

FIG. 5 1s a block diagram illustrating a conventional
system for database indexes;

FIG. 6 illustrates an example of the “m-1-n” model; and

FIG. 7 1s a flow diagram 1llustrating the steps performed
by the Key Transformer module.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference 1s made to the accompanying drawings which



US 6,219,662 B1

3

form a part hereot, and which 1s shown by way of illustration
a specific embodiment 1 which the invention may be
practiced. It 1s to be understood that other embodiments may
be utilized as structural changes may be made without
departing from the scope of the present invention.

Hardware Environment

FIG. 1 1llustrates an exemplary computer hardware envi-
ronment that could be used 1n accordance with the present
invention. In the exemplary environment, a computer system
102 1s comprised of one or more processors connected to one
or more data storage devices 104, such as a fixed or hard disk
drive, a tloppy disk drive, a CDROM drive, a tape drive, or
other device, that store one or more relational databases.

Operators of the computer system 102 use a standard

operator 1nterface 106, such as IMS/DB/DC®, CICS®,
TSO®, 0S/390®, ODBC® or other similar interface, to
transmit electrical signals to and from the computer system
102 that represent commands for performing various search
and retrieval functions, termed queries, against the data-
bases. In the present invention, these queries conform to the
Structured Query Language (SQL) standard, and invoke

functions performed by Relational DataBase Management
System (RDBMS) software.

The SQL interface has evolved 1nto a standard language
for RDBMS software and has been adopted as such by both
the American National Standards Institute (ANSI) and the
International Standards Organization (ISO). The SQL inter-
face allows users to formulate relational operations on the
tables either interactively, 1n batch files, or embedded 1 host
languages, such as C and COBOL. SQL allows the user to
manipulate the data.

In the preferred embodiment of the present invention, the
RDBMS software comprises the DB2® product offered by
IBM for the AIX® operating system. Those skilled 1n the art
will recognize, however, that the present invention has
application to any RDBMS software, whether or not the

RDBMS software uses SQL..

At the center of the DB2® system 1s the Database
Services module 108. The Database Services module 108
contains several submodules, including the Relational Data-
base System (RDS) 110, the Data Manager 112, the Buffer
Manager 114, and other components 116 such as an SQL
compiler/interpreter. These submodules support the func-
tions of the SQL language, 1.e. definition, access control,
interpretation, compilation, database retrieval, and update of
user and system data.

The present invention 1s generally implemented using
SQL statements executed under the control of the Database
Services module 108. The Database Services module 108
retrieves or receives the SQL statements, wherein the SQL
statements are generally stored 1n a text file on the data
storage devices 104 or are interactively entered into the
computer system 102 by an operator sitting at a monitor 118
via operator interface 106. The Database Services module
108 then derives or synthesizes instructions from the SQL
statements for execution by the computer system 102.

Generally, the RDBMS software, the SQL statements, and
the mstructions derived therefrom, are all tangibly embodied
in a computer-readable medium, e.g. one or more of the data
storage devices 104. Moreover, the RDBMS software, the
SQL statements, and the mstructions derived therefrom, are
all comprised of instructions which, when read and executed
by the computer system 102, causes the computer system
102 to perform the steps necessary to implement and/or use
the present invention. Under control of an operating system,
the RDBMS software, the SQL statements, and the instruc-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions derived therefrom, may be loaded from the data storage
devices 104 mto a memory of the computer system 102 for
use during actual operations.

Thus, the present invention may be implemented as a
method, apparatus, or article of manufacture using standard
programming and/or engineering techniques to produce
software, firmware, hardware, or any combination thereof.
The term “article of manufacture” (or alternatively, “com-
puter program product”) as used herein is intended to
encompass a computer program accessible from any
computer-readable device, carrier, or media. Of course,
those skilled 1n the art will recognize many modifications
may be made to this configuration without departing from
the scope of the present invention.

Those skilled in the art will recognize that the exemplary
environment illustrated 1n FIG. 1 1s not intended to limit the
present 1nvention. Indeed, those skilled in the art waill
recognize that other alternative hardware environments may
be used without departing from the scope of the present
invention.

FIG. 2 1s a flowchart illustrating the steps necessary for
the interpretation and execution of SQL statements in an
interactive environment according to the present invention.
Block 202 represents the input of SQL statements 1nto the
computer system 102 from the user. Block 204 represents
the step of compiling or interpreting the SQL statements. An
optimization function within block 204 may optimize the
SQL. Block 206 represents the step of generating a compiled
set of run-time structures called an application plan from the
compiled SQL statements. Generally, the SQL statements
received as mput from the user specity only the data that the
user wants, but not how to get to it. This step considers both
the available access paths (indexes, sequential reads, etc.)
and system held statistics on the data to be accessed (the size
of the table, the number of distinct values 1n a particular
column, etc.), to choose what it considers to be the most
ciiicient access path for the query. Block 208 represents the
execution of the application plan, and block 210 represents

the output of the results of the application plan to the user.

FIG. 3 1s a flowchart illustrating the steps necessary for
the interpretation and execution of SQL statements embed-
ded 1n source code according to the present mmvention. Block
302 represents program source code containing a host lan-
guage (such as COBOL or C) and embedded SQL state-
ments. The program source code 1s then input to a pre-
compile step 304. There are two outputs from the pre-
compile step 304: a modified source module 306 and a
Database Request Module (DBRM) 308. The modified
source module 306 contains host language calls to DB2,
which the pre-compile step 304 mserts 1n place of SQL
statements. The DBRM 308 consists of the SQL statements
from the program source code 302. A compile and link-edit
step 310 uses the modified source module 306 to produce a
load module 312, while an optimize and bind step 314 uses
the DBRM 308 to produce a compiled set of run-time
structures for the application plan 316. As indicated above 1n
conjunction with FIG. 2, the SQL statements from the
program source code 302 specity only the data that the user
wants, but not how to get to 1t. The optimize and bind step
314 may reorder the SQL query in a manner described 1n
more detail later 1n this specification. Thereafter, the opti-
mize and bind step 314 considers both the available access
paths (indexes, sequential reads, etc.) and system held
statistics on the data to be accessed (the size of the table, the
number of distinct values in a particular column, etc.), to
choose what 1t considers to be the most efficient access path
for the query. The load module 312 and application plan 316
are then executed together at step 318.




US 6,219,662 B1

S

The Extended DBMS Architecture for User-Defined
Search

FIG. 4 1llustrates a compiler 400 of the present invention,
which performs steps 204 and 206, discussed above. The
compiler 400 of the present invention contains the following
“extended” modules: Predicate Specification 404 and Index
Exploitation 406. The run-time 4350 of the present invention
contains the following “extended” modules: Range Producer
410. DMS Filter 424, RDS Filter 426, and Key Transformer
440. The “extended” modules have been modified to provide
the capability for pushing user-defined types, index main-
tenance and index exploitation, and user-defined functions
and predicates 1nside the database.

The Predicate Specification module 404 has been
extended to handle user-defined predicates. The Index
Exploitation module 406 has been modified to exploit user-
defined indexes and provide more sophisticated pattern
matching (e.g., recognizes “salary+bonus™).

Additionally, the Predicate Specification module 404, the
Index Exploitation module 406, and the DMS Filter module
424 work together to provide a technique to evaluate user-
defined predicates using a three-stage technique. In the first
stage, an index 1s applied to retrieve a subset of records using
the following modules: Search Arguments 408, Range Pro-
ducer 410, Search Range 412, Search 414, and Filter 420.
For the records retrieved, 1n the second stage, an approxi-
mation of the original predicate 1s evaluated by applying a
user-defined “approximation” function to obtain a smaller
subset of records, which occurs 1n the DMS Filter module.
In the third stage, the predicate 1tself 1s evaluated to deter-
mine whether the smaller subset of records satisfies the
original predicate.

The Range Producer module 410 has been extended to
handle user-defined ranges, and, 1n particular, to determine
ranges for predicates with user-defined functions and user-
defined types. The DMS Filter module 424 and the RDS
Filter module 426 have been extended to handle user-
defined tunctions for filtering data.

To process a query 402, the compiler 400 receives the
query 402. The query 402 and the predicate specification
from the Predicate Specification module 404 are submitted
to the Index Exploitation module 406. The Index Exploita-
tion module 406 performs some processing to exploit
indexes. At run-time, the Search Arguments module 408
cvaluates the search arcument that will be used by the Range
Producer module 410 to produce search ranges. The Range
Producer module 410 will generate search ranges based on
user-defined functions. The Search Range module 412 will
ogenerate final search ranges. The Search module 414 will
perform a search using the B-Tree 416 to obtain the record
identifier (ID) for data stored in the data storage device 418.
The retrieved index key 1s submitted to the Filter module
420, which eliminates non-relevant records. Data 1s then
fetched 1nto the Record Buffer module 422 for storage. The
DMS Filter module 424 and the RDS Filter module 426

perform final filtering.

The Key Transformer module 440 has been modified to
enable users to provide user-defined key transformations for
processing mnputs to produce a set of index keys. A user-
defined key transformation can be any expression, including
a scalar function or table function. A scalar function gener-
ates multiple key parts to be concatenated 1nto an index key.
A table function generates multiple sets of key parts, each of
which 1s to be concatenated 1nto an 1ndex key. Additionally,
the 1mput to the Key Transformer module 440 can include
multiple values (e.g., values from multiple columns or

10

15

20

25

30

35

40

45

50

55

60

65

6

multiple attributes of a structured type), and the user-defined
functions can produce one or more index keys.

The compiler 400 can process various statements, includ-
ing a Drop 428, Create/Rebuild 430, or Insert/Delete/Update
432 statements. A Drop statement 428 may be handled by
Miscellaneous modules 434 that work with the B-Tree 416
to drop data.

An Insert/Delete/Update statement produce record data in
the Record Buifer module 436 and the RID module 438. The
data 1n the Record Buffer module 436 1s submitted to the
Key Transformer module 440, which identifies key sources
in the records 1t receives. Key targets from the Key Trans-
former module 440 and record identifiers from the RID
module 438 are used by the Index Key/RID module 442 to
ogenerate an index entry for the underlying record. Then, the
information 1s passed to the appropriate module for
processing, for example, an Add module 444 or a Delete

module 446.

The compiler 400 will process a Create/Rebuild statement
430 1 the manner of the processing a Drop statement 428
when data 1s not 1n the table or an Insert/Delete/Update
statement 432 when data 1s 1n the table.

Supporting Database Indexes Based On A Generalized
B-Tree Index

In the present invention, the Key Transformer module
440, 1llustrated 1n FIG. 4, uses key transformation that are
either built-in to a system or are provided by users. The key
transformation processes inputs (e€.g., table columns) to the
Key Transformer module 440 to produce one or more index
keys. The imputs to the Key Transformer module 440 can
include multiple values (e.g, values from multiple columns
or multiple attributes of a structured type). Additionally, the
key transformation can produce multiple index keys, which
together are used to index the given inputs. The Key
Transformer module 4440 1s able to index on any type of data
(e.g., spatial objects), as long as functions are available to
process that type of data and the data type 1s indexable. The
Key Transtormer module 440 works 1n all index scenarios,
including: Create, Drop, Rebuild, Insert, Update, and Delete.

FIG. 5 1s a block diagram illustrating a conventional
system for database indexes. In FIG. §, when Create/
Rebuild, indexed with data 1in the table, or Insert/Delete/
Update statements are received by the compiler 500, the
statements are processed by a Record Buifer module 502 and
a RID module 504. The output of these modules 1s sent to the
Index Key/RID module 506, which generates a unique
identifier for a record using the index key and record
identifier for the record.

The following pseudocode provides an example of a
statement processed using a conventional system:

CREATE TABLE emp (id int, name char(20), salary float,
bonus float);

CREATE INDEX index1 on emp (salary, bonus);

SELECT name FROM emp
WHERE salary >20000 and salary <50000 and bonus
= 5000;

The CREATE TABLE statement creates a table named
“emp”’, which contains four columns for an i1d, a name,
salary, and bonus. The CREATE INDEX statement creates
an 1ndex for the “emp” table using the salary and bonus
columns as keys. The SELECT statement selects names
from the “emp” table based on salary and bonus.

The conventional system of FIG. § allows one index entry
per record, orders records linearly, and works well only for
one-dimensional searching. The conventional system works



US 6,219,662 B1

7

in six 1ndex scenarios: Create, Drop, Rebuild, Insert,
Update, and Delete.

The conventional system has a number of disadvantages.
For example, the conventional system cannot index on
non-linear objects. The conventional system cannot handle
an 1ndex, such as a grid index defined with the following;:
(xmin, ymin, Xxmax, ymax). The conventional system cannot
process expressions, such as (salary+bonus). The conven-
tional system cannot index on compound objects, such as
abstract data types of the form, emp..lastname.

The Key Transtormer module 440 follows an “m-l1-n”
module, 1n which “m” mputs are submitted to “1” expres-
sions to produce “n” outputs. FIG. 6 1llustrates an example
of the “m-l-n” model. In FIG. 6, the Key Transformer
module 440 contains several expressions 602, e1(), €2(), and
el(), with the ellipses indicating that additional expressions
may be included in the module 440.

As 1llustrated i FIG. 4, the Key Transformer module 440
receives mputs from the Record Buffer module 436. The
inputs 600, such as mputl, mput2, and mnputm, are “m” key
sources (e.g., values of some or all of the attributes of a
structured data type). The expressions 602 are “1” expres-
sions used for key transformation. The outputs 604, such as
outputl, output2, and outputn, are “n” key targets for the
B-tree. The expressions 602 can be any expressions, includ-
ing built-in functions or user-defined functions. User-
defined functions can be scalar functions or table functions.
A table unction can produce more than one result, for
example, multiple keys may be generated by the table
function from one tuple. The “m-1-n” model especially
advantageous 1n that 1t can support a variety of indexes,
including B-tree indexes, spatial (grid) indexes, indexes on
expression, text indexes.

FIG. 7 1s a flow diagram illustrating the steps performed
by the Key Transformer module 440. In Block 700, the Key
Transformer module 440 receives a plurality of key sources.
In Block 702, the Key transformer module 440 processes the
received key sources using key transformation. In Block
704, the Key Transformer module 440 generates key targets
based on the processed mputs.

The following example 1llustrates the advantages of the
Key Transformer module 440 for an index on an expression:

CREATE TABLE employeel (name varchar(20), salary
int, bonus int);

CREATE INDEX empindxl on employeel (salary+

bonus, name);

The CREATE TABLE statement above creates a table,
named “employeel”, that includes a salary column and a
bonus column. The CREATE INDEX statement above cre-
ates an 1index, named “empindx1”, that uses the expression
“salary+bonus”. That 1s, the Key Transformer module 440
can be extended with functions that can add the salary and
bonus columns when creating the index.

The following example 1llustrates the advantages of the
Key Transformer module 440 for an index on a compound
object:

CREATE ADT empinfo (name varchar(20), address
varchar(40));

CREATE TABLE employee2 (emp empinfo salary int,
bonus int);

CREATE INDEX empindx2 on employee2 (emp..name,
emp..address, salary);

The CREATE ADT statement creates an abstract data type

structure for a compound object named “empinfo” and
having name and address fields. The CREATE TABLE
statement creates a table named “employee2” with three

10

15

20

25

30

35

40

45

50

55

60

65

3

columns, 1including an “emp” column that 1s of type “emp-
info”. The CREATE INDEX statement creates an index on
the table in which the column names include compound

objects, including “emp..name” and “emp..address”.

The following example illustrates the advantages of the
Key Transformer module 440 for an index on a spatial
object:

CREATE ADT loc (xmin int, ymin int, Xmax int, ymax

int);

CREATE TABLE employee3 (name varchar(20), address

varchar(40), location loc);

CREATE INDEX EXTENSION iedloc ( . .. ) . . .
generated by GridEntry (.. .) .. .;

CREATE INDEX employee3 on employee3 (loc) using .
.. iedloc (... );

The CREATE ADT statement creates an abstract data type
structure for a spatial object. The CREATE TABLE state-
ment creates a table that mcludes a column named “loca-
fion” that 1s a spatial object. The CREATE INDEX EXTEN-
SION statement creates an index extension named “1e4loc”
using a user-defined function called GridEntry. The CRE-
ATE INDEX EXTENSION statement also defines a key
transformer function, defines a filter, and defines predicates.
The CREATE INDEX employee3 statement creates an index
on the spatial object column “loc” using the index extension
“1edloc”.

The Key Transformer module 440 enables users to pro-
vide user-defined logic for creating indexes. Additionally,
the Key Transformer module 440 allows multiple index
entries for each record. In the present embodiment, the Key
Transformer module 440 1s embedded in the Index Manager
component of the RDBMS. The key transformation func-
fions can be implemented at run-time or at compile-time. the
Key Transformer module 440 1s built on top of the current
B-tree used for indexing.

The Key Transformer module 440 1s especially advanta-
geous as 1t has a mimimum 1mpact on existing systems and
1s easy to implement on top of current systems. Additionally,
it 1s also advantageous 1n that 1t 1s efficient and provides data
integrity.

Conclusion

This concludes the description of the preferred embodi-
ment of the mvention. The following describes some alter-
native embodiments for accomplishing the present 1nven-
tion. For example, any type of computer, such as a
mainirame, minicomputer, or personal computer, or com-
puter conflguration, such as a timesharing mainframe, local
arca network, or standalone personal computer, could be
used with the present mnvention.

In summary, the present invention discloses a method,
apparatus, and article of manufacture for computer-
implemented support of database mndexes based on a gen-
eralized B-tree mndex. In addition to supporting database
indexes based on a generalized B-tree index, the present
invention provides a “m-I-n” model for key transformation.

The foregoing description of the preferred embodiment of
the mvention has been presented for the purposes of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible 1n light of the
above teaching. It 1s intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.

What 1s claimed 1s:

1. A method of generating an index stored 1n a B-tree,
which 1s stored on a data storage device connected to a
computer, the method comprising the steps of:




US 6,219,662 B1

9

processing one or more key sources using key transfor-
mation; and

generating a plurality of key targets based on the pro-
cessed key sources.

2. The method of claim 1, wherein at least one of the key
sources comprises an attribute.

3. The method of claim 1, wherein at least one of the key
sources comprises a compound object.

4. The method of claim 1, wherein the key transformation
COmMPprises an expression.

S. The method of claim 4,
built-in function.

6. The method of claim 4,
user-defined function.

7. The method of claim 4,
scalar function.

8. The method of claim 4,
table function.

9. An apparatus for generating an index, comprising:

wherein the expression 1s a
wherein the expression 15 a
wherein the expression 15 a

wherein the expression 1s a

a computer having a data storage device connected
thereto, wherein the data storage device stores an index
stored 1n a B-tree;

one or more computer programs, performed by the
computer, processing one or more key sources using
key transformation and generating a plurality of key
targets based on the processed key sources.
10. The apparatus of claim 9, wherein at least one of the
key sources comprises an attribute.
11. The apparatus of claim 9, wherein at least one of the
key sources comprises a compound object.
12. The apparatus of claim 9, wherein the key transfor-
mation Comprises an exXpression.
13. The apparatus of claim 12, wherein the expression 1s
a built-in function.

10

15

20

25

30

10

14. The apparatus of claim 12, wherein the expression 1s
a user-defined function.

15. The apparatus of claim 12, wherein expression 1s a
scalar function.

16. The apparatus of claim 12, wherein the expression 1s
a table function.

17. An article of manufacture comprising a computer
program carrier readable by a computer and embodying one
or more 1nstructions executable by the computer to perform
method steps for generating an index stored in a B-tree,
which 1s stored on a data storage device connected to the
computer, the method comprising the steps of:

processing one or more key sources using key transfor-
mation; and

generating a plurality of key targets based on the pro-
cessed key sources.

18. The article of manufacture of claim 17, wherein at
least one of the key sources comprises an attribute.

19. The article of manufacture of claim 17, wherein at
least one of the key sources comprises a compound object.

20. The article of manufacture of claim 15, wherein the
key transformation comprises an expression.

21. The article of manufacture of claim 20,
expression 1s a built-in function.

22. The article of manufacture of claim 20,
expression 15 a user-defined function.

23. The article of manufacture of claim 20,
expression 1s a scalar function.

24. The article of manufacture of claim 20,
expression 15 a table function.

wherein the

wherein the

wherein the

wherein the



	Front Page
	Drawings
	Specification
	Claims

