US006208999B1
a2 United States Patent (10) Patent No.: US 6,208,999 B1
Spilo et al. 45) Date of Patent: Mar. 27, 2001
(54) RECOVERABLE COMPUTER FILE SYSTEM 5,488,702 * 1/1996 Byers et al. w..o.ooooooorrerr. 395/186
WITH A SIGNATURE ARFA CONTAINING 5,675,767 * 10/1997 Baird et al. ..covovvvvvviennnn, 711/156
FILE INTEGRITY INFORMATION LOCATED OTHER PURI ICATIONS

IN THE STORAGE BLOCKS
IBM Technical Disclosure Bulletin, 39(1):263-264, Jan. 1,

(75) Inventors: Michael L. Spilo; Jonathan A. Daub, 1996.

both of New York, NY (US) * cited by examiner

(73) Assignee: Network Associates, Inc., Santa Clara, Primary Examiner—Thomas Black
CA (US) Assistant Examiner—John C. Loomis
_ _ o _ (74) Attorney, Agent, or Firm—Darby & Darby
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 (57) ABSTRACT

U.S.C. 154(b) by 0 days. A file system for data file storage on a block storage device

includes signature information embedded within each block

(21) - Appl. No.: 08/764,309 allocated to a data file. Such signature information includes

(22) Filed: Dec. 12, 1996 a file 1identification number, a sequence number within the

file, and optional file type information. The signature infor-
(51) Int. CL7 oo, GO6F 17/30 mation 18 used to reconstruct files on the block storage
(52) US.ClL .o, 7107/202; 707/205 device 1n the event of damage to data files or critical system
(58) Field of Search ... 707/202, 205; arecas on the device. The directory structure for the file

395/182.13, 182.18 system 1s maintained as a self-contained flat database, stored
as a B-tree for expedited searching, including full hierar-
(56) References Cited chical pathnames for each directory entry, thereby enhanc-
ing the ability to recover files 1n a low level of the directory
U.s. PALENT DOCUMENTS hierarchy when a middle level has been damaged.
4,941,059 * T7/1990 Grantccceeevvvveeerrineeenennnnn. 711/156

5,083,264 1/1992 Platteter et al. . 27 Claims, 10 Drawing Sheets

Begin /

198

File Allocation

Table DDW
Yes
189 200
Read @ R Check / No Y /'/
Block Signature
Reconstruct
File Allocgtion
Table
V/ 184
Add Block Valid {
to Dota Structure Signature?
Finished

188

/" \

194

Vad l//ws

A
|
|
Insert
L_, Aler{ User [~ Empty Blocks

Blocks
Remain?

Tes

Recreate/Repair 190
Directory ./

Structure

192

Files Missing

A

Biocks? I
/ No i

|

A

Yes

0¢

US 6,208,999 B1

INIQ HSi(INIQ S0

PU023G 1SJ14

Sheet 1 of 10

Mar. 27, 2001

0l

U.S. Patent

31

waysAsgng
Indng /indul

Sng 0}0(]

Huf
buissadoi

01U

Ol

9l

¢l

Wa)sASqQns
AJOWI

US 6,208,999 B1

Sheet 2 of 10

0%

Mar. 27, 2001

3¢

U.S. Patent

NS

9!
Py

9

¢

NS

ik
pU0JAS

5

Old

INININS

143

9!
sl

(¢

31NINNS
A10}03.1(]

U.S. Patent Mar. 27,2001 Sheet 3 of 10 US 6,208,999 B1

48

4()

52

44

U.S. Patent Mar. 27,2001 Sheet 4 of 10 US 6,208,999 B1

FIG. 5

Read 80
Top Level
Directory
82

Search
Directory

84

86

Desired Yes Return

File Success
Found? Code

No
80

Follow

Link

96 92
94

Return

More
Available?

Read Next

Fallure

Directory Block No Code

Yes

U.S. Patent Mar. 27,2001 Sheet 5 of 10 US 6,208,999 B1

100

Perform F l G. 6

File Search

102

104

Desired Yes

File
Found?

No
Note Location 106
tor Filename
Within G-lre¢ Give Directory Entry He
Proper Filename
and File Location
Allocate 108
File Identification
Number 116
Write to
Allocated Space
110
Allocate
Space 118
Balance
B-Tree
112

Create

Directory
Entry

Return 113

Success
Code

U.S. Patent Mar. 27,2001 Sheet 6 of 10 US 6,208,999 B1

FIG. 7

120

Perform

File Search

122

124

Desired Yes Return

Directory
Found?

Failure
Code

No

126

Note Location

for Directory
Within B-Tree

128 152

Balance
B-Tree

Create
Directory
Entry

130 154

Return

Give Directory Entry
Proper Directory
Name

Success
Code

U.S. Patent Mar. 27,2001 Sheet 7 of 10 US 6,208,999 B1

140

Perform

File Search F I G 8

142

144

Desired No
File
Found?
Yes
146
Take Block Location
from Directory Entry
148 152
Erase D'Emie
File Blocks IE?\?(;W
150 154
De—Allocate Balance
Space in File ' B-Tree
Allocation Table
156

Return

Success
Code

U.S. Patent Mar. 27,2001 Sheet 8 of 10 US 6,208,999 B1

FIG. S

160
Perform
File Search

162

No Return 104

Failure
Code

166
Take Block Location
from Directory Entry
168
Read Block
from File
170
Yes
172

Return

Success
Code

U.S. Patent Mar. 27,2001 Sheet 9 of 10 US 6,208,999 B1

FIG. I0OA

120
Beqin
180
182
Read a Check
Block Signature

186

184

Add Block
to Data Structure

Valid
Signature?

188

Blocks

Remain?
Yes

No

190

Recreate/Repair

Directory
Structure

192

Files Missing

Blocks?
ND i

Yes

U.S. Patent Mar. 27,2001 Sheet 10 of 10 US 6,208,999 B1

FIG. 10B

198

File Allocation
lable Damaged?

No

Reconstruct

File Allocation
Table

Finished

194
196

Alert User Insert

Empty Blocks

US 6,208,999 B1

1

RECOVERABLE COMPUTER FILE SYSTEM
WITH A SIGNATURE AREA CONTAINING
FILE INTEGRITY INFORMATION LOCATED
IN THE STORAGE BLOCKS

The mvention relates to a method and system for data
image and retrieval on digital computer devices, and more
particularly to a file system for block storage devices
whereby certain data errors can be corrected and lost or
damaged data can be recovered.

BACKGROUND OF THE INVENTION

Block storage devices, such as disk drives and tape drives,
are commonly used for storage of computer data.

Block storage devices typically store information in
evenly-sized portions, or “blocks.” If a data file 1s smaller
than a single block, then a whole block 1s used to store the
data, and the remainder of the block 1s unused. If a data file
1s larger than a block, then two or more blocks, which often
are not contiguous, can be used to store the data. Again,
blocks containing unused space are often allocated to a file
in this storage scheme. Block storage devices typically use
a writable medium, such as a magnetic or optical medium,
to store the computer data, although other forms of elec-
tronic memory can also be used.

A single disk or tape device usually has a capacity of
many blocks, often into the millions, allowing many data
files to be stored. In order to make access to files stored on
a block storage device more efficient, these files can be
organized mto groups known as “directories.” In this way,
data files having similar content, usage, or characteristics
can be grouped together for a user’s convenience. Directo-
ries are actually data files that contain information specily-
ing where data files are stored on the block storage device.
They can often be hierarchical; 1n other words, directory
files can point to other directory files, which 1n turn point to
data files. The location of a file within a directory hierarchy
can be specified by means of a “pathname” to the file, which
indicates the name of each directory traversed as well as the
filename.

In addition to data files and directory {iles, block storage
devices usually contain a small amount of additional 1nfor-
mation 1 a “system arca.” This additional information
specifles, among other things, what space on the device 1s
used and what 1s available for use. When a computer seeks
to write 1nformation to a block storage device, the system
area 1S accessed to determine where the mformation can be
written without overwriting other information. Similarly,
when a computer seeks to read mmformation from a block
storage device, the system area 1s accessed to determine
where the desired information was written.

In most traditional file systems, the system area and
directories are overhead. That 1s, the data contained there has
essentially no intrinsic value; 1t 1s used to track the location
of data on the block storage device. Accordingly, it 1s useful
to minimize the 1impact of the system information on storage
capacity. Traditional file systems often have system over-
head 1n the range of 2—3% of capacity. In other words, 2-3%
of a given block storage device 1s devoted to system data,
directories, and other information, and 1s unavailable for use
in data storage.

Although the above characterizations of how data 1s
stored on block storage devices are generally true, 1t should
be recognized that a number of specific formats for utilizing,
the foregoing data types are presently known and used, as
will be discussed 1n detail below.

10

15

20

25

30

35

40

45

50

55

60

65

2

The data stored on a block storage device can be damaged
in a number of ways. An errant computer program can
accidentally write information to one or more previously
allocated blocks. A power aberration can cause a write
operation to be only partially completed, or can cause a
computer to write 1naccurate data. Moreover, mechanical or
clectronic failure of a block storage device 1s possible.
Magnetic storage devices are particularly susceptible to
environmental factors, such as temperature and electromag-
netic fields.

While certain known steps can be taken to prevent many
causes of failure, some errors are considered to be inevi-
table. Accordingly, a need exists to be able to repair damage
when 1t occurs.

One format for the storage of data on block storage
devices 1s known as the “FAT” (“File Allocation Table”) file
system. The best-known implementation of a FAT system 1s
used on PC-compatible computers by Microsoft MS-DOS
and Microsoft Windows 95, although other computers and
operating systems use similar systems. On a disk using the
FAT file system, the system area contains a “root,” or highest
level directory containing information on other directories
and data files on the disk. The root directory can have a
number of directory entries, each of which contains infor-
mation on a single directory or data file, including its name
and a number corresponding to where the file begins on the
disk. Each individual block on the disk has a unique 1den-
fification number for this purpose.

The system areca of a FAIT disk also includes a file
allocation table, which 1s an array of block numbers or
“pointers” to locations on the disk holding data belonging to

data files. The file allocation table has one entry, capable of
holding a number, for each block on the disk. If the block

corresponding to an entry 1n the file allocation table 1s not
allocated to any directory or data file, then the entry contains
a unique numeric identifier specitying that condition. If the
block 1s allocated, then the entry contains a number speci-
fying which block 1s the next one to store a successive
portion of the file 1n question. If no more blocks are needed
to store the file, another unique numeric identifier 1s used to
specily that condition.

Accordingly, under the FAT {ile system, files need not be
stored 1n consecutive blocks on the disk. Consider, as an
example, a disk having 10,000 blocks and one desired file,
two blocks long. Assume that the first portion of the file 1s
stored 1 block number 2,395 and the second portion 1is
stored 1n block number 6,911. A computer desiring to access
that file will first check the root directory 1n the system arca
of the disk. If 1t finds the name of the desired file, 1t will
check the number 1n the root directory entry corresponding
to the start of the file. In the present example, that number
will be 2,395. Consequently, the computer will access the
first part of the file from block number 2,395.

The computer will then access the file allocation table. In
entry number 2,395 of the table, the number 6,911 will be
stored, indicating that the file continues 1n block number
6,911, and does not end after the first block. The computer
can then retrieve the second part of the file from block
number 6,911. The computer will then access the file allo-
cation table again. Entry number 6,911 of the file allocation
table will contain a number such as 65,535, indicating that
the end of the file has been reached. Since there are only
10,000 blocks on the exemplary disk, it 1s not possible for
data to be stored 1n block number 65,535.

The foregoing scheme 1s used for each data file and
directory file on the disk. Blocks that are unused can have
corresponding file allocation table entries of zero, for
example.

US 6,208,999 B1

3

As aresult, 1t 1s apparent that the FAT system 1s vulnerable
to damage. If the file allocation table 1s damaged, directories
should still point to the first block of each file, but remaining
portions of the files may be lost. If the file allocation table
contains incorrect information, retrieved data files might
contain data that in fact belongs to a different file, a
phenomenon known as “crosslinking.” If the root directory
or directory files are damaged, the file allocation table
should still contain correct information, and the presence of
files on the disk can 1n principle be ascertained, but there
would be no way to determine their names and directories.

Furthermore, because of the hierarchical nature of the
directories, i1t should be noted that damage to an
intermediate-level directory can result 1n the loss of all files
in lower level directories.

Another file system 1s known as “HPES,” the “High
Performance File System.” HPFS was originated by

Microsoft and adopted by IBM for use with the OS/2
operating system for PC-compatible computers. HPFES does
not use a file allocation table to indicate how files are linked
together. Rather, each directory entry points to an “Fnode,”
or “File node,” which contains a list of blocks used by the
file. The Fnode also contains the filename for the file.
Information on whether or not disk space 1s allocated 1s
maintained 1n “bitmaps,” small data structures which reflect
only whether blocks are 1n use, and not any information on
how particular files are allocated. Accordingly, under HPES,
file allocation information 1s spread throughout the disk,
rather than being stored 1n a single system area.

HPES 1s therefore somewhat more resistant to damage
than the FAT system. Any damage to the space allocation
bitmaps can be corrected by scanning the disk for Fnodes
and files. Damage to a particular directory entry can some-
fimes be corrected by scanning the disk for Fnodes and
reconnecting them to the damaged directory, using the
filenames stored in the Fnodes. However, damage to one or
more Fnodes can render data files essentially unrecoverable,
since there would be no way to determine what blocks
belong to which file, and 1n what order. Moreover, 1f the root
directory or other system areas are damaged, use of the
entire disk can be lost.

Microsoft also originated “NTFS,” or “New Technology
File System,” as a successor to HPES and FAT. NTFES 1s now
supported by Microsoft Windows NT, which runs on
PC-compatible and certain other computers. NTFES 1s stmilar
to HPFS 1n that file allocation information 1s not stored 1n a
central file allocation table. However, a Master File Table 1s
used to store system information, root directory information,
and small files and subdirectories. Lists of blocks used by
larger files and directories are kept with the corresponding
directory information, whenever possible.

Consequently, damage to the Master File Table or subdi-
rectories can result in unrecoverable files, since there would
be no way to associate data found on the disk with any
particular directory. NTFS maintains a backup copy of the
first 16 files 1n the Master File Table, with redundant
information, to help alleviate this problem. However, an
errant soltware process can damage both copies of the

Master File Table.

Numerous other file systems exist for various types of

computers and operating systems. The foregoing discussion
of FAT, HPES, and NTFS 1s intended to be representative,
showing certain drawbacks of common file systems.

Several known methods exist for protecting data from loss
or damage resulting from the designs discussed above.

For example, copies of critical data can be made on a
second block storage device. This process 1s known as

10

15

20

25

30

35

40

45

50

55

60

65

4

“backing up” the data. Such backup copies can be made at
periodic intervals (like a “snapshot” of the disk) or concur-
rently (called “mirroring™) as data 1s written to the disk (as
in “RAID” redundant disk arrays). However, periodic back-
ups can be tedious, interfering with regular use of the
computer for a period of time while the backup 1s occurring,
and requiring user intervention to insert backup media.
Periodic backups might also “miss” important data, if a

backup 1s scheduled to occur only after the data has been
created and already lost due to a failure. Concurrent backups
have the disadvantage that damage caused by an errant
software program can damage or destroy the backup copy of
the 1nformation as well as the original.

A second approach to data protection 1s found in the
“IMAGE” or “MIRROR” program found with Microsoft
MS-DOS. With this approach, backup copies of certain
critical data structures from the system areca are kept 1 a
separate arca of the block storage device. Accordingly, it
damage occurs to the original structures, the copies can be
used to retrieve data from the device. However, this
approach has the same disadvantages as full backups. Con-
current mirroring 1s susceptible to software problems and
can degrade performance (as certain data must be written
twice), and periodic mirroring can be out-of-date when
damage occurs. Moreover, 1f the location of the 1image data
is not ascertainable (or is not fixed in a known position on
the storage device), the image file 1s useless in repairing a
damaged volume.

Accordingly, as indicated above, a need exists for a file
system for block storage devices having enhanced capabili-
ties for data recovery in the event of damage to various areas
on the storage device. Such a file system must be robust and
convenient, and should not significantly degrade system
performance.

SUMMARY OF THE INVENTION

The file system of the invention addresses the disadvan-
tages of traditional file systems and file protection means.

The file system of the 1nvention includes file identification
information with file data, thereby enhancing prospects for
file recovery 1n the event of file system damage. Moreover,
the entire directory structure for the storage device, includ-
ing all subdirectories, 1s maintained 1n a single data struc-
ture. If this data structure 1s damaged, 1t can be completely
recreated from 1nformation recovered from other areas of the
storage device.

Space 15 reserved within each block corresponding to a
data file for a small signature arca. The signature arca
contains a unique bit pattern, specitying that the signature
arca 1S not part of the file data, a file 1dentification number,
uniquely 1dentifying the block as belonging to a particular
data file, and a sequence number, which 1ndicates the order
in which the file’s blocks belong within the file. The
foregoing data structures are maintained by the file system
of the mvention so as to be transparent to the user.

Moreover, 1n an embodiment of the invention, a single
directory structure 1s used for the entire file system; subdi-
rectories need not be stored separately. The directory struc-
ture 1s also marked with the signature areas indicated above.
Each directory entry within the directory structure contains
the entire pathname to a data file. Accordingly, a hierarchical
structure, such as a FAT system, 1s simulated by the 1nven-
tion. In a preferred embodiment, the invention 1s compatible

with and 1s used in conjunction with a hierarchical file
system, such as FAT or NTFS.

The present invention 1s 1mproved over traditional file
systems 1n the area of data recovery. File allocation infor-

US 6,208,999 B1

S

mation can be dynamically maintained and can be recon-
structed 1n cases of loss or damage by scanning the disk for
blocks having identification and sequence numbers, and
rebuilding the files accordingly. If part of a data file 1s
damaged, the remainder of the file can be retrieved by way
of the 1dentification and sequence numbers. If the directory
structure 1s damaged, the disk can be scanned to find missing
files. The stmulated directory hierarchy will not be lost, even
if a “middle level” of the simulated hierarchy 1s damaged,
since the full pathname for each file 1s stored 1n every
directory entry.

Although the directory structure 1s maintained as a “flat”
database, without separate subdirectories, 1t 1s structured
internally as a balanced tree structure to expedite file search-
ing. Only a small portion of each data file block 1s devoted
to the information used to recreate the file and directory
structures. It has been found that an implementation of this
file system can be made which uses only 6—7% overhead,
compared to the 2—3% overhead consumed by traditional file
systems. The overhead can be reduced further by protecting
only certain critical files. This small increase in overhead,
orven the large storage devices now available, 1s more than
offset by the improved data protection the mvention pro-
vides.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a simplified block diagram of a typical computer
system for use 1 conjunction with the present invention;

FIG. 2 shows the data structures present on a block
storage device utilizing the present mvention;

FIG. 3 1s a diagram showing the organization of the
directory structure of the file system;

FIG. 4 illustrates the structure of an exemplary data {ile
for use with the file system;

FIG. 5 1s a flowchart 1llustrating the process followed by
a file search operation according to the present invention;

FIG. 6 1s a flowchart 1llustrating the process followed by
a 1lle creation operation according to the present invention;

FIG. 7 1s a flowchart 1llustrating the process followed by
a directory creation operation according to the present
mvention;

FIG. 8 1s a flowchart 1llustrating the process followed by
a 1ile deletion operation according to the present invention;

FIG. 9 1s a flowchart 1llustrating the process followed by
a file read operation according to the present invention; and

FIGS. 104 and 10b are flowcharts 1llustrating the process
followed by a repair program operating in accordance with
the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The 1nvention 1s described below, with reference to
detailed 1llustrative embodiments. It will be apparent that a
system according to the invention may be embodied in a
wide variety of forms. Consequently, the specific structural
and functional details disclosed herein are representative and
do not limit the scope of the mvention.

Referring mitially to FIG. 1, a simplified block diagram of
a typical computer system 1s shown. A central processing
unit 10, or CPU, 1s coupled to a data bus 12. As 1s well
known 1n the art, the CPU 10 performs substantially all data
processing functions. Also coupled to the data bus 12 1s a
memory subsystem 14, which 1s typically comprised of
random access memory (“RAM?”) utilized for transient data

10

15

20

25

30

35

40

45

50

55

60

65

6

storage while the computer system S i1s 1n use. An mput/
output subsystem 16 1s coupled to the data bus 12 for
interaction with a user or other means of control. The
exemplary computer system has two block storage devices:

a first disk drive 18 and a second disk drive 20.

In operation, the computer system S receives control
signals through the input/output subsystem 16. By way of
the control signals, the CPU 10 1s prompted to execute a
program, which may process, transfer, or otherwise interact
with data taken from the memory subsystem 14 or either of
the disk drives 18 and 20. Among other operations, the CPU
10 can be 1nstructed to search for a file on a disk drive, create
a file on a disk drive, create a directory on a disk drive, delete
a file on a disk drive, append to an existing file on a disk
drive, truncate an existing file on a disk drive, and modity an
existing file on a disk drive. As discussed above, it should be
recognized that most of these operations include the transfer
of data either from the memory 14 to a disk drive 18 or 20,
or from a disk drive 18 or 20 to the memory 14. In
accordance with the invention, the CPU 10 can also be
instructed to check for and attempt to repair damage on a
disk drive. Most traditional file systems accommodate some
form of error recovery, but the invention does so 1in a unique
and 1mproved manner.

A non-hierarchical data storage format 1s used by the file
system of an embodiment of the mvention. Data structures
typically used on a block storage device, such as the disk
drive 18, utilizing this file system are shown 1n FIG. 2. The
entire storage capacity of the disk drive 18 subject to the
present file system 1s shown as a file storage area 30.

As will be discussed in further detail below, the file
storage arca 30 shown 1 FIG. 2 may encompass the entire
storage capacity of the disk drive 18, or it may represent only
a small portion of the capacity of the disk drive 18, while the
remainder of the disk drive 18 utilizes some other file
system, such as those previously discussed. This can be
accommodated 1n several ways. First, the disk drive 18 can
be “partitioned” into separate logical disk drives, a tech-
nique that 1s well known in the art. Second, a relatively large
“container file” can be permanently preallocated using a
traditional file system. The space within the container file
can then be managed by way of the file system of the
invention, and can be treated as a separate virtual disk drive.
This technique 1s also well known, and 1s implemented by
such programs as Microsoft’s DoubleSpace and Stac’s
Stacker disk compression tools. Third, the two file systems
may share a single disk drive. Files subject to the invention
can contain a unique “signature,” distinguishable by soft-
ware used to implement the invention. It the entire disk drive

18 utilizes the invention, then other disk drives, such as the
disk drive 20, need not.

The file storage area 30 includes two types of data
structures: a directory structure 32 and multiple file struc-
tures. The file structures are represented in FIG. 2 by a first
file structure 34, a second file structure 36, and a third file
structure 38. Although a hierarchical directory tree structure
1s contemplated and simulated by the invention, only one
directory structure 32 1s needed. The directory structure 32
1s provided as a flat database having one entry corresponding
to each file within the file storage area 30. Each database

entry contains information on the full hierarchical path of
cach file.

In FIG. 2, the directory structure 32 and the file structures
34, 36, and 38 are shown to be in different physical portions
of the file storage area 30. It should be noted that the various
data structures are separated logically only, and physically

US 6,208,999 B1

7

may overlap. That 1s, portions of the directory structure 32
may be interleaved with portions of the file structures 34, 36,
and 38, and portions of a single file structure (34, 36, or 38)
may be interleaved with portions of another file structure
(34, 36, or 38).

The directory structure 32, which 1s shown 1 detail in
FIG. 3, 1s structured as a binary tree (“B-tree”) structure of
directory entries. While certain traditional file systems, such
as the FAT system discussed above, use linear search tech-
niques to locate a desired file, the present file system
preferably uses a B-tree to expedite file location. Each
“node” of the B-tree can have a varying number of
branches, dependent on the length of the directory records,
and consequently, on the number of directory records that
can be stored 1n each directory block. In essence, if the
desired directory entry 1s not found in the first directory
block, the B-tree is traversed (i.e. the proper lower branches
are searched). Accordingly, the directory structure i1s suc-
cessively subdivided until the proper file 1s found. This
technique 1s well known. See, e€.g., Duncan, “Design Goals
and Implementation of the new High Performance File
System,” Microsoft Systems Journal, v. 4, n. 5, pp. 1-13
(Sep. 1989). Consequently, even when an extremely large
number of files are stored within the file storage area 30 and
represented within the flat directory structure 32, a search
can be extremely fast.

It should be noted that the directory structure 32 1s given
a B-tree structure to expedite searches only. No directory
hierarchy 1s implied by the tree structure. Rather, the direc-
tory structure 1s a fully self-contained flat database of files,
wherein each directory entry speciiies the entire pathname to
a file. A directory hierarchy is stmulated by virtually group-
ing those files having identical pathname prefixes, but dif-
ferent filenames.

In an embodiment using a B-tree approach, a top direc-
tory block 40 contains a directory entry sorted so as to be a
“key” into the remainder of the directory structure 32 (FIG.
2). If the desired file 1s alphanumerically less or greater than
the top level key, then a nearest directory entry 42 contains
links to two second-level directory entries 44, which may
then be compared. Similarly, a directory entry 46 in the
second-level directory block 44 may point to a third-level
directory block 48, and so on, until the desired file 1s found.
It should be noted that the B-tree as contemplated by the
present invention 1s balanced, or substantially symmetric. If
any branch of the B-tree structure 1s longer than the others,
then the key directory entries 1n the higher-level directory
blocks can be redistributed to regain balance. This technique
1s well known 1n the art of computer programming, and it
will be appreciated that a “B+tree” can also be used.

Each directory entry, for example the directory entry 46 in
the second level directory block 44, contains the full path-
name of the specified file, the allocation run(s) for the file,
a pointer to a lower-level directory block (if one exists), and
various other information present 1n traditional file systems
(such as file creation date and time, file attributes, etc.).
Maintaining the full pathname for each file 1n each directory
entry 1s an important feature for improved data recovery, as
set forth 1n detail below.

The structure of an exemplary file 1s shown 1n FIG. 4. As
previously discussed, each block of each file has associated
therewith and stored therein at least a file i1dentification
number and a {ile sequence number. Given an exemplary
block size of 512 bytes, one embodiment of the present
invention reserves 16 bytes for the foregoing information.
The remaining 496 bytes of each block can be used to store

10

15

20

25

30

35

40

45

50

55

60

65

3

the data file. This results 1n an overhead of approximately
3% for each data file utilizing the file system.

The file 1identification and file sequence numbers can be
implemented as follows. Every file 1s assigned a unique file
identification number, based on 1ts location within the direc-
tory structure discussed above. If there are 100 {files using
the file system, then file identification numbers 1-100 can be
used. It should be understood that this is only one of
numerous possible methods for allocating file 1dentification
numbers; other possibilities include pseudorandom number
generation (ensuring that numbers are not re-used), a num-
ber generated based on the filename, a number generated
based on the date and time of file creation, or a sequential
number unrelated to any position within the directory struc-
ture. If the file 1dentification number 1s not related to a file’s
position within the directory structure, then the file 1denti-
fication number should be stored within the file’s directory
entry, as discussed above.

FIG. 4 shows a file 50 using four allocation blocks, a first
block 52, a second block 54, a third block 56, and a fourth

block 58. Each allocation block has a signature area 60. As
indicated, a file i1dentification number 62 1s stored within
cach signature area 60.

Each allocation block within a single file (as in the
illustrated file 50) also has a unique sequence number 64.
For example, file 50 1s four blocks in length, so the number
1 will be stored as the sequence number within the signature
arca 60 of the first block 52, the number 2 will be stored
within the signature area 60 of the second block 54, the
number 3 will be stored within the third block 56, and the
number 4 will be stored within the fourth block 58.

These sequence numbers 64 assist 1n the recreation of files
for which 1important information has been lost. If the direc-
tory structure or other system area of the disk 1s damaged,
the file can be recreated by scanning the disk and finding all
allocation blocks having the same file identification number
62, and piecing them together 1n the order specified by the
sequence numbers 64. It 1s observed that the sequence
numbers provide for the possibility that a file’s blocks may
be stored out of sequence on the disk. If one or more
allocation blocks has been damaged, erased, or 1s otherwise
lost, that situation will be evident from the missing sequence
numbers.

Each signature area 60 also has room for a unique bit
pattern 66. This unique bit pattern 66 1s used to 1dentily
those files that are associated with the file system. This bat
pattern should be one that 1s unlikely to occur at the
beginning of a data block, and should preferably be followed
by the other 1dentifying information, the order of which 1s
not critical.

The 1invention optionally accommodates a file type code
68 within each signature arca 60. Under traditional {ile
systems for PC-compatible personal computers, the file type
1s usually indicated by a three-character suffix to the
filename, such as “EXE” for executable programs, “HLP”
for help files, or “TXT” for text files. If the mnformation
stored by the file system 1s damaged and recovered, the file
type code 68 can be usetul to determine the nature of the
recovered {ile, particularly 1f the filename 1s lost. In one
embodiment, the three-character file type code 68 1s stored
“as-1s” within the signature area 60. However, it 1s recog-
nized that other or more efficient encoding 1s possible and
can readily be used. In another embodiment the entire eight
character filename 1s stored.

Also, each signature area 60 optionally includes a check-
sum 70, allowing the invention to verity that the unique bat

US 6,208,999 B1

9

pattern 66, file 1dentification number 62, sequence number
64, and file type code 68 arec all valid.

The entire directory structure 32 (FIGS. 2 and 3) is treated
by the invention as a single file. Each block of the directory
structure has an associated file idenfification number 62
(zero, for example, can be used to indicate that the file 1s in
fact the directory structure) and appropriate sequence num-
bers 64. Accordingly, if portions of the directory structure 32
are damaged, 1t can be partially or completely recovered as
set forth 1n detail below.

A number of operations can be performed within the file
system. A flowchart depicting a file search operation 1is
shown 1n FIG. 5. First, the top level directory block 40 (FIG.
3) is read (step 80). The contents of the directory block are
searched (step 82). If the desired file is found there (step 84),
then a success code and an allocation run indicating the
location of the desired file are returned (step 86). If not, then
a link 1s followed to locate the next appropriate directory
block (step 90). If no more directory blocks are available
(step 92), then a failure code is returned (step 94).
Otherwise, the next directory block is read (step 96), and the
scarch repeats as above until the file 1s found.

The process followed 1n storing a new file 1s shown 1n the
flowchart of FIG. 6. First, a file search (see FIG. §) is
performed (step 100) to determine if a file having the desired
name already exists. If such a file is found (step 102), then
a failure code is returned (step 104). If not, then the proper
location for the filename within the directory B-tree 1s noted
(step 106). Usmg the location information, a file identifica-
tion number 62 1s allocated to the file (step 108) Space on
the disk is allocated to the file (step 110) using traditional
techniques, as 1n the NTES system. A directory entry is
created at the appropriate location within the B-tree (step
112), and the directory entry is given the proper filename and
file location (step 114) taken from the space allocation step.
Data 1s then written to the allocated space, including 1n each
block the file i1dentification number 62, the sequence num-
bers 64, the unique bit pattern 66, and the file type 68, as
discussed above (step 116). Finally, the B—tree is balanced,
if necessary, according to techniques known in the art (step
118), and a success code is returned (step 119).

In one embodiment, the file system allocates disk space in
runs, in a similar manner as 1s used by the NTFS system;
namely, the file system keeps a list of free space runs. The
f1le 1dentification numbers 62, file sequence numbers 64, and
other information specilied by the invention are used to
recover data when lost or damaged. Accordingly, allocation
runs are stored with the file’s directory entry.

The creation of a directory i1s shown 1n the flowchart of
FIG. 7. First, a file search (see FIG. §) is performed (step
120) to determine if a file or directory having the desired
name already exists. If such a file or directory is found (step
122), then a failure code is returned (step 124). If not, then
the proper location for the new directory within the directory
B-tree is noted (step 126). A directory entry is created at the
appropriate location within the B-tree (step 128), and the
directory entry is given the proper directory name (step 130).
However, no space 1s allocated, and the directory entry has
no block pointer. Finally, the B-tree 1s balanced, if
necessary, according to techniques known in the art (step
132), and a success code is returned (step 134).

File deletion 1s shown 1n the flowchart of FIG. 8. First, a
file search (see FIG. §) is performed (step 140) to determine
if a file having the desired name exists. If such a file 1s not
found (step 142), then a failure code is returned (step 144).
If the file 1s found, then the block location for the file 1s taken

10

15

20

25

30

35

40

45

50

55

60

65

10

from the directory entry (step 146). Each block belonging to
the file is then erased (step 148), or the file identification
numbers obliterated, to eliminate the possibility that the file
will be improperly recreated if the disk is later scanned for
damaged files. The disk space belonging to the file can then
be de-allocated in the file allocation table (step 150) by
means known in the art. The directory entry within the
B-tree is then erased (step 152), freeing the file identifica-
fion number for later use by a new file. Finally, the B—tree
1s balanced, 1f necessary, according to techniques known 1n
the art (step 154), and a success code is returned (step 156).

In an alternative form of file deletion, the file 1dentifica-
tion numbers are not obliterated, nor are the blocks erased,
but a flag 1 the directory entry and 1n each data block 1s set
to 1ndicate that the file 1s no longer present. In this way, the
deletion can be “undone” 1f 1t was 1nadvertent.

The operation of reading a file 1s shown 1n the flowchart
of FIG. 9. First, a file search (see FIG. §) is performed (step
160) to determine if a file having the desired name exists. If
such a file 1s not found (step 162), then a failure code is
returned (step 164). If the file 1s found, then the block
location for the file is taken from the directory entry (step
166). Then, a block belonging to the file is read (step 168),
and the signature area 1s discarded. If the entire file has not
been read (step 170), then the reading process is repeated. If
s0, a success code is returned (step 172).

It 1s recognized that similar processes to those described
above and shown 1n FIGS. 6-9 can be used to append to,
modify, and truncate a file, with the following observations.
When appending to or modifying a file, the same file
identification number 62 should be used on the added or
changed blocks as 1s used by the existing file; the proper file
sequence numbers 64 should be determined and allocated as
necessary. When truncating a file, the file sequence numbers
64 for discarded data blocks should be obliterated, so the
discarded blocks are not re-attached when a damage repair
operation 1s performed, as will be discussed below.

The file system of the imvention may operate as an
independent system, or in conjunction with another file
system. Other optional modes of operation are also contem-
plated.

One such possibility 1s to use a the file system for
real-time backups. A traditional FAT (or other) file system
would be used for normal disk reading and writing, while a
supervisory program monitors disk operations. If a disk file
is written, modified, or deleted on the FAT file system (such
as on the disk drive 20, FIG. 1), the supervisory program
would take appropriate action to copy, modity, or erase the
data on a device embodying the file system of the imnvention
(such as the disk drive 18), by means discussed above. The
supervisory program can be enabled to distinguish between
critical data (e.g. system files and documents) and non-
critical data (e.g. temporary files and other easily recreatable
files) so that only the critical files are backed up; this can
significantly decrease the space overhead required by the
ivention.

A second possible mode of operation 1s to back up files
asynchronously (e.g. during idle time or at prespecified
intervals). Again, a supervisory program monitors disk
operations, tracking those files that have been created or
changed on the FAT file system. Then, periodically or during
idle time, the supervisory program takes appropriate action
to copy, modily, or erase the data on the device embodying
the file system, as indicated by the tracking information
discussed above.

A third possible mode of operation is for the invention to
be 1mplemented within an application program to protect

US 6,208,999 B1

11

only certain data files. In this embodiment, no separate
directory structure 1s used. The application program, when
writing certain data files deemed to be critical, writes the
tracking information (e.g. the file identification number 62,
the sequence number 64, and the unique bit pattern 66) to
cach block of the critical files. The application program also
performs the reconstruction operation, scanning the block
storage device and reconstructing the critical files as neces-
sary. In this embodiment, no operating system intervention
1s necessary, as the critical data files are generally not
accessed by any application other than the one implementing
the 1nvention.

Damage recovery 1s an important feature of the present
invention. Accordingly, if an error is detected by a user (e.g.,
through a disk error, a program attempting to read invalid
data, or a message from a disk diagnostic utility), the user
may 1nvoke a repair program. The operation of a repair

program according to the present invention is illustrated in
FIGS. 10a and 105b.

The repair program operates by scanning the entire block
storage device. Each block is read (step 180), and checked
for a signature area (step 182). If the signature is valid (step
184), then the block i1s added to a data structure in memory
specifying the existence and location of each data file (step
186). The data structure is preferably a “linked list” of file
identification numbers 62, wherein each file 1dentification
number 62 has a subsidiary linked list of sequence numbers
64 and corresponding block numbers on the disk.

If any blocks remain (step 188), the process 1s repeated.
If not, the directory structure 32 1s recreated or repaired from
the information in the foregoing data structures (step 190).
If some data files are missing blocks (step 192), then the user
is alerted (step 194), and empty blocks are inserted in the
appropriate locations (step 196) if the user requests. If the
FAT system was 1n use and the file allocation table was
damaged (step 198), then it can be reconstructed from
information in the data structures (step 200).

It will be appreciated that embodiments of the present
invention may be employed 1in many different applications to
protect valuable data on a block storage device.

What 1s claimed 1s:

1. A method for storing a data file comprising at least one
data block on a block storage device comprising the steps of:

generating a unique file identification number for the data

file;

allocating space on the block storage device to the data
file;

designating a signature area for each block of the data file;

storing a uniquely identifiable bit pattern within the
signature area;

storing the file identification number within the signature
area;

storing each block of the data file, and including therein

the corresponding signature area.

2. The method of claim 1, further comprising the step of
storing a sequence number for each block within the signa-
fure area.

3. The method of claim 2 further comprising the step of
storing a checksum within the signature area.

4. The method of claim 1, further comprising the step of
scarching a directory structure to determine an appropriate
location within the directory structure for the file prior to the
generating step.

5. The method of claim 4, further comprising the step of
making a directory entry at the appropriate location.

10

15

20

25

30

35

40

45

50

55

60

65

12

6. The method of claim 5, wherein the making step
comprises the substeps of:

allocating a directory entry at the appropriate location;
writing a pathname to the directory entry; and

writing a block number corresponding to the allocated
space to the directory entry.
7. The method of claim 6, further comprising the step of
rebalancing the directory structure.
8. A method for recovering particular data files stored on
a block storage device having a directory structure, wherein
the particular data files each comprise at least one data block
with a signature area imcluding a uniquely identifiable bit
pattern, comprising the steps of:

scanning the block storage device;

locating a block having a signature area by detecting the
uniquely 1dentifiable bit pattern;

adding 1information on the location of the block to a data
structure; and

repairing the directory structure.

9. The method of claim 8, wherein the locating and adding
steps are repeated for each block on the block storage
device.

10. The method of claim 8, wherein:

the directory structure comprises at least one directory
entry; and

the repairing step comprises the substeps of:
determining whether a particular data file corresponds
to a particular directory entry; and
creating a directory entry to correspond to the file.
11. The method of claim 8, further comprising the step of
repairing the data file.

12. The method of claim 11, wherein:
cach data block has a sequence number; and

the step of repairing the data files comprises, for each data
file, the substeps of:
creating a list of the data blocks 1n order of sequence
number; and
for each missing sequence number, inserting an empty
block.

13. The method of claim 8, wherein the block storage
device has a file allocation table, further comprising the step
of recreating the file allocation table.

14. The method of claim 13, wherein the recreating step
comprises, for each data block in the data structure, verily-
ing the validity of the file allocation table.

15. A file system for storing files on a block storage
device, comprising:

a central processing unit;

a data bus;

a memory subsystem; and

a block storage device having a plurality of blocks,
wherein at least one block has a signature area;

cach signature area containing uniquely identifiable bit

pattern.

16. The system of claim 15, wherein the block storage
device stores at least one data file.

17. The system of claim 16, wherein the data file encom-
passes at least one block.

18. The system of claim 16, wherein the block storage
device stores a directory structure 1dentifying and locating
the data file.

19. The system of claim 18, wherein the directory struc-
ture comprises at least one directory entry.

US 6,208,999 B1

13

20. The system of claim 19, wherein each directory entry
contains a pathname identifying an associated data file, and
a block number locating the associated data file on the block
storage device.

21. The system of claim 20, wherein the directory struc-
ture simulates a hierarchy of directories.

22. The system of claim 19, wherein the directory struc-
ture comprises a balanced tree structure.

23. The system of claim 15, wherein the signature arca of
cach block corresponding to the data file contains a file
identification number 1dentifying the data file.

24. The system of claim 23, wherein the signature arca of
cach block corresponding to the data file contains a sequence

10

14

number corresponding to a position of the block within the
data file.

25. The system of claam 24, wherein the signature area of
cach block corresponding to the data file contains a file type
code.

26. The system of claim 25, wherein the signature area of
cach block corresponding to the data file contains a check-
sum.

27. The system of claim 15, wherein the signature area 1s
included only 1n data blocks associated with particular data

files.

	Front Page
	Drawings
	Specification
	Claims

