US006195026B1
12 United States Patent (10) Patent No.: US 6,195,026 B1
Acharya 45) Date of Patent: Keb. 27, 2001
(54) MMX OPTIMIZED DATA PACKING 5,682,152 * 10/1997 Wang et al.ccccvveveenreennnen. 341/50
METHODOLOGY FOR ZERO RUN LENGTH 5,793,314 * 8/1998 AUYEUNE ..ccovververmeenmnennnncreaenn. 341/51
AND VARIABLE LENGTH ENTROPY 5,910,783 * 6/1999 Pazminocceeeeeevevviiiiannannenn. 341/60
ENCODING 5,995,149 * 11/1999 Saunders et al.ccouvnennenn. 348/408
6,009,201 * 12/1999 Acharyaccccceveevevvreveeenennns 382/232
(75) Inventor: Tinku Acharya, Tempe, AZ (US)
* cited by examiner
(73) Assignee: Intel Corporation, Santa Clara, CA
(US)
Primary Fxaminer—Irong Phan
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—3Blakely, Sokoloff, Taylor &
patent 1s extended or adjusted under 35 Zaiman LLP
U.S.C. 154(b) by O days.
(57) ABSTRACT
(21) Appl. No.: 09/152,703 A method comprising entropy encoding into bits a set of data
. values, and packing into storage the entropy encoded bits b
(22) Filed Sep- 14, 1998 reversing tﬁJI; bits (%f words wigth unknowg }{ength and kc—::(—::p}i
(51) Int. CL7 e HO3M 7/00 ing 1n blocks the words with known lengths. For instance, in
(52) US.CL ... v 341/60; 341/65 an entropy encoded data set that uses both Huffman coding
(58) Field of Search ... 341/51, 60, 65; and zero run coding, the class code may be reversed in bit
348/384, 408; 382/232 order from right to left rather left to right while the words ot
known length such as the zero run code and Huflman pointer
(56) References Cited are stored left to right 1n blocks. This data arrangement 1s

U.S. PATENT DOCUMENTS

5,659,362 * 8§/1997 Kovac et al.cceevvvvrnnrnnnnn.e. 348/384
Sensor 610 i b2 626
600 _’_____ _.\'\. b
% =
E 5 o 5
Bf—:lyer Patftern © [Data % 3 Data E‘
Pixels n bits % n bits EE % m bits %i
& fmal| S
S =z
J |
=
i D
| RAM RAM RAM
629
616 626f
i |
BUS

particularly useful in an MMX based machine.

Compressed
Data

631

630

J8Y0oRd ElR(]/18pOooU

RAM

27 Claims, 5 Drawing Sheets

640
M
MMX
Packed/
| Encoded Z
Data g
| ﬁ {D
x>
2
l |
/_/

660

U.S. Patent Feb. 27, 2001 Sheet 1 of 5 US 6,195,026 Bl

: FLAG| FLAG | ZERO RUN LENGTH |VARIABLE LENGTH CODE OF | _— 100
- NON-ZERO VALUE

KOPTIONAL F=0 |IF AT LEAST
oL ZEROES ARE PRESENT

Fig. 1a

110
\ VARIABLE LENGTH HUFFMAN CODE

Fig. 1b

\—_’_W'_—_/
M BITS
MOST
210 SIGNIFICANT BIT

\ @
BYTE2 | BYTE3 Fig. 2a

(Prior Art)

MOST LEAST
SIGNIFICANT BIT LEAST SIGNIFICANT BIT
SIGNIFICANT BIT
MOST
220\ SIGNIEICANT BIT
BYTE 3 BYTE 2 BYTE 1 BYTE 0 Flg . 2b
MOS1 LEAST
SIGNIFICANT BIT LEAST SIGNIFICANT BIT
SIGNIFICANT BIT
300

N\
Fig. 3

U.S. Patent Feb. 27, 2001 Sheet 2 of 5 US 6,195,026 Bl

PACKING

FETCH NEXT DATA

VALUE
410

IS VALUE EQUAL

TO ZERO? YES CONTINUE ZRC

430

NO

STORE ZRC QUTPUT

LEFT TO RIGHT
440

PERFORM HUFFMAN
CODING

450

STORE CLASS CODE N
REVERSE BIT ORDER

(RIGHT TO LEFT)
460

STORE POINTER TO
VALUE IN LEFT TO
RIGHT ORDER

470

U.S. Patent Feb. 27, 2001 Sheet 3 of 5 US 6,195,026 Bl

UNPACKING

SHIFT OUT FLAG

510

NO

YES

SHIFT QUT L BITS OF
ZERO RUN LENGTH

50

SHIFT SERIALLY CLASS

CODE BITS

— Fig. 5

DECODE
NO

540

DEPENDING ON CLASS
CODE, SHIFT OUT

END OF CLASS

CODE? — YES

APPROPRIATE NUMBER
OF BITS

5 560

U.S. Patent Feb. 27, 2001 Sheet 4 of 5 US 6,195,026 Bl

ID
w
Storage Arrays CEEn— N
Q
<t
O
L
XE% m
=5 9@
uJ
-
<)
w

Compressed
Data

Encoder/Data Packer —
: =
Primary Transtorm Module —
7P
Compand =
o | ompanding <
o

Pixel Substitution
o S _
O

Capture Interface

628
Dala
m bits
BU

Data
n bits

(o
-~
w

Data
n bits

S

610

-
QO 9P
FUE
O C
—)
D o
ay 2%
o a

Sensor
600

U.S. Patent Feb. 27, 2001 Sheet 5 of 5 US 6,195,026 Bl

716
DISPLAY 717

COMPUTER SYSTEM
710
e oL
| I
| |
| |
| processor |1 MEMORY |-/ 1 |
| |
| |
| |
, |
, |
| |
, |
| SYSTEMBUS |
| 718 13 |
I ISk BRIDGE 714 |
| |
| |
| 11O BUS |
| 715 :
| |
| |
| |
| I

IMAGE
MEMORY
UNIT
734
DECODED AND SCENE
DECOMPRESSED 740
IMAGE 750 -
- (T
IMAGE CAMERA
PROCESSING/ 730
ENCODING
CIRCUIT
732

Fig. 7

US 6,195,026 Bl

1

MMX OPTIMIZED DATA PACKING
METHODOLOGY FOR ZERO RUN LENGTH
AND VARIABLE LENGTH ENTROPY
ENCODING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The 1nvention relates generally to data and 1image pro-
cessing. More specifically, the invention relates to arranging
binary encoded data of a compressed 1mage 1n computer
Mmemory.

2. Description of the Related Art

In 1mage and/or data compression, through a process
known as binary encoding, a set of values, such as text or
numerical data that are obtained or input externally, can be
encoded into binary form (1s or 0s). One way of encoding
1s to simply convert each decimal number or code for text
(such as ASCII numerical designations) into a fixed number
of bits (word size). For instance, the numbers 23, 128, and
100 would be encoded into binary as the sequence:
00010101 1000000 01100100. This raw or pure binary code
serves no further compression function, since 1t merely takes
the data and represents 1t 1n binary. Such encoding 1is
inefhicient where the number of zeroes greatly outweigh the
non-zero, and especially where such zero data values are
consecutive, creating a large “run” of zeroes in binary.
Several methods have been developed particularly in the
field of digital communications to compress data during
binary conversion. Among two widely-used such methods of
binary encoding for 1mage or data compression are Huflman
Coding and Run-Length Encoding.

Classical Huflman Coding 1s a variable length coding
technique which consists of coding each possible value vy,
(1=1 , N) inside a given data set S of N possible data
values by codewords of L, bits each. The goal behind
Huffman Coding is to minimize 2L, P(y;), where P(y,) is the
probability of the value y; occurring in data set S that 1s to
be encoded. The codewords are chosen 1 order to make
them distinguishable from each other. The codewords have
a variable length, for instance, for a data set S={0, 1, 2, 3,
4} the Huffman Coding may use the mapping {0=0, 1=10,
2=110, 3=1110, 4=1111}. If P(0)>>P(1)>>P(2)>>P(3)>>P
(4), this technique may be more efficient than straight fixed
length binary representation. The Huffman Coding 1s effi-
cient primarily when coding data sets S with a small N or
that have a small variance, since L, grows in size almost
linearly with an increase in N, the number of values 1n the
set. For this reason, a technique different from classical
Huffman Coding known as Modified Huffman Coding has
been developed and used 1in 1mages that have larger N in
their data sets or more variance.

Another technique known as Zero Run Length Coding
(ZRLC) 1s a technique for encoding a data set containing a
large number of consecutive or “runs” of zero values. ZRLC
consists of encoding only the values different from zero
(using Huffman Coding or some other coding) and then
interleaving these codewords by a code that specifies the
number of zeroes that, according to a manner known both to
the coder and to the decoder, divides two consecutive
non-zero values.

In traditional ZRLC, the encoded zero run data 1s struc-
tured using two segments: a run length and non-zero value.
For instance, instead of coding the data stream:

{0000005000-6780000-12000000000001
4500000000023}

10

15

20

25

30

35

40

45

50

55

60

65

2

only the following data are coded:
{[6, 5][3, -6][0, 78][4, -12][11, 1][0, 45], [9, 23]}

This code (where an_ indicates a run length of zeroes)
indicates that 6 zeroes followed by the value 5, then 3 zeroes
followed by the value -6, then O zeroes followed by the
value 78, . . ., etc. Recently, an enhanced zero run encoding
technique has been developed which i1s set forth as the
subject of related U.S. patent application entitled An Ejfi-
ctent Data Structure for Entropy Encoding Used in a DWI-
Based High Performance Image Compression, Ser. No.
09/140,517, filed on Aug. 26, 1998 (hereinafter “ZRC
patent”). In most ZRLC, the zero run length is represented
by a flag and an L bit word following the flag. In the ZRC
patent, a single flag of “0” with no L-bit word succeeding it
is used to indicate a run of exactly 2* zeroes. When less than
2" zeroes are encountered, a flag of “1” and a word of L-bits
encoding the length 1n the direct binary equivalent of the size
1s utilized. For instance, referring to the above example, 1f
[.=2, then the first six zeroes would be encoded as “0 1107,
The first O refers to the first 2° or 4 zeroes while the bits
following 1t “110” are composed of the flag “1” and the
length “10” (whose decimal equivalent 1s 2) which encodes
the final two zeroes of the six zero run. The data stream has
a non-zero value 5 which 1s Huffman coded. Following the

Huffman code for “5”, the next three zeroes are encoded by
‘e 11

” (flag of 1 and run-length of “11” (3 in decimal). This
process continues with non-zero values encoded by a Hufl-
man code and zero values encoded by an enhanced zero run
length encoding scheme. This combination of encoding 1s a
form of “entropy encoding”. In entropy encoding informa-
fion 1s represented 1 a minimum number of bits 1n accor-
dance with content (entropy) of the whole data set.

In data sets such as JPEG (Joint Photographic Experts
Group) or DWT (Discrete Wavelet Transform) transformed
image data that contain significant numbers of zero values,
particularly zero values that are 1n continuous “runs”,
entropy encoding can be defined to include separate zero run
and non-zero value encoding. The structure for encoding the
zero runs, discussed also 1n the ZRC patent 1s composed of
a Flag F=1 and a word R of L bits for any run or portion
thereof consisting of less than 2* zeroes or just contains the
flag F=0 with no word R following it for any run or portion
thereof. FIG. 1(a) shows one basic format 100 for entropy
encoding that combines ZRLC with a variable length code
for non-zero data values. In this format 100, a structure of
the type (F, R) is followed by a variable length code V of M
bits such as Huffman Coding of any non-zero values that
follow the run of zeroes encoded by (F,R). The run, by
definition, terminates when a non-zero value 1s encountered
in the data set to be encoded. FIG. 1(b) 1s an example of the
basic data format for the variable length coding technique
known as Huffman coding. Referrmg to FIG. 1(a), the
variable length code V, 1f it were a Huflman code would be
composed of a “class code” and a “pomter” to a value within
the class as typified in format 110 of FIG. 1(b). Each class
code 1s a unique value which i1dentifies a possible range of
values for the value being encoding. Since zero values are
encoded using ZRLC, unlike other Huflman codes, zero 1s

US 6,195,026 Bl

3

excluded from the range of possible values. The table below
shows an exemplary class code mapping for such Huffman
coding:

Class Possible Values
Class Code within class
1 11 -1, +1
2 0 -3, -2, +2, +3
3 10 -7,...-4,+4, ... -7

Since all zero values are encoded using ZRLC, only
non-zero values need to be represented by the Huffman
code. Each class which 1dentifies a range of possible values
has a class code. Class 1 has only two possible values, -1
and +1 and thus can use a one-bit pointer value to indicate
which of the two values 1s being encoded. Class 2 represents
4 values and thus, should use a pointer of two bits to refer
to one of the values =2 or 3. Likewise, class 3 values can
be pointed to by a three-bit pointer. The value “-1" would
be encoded by “110” [class code of “11” and pointer of “07].
Likewise the value “5” would be encoded by “10101”’[class

code of “10” and a pointer of “101”]. Advantageously, a
negative value 1s represented by the one’s complement of
the positive value and hence, the value “-5” would be
encoded by “10010” [class code of “10” and one’s comple-

ment of the pointer to “5”]. Thus, using ZRLC the string of
values “005” would be encoded by “1 10 10 101” where the

leading “1” 1s the flag for the ZRLC and the adjacent “10”
the binary equivalent of the run length “2”. The “10 101~
following 1t 1s the Huffman coding for “5” given a Huffman
mapping such as that described above and a ZRLC tech-
nique such as that presented in the ZRC patent with a code
length L=2.

Once data has been entropy encoded or otherwise binary
encoded, devices such as digital cameras or computer sys-
tems need to then store or “pack” the data such that 1t 1s
suitable for transmission and subsequent decoding. For
instance, 1in a digital device, the encoded data may be packed
into “words” of a particular size such as a byte (8 bits) each.
This allows the data to be loaded easily into registers or
mechanisms that have a fixed size. Typically, encoded data
1s packed 1n a left to right ordering format 210 as shown 1n
FIG. 2(a). This ordering is not suitable for recently devel-
oped Intel architectures such as processors based upon
MMX Technology (a product of Intel corporation). These
processors follow the convention known in the art as “Little
Endian” in which the memory byte ordering 1s right to left
rather than left to right format 220 as shown in FIG. 2(b).
With Little Endian, as shown in FIG. 2(b), a 4 byte (32-bit)
register when stored into memory would be as follows.
Starting from an offset location I, byte 0 would be stored in
[+0, byte 1 1n I+1, etc. with each byte having the most
significant bit on the left side and the least significant bit on
the right. Since entropy encoding 1s a variable length tech-
nique (the anticipated total length for encoding a set of data
is unknown beforehand), the ability to shift out a block of
bits all in one clock cycle can be used to advantageously
reduce the amount of serial data transfers. However, con-
sidering the reverse nature of the register and memory
storage within an MMX system, not all of the encoded data
can be retrieved at variable length, some of it must be
serially transferred and decoded bit-by-bit. Thus, there is
needed an efficient data packing methodology for entropy
encoded data which speeds and eases the decoding process
by taking advantage of the characteristic properties of
entropy encoded data.

10

15

20

25

30

35

40

45

50

55

60

65

4
SUMMARY

What 1s disclosed 1s a method comprising entropy encod-
ing a set of data values into bits, and packing into storage the
entropy encoded bits by reversing the bits of words with
unknown length and keeping in blocks the words with
known lengths.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the method and
apparatus for the present invention will be apparent from the
following description 1n which:

FIGS. 1(a)-1(b) show an entropy encoding scheme that
utilizes zero run length encoding and Huffman coding.

FIG. 2(a) illustrates conventional data packing.

FIG. 2(b) illustrates data packing in certain MMX based
systems.

FIG. 3 1llustrates an embodiment of the invention.

FIG. 4 1s a diagram of a modified zero run length encoder
and packet according to one embodiment of the imnvention.

FIG. 5 1s a block diagram of an adaptive decoder accord-
ing to one embodiment of the mnvention.

FIG. 6 1s a block diagram of an 1mage processing appa-
ratus according to an embodiment of the mvention.

FIG. 7 1s a system diagram of one embodiment of the
invention.

DETAIED DESCRIPTION OF THE INVENTION

Referring to the figures, exemplary embodiments of the
invention will now be described. The exemplary embodi-
ments are provided to illustrate aspects of the invention and
should not be construed as limiting the scope of the inven-
tion. The exemplary embodiments are primarily described
with reference to block diagrams or flowcharts. As to the
flowcharts, each block within the flowcharts represents both
a method step and an apparatus element for performing the
method step. Depending upon the implementation, the cor-
responding apparatus element may be configured 1n
hardware, software, firmware or combinations thereof.

FIG. 3 illustrates one embodiment of the invention.

In an MMX-based machine, as shown 1n data structure
220 FIG. 2(b), data 1s organized in a right to left fashion in
regards to the ordering of bytes. Typically therefore, the
binary encoding for a sequence of values would also have to
be stored right to left and then read out bit-by-bit 1n a serial
manner. This arrangement would make decoding of entropy
encoded data sets exclusively serial 1n nature. While this
arrangement avoids byte swapping needed for “Big Endian”™
conventions (left to right byte ordering as shown in FIG.
2(a)), it has the disadvantage of making decode a bit-by-bit
process, where a bit of each byte read out must be analyzed
before the next can be decoded. However, by utilizing
properties of entropy encoding, particularly taking advan-
tage of fixed-length segments within the variable length
code, the amount of serial bit-by-bit decoding can be
reduced and thus the speed of decode, increased.

FIG. 3 shows one such packing arrangement 300 accord-
ing to an embodiment of the invention. First, the part of the
code that results from the ZRLC which consists of a Flag
and Zero Run Length or just a flag of 0 1s “fixed” 1n size. The
Zero Run Length 1s a set of bits with a known length L as
discussed above. Since the length of the ZRLC code after a
flag of 1 1s known, the Zero Run Length value may be
shifted out all at once and does not need to be serially
decoded. Thus, the bits representing Zero Run Length may

US 6,195,026 Bl

S

be stored 1n a left to right fashion rather than 1n reverse order.
Referring back to FIG. 1(a), a flag of zero may also be
cgenerated by the ZRC, which has no Zero Run Length value
following it. In this case since the length (one bit for the flag)
is known, any zero flags which precede the (F,R) structure
will be recognized correctly upon decode.

According to the ZRC Patent, each code for a non-zero
value 1s preceded by a Zero Run Length code having the
structure (F,R) whether or not zero values immediately
precede the non-zero value. Accordingly, when two non-
zero values are adjacent to each other in the data stream that
1s being encoded, a separator ZRC structure of 1 followed by
L. zeroes 1s 1nserted therebetween. Further, where the zero
run is an exact multiple of 2%, a structure of 1 followed by
L zeroes 1s placed as a separator before the variable length
code for the non-zero value 1s output. This guarantees that
the decoder will be able to recognize when the variable
length code such as the Huffman code 1s encountered.

The Huflman code 1s a partly variable and partly fixed
length code 1n that once the class 1s known, all the possible
pointers to that class are of a fixed number of bits. However,
the class code 1s often of unpredictable length. In the
example given above for the Huflman table only three
classes were defined, each class code having only two bits
(except for class 2). However, such a case 1s not typical since
there are usually many classes in most Huiffman coding
schemes, depending on the nature of the data to be encoded.
And 1n accordance with the goal of entropy encoding,
certain ranges should advantageously have a smaller size
class code than other ranges whose value are lower in
probability of occurrence. Thus, class 1 may have 2 bits and
class 2 may have 3 bits to denote the class code.

Below 1s an example of a Huffman table with variable
length class codes:

Pointer

Class Code Size
1 10 1 bit
2 110 2 bits
3 1110 3 buts
4 11110 4 bits
5 11110 5 buits

Thus, 1n the Huffman table above the class code 1s a
variable length. However, once the class code 1s known, the
pointer 1s a {ixed number of bits, such as three 1n the case of
class three. Since the class code 1s bit-serial unique such that
a serial bit-by-bit analysis would allow a decoder to cor-
rectly identify the class, the class code may be decoded
bit-by-bit 1n a serial fashion. In other words, Huffman coding,
maintains a prefixing property such that no binary code 1s a
prefix (ordered subset) of any other binary code. Thus, in
one embodiment of the invention, the class code may be
reversed 1 bit order. When the class code 1s decoded
bit-by-bit, it will indicate which class the pointer belongs to.
Since each class has by definition a fixed number of bits for
the pointer field, the pointer may be stored 1n a left to right
direction as with the Zero Run Length value. Once the class
information 1s decoded, then a shift of the appropriate
number of bits will present the decoder with the pointer
without the need to reverse the bits or shift them out
bit-by-bit 1n order to decode them. One advantage of the
arrangement 1 FIG. 3 1s speed. In the MMX based system,
such an arrangement of the entropy code results 1n only the
class code being serially decoded. All other information 1is

10

15

20

25

30

35

40

45

50

55

60

65

6

shifted out 1 a sigle block based upon the length that the
block should be. Referring to the example discussed above,
the code for “005” which 1s “1 10 10 101” would be stored
as “101 01 10 1” 1n right justification. Importantly, the class
code “10” for the value 5 1s stored 1n reverse order as “01”
while all the flags, Zero Run Length value and pointer are all
stored 1n left to right blocks.

FIG. 4 1s a flow diagram of a encoding and packing
scheme according to an embodiment of the 1nvention.

When a data set containing many values, both zero and
non-zero 1s ready to stored into binary 1t 1s often binary
encoded. The binary encoding discussed throughout is
entropy encoding and employs both a Huffman encoding for
non-zero values and a ZRC for all zero values encountered.
When this data 1s encoded, 1t may also be simultaneously
packed for storage as shown 1n FIG. 4. Alternatively, where
latency of further operations needs to be reduced, the entire
encoded data set (or portion thereof) can be temporarily
stored 1n typical left to right fashion and then packed at a
later time. First, each (next) data value is fetched (block
410). If the data value is a zero (checked at block 420), then
it should be coded by ZRC. Thus, with each encountered
zero, the ZRC process is continued (block 430). Since the
ZRC, mncluding flags of zero with no Zero Run Length value
have a known number of bits, the output of the ZRC may be
stored in a left to right order (block 440). Where the output
of the ZRC is still being constituted (not shown), then the
block 440 would be 1n a wazit state. For instance, when less
than 2° zeroes have been encountered, no “output” is
possible until the non-zero value 1s encountered. Further, the
flag of zero is only output when exactly 2" zeroes have been
encountered (see ZRC patent), and thus, the ZRC may need
to be counting rather than outputting a value. These condi-
tions are not 1llustrated 1n the diagram of FIG. 4 so as not to
obscure the invention. If a non-zero value 1s encountered
(check at block 420), then Huffman coding is performed
(block 450). The class code, which is obtained first by
look-up 1n a table, for 1nstance, 1s stored 1n a right to left or
reverse bit order consistent with serial decoding for an
MM X-based system (block 460). Finally, the pointer to the
value within the class 1s stored, but in left to right order since
the decoder will be able to shift 1t as a block rather than
serially (block 470). The process shown in blocks 410
through 470 repeats for each data value in the data set. Also
not shown 1s the case where separators are introduced as
described above which have a flag of 1 followed by L (the
word size of the Zero Run Length value) zeroes. Once the
data 1s packed in this manner, 1t may be decoded, and 1n
anticipation of MMX type right-to-left bit ordering, advan-
tageously so.

FIG. 5 1llustrates data unpacking according to an embodi-
ment of the invention. When encountering an encoded and
packed data set such as that resultant from the process
illustrated in FIG. 4, such data may be unpacked as shown
in FIG. 5. The very first element 1n the data set 1s by design
a flag for the ZRC (see ZRC Patent). Thus, the first step is
to shift out a singe bit flag (block 510). If the flag is zero and
not one (checked at block 570), then this represents the
encoding of 2% zeroes (which the decoder can output) and
then the next flag can be shifted out (block 510). If the flag
is one (block 570) then the next L bits that are stored as the
Zero Run Length value may be shifted out (and then
appropriately acted upon by the decoder) (block 520). After
a zero run code that has a flag 1 and L bats, by definition, a
non-zero value should have been 1n the original data set.
Since these non-zero values are represented by Huffman
coding, the next bit(s) should be the class code information.

US 6,195,026 Bl

7

Since the class code 1s unknown length, 1t must be serially
decoded. Thus, a serial shift of the class code bits 1s
performed (block 530). Each bit is analyzed and decoded
(block 540) along with preceding class code bits until the
class code can be 1dentified. When the class code bits have
ended (i.e., the class is capable of being identified) then,
depending on which class was denoted 1n the class code, the
appropriate number of bits for the pointer value may be

block shifted (block 560). A Huffman table may also contain
the length information for pointers 1n that class, thus allow-
ing a look-up for the size of the block to be shifted out. After
the non-zero value is decoded (or after all Huffman code bits
for the non-zero value is shifted out), the next bit is by
design a flag for a ZRC (even if no zeroes are present) which
is shifted out (block 510). The process of unpacking (and
decoding if desired) continues with the blocks 510 through
570 repeating until the entire packed data set has been
processed.

FIG. 6 1s a block diagram of an image processing appa-
ratus according to an embodiment of the mvention.

FIG. 6 1s a block diagram of internal 1image processing,
components of an imaging device incorporating at least one
embodiment of the invention including an adaptive encoder.
In the exemplary circuit of FIG. 6, a sensor 600 generates
pixel components which are color/intensity values from
some scene/environment. The n-bit pixel values generated
by sensor 600 are sent to a capture mterface 610. Sensor 600
in the context relating to the invention will typically sense
one of either R, G, or B components from one “sense” of an
arca or location. Thus, the intensity value of each pixel 1s
associated with only one of three (or four if G1 and G2 are
considered separately) color planes and may form together
a Bayer pattern raw 1mage. These R, G and B color “chan-
nels” may be compressed and encoded separately or in
combination, whichever 1s desired by the application. Cap-
ture mterface 610 resolves the image generated by the sensor
and assigns intensity values to the mdividual pixels. The set
of all such pixels for the entire 1mage 1s 1n a Bayer pattern
in accordance with typical industry implementation of digi-
tal camera sensors.

It 1s typical 1n any sensor device that some of the pixel
cells 1in the sensor plane may not respond to the lighting
condition in the scene/environment properly. As a result, the
pixel values generated from these cell may be defective.
These pixels are called “dead pixels.” The “pixel substitu-
fion” unit 615 replaces each dead pixel by the immediate
previously valid pixel in the row. A RAM 616 consists of the
row and column indices of the dead pixels, which are
supplied by the sensor. This RAM 616 helps to 1dentify the
location of dead pixels 1n relation to the captured image.
Companding module 6235 1s designed to convert each origi-
nal pixel of n-bit (typically n=10) intensity captured from
the sensor to an m-bit intensity value, where m<n (typically,
m=8). Companding module 625 is not needed if the sensor
600 and capture interface 610 provide an m-bit per-pixel
value.

A primary transform module 628 receives companded
sensor 1mage data and performs 1mage compression such as
the DWT based compression. A RAM 629 can be used to
store DW'T coeflicients and other imnformation in executing
DWT compression techniques. Primary transform module
628 can be designed to provide compressed channel by
channel and sub-band by sub-band outputs to Encoder/Data
Packer 630. Encoder/Data Packer 630 may be designed
similar to the design presented in FIG. 4. Encoder/data
packer 630 can be equipped to carry out a variety of binary
encoding schemes, such as entropy encoding and data pack-

10

15

20

25

30

35

40

45

50

55

60

65

3

ing as described above. A RAM 631 may be configured to
store the variable length encoding look up tables and the

zero run length parameters utilized by the Encoder/Data
Packer 630. Encoder/Data Packer 630 provides the encoded

and packed data (in a MMX friendly arrangement) to storage
arrays 640. Encoder/Data Packer 630 reverse the bits for
only the Huffman class code (and stored these in reverse
order in storage arrays 640) such that the remaining portions

comprising the code set can be shifted out 1n block of known
S1Z¢.

Each of the RAM tables 616, 626, 629 and 631 can
directly communicate with a bus 660 so that their data can
be loaded and then later, 1f desired, modified. Further, those
RAM tables and other RAM tables may be used to store
intermediate result data as needed. When the data 1n storage
arrays 640 1s ready to be transferred external to the 1imaging,
apparatus of FIG. 6 it may be placed upon bus 660 for
transfer. Bus 660 also facilitates the update of RAM tables
616, 626, 629 and 631 as desired.

FIG. 7 1s a system diagram of one embodiment of the
invention.

[llustrated 1s a computer system 710, which may be any
ogeneral or special purpose computing or data processing
machine such as a PC (personal computer), coupled to a
camera 730. Camera 730 may be a digital camera, digital
video camera, or any 1mage capture device or 1maging
system, or combination thereof and 1s utilized to capture an
image of a scenc 740. Essentially, captured images are
processed by an 1mage processing circuit 732 so that they
can be efficiently stored 1n an 1mage memory unit 734, which
may be a RAM or other storage device such as a fixed disk.
The 1mage contained within 1mage memory unit 734 that 1s
destined for computer system 710 can be according to one
embodiment of the invention, stored directly as a com-
pressed and MMX friendly encoded image data set. In most
digital cameras that can perform still 1imaging, images are
stored first and downloaded later. This allows the camera
730 to capture the next object/scene quickly without addi-
tional delay. The invention 1n 1ts various embodiments
reduces the decoding requirements of 1mages captured from
the camera 730, allowing for a more efficient system of
Image processing.

The 1mage processing circuit 732 carries out the com-
pression and enhanced zero run encoding 1n accordance with
onc or more embodiments of the mvention. When a com-
pressed and encoded image 1s downloaded to computer
system 710, 1t may be decoded and then rendered to some
output device such as a printer (not shown) or to a monitor
device 720. Image decoding may be achieved using a
processor 712 such as the Pentium™ processor with MMX
Technology (a product of Intel Corporation) and a memory
711, such as RAM, which 1s used to store/load 1nstruction
addresses and result data. Portions of memory 711 (and
registers and other components of processor 712) may store
data justified 1n a right to left rather than the conventional
left to right manner. Computer system 710 may provide to
camera 730 the look-up tables needed for variable length
Huffman value encoding.

The application(s) used to perform the unpacking and/or
decoding of the data set after download from camera 730
may be from an executable compiled from source code
written 1n a language such as C++. The 1nstructions of that
executable file, which correspond with 1nstructions neces-
sary to pack/unpack an encode/decode 1image data, may be
stored to a disk 718 or memory 711. Further, such applica-
tion software may be distributed on a network or a
computer-readable medium for use with other systems.

US 6,195,026 Bl

9

When an 1mage, such as an image of a scene 740, 1s
captured by camera 730, it 1s sent to the 1mage processing
circuit 732. Image processing circuit 732 consists of ICs and
other components which execute, among other functions, the
encoding and MM X friendly data packing of a data set such
as an 1mage. The 1mage memory unit 734 will store the
compressed/encoded/packed data. Once all pixels are pro-
cessed and stored or transterred to the computer system 710
for rendering the camera 730 1s free to capture the next
image. When the user or application desires/requests a
download of 1mages, the encoded 1image data in the 1image
memory unit, are transferred from 1mage memory unit 734

to the I/O port 717. I/O port 717 uses the bus-bridge
hierarchy shown (I/O bus 715 to bridge 714 to system bus
713) to temporarily store the data into memory 711 or,
optionally, disk 718. Computer system 710 has a system bus
713 which facilitates information transfer to/from the pro-
cessor 712 and memory 711 and a bridge 714 which couples
to an I/O bus 715. I/O bus 715 connects various I/O devices
such as a display adapter 716, disk 718 and an I/O port 717,

such as a serial port. Many such combinations of I/O
devices, buses and bridges can be utilized with the mnvention
and the combination shown 1s merely illustrative of one such
possible combination.

In another embodiment of the invention, the MMX
friendly data packing scheme may be utilized 1n arranging
ordinary nonimage data where portions have known of fixed
lengths of words such that these can be stored left to right
and those unknown length words bit reversed with the
packed byte. Such data may be stored 1n a disk, memory 711
or other storage mechanism and can be packed after being

entropy encoded.

The exemplary embodiments described herein are pro-
vided merely to illustrate the principles of the invention and
should not be construed as limiting the scope of the 1mnven-
tion. Rather, the principles of the invention may be applied
to a wide range of systems to achieve the advantages
described herein and to achieve other advantages or to
satisfy other objectives as well.

What 1s claimed 1s:

1. A method comprising;

entropy encoding a set of data values into bits; and

packing 1nto storage the entropy encoded bits by packing
two or more bits of a variable length sequence of bits
1in reverse order 1nto storage and packing blocks of bits
for a fixed length sequence of bits in an unreversed
order 1nto storage.

2. A method according to claim 1 wherein the entropy
encoding includes Huflman coding for each of a plurality of
non-zero data values, the Huffman coding including bits
representing a class code and bits representing a pointer.

3. A method according to claim 2 wherein the baits
representing the class code 1s a variable length sequence of
bits, and wherein the length of the bits representing the
pointer 1s a known fixed length sequence of bits when the
bits representing a class code are 1dentified.

4. A method according to claim 1 wherein the entropy
encoding includes zero run coding, wherein one or more
zeros may be represented by bits representing a flag and bits
representing an optional zero run length value.

5. Amethod according to claim 4 wherein the order of bits
representing the flag and the optional zero run length value
are not reversed.

6. A method according to claim 3 wherein the order of bits
representing the pointer 1s not reversed.

7. A method according to claim 1 wherein reverse order
denotes the ordering of bits with the most significant bits
right justified.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

8. Amachine-readable medium having stored thereon data
representing sequences of instructions, the sequences of
instructions which, when executed by a processor, cause the
processor to:

entropy encode a set of data values mto bits; and

pack 1nto storage the entropy encoded bits by packing two
or more bits of a variable length sequence of bits 1n
reverse order 1nto storage and packing blocks of bits for
a fixed length sequence of bits 1n an unreversed order
into storage.

9. An 1maging system comprising:

a data packer to binary encode a data set of zero and
non-zero values, the data packer to arrange the binary
code such that the packing order of a plurality of bits
from a most significant bit to a least significant bit for
a variable length sequence of bits 1s right to left and the
packing order of bits from a most significant bit to a
least significant bit for a fixed length sequence of bits
1s left to right.

10. An imaging system according to claim 9 further
comprising a compressor coupled with the data packer, the
data packer to receive the data set of zero and non-zero
values as compressed 1mage data output by the compressor.

11. An 1imaging system according to claim 9 comprising:

a storage array coupled with the data packer, the storage
array to store the binary encoded data produced by the
data packer, the storage array arranging data as speci-
fied by the data packer.

12. An 1imaging system according to claim 10, wherein the
data packer and the compressor are incorporated 1n a digital
camera.

13. An 1maging system according to claim 12 further
comprising;

a computer system coupled with the data packer, to
unpack and decode the packed binary encoded bits, by
serially unpacking and decoding bit-by-bit a plurality
of bits from a most significant bit to a least significant
bit of a variable length sequence of bits and shifting out
in blocks bits of a fixed length sequence of bits.

14. An 1maging system according to claim 13 wherein

said computer system 1s based upon MMX technology.

15. The machine-readable medium of claim 8, wherein
the 1nstructions to entropy encode further comprise instruc-
tions which, when executed by a machine, cause the
machine to Huflinan code each of a plurality of non-zero
data values, the Huffman coding including bits representing
a class code and bits representing a pointer.

16. The machine-readable medium of claim 15, wherein
the bits representing the class code 1s a variable length
sequence of bits, and wherein the length of the bits repre-
senting the pointer 1s a known fixed length sequence of bits
when the bits representing a class code are identified.

17. The machine-readable medium of claim 8, wherein
the 1nstructions for reversing the bits of words further
comprise 1nstructions which, when executed by a machine,
cause the machine to order the bits so that the most signifi-
cant bit 1s right justified 1n a memory location.

18. A method of unpacking a plurality of packed binary
encoded bits comprising serially unpacking and decoding
bit-by-bit a plurality of bits from a right justified most
significant bit to a least significant bit of a variable length
sequence of bits and shifting out 1n blocks bits of a fixed
length sequence of bits, wherein the order of the most
significant bit to the least significant bit of the fixed length
sequence of bits 1s left to right.

19. The method of claim 18 wherein serially unpacking
and decoding comprises serially unpacking bit-by-bit a

US 6,195,026 Bl

11

plurality of bits representing a class code and decoding the
serially unpacked bits until the class code 1s 1dentified, and
wherein shifting out comprises shifting out 1n a block an
appropriate number of bits corresponding to a pointer asso-
ciated with the identified class code.

20. The method of claim 19, wherein shifting out 1n a
block an appropriate number of bits comprises looking up
the 1dentified class code 1n a Huilinan table to determine the
appropriate number of bits to shift out 1n a block.

21. The method of claim 19, further comprising shifting
out a single bit representing a ilag, the flag indicating
whether or not a block of L bits representing a fixed length
sequence of bits should be shifted out.

22. An 1maging system comprising;

a compressor to provide a data set of zero and non-zero
values as compressed 1image data;

a data packer to receive the compressed image data, to
binary encode a data set of zero and non-zero values,
and to pack the binary code 1nto a memory; and

a computer system coupled with the data packer, to access
the memory and unpack and decode the packed binary
encoded bits, by serially unpacking and decoding bat-
by-bit a plurality of bits from a most significant bit to
a least significant bit of a variable length sequence of
bits and shifting out 1 blocks bits of a fixed length
sequence.

23. The 1imaging system of claim 22, wherein serially
unpacking and decoding comprises serially unpacking bit-
by-bit a plurality of bits representing a class code and
decoding the serially unpacked bits until the class code 1s
identified, and wherein shifting out comprises shifting out 1n
a block an appropriate number of bits corresponding to a
pointer associated with the identified class code.

5

10

15

20

25

30

12

24. The 1maging system of claim 23, further comprising
shifting out a single bit representing a flag, the flag indicat-
ing whether or not a block of L bits representing a fixed
length sequence of bits should be shifted out.

25. A method comprising;:

using a compressor to provide compressed 1mage data to
a data packer, the compressed 1mage data comprised of
a data set of zero and non-zero values;

using the data packer to binary encode the compressed
image data into a data set of zero and non-zero values
and pack the binary code into a memory, and

using a computer system that 1s coupled with the data
packer to access the memory and unpack and decode
the packed binary encoded baits, by serially unpacking
and decoding bit-by-bit a plurality of bits from a most
significant bit to a least significant bit of a variable
length sequence of bits and shifting out in blocks bits
of a fixed length sequence.

26. The method of claim 22, wherein serially unpacking
and decoding comprises serially unpacking bit-by-bit a
plurality of bits representing a class code and decoding the
serially unpacked bits until the class code 1s 1dentified, and
wherein shifting out comprises shifting out 1n a block an
appropriate number of bits corresponding to a pointer asso-
cilated with the identified class code.

27. The method of claim 23, further comprising using the
computer system to shift out a single bit representing a flag,
the flag indicating whether or not a block of L bits repre-
senting a fixed length sequence of bits should be shifted out.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

