US006192515B1
a2 United States Patent (10) Patent No.: US 6,192,515 Bl
Doshi et al. 45) Date of Patent: Feb. 20, 2001
(54) METHOD FOR SOFTWARE PIPELINING 5,920,724 * T7/1999 Changcceceeeveevevieevieeenenenns 395/709
NESTED LOOPS OTHER PUBLICATIONS
(75) Inventors: Gautam DO_Shi: Sunnyvale, CA (US); Milicev et al. “Predicated software pipelining technique for
Robert Norin, Tigard, OR (US) loops with conditions”, IEEE, 1998, pp. 176—-180.*
_ _ Wolf et al.,, Combining loop transformations considering
(73) A551gnee: Intel COI‘pOI‘ﬂthl‘l, Santa Clara, CA cahes and scheduling, IEEE, 1996, pp. V74286 *
(US) Vegdahl, “A dynamic programming technique for compact-
- _ ing loops”, IEEE 1992, pp. 180—188.*
(*) Notice: Under 35 U.S.C. 154(b), the term of this Dulong, “The IA—64 architecture at work”, IEEE, 1998, pp.
patent shall be extended for 0 days. 243D *
Sha et al., “Polynomial time nested loop fusion with full
(21) Appl. No.: 09/118,603 parallelism”, IEEE, 1996, pp. 9-16.*
(22) Filed: Jul. 17, 1998 * o1ted by examiner
7
(51) | 1) A O PSSR GO6F 9/45 Pr.imary Examiner—Xakali Chaki
(52) US. Cl .. 117795 712/241 (74) Attorney, Agent, or Firm—Leo V. Novakoski
(58) Field of Search 717/5-9; 712/226,
712/241, 245 (57) ABSTRACT
(56) References Cited A method for software pipelining nested loops combines the
inner and outer loops of the nested loop to form a merged
U.S. PATENT DOCUMENTS loop. One or more operations from the outer loop are
activated on selected passes through the merged loop, and
5,051,896 * 9/1991 Lee et al. wveeevereererereeeeenaee. 712/226 " eroed Toop i software pipelined
5,481,723 * 1/1996 Harris et al.oceevnvnnnnnnnnn.n. 395/706 '
5,724,565 * 3/1998 Dubey et al.cocevveeeeenennen. 712/245
5,794,029 * 8/1998 Babaian et al.cocouuuveen..... 712/241 25 Claims, 5 Drawing Sheets

COMBINE INNER & OUTER

LOOP OPERATIONS INTO A 410
MERGED LOOP
CONDITION OUTER LOOP 490
OPERATIONS
SOFTWARE PIPELINE 430

MERGED LOOP

U.S. Patent Feb. 20, 2001 Sheet 1 of 5 US 6,192,515 Bl

100
160
""‘W
140(1) W////
140(2) B(1)
03 ST R
140(4) C2) B33 A@4)
140(5) C(3) B@) A
140(L+3) C(L+1) B(L+2) A(L+3)
140(N) C(N-2) B(N-1)
et B e e
7 170
140(N+2) /
// ////,,._.
172

FIG. 1

U.S. Patent Feb. 20, 2001 Sheet 2 of 5 US 6,192,515 Bl

= 1 —_—
J G J= 1
G
=1 LMAX =1, LMAX
H
o — J=2
G
J=2 G —
L =1, LMAX
L =1, LMAX H
J=3
—G
H ——— L=1, LMAX
J=3 G — H
L=1,LMAX ®
@
' J = JMAX
G
L =1, LMAX
J=JMAX G — H
L:‘I’LMAX FIG- ZB
H I

FIG. 2A

U.S. Patent Feb. 20, 2001 Sheet 3 of 5 US 6,192,515 Bl

350(1) |
350(2) \ 312
350(3) | NOP(G)
350(4) - C(1, B(1,2) A(1,3) NOP(G)
350(5) | NOP(H) C(1.2) B(1,3) A(1,4) NOP(G) 310
350(6) TNOPH) CAd) B4 AUR) NOP@)
350(K+1) NOP(H) C(1,K-2) B(1,K-1) ACLK) .- 620 330(1)
350(K+2) NOP(H) C(1,K-1) B(1K) - -~ "A@R1) NOP(G)
350(K+3) NOP(H) CK) . - -~ BR.Y) A(2.2) NOP(G)
350(K+4) H(1K) . - - - T2) B(2,2) A(2,3) NOP(G)
350(K+5) -~ NOP(H) C(2,2) B(2,3) A(2,4) NOP(G) 330(J)
350(J*K+1) NOP(H) C(J,K-2) B(J':K 1) AUK) _-=-- G J+1 0)
350(J*K+2) NOP(H) C(J,K-1) BUK) .- A(J+1.1) NOP(G
350(J*K+3) NOP(H) CUK) . - - = BU+,1) AJ+1,2) NOP(G)
350(J*K+4) HWK) - - - c'iJ11,1) B(J+1.2) A(J+1.3) NOP(G}
350(J*K+5) * "NOP(H) C(J+1,2) B(J+1,3) A(J+1,4) NOP(G)
350((M-1)*K) NOP(H) C(M-1,K-3) B(IJI-1,K—2) AM-1K-1) NOP(G).
350(M-1)*K+1) | NOP(H) CM-1K2) BM1KA) AMIK), - - - BGIM0) 336(M—1)
350(M-1)*K+2) | NOP(H) CM-1K-1) BM-1K) . - -~ AM1) NOP(G)
350((M-1)*K+3) NOP(H) C(M-1K) - - B{M,1) A(M,2) NOP(G)
350((M-1)*K+4) HIM-1.K) - - = CM,1) BM,2) AM,3) NOP(G)
350(M-1)°K+5) F = NOP(H) C(M,2) B(M.3) AM 4) NOP(G)
350(M*K) NOP(H) C(MK-3) B(I\T1,K-2) AM,K-1) NOP(G)
350(M*K+1) NOP(H) C(MK-2) B(M,K-1) AM.K) NOP(G)
I50(M*K+2) NOP . NOP(H) C(MK-) BMK NOP | 320
350(M*K+3) NOP NOP NOP(H) C(M,K) NOP
350(M*K+4) NOP NOP NOP H(M,K) NOP ‘
350(M*K+5) NOP NOP NOP NOP NOP(H);
322

U.S. Patent Feb. 20, 2001 Sheet 4 of 5 US 6,192,515 Bl

COMBINE INNER & OUTER
LOOP OPERATIONS INTO A 410
MERGED LOOP

CONDITION OUTER LOOP 490
OPERATIONS
SOFTWARE PIPELINE 430

MERGED LOOP

U.S. Patent Feb. 20, 2001 Sheet 5 of 5 US 6,192,515 Bl

COMBINE INNER & OUTER LOOP

INSTRUCTIONS INTO A MERGED 510
LOOP

DETERMINE LOOP INDEX, RANGE 590
FOR MERGED LOOP

DEFINE CONDITIONALS TO PICK

OUT ENTRIES TO & EXITS FROM 530
INNER LOOP INSTRUCTIONS

PREDICATE OUTERLOOP_TOP
INSTRUCTION(s) W/ ENTRY 540
CONDITIONAL

PREDICATE OUTERLOOP_BOTTOM

INSTRUCTION(s) W/ EXIT ol
CONDITIONAL

SOFTWARE PIPELINE MERGED

LOOP)00

FIG. 5

US 6,192,515 Bl

1

METHOD FOR SOFTWARE PIPELINING
NESTED LOOPS

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates to methods for optimizing,
computer code, and in particular, to methods for software
pipelining nested loops.

Art

Loops are soltware structures that allow programmers to
perform repeated operations using a single set of instruc-
tions. A typical source code loop begins with a loop
instruction, €.g. a “Do”, “While” or equivalent statement,
followed by the set of instructions (“loop body”) to be
repeated. Arguments associated with the loop instruction
control the repetition of the loop body. These arguments
include a test for terminating the loop (“loop test™). The loop
test 1s typically a logical function of a variable that is
modified by the loop. It controls a branch mstruction that
either exits (terminates) the loop or returns to the first
instruction of the loop body, depending on whether the test
1s true or false, respectively. In counted loops, the loop
variable 1s an i1ndex that 1s incremented each time the
instructions of the loop body are executed, and the loop test
compares the index with a maximum value.

2. Background

Loops are nested when the body of one loop (the “outer
loop”) includes another loop (the “inner loop”). Perfectly
nested loops are those in which the outer loop includes no
instructions but those of the mner loop. Imperfectly nested
loops are those 1n which the outer loop includes mnstructions
in addition to those of the inner loop. In either case, each
fime the outer loop 1s executed, the 1nstructions that form its
loop body, mcluding the inner loop, are executed. That 1is,
the 1nner loop 1s fully executed on each repetition of the
outer loop. The number of times the inner loop 1s executed
for each 1teration of the outer loop 1s a function of the 1nner
loop test and the loop variable tested.

Depending on how they are implemented, loops can have
a significant impact on the performance of a program. For
example, the loop test 1s a branch condition which, if
mispredicted, requires the processor to flush the current
instructions from its pipeline, retrieve instructions from the
correct branch path, and load these instructions into the
pipeline. Misprediction 1s likely 1n loops since the branch 1s
taken on all but the final 1teration of the loop, and history-
based branch prediction algorithms will predict the branch
taken on the final iteration. The resulting branch mispredic-
fion 1s repeated every time the loop 1s entered. For nested
loops, the 1nner loop 1s entered on each iteration of the outer
loop, and the performance hit attributable to mispredictions
can be significant.

Program performance can also be degraded by the over-
head necessary to set up and terminate each loop. For nested
loops, this overhead 1s multiplied, since the cost 1s incurred
cach time the instructions of the outer loop are repeated. It
the outer loop repeats 100 times, the overhead for the inner
loop 1s mcurred 100 times. The smaller the loop body is,
relative to this overhead, the greater the efficiency cost of the
loop.

A number of methods have been developed to improve the
efficiency with which loops (nested or otherwise) are imple-
mented. For example, software pipelining takes advantage
of the fact that the loop body instructions are repeated on
cach iteration of the loop by implementing the instructions
for different iterations of the loop in parallel. In a loop body

10

15

20

25

30

35

40

45

50

55

60

65

2

of three instructions, the first instruction may operate on
variables for the i”* pass through the loop (“iteration”), while
the second and third instructions are 1mplemented with
variables from the (i-1)*" and (i-2)* iterations.

Under certain circumstances, the overhead cost of nested
loops may be mitigated somewhat by “unrolling and jam-
ming”~ the outer loop. Here, the instructions of the outer loop
body for sequential iterations are combined for processing in
a single 1teration of a modified loop index. Each iteration of
the outer loop then executes instructions for multiple,
sequential values of the modified loop mndex, including the
inner loop instructions. In addition, the outer loop 1nstruc-
fions may be rearranged within the expanded loop body,
instruction dependencies permitting, to further streamline
execution of the loop.

These methods, where applicable, increase the size of the
loop body. The size of the loop body determines the number
of instructions (scope) that a compiler can consider
simultaneously, for implementing an optimization process.
To the extent that these techniques increase the number of
instructions 1n the loop body, they may enable additional
compiler optimizations.

Despite their potential advantages, the above described
techniques for handling loops are typically limited. For
example, loop overhead 1s only reduced to the extent an
outer loop can be unrolled, and this may be limited by
dependencies between the inner and outer loop instructions.
In addition, 1t 1s often practical to implement loop unrolling
and similar techniques for only the two 1nner most loops of
a set of nested loops. Some of these limitations are not
present 1n perfectly nested loops, but imperfectly nested
loops are very common and subject to most of these limi-
tations.

SUMMARY OF THE INVENTION

The present invention 1s a method for software pipelining,
nested loops. In accordance with the present invention, the
inner and outer loops of a nested loop are combined to form
a merged loop. One or more operations from the merged
loop are conditioned to be activated on selected passes
through the merged loop.

In one embodiment of the mnvention, instructions from the
iner and outer loops are merged and outer loop nstructions
are selectively activated using predication. A predicate con-
dition 1s defined for each predicate so that the predicate
condition 1s true when the associated instruction i1s to be
activated.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be understood with reference
to the following drawings in which like elements are 1ndi-
cated by like numbers. These drawings are provided to
1llustrate selected embodiments of the present invention and
are not intended to limit the scope of the mnvention.

FIG. 1 represents a loop following software pipelining.

FIGS. 2A and 2B represent nested loops following con-
ventional software pipelining methods.

FIG. 3 represents a nested loop that has been software

pipelined using a method 1n accordance with the present
invention.

FIG. 4 1s a flowchart representing an overview of the
method for software pipelining nested loops 1n accordance
with the present mvention.

FIG. 5 1s a more detailed flowchart showing one embodi-
ment of the method of FIG. 4.

US 6,192,515 Bl

3

DETAILED DESCRIPTION OF THE
INVENTION

The following discussion sets forth numerous specific
details to provide a thorough understanding of the invention.
However, those of ordinary skill in the art, having the benefit
of this disclosure, will appreciate that the 1nvention may be
practiced without these specific details. In addition, various
well known methods, procedures, components, and circuits
have not been described 1n detail in order to focus attention
on the features of the present invention.

The present invention provides a method for combining
operations from two or more nested loops 1into a merged loop
and software pipelining the merged loop. This software
pipelined merged loop offers multiple advantages over the
nested loop structure from which 1t 1s formed. For example,
the loop overhead penalty associated with initiating and
terminating the inner loop on each iteration of the outer
loop(s) 1s significantly reduced as the number of separate
loops 1n the nested structure are reduced. For a pair of nested
loops pipelined 1n accordance with the present invention, the
iner loop overhead cost 1s incurred only once. The branch
mispredictions assoclated with the individual loops in the
nested structure are likewise reduced as the number of loops
1s reduced. The merged loop has a larger loop body, which
increases the instruction scope to which various compiler
optimizations may be applied. The merged loop also makes
better use of processor resources and increases the oppor-
tunities for prefetching data.

In one embodiment of the present invention, these and
other advantages are provided by combining instructions
from two or more loops into a merged loop and associating
a predicate with selected instructions in the merged loop.
The predicate condition for a selected instruction 1s chosen
to activate the instruction (or results generated by the
instruction) during appropriate iterations of the merged loop.
For example, the predicate condifions for an instruction
from a given loop may be based upon a test from a loop that
1s mnternal to the given loop 1n the original nested structure.
Other embodiments of the invention may employ other
methods to selectively activate outer loop instructions or
their elfects.

The method of the present invention may be better
understood with reference to standard software pipelining
techniques. A pseudo code representation of a counted Do
loop 1s:

DO (initialize(L), test(L), update(1.))
a Loop (I)
b
ENDDO
e

In this example, “DO ()” is the loop instruction, instruc-
fions “a” and “b” form the loop body, and “ENDDO”
terminates the loop. The loop variable, L, tracks the number
of iterations of loop(l), initialize(Ll) represents its initial
value, and update(L.) indicates how L is modified on each
iteration of the loop. Test(L) 1s a logical function of L, e.g.
L==ILMAX, that terminates loop (I) when it is true, passing

control to 1instruction “e”. Other types of loops, e.g.

“WHILE” and “FOR” loops, follow a similar pattern,
although they may not explicitly specify an 1nitial value, and
the loop variable may be updated by instructions in the loop
body.

FIG. 1 represents loop (I) following software pipelining.
Here, 1t 1s assumed that source code instructions a, b

5

10

15

20

25

30

35

40

45

50

55

60

65

4

translate to machine language 1nstructions A, B, and C. In a
software pipeline 100, the different instructions correspond
to the stages of a pipeline. Instructions 1n a given row of
pipelined loop 100 are processed concurrently, and each
instruction 1s evaluated for increasing values of the loop
variable L 1n sequential rows. For purposes of 1illustration,
the loop variable 1s indicated 1n parenthesis following each
instruction. For example A(1), B(3), and C(N-2) represent
instructions A, B, and C evaluated using operands appro-

priate for the 1%, 3", and N-2"“ iterations through the loop.

During a prolog 160, the software pipeline 100 1s filled.
Thus, at cycle 140(1), instruction A is executed using the
operands appropriate for L=1, e.g. A(1). At cycle 140(2),
instructions A and B are executed using operands appropri-
ate for L=2 and =1, respectively, e.g. A(2), B(1). At 140(3),
A(3), B(2), and C(1) are executed. During prolog 160,
resources associated with istructions B and/or C are not
utilized. For example, 1if A, B, and C are floating point
instructions and loop 100 1s executed 1n a processor having
four floating point units (FPUs), three FPUs are idle at cycle
140(1), two are idle at cycle 140(2) and one is idle at cycle
140(3). Idle processor resources (waste 162) represent one
component of loop overhead.

At cycle 140(3), the software pipeline is finally filled, and
mstructions A, B, and C are evaluated concurrently for
different values of L through cycle 140(N). For cycles
140(3)-140(N) the slots of software pipeline 100 are full. At
cycle 140(N), instruction A has been evaluated for all N
iterations of loop (I).

At cycles 140(N+1) and 140(N+2), software pipeline 100
empties as instructions B and C complete their N iterations
of loop 100. These cycles form an epilog 170 of software
pipeline 100 for which resources associated first with A and
then with B are idled. Idle processor resources (waste 172)
represent another component of loop overhead.

The significance of loop overhead for a given loop
depends on the number of times the loop 1s iterated each
fime 1t 1s entered, the number of 1structions 1n the loop, and
the number of times the loop 1s entered. The first two factors
determine the number of rows for which the software
pipeline 100 1s full relative to the number of rows 1n the
epilog and prolog, e.g. the overhead. The third factor deter-
mines the number of times the overhead i1s incurred. In
oeneral, a loop that i1s nested inside another loop 1s fully
iterated and 1ts loop overhead 1s incurred each time the outer
loop 1s entered.

A pseudo code representation of an outer loop (II) includ-
ing an inner loop (I) is:

DO (initialize(J), test(J), update(J))
g
DO(initialize(L), test(L), update(1.))
a Loop(I)
b
ENDDO
h
ENDDO

Loop(II)

In the disclosed example, outer loop (II) includes instruc-
tions g, h and loop (I) within its loop body. Test(L) and
test(J) represent loop termination conditions L==LMAX and
J==JMAX. Thus, each repetition of loop (II) executes
instruction g, followed by the iterations of loop (I)
(instructions a and b), followed by instruction h. Loop index
J 1s then incremented and the process repeated up to

J=IMAX. When nested loop (II) is compiled, loop(I) is

US 6,192,515 Bl

S

ogenerally software pipelined 1n the manner described in
conjunction with FIG. 1.

FIG. 2A represents the IMAX iterations of outer loop (II).
For purposes of 1llustration, 1t 1s assumed that source code
instructions g, h are translated to assembly instructions G, H.
For J=1, instruction G of outer loop (II) is executed, fol-
lowed by LMAX iterations of loop (I) (parallelogram 200),
followed by instruction H of outer loop (II). This process is
repeated for J=2 through JMAX. As indicated, each time
loop (I) 1s entered, loop overhead 1s incurred in the form of
unused 1instruction slots associated with prolog 160 and
epilog 170 (FIG. 1).

In the example of FIG. 2A, instruction A 1s assumed to
depend on 1nstruction G. and instruction H 1s assumed to
depend on instruction C. Thus, instruction G, loop(I), and
instruction H are executed sequentially. FIG. 2A also rep-
resents the case where instructions A, B, and C fully utilize
processor resources, €.g. FPUs, that are also required by
instructions G and H.

FIG. 2B represents nested loops (I), (II) where instruc-
tions G and H can be processed concurrently with inner loop
instructions A and C, respectively, e.g. A does not depend on
instruction G, mstruction H does not depend on 1nstruction
C, and sufficient processor resources are available to process
all 1nstructions. This provides some speed up 1n the pro-
cessing of nested loops (I), (IT). However, it does not address
the performance loss associated with repeated prologs and
epilogs of loop (I). Nor does it address the branch mispre-
dictions associated with terminating loop (I) for each itera-
tion of outer loop (II).

The present invention allows two or more loops to be
merged and software pipelined as a single loop, 1ncreasing
the scope of 1instructions available for compiler
optimizations, reducing the overhead associated with filling
and emptying the software pipeline, and reducing branch
mispredictions attributable to repeated entry and exit of the
iner loop.

A pseudo-code representation of nested loops (I), (II)
modified 1n accordance with one embodiment of the present
invention 1s:

JITER = [(IMAX - ISTART)/JINC] + 1
LITER = [(LMAX - LSTART)/LINC] + 1
J = ISTART - JINC
L = LSTART
DO I =1, ITER*LITER, 1
[F (1. .EQ. LSTART) THEN
J =171+ JINC
OUTERLOOP__TOP
ENDIF
INNERLOOP__BODY
L= L+ LINC
[F (1. .GT. LEND) THEN
OUTERLOOP__ BOTTOM
L = LSTART
ENDIF
ENDDO

Outer loop 1nstructions g and h, represented by
OUTERLOOP_TOP and OUTERLOOP_BOTTOM,
respectively, and mner loop instructions a and b, represented
by INNERLOOP__BODY, are combined 1n a single, merged
loop. A composite loop variable, I, for the merged loop,
varies from 1 to JITER*LITER, and conditionals are
inserted 1n the merged loop. In the above example, the
conditional, IF(L .EQ. LSTART), picks up those iterations of

the merged loop for which the mner loop of the original

10

15

20

25

30

35

40

45

50

55

60

65

6

nested structure 1s reentered, e.g. L .EQ. LSTART. When this
conditional 1s true, J 1s mncremented and OUTERLOOP__
TOP instruction(s) is activated. Otherwise, these steps are
skipped. Similarly, the conditional, IF(L.GT. LEND), picks
up those 1terations of the merged loop for which the inner
loop of the original nested structure i1s exited. When this
conditional 1s true, OUTERLOOP BOTTOM instruction
(s) is activated and L is reinitialized. Otherwise, these steps
are skipped.

In the disclosed embodiment, the outer loop instructions
are executed only for those iterations of composite variable
I for which the original outer loop variable changes, 1.€. prior
to entering the mner loop and subsequent to completing the
inner loop. The resulting merged loop may be software
pipelined into a compact structure that significantly reduces
loop overhead for the mner loop and provides a larger loop
body on which additional optimizations may be 1mple-
mented.

The present invention may be implemented using varia-
tions on the approach described above. In certain cases,
references to the iner and outer loop variables to activate
the conditionals may be eliminated. For example, where L
varies from 1-10 and J varies from 1-10, the merged loop
variable I goes from 1-100. Outer loop 1nstructions can be
activated on 1terations for which I Mod 10 equals O. In
addition, a single conditional may be used to test for the end
of the mner loop and activate the 1nstructions represented by
OUTERLOOP_BOTTOM and OUTERLOOP__TOP. Other
variations will be apparent to persons skilled in the art and
having the benelit of this disclosure.

FIG. 3 is a schematic representation of nested loops (1),
(IT) that have been modified and pipelined as a single loop
in accordance with the present mvention. In order to 1llus-
trate the flow of instructions through pipeline 300, each
instruction 1s identified by a pair of indices (J, L). These
indices indicate that the instructions are evaluated using
operands suitable to the J# iteration of the outer loop and the
L” iteration of the inner loop. For example, A(1,3) refers to
instruction A when it 1s executed using operands appropriate
for the first iteration of the outer loop (J=1) and the third
iteration of the inner loop (L.=3). It is emphasized that
software pipeline 300 1s based on the single merged loop for
which a single loop index I 1s operative. I varies between 1
and JITER*LITER to accommodate all combinations of
inner and outer loop 1terations 1n a single loop that 1s formed
by merging outer loop (II) and inner loop (I) to a single loop
with 1nstructions G, A, B, C, H. In the disclosed example,

IMAX=M and LMAX=K. The outer and inner loop indices
are provided to facilitate tracking the instructions.

For J=1, instructions G, A, B, C, H that form the merged
loop are loaded into the slots of a software pipeline 300
during a prolog 310. These instructions are subsequently
drained from merged loop 300 1 an epilog 320, when
J=IMAX=M. Wasted instruction slots 312 and 322 are
assoclated with prolog 310 and epilog 320, but not with the
intervening 1ncrements of outer loop index J. During
loading, G is activated for cycle 350(1) and deactivated for
the next K cycles 350(2)-350(K+1), e¢.g. while the instruc-
tions of iner loop complete their first K iterations. The
inactive state of G is indicated by no-operations (NOP(G))
in FIG. 3. A place holder for H (NOP(H)) is loaded into
software pipeline 300 during prolog 310, but H 1s not
activated until cycle K+4, following completion of the K
iterations of inner loop (I).

Dashed lines 330(1), 330(2) . . . 330(J-1) indicate where
in software pipeline 300 instructions transition between

US 6,192,515 Bl

7

different values of outer loop index J occur. For example, G
1s activated at cycle K+1, when the first instruction of the
inner loop body has completed its first K iterations, A(1,K).
In effect, G 1s turned on, temporarily, before the instructions
of inner loop (I) begin a second set of K iterations at cycle
K+2. At cycle K+4, when the last instruction of the inner
loop body has finished 1ts first K iterations, H 1s activated.
Thus, H 1s turned on following completion of a full cycle of
inner loop instructions.

Cycles K+1 through K+4, spanned by line 330(1), dem-
onstrate one of the advantages of the present invention.
Instead of draining instructions from software pipeline 300
when outer loop variable J normally would increment, the
present 1nvention selectively activates the outer loop
instruction(s) while continuing to process inner loop instruc-
tions. The timing with which the outer loop instruction(s) is
activated takes mto account any dependencies between the
outer and inner loop mstructions. In the illustrated example,
it 1s assumed that instruction A depends on G and H depends
on C. Accordingly, G(2,0) is activated in software pipeline
during cycle K+1, when the K iteration of A for the J=1*
iteration of outer loop (II) is completing. This allows G to
complete before A(2,1), e.g. the first iteration of A for J=2,
1s processed. Thereafter, the first instances of instructions B
and C for the J=2 iteration of outer loop (II) occur in cycles
K+3 and K+4, respectively.

Thus, software pipeline 300 1s uninterrupted as sequential
passes through inner loop instructions are processed. In
particular, there 1s no need to drain and refill software
pipeline 300 with mner loop instructions before and after
executing G. Sumilarly, H 1s activated at cycle K+4, after the
last iteration of 1nstruction C for the J=1 loop has completed.

Merged software pipeline 300 also eliminates most
branch mispredictions associated with the termination
condition, Test(L). These mispredictions are substantially
climinated by scheduling repeated iterations through the
instructions of inner loop (I) sequentially and adjusting the
index values as needed. Also, software pipeline 300 1s wider
than pipeline 200, since outer loop instructions G and H are
implemented by previously unused resources. Merged loop
pipeline 300 thus provides the compiler with greater scope
(more instructions) for various other compiler optimizations.

FIG. 3 represents nested counted loops that have been
modified 1n accordance with the present invention, but the
present mvention 1s applicable to nested loops of any type.
For example, nested loops that include various types of
non-counted loops may be merged and pipelined using the
present mvention. The loop variables tested by these loops
to determine when to terminate may be adjusted by one or
more operations within the loop, 1n contrast to the simple
increment/decrement scheme of counted loops. In this more
ogeneral case, a composite loop variable for the merged loop
reflects the counted/non-counted nature of the component
loops, and the loop test for the merged loop 1s the logical
AND of the loop tests of the component loops. As 1n the
counted loop example, the loop test(s) of the inner loop(s) is
monitored to determine when operations of the outer loop(s)
should be activated. For example, OUTERLOOP_ TOP
operations are activated when the inner loop variable is
initialized, and OUTERLOOP__BOTTOM operations are

activated when the 1nner loop test evaluates true.

FIG. 4 1s a flow chart showing an overview of a method
400 1n accordance with the present imnvention for pipelining
nested loops. At step 410, the inner and outer loops are
combined to form a merged loop. Selected outer loop
operations are then conditioned 420 so they are activated

10

15

20

25

30

35

40

45

50

55

60

65

3

when appropriate during processing of the merged loop. In
onc embodiment of the mvention, outer loop instructions
may be selectively activated in the merged loop through
predication, using appropriate predicate conditions, e.g.
FIG. 3. In another embodiment, outer loop 1nstructions may
be executed on each iteration of the merged loop. In this
embodiment, the results of the instructions may be commiut-
ted on only selected iterations using, for example, condi-
tional moves. The present invention 1s not limited to any
particular method for selectively activating outer loop
instructions or their effects on the program.

At step 430, the merged loop 1s software pipelined. This
1s typically done at compile time as part of the optimization
procedure. The compiler translates the instructions from
source code into machine code (if necessary) and the trans-
lated instructions are optimized. Once the merged loop 1s
defined and the outer loop instructions are appropriately
conditioned, standard software pipelining methods may be
used to complete the process.

FIG. 5 1s a more detailed flowchart of one embodiment of
method 400. At step 510, operations from the inner and outer
loops are combined to form a merged loop. A loop variable
and loop test are determined 520 for the merged loop from
the loop variables and tests of the minner and outer loops.
Conditionals are defined 530 to pick out where 1n the merged
loop the original inner loop is entered and exited (entry and
exit conditionals). Operations originating in the outer loop
that precede the mner loop are predicated 540 using the entry
conditional. Operations originating in the outer loop that
follow the inner loop are predicated 5350 using the exit
conditional. The merged loop 1s then software pipelined 560.
As noted above, this may be done using standard techniques.
Moreover, additional compiler optimizations may be applied
to 1nstructions of the merged loop to furter enhance perfor-
mance of the pipelined instructions.

The present invention has been described in detail for the
case 1n which an inner loop has been combined with
instructions from an outer loop. Persons skilled in the art,
having the benefit of this disclosure, will recognize that the
present invention may be used to combine an inner loop with
more than one outer loop. In addition, the use of conditionals
in general, and predicates, 1n particular, may be applied to
instructions of the inner loop, to further facilitate software
pipelining of the merged loop. In the disclosed embodiment,
for example, the mner loop instructions may be predicated
to turn on selectively during prolog 310, as needed, to fill the
instruction slots 1 software pipeline 300. In addition, the
inner loop instructions may be predicated to selectively turn
off during epilog 320, as needed, to drain the instruction
slots 1n software pipeline 300.

In the exemplary embodiments, pipelined instructions
have been shown executing for sequential values of the loop
variable, e.g A(N) B(N+1) C(N+2). This is not always
possible since 1nstructions may have relatively long
latencies, 1n which case dependent instructions must be
loaded 1nto the pipeline in a manner that accommodates the
latency. For example, if A takes three clock cycles to
complete and B depends on A, the instructions may be
scheduled onto the pipeline as follows: A(N) B(N+3) C(N+
4). The present invention may be applied to nested loops,
whether or not such dependency issues exist.

It 1s further noted that the arrangement of instructions
within a given cycle of software pipeline 300 follows a
standard form for indicating the filling and emptying of the
mstruction slots. It 1s noted, however, that the instruction
dependence 1s reflected 1n the relative placement of rows of

US 6,192,515 Bl

9

instructions, rather than the placement of individual mstruc-
fions within a given row. Accordingly, one embodiment of
software pipeline 300 may be represented in an alternative
form that emphasize the role of predication in turning on and
off both mner and outer loop 1nstructions.

P(1)*G P(2)*A, P(3)*B .. . P()*INST . . . P(M)*H.

In this representations, predicates (conditionals) for the
different instructions are represented by P(J), where the
index 1s included to distinguish predicates for different
instructions. The various predicates activate/deactivate their
assoclated instructions as necessary to {ill the software
pipeline and execute outer loop instructions at appropriate
junctures 1n the merged loop. Predicate conditions associ-

ated with each instruction are defined to activate/deactivate
the 1nstruction as needed.

There has thus been provided a method for software
pipelining nested loops by combining instructions from the
inner and outer loops of the nested loop structure into a
merged loop. Conditionals are added to the outer loop
instructions 1n the merged loop to selectively activate these
instructions where appropriate. The merged loop, mncluding
the conditionals, 1s then software pipelined using standard
compiler methods.

What 1s claimed 1is:

1. A method for processing nested inner and outer loops
comprising:

forming a merged loop from the inner and outer loops;

and

conditioning one or more operations from the merged
loop to be activated on selected 1terations of the merged
loop.
2. The method of claim 1, wherein conditioning com-
Prises:
identifying one or more nstructions from the merged
loop; and

predicating the one or more merged loop instructions.
3. The method of claim 2, wherein predicating comprises:

identifying a loop test and initial loop variable for the
inner loop;

defining a first predicate that 1s true when the loop test 1s
satisfied; and

defining a second predicate that 1s true when the loop
variable 1s 1n its initial state.
4. The method of claim 1, wherein conditioning com-
PIISES:
identifying one or more results associated with the one or
more merged loop operations; and

conditioning the one or more results to be available to
instructions of the merged loop on selected 1terations of
the merged loop.

5. The method of claim 1, wherein conditioning com-
prises conditioning one or more instructions from the
merged loop to be active on selected iterations of the merged
loop.

6. The method of claim 1, wherein conditioning com-
prises conditioning one or more results associated with one
or more 1nstructions from the merged loop to be available on
selected 1terations of the merged loop.

7. A method for software pipelining instructions from
inner and outer loops of a nested loop comprising:

combining operations of the mnner and outer loops to form
a merged loop; and

predicating one or more operations of the combined loop
to activate the predicated instructions on selected itera-
tions of the merged loop.

10

15

20

25

30

35

40

45

50

55

60

65

10

8. The method of claim 7, wherein combining instructions
COMPIISES:

defining a merged loop body to include operations from
the 1nner and outer loops;

defining a loop variable for the merged loop body from
loop variables of the mner and outer loops; and

defining a merged loop test from loop tests associated
with the mner and outer loops.
9. The method of claim 7, wherein predicating one or
more operations cComprises:

defining the predicate to be true according to a selected
property of the inner loop; and;

gating one or more of the outer loop operations with the

predicate.

10. The method of claim 9, wherein defining the predicate
comprises defining a first predicate to be true when an 1nner
loop test 1s true.

11. The method of claim 9, wherein defining the predicate
condition comprises defining a second predicate to be true
when an 1nner loop variable 1s mitialized.

12. A method for preparing nested inner and outer loops
for processing, the method comprising:

combining operations from the mner and outer loops;

defining a merged loop variable from loop variables
associated with the 1nner and outer loops;

defining a merged loop test from loop tests associated
with the mner and outer loops; and

gating one or more operations from the outer loop on a

condition derived from the inner loop.

13. The method of claam 12, wherein gating comprises
gating one or more operations from the outer loop according
to a condition derived from the loop test of the inner loop.

14. The method of claam 12, wherein gating comprises
gating one or more operations from the outer loop according
to a condition derived from an 1nitial state of an 1nner loop
variable.

15. A method for processing a nested loop of mnner and
outer loop istructions as a merged loop, the method com-
prising:

executing inner loop 1nstructions for a given iteration of

the merged loop;

evaluating one or more conditions according to a loop test
and loop wvariable associated with the 1nner loop
mstructions; and

gating one or more outer loop 1nstructions according to
the one or more conditions.
16. The method of claim 15, wherein evaluating com-
Prises:
evaluating a first condition that 1s true when the loop test
of the iner loop 1s true; and

evaluating a second condition that i1s true when the 1nner
loop variable 1s 1n an 1nifial state.
17. The method of claam 15, wherein gating comprises:

executing one or more outer loop instructions that precede
the 1inner loop 1nstructions when the second condition 1s
true; and

executing one or more outer loop instructions that follow
the 1nner loop mstructions when the first condition 1s
true.

18. A machine readable storage medium on which are
stored 1nstructions that may be executed by a processor to
implement a method for processing nested inner and outer
loops, the method comprising:

forming a merged loop from the inner and outer loops;
and

US 6,192,515 Bl

11

conditioning one or more operations from the outer loop
to be activated on selected iterations of the merged
loop.
19. The machine readable medium of claim 18, wherein
condifioning comprises:

1dentitying one or more 1nstructions from the outer loop;
and

predicating the one or more outer loop 1nstructions.
20. The machine readable medium of claim 19, wherein
predicating comprises:

identitying a loop test and initial loop variable for the
inner loop;

defining a first predicate that 1s true when the loop test 1s
satisfied; and

defining a second predicate that is true when the loop
variable 1s 1n 1ts 1nitial state.

21. The machine readable medium of claim 18, wherein
condifioning comprises:

identifying one or more results associated with the one or
more outer loop 1nstructions; and

conditioning the one or more results to be available to
instructions of the merged loop on selected 1terations of
the merged loop.

10

15

20

12

22. A machine readable medium on which are stored
instructions that may be executed by a processor to 1mple-
ment a method comprising;:

executing an iteration of a merged loop, the merged loop
including mner and outer loop operations;

testing a merged loop variable that 1s derived from an
inner loop variable and an outer loop variable; and

repeating executing and testing responsive to the merged

loop variable having a first value.

23. The machine readable medium of claim 22, wherein
testing the merged loop variable comprises comparing the
merged loop variable to a value determined from inner and
outer loop tests.

24. The machine readable medium of claim 22, wherein
executing an iteration of the merged loop comprises execut-
ing the outer loop operation 1if a first condition 1s met.

25. The machine readable medium of claim 24, wherein
executing an iteration of the merged loop comprises:

ecvaluating a predicate to determine whether the first
condition 1s met; and

executing the outer loop operation if the first condition 1s
met.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,192,515 Bl Page | of |
DATED . February 20, 2001
INVENTOR(S) : Doshi et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 8,
Line 24, delete “minner’” and replace with -- inner --.
Line 34, delete “furter” and replace with -- further --.

Signed and Sealed this

Second Day of April, 2002

Antest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

