US006182100B1
a2 United States Patent (10) Patent No.: US 6,182,100 B1
Schmookler 45) Date of Patent: Jan. 30, 2001
(54) METHOD AND SYSTEM FOR PERFORMING 5,524,089 * 6/1996 TaKanocccceeeeeeerueenses 708/517
A LOGARITHMIC ESTIMATION WITHIN A 5,570,310 * 10/1996 SMIth wevvvevverveeeereseereereeren.. 708/517
DATA PROCESSING SYSTEM 5,652,584 * T7/1997 YOON .coovviiiviiiiiiiiiiinieiinnen, 341/89
(75) Inventor: Martin Stanley Schmookler, Austin, * clted by examiner
TX (US) . . :
Primary Fxaminer—Chuong Dinh Ngo
(73) Assignee: International Business Machines (74) Attorney, Agent, or Fir W‘C&ﬁmef K. Salys; Felsman,
Corporation, Armonk, NY (US) Bradley, Vaden, Gunter & Dillon, LLP
(*) Notice: Under 35 U.S.C. 154(b), the term of this 57) ABSTRACT
patent shall be extended for 0 days. A method for performing a logarithmic estimation on a
positive floating-point number within a data processing
(21) Appl. No.: 09/106,942 system 1s disclosed. A floating-point number includes a sign

bit, multiple exponent bits, and a mantissa having an implied

(22) Filed: Jun. 30, 1998 one and multiple fraction bits. A fraction part of an estimate

(51) INte CL7 e GO6F 7/38 1s obtained via a table lookup utilizing the fraction bits of the
(52) US.CL .. 708/277; 708/495: 708/512 lloating-point number as input. An integer part of the esti-
(58) Field of Search 708/277. 512 mate 1S obtained by converting the exponent bits to an

708/517. 606. 495 unbiased representation. The integer part 1s then concat-
’ ’ enated with the fraction part to form an intermediate result.

(56) References Cited Subseq}lently, the 1intermediate reS}llt 1s normalized to yield
a mantissa, and an exponent part 1s produced based on the
U.S. PATENT DOCUMENTS normalization. Finally, the exponent part 1s combined with
4583180 * 4/1986 KMELZ woveooeeooeooooooeeoeoonn 08004 tDC Mantissa to form a floating-point result.
5.197,024 * 3/1993 Pickett ..ocovovoverererrrersererennss 708/517
5,365,465 * 1171994 Larsoncccceeeeevevieeeennennnnn 708/204 8 Claims, 3 Drawing Sheets
10
START
11
S

PARTITION X INTO
€XPhias AND xF

§1 2
OBTAIN UNBIASED
EXPONENT, exp

OBTAIN
UNNORMALIZED
MANTISSA VIA
TABLE LOOKUP

14

IS exp pigs
NEGATIVE
?

COMPLEMENT exp
AND UNNORMALIZED
MANTISSA

COMBINE exp AND
UNNORMALIZED
MANTISSA TO FORM
AN INTERMEDIATE
RESULT
§‘1 6
NORMALIZE
INTERMEDIATE
RESULT AND

GENERATE UNBIASED
EXPONENT
g‘l 7

COMBINE UNBIASED
EXPONENT AND
NORMALIZED

FRACTION TO
FORM RESULT

U.S. Patent

Jan. 30, 2001

10
11

PARTITION X INTO
€XPpias AND xF

12
OBTAIN UNBIASED
EXPONENT, exp
13

OBTAIN
UNNORMALIZED

MANTISSA VIA
TABLE LOOKUP

1S €XDP bias
NEGATIVE
?

195

COMBINE exp AND
UNNORMALIZED
MANTISSA TO FORM
AN INTERMEDIATE
RESULT

NORMALIZE
INTERMEDIATE

RESULT AND
GENERATE UNBIASED
EXPONENT

COMBINE UNBIASED
EXPONENT AND
NORMALIZED

FRACTION TO
FORM RESULT

Sheet 1 of 3

MANTISSA

US 6,182,100 B1

14

COMPLEMENT exp
AND UNNORMALIZED

U.S. Patent Jan. 30, 2001 Sheet 2 of 3 US 6,182,100 B1

X = b4 In decimal
= 0 10000100 10110000
sign exponent fraction
bit bits (biased) bits
subtract
bias
0000 0101
101100
TABLE | +000100 from TABLE |
110000
sign bit of v vk

y = 00000101.11000000 (intermediate
result)

remove leading zeros
and leading one

exp =8-6 = 2 0111 0000 (normalized fraction)
= 00000010
add bias = 10000001
result y = sign bit, biased exponent, normalized fraction

22 %1.01110000

5.75 Iin decimal

Fig. 2

1INN JOV34d1NI SN

US 6,182,100 B1

LINN 1NIOd

“ONILVOTd ddd JHOL1S/AVOT

Sheet 3 of 3

Lt bt

Jan. 30, 2001

LINN NOILONYLSN!

U.S. Patent

Hd9

0¢

L1INN
NOILITdWNOOD

LINN
d3931N|

Gt

US 6,182,100 BI1

1

METHOD AND SYSTEM FOR PERFORMING
A LOGARITHMIC ESTIMATION WITHIN A
DATA PROCESSING SYSTEM

RELATED PATENT APPLICATTON

The present patent application 1s related to a copending
application U.S. Ser. No. 09/106,944 filed on even date,

entitled “METHOD AND SYSTEM FOR PERFORMING A
POWER OF TWO ESTIMATION WITHIN A DATA-
PROCESSING SYSTEM” (Attorney Docket No. AT9-98-
063).

BACKGROUND OF THE INVENTION

1. Technical Field

The present mvention relates to a method and system for
data processing 1n general, and 1n particular to a method and
system for performing a numerical estimation within a data
processing system. Still more particularly, the present inven-
fion relates to a method and system for performing a
logarithmic estimation within a data processing system.

2. Description of the Prior Art

A general purpose processor typically cannot perform a
logarithmic function as efficiently as other mathematical
operations such as additions, subtractions, and multiplica-
tions. A logarithmic function 1s likely to require many more
processor cycles than a relatively processor cycle-
consuming multiplication operation. The present disclosure
provides a method for performing a logarithmic estimation,
1.e., y=log, X, within a general purpose processor, where
both the argument X and the result y are represented 1n a
floating-point format. Without loss of generality, the
floating-point format used for the purpose of illustration 1s

the IEEE 754 format.

SUMMARY OF THE INVENTION

In view of the foregoing, it 1s therefore an object of the
present mvention to provide an improved method and sys-
tem for data processing.

It 1s another object of the present invention to provide an
improved method and system for performing a numerical
estimation within a data processing system.

It 1s yet another object of the present invention to provide

an 1mproved method and system for performing a logarith-
mic estimation within a data processing system.

In accordance with a preferred embodiment of the present
invention, a floating-point number 1ncludes a sign bit, mul-
fiple exponent bits, and a mantissa having an 1mplied one
and multiple fraction bits. A fraction part of an estimate 1s
obtained via a table lookup utilizing the fraction bits of the
floating-point number as mput. An integer part of the esti-
mate 15 obtained by converting the exponent bits to an
unbiased representation. The integer part 1s then concat-
enated with the fraction part to form an intermediate result.
Subsequently, the intermediate result 1s normalized to yield
a mantissa, and an exponent part 1s produced based on the
normalization. Finally, the exponent part 1s combined with
the mantissa to form a fHloating-point result.

All objects, features, and advantages of the present inven-
tion will become apparent in the following detailed written
description.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention itself, as well as a preferred mode of use,
further objects, and advantages thereof, will best be under-

10

15

20

25

30

35

40

45

50

55

60

65

2

stood by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 1s a high-level flow diagram illustrating a method
for performing a logarithmic estimation within a data pro-
cessing system, 1n accordance with a preferred embodiment
of the present 1nvention;

FIG. 2 1s an example illustrating a method for performing,
a logarithmic estimation within a data processing system, 1n
accordance with a preferred embodiment of the present
mvention;

FIG. 3 1s a block diagram of a general purpose processor
in which a preferred embodiment of the present mmvention
may be incorporated.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

The present invention may be executed 1n a variety of data
processing systems, including microprocessors and micro-
controllers. For the purpose of illustration, a preferred
embodiment of the present invention, as described below,
may be 1implemented on a PowerPC™ processor manufac-

tured by International Business Machines Corporation of
Armonk, N.Y.

A. Overview

As mentioned previously, one of the objectives of the
present invention 1s to provide a fast implementation of a
y=log, X function within a general purpose floating-point
processor, where x and y are 32-bit single precision floating-
point numbers. According to the IEEE 754 format, a nor-
malized floating-point number, such as x, 1s represented by
three groups of bits, namely, a sign bit, exponent bits, and
mantissa bits. The sign bit 1s the most significant bit of the
floating-point number. The next eight less significant bits are
the exponent bits, which represent a signed biased exponent
of the floating-point number. An unbiased exponent can be
computed by subtracting 127 from the biased exponent. The
23 least significant bits are the fraction bits; and the mantissa
is computed by dividing these 23 bits with 2% and adding
1.0 to the quotient.

Excluding the sign bit, a floating-point number x can be
considered as a product of two parts corresponding to the
exponent and the mantissa, respectively. The part corre-
sponding to the exponent of x has the value 2%, where exp
1s the unbiased exponent. Thus, log, x can be expressed by
the sum of the logs of the above two parts (i.e., log,
2“P+log, mantissa). The log, 27 is merely the unbiased
exponent, exp, itself, which 1s a signed integer. The log,
mantissa 1s a positive fraction part of the floating-point result
y, which can be denoted as yF. Because 1Z=mantissa<2,
therefore 0=yF<1, where yF=log, mantissa. Thus, the
floating-point result y can be obtained as follows:

v=exp+log, mantissa

where exp 1s the unbiased exponent of x, and mantissa 1s the
mantissa of X.

If a graph of the log, mantissa function 1s compared with
a graph of a linear function (mantissa-1) within the range of
1 to 2 for the mantissa, it 1s observed that the results from
the above two functions are 1dentical at the endpoints, while
the results from the log, mantissa function 1s typically
slightly greater than the results from the linear function
between the endpoints. This relationship forms the basis for
the present invention. Thus, 1f a logarithmic function with a

US 6,182,100 BI1

3

low-precision estimation 1s needed, then the low-precision
logarithmic function can be obtained simply by making
small corrections to the linear function. On the other hand,
if a logarithmic function with a higher precision estimation
1s required, the higher-precision logarithmic function can be
obtained by means of a table lookup, sometimes in conjunc-
fion with point interpolation as 1s well-known to those
skilled in the art.

Referring now to the drawings and 1n particular to FIG. 1,
there 1s depicted a high-level flow diagram illustrating a
method for performing a logarithmic estimation within a
data processing system, 1n accordance with a preferred
embodiment of the present invention. Starting at block 10, a
floating-point number x, 1n the IEEE 754 format for
example, 1s partitioned 1nto a signed biased exponent part,
eXp,...» and a fraction part, XF, as shown 1n block 11. An
unbiased exponent, exp, 1s then obtained, such as by sub-
tracting 127/, from the biased exponent, as depicted 1n block
12. Next, an unnormalized mantissa 1s then obtained via a
lookup table utilizing fraction part xF as the input, as
illustrated 1n block 13. If the biased exponent part is
negative, both the unbiased exponent and the unnormalized
mantissa will be complemented, as depicted in block 14. The
unbiased exponent 1s then concatenated with the unnormal-
1zed mantissa, with a binary point in between to form an
immediate result, as shown 1n block 15. Subsequently, the
immediate result 1s normalized by removing all leading
zeros and the leading one, such as via left shifting, to obtain
an normalized fraction part of the result y, and the exponent
part of the result y 1s then generated by, for example,
counting the number of leading digits shifted off and then
subtracting that number from 8, as illustrated in block 16. At
this point, the exponent part of the result y i1s unbiased.
Finally, the floating-point result y 1s formed by combining
the unbiased exponent part and the normalized faction part,
as shown 1n block 17. A biased exponent can be obtained by
adding 127 to the unbiased exponent.

With reference now to FIG. 2, there 1s depicted an
example illustrating a method for performing a logarithmic
estimation within a data processing system, 1in accordance
with a preferred embodiment of the present invention. An
input x for which the logarithmic value 1s desired, can be
represented 1n a floating-point format, as follows:

: bias .
(=1)ssm*= P2 e antissa

where sign 1s a sign bit, exp,. . 15 a signed biased exponent,
and mantissa 1s equal to 1.fraction. Thus, 1f x equals 54 1n
decimal, x=(-1)°*2*1.10110000, or 0 1000 0100 1011
0000 1n floating-point binary form, where 1000 0100 1s the
biased exponent and 1011 0000 1s the fraction. An unbiased
exponent can be obtained by subtracting 127/ from the biased
exponent, yielding 0000 0101. Because the unbiased expo-
nent 1s positive, the sign bit of the result y equals 0. An
unnormalized mantissa can be obtained by utilizing a table
lookup (such as Table I shown below) with the fraction bits
as the mput. In this case, the last row of Table I 1s utilized.
The unbiased exponent 1s then concatenated with the unnor-
malized mantissa, with a binary point in between, to form an
intermediate result. The value of the intermediate result
equals 0000 0101.1100 0000, with 0000 0101 as the unbi-
ased exponent and 1100 0000 as the unnormalized mantissa.

The intermediate result 1s subsequently normalized in
order to obtain the fraction part of the tfloating-point result y.
The normalization can be performed by left shifting the
intermediate result to remove all leading zeros and the
leading one. The leading one i1s considered as the implied
“1.” The exponent part of the result y can be obtained either

10

15

20

25

30

35

40

45

50

55

60

65

4

by subtracting the number of leading digits (i.e., the leading
zeros and the leading one) shifted off from 8, or by sub-
tracting 1 from the number of significant bits to the left of
the binary point of the unnormalized mantissa. In this
example, the shifting method 1s utilized to remove a total of

six bits. Thus, the exponent of the result y should equal
8—6=2 or 0000 0010 1n binary; and the fraction part becomes

0111 0000. After adding the bias 127 to the exponent, the
biased exponent becomes 1000 0001. Finally, the result y
can be obtained by combining the sign bit, the biased
exponent, and the normalized fraction to yield 0 1000 0001
0111 0000 or 5.75 1in decimal. The error of this estimated
floating-point result y 1s 0.085% when compared with the
precise result of 5.7549.

B. Implementation

Referring now to FIG. 3, there 1s depicted a block diagram
of a general purpose processor 1n which a preferred embodi-
ment of the present invention may be incorporated. Within
a processor 30, a bus interface unit 32 1s coupled to a data
cache 33 and an 1nstruction cache 34. Both data cache 33 and
instruction cache 34 are high speed set-associative caches
which enable processor 30 to achieve a relatively fast access
fime to a subset of data or instructions previously transferred
from a main memory (not shown). Instruction cache 34 is
further coupled to an instruction unit 33 which fetches
instructions from instruction cache 34 during each execution
cycle.

Processor 30 also includes at least three execution units,
namely, an integer unit 35, a load/store unit 36, and a
floating-point unit 37. Each of execution units 35-37 can
execute one or more classes of mstructions, and all execu-
fion units 35-37 can operate concurrently during each
processor cycle. After execution of an nstruction has
terminated, execution units 35-37 store data results to a
respective rename bufifer, depending upon the instruction
type. Then, any one of execution units 35—37 can signal a
completion unit 20 that the mstruction execution is finished.
Finally, instructions are completed 1n program order by
transferring result data from the respective rename butfer to
a general purpose register 38 or a floating-point register 39,
accordingly.

The present invention can be incorporated within the
floating-point data flow of processor 30, such as the floating-
point multiply-add function contained within floating-point
unit 37. In addition, the steps described herein can be
pipelined to enable a new instruction to begin at every cycle,
as long as the new nstruction 1s not delayed by a data
dependency on a previous instruction.

A method for performing a logarithm estimation within
processor 10 1s implemented with the following steps, some
of which can be done concurrently:

Step 1a: Obtain exp 1n an unbiased signed 1nteger form by
subtracting 127 from the biased exponent exp,. . of the
floating-point input x. This step can be done by using an
exponent adder often already available 1n floating-point unit
37 for use 1n performing other operations.

TABLE 1
x|1:5] yE[1:12]
00000, 11111 yF[1:6] = x[1:6]
00001 vE[1:6] = x[1:6] + 000001
0001%*, 1101*, 11100 yF[1:6] = x|1:6] + 000010
0010* vF[1:6] = x[1:6] + 000011

US 6,182,100 BI1

S

TABLE I-continued

x|1:5] yE[1:12]

1100% yF[1:5] = 11010;
yE|[6:12] = x[5:11]

11101 yE[1:6] = 111100;
yvE|7:12] = x[6:11]

11110 yE[1:6] = 111101;
vE|7:12] = x[6:11]

all other cases yE[1:6] = x| 1:6] + 000100

An “*” in the column for x| 1:5] in Table I means either
0 or 1. Also, unless explicitly shown in Table I, yF[7:12]=
x| 7:12].

Step 1b: Obtain a fraction yF via a table lookup, such as
Table I, using the fraction bits of x as input.

Step 2: Concatenate exp, an integer, to the fraction yF to
form an intermediate result y, ie., vy, =exp+yF[1:12
exp.yF[1:12].

Step 3: If exp 1s negative 1 a two’s complement form,
then the two’s complement of y,, . 1s taken, using the means
for complementing the intermediate result 1in floating-point
addition when 1t 1s negative, and set the sign of the result y
to 1.

Step 4: Normalize y,, . to get the most significant bit mnto
the 1mplied bit position. The number of significant bits in
exp 18 determined by how many bits y, ~have been left-
shifted. The number of shifted-off bits (including all leading
zeros and a leading one) is then subtracted from 8.

Step 5: Obtain the biased exponent of the result y by
adding 127 to the unbiased exponent, which can be done
using the exponent adder normally utilized to adjust the
exponent after normalization.

In sum, the value of floating-point result y can be obtained
from: exp+yF|1:12], where exp is an unbiased signed expo-
nent of a floating-point input x, and yF[1:12] is a positive
fraction that can be derived from a table using only x[1:12].
The remaining bits of mput x are 1gnored. Note that, 1if
x| 1:12] are all O’s and exp equals zero, then x|13:23] will
be significant 1n a floating-point representation. Similarly, if
x|1:12] are all 1’s and exp equal -1, then x[13:23] will also
be significant 1n the same floating-point representation. In
either one of the above cases, a zero result will be returned.

As has been described, the present mvention provides an
improved method and system for performing a logarithmic
estimation within a data processing system. Although a
low-precision logarithmic estimation 1s described, 1t 1s well
understood that higher-precision logarithmic estimation can
casily be obtained with the same principle as disclosed.
Despite 1ts low-precision, the present implementation pro-
duces a monotonic result, which 1s desirable for most
applications. Even with the low-precision implementation, if
the fraction of input x equals zero, then a precise result will
always be produced.

When the mput value x 1s very close to one, then 1its
logarithmic value 1s close to zero, and 1t 1s difficult to
cguarantee a relatively high precision. In the implementation
described above, the result 1s guaranteed to have an absolute
error of less than one part in 32. The relative error is
cguaranteed to be less than one part in eight, except when

10

15

20

25

30

35

40

45

50

55

60

65

6

input X 18 within the range 7s<x<l'Ys. Somewhat higher
precision within the above range can be obtained by multi-
plying (x-1) by 1.44, which is the log,e equivalent to 1/In2.
A binary multiplier 1.0111, equal to 1.4375 can be utilized
to obtain a better result with minimum hardware.

Further, if an unbiased exponent, exp, 1s defined as
exXp=exp,,, .—127, then the floating-point number will have a
normal range of values when -126Zexp=+127. The IEEE
754 format also includes a range of values called the
denormal range, where exp,;..=0 and the mantissa=
0.fraction; however, the present disclosure will not explicitly
deal with values 1n that range. For the logarithm function,
input X 1s not restrained to a small range. In fact, input x can
even be a denormal floating-point number, although such a
case 1s not explicitly shown in the present disclosure.

While the invention has been particularly shown and
described with reference to a preferred embodiment, 1t will
be understood by those skilled 1n the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the mvention.

What 1s claimed 1s:
1. A method for executing a floating-point instruction,

said method comprising the steps of:

storing a floating-point number within a memory of a data
processing system having a processor, wheremn said
floating-poimt number includes a sign bit, a plurality of
exponent bits, and a mantissa having an 1mplied one
and a plurality of fraction bits;

in response to a floating-point 1nstruction:

obtaining a fraction part of an estimate number via a

table lookup utilizing said fraction bits of said

floating-point number as nput;

obtaining an integer part of said estimate number by
converting said exponent bits to an unbiased repre-

sentation;

concatenating said integer part with said fraction part to
form an intermediate result;

normalizing said intermediate result to yield a
mantissa, and producing an exponent part based on
said normalizing step;

combining said exponent part and said mantissa to form
a floating-point result; and

storing said floating-point result in said memory.

2. The method according to claim 1, wherein said method
further includes a step of complementing said intermediate
result 1f unbiased exponent of said floating-point number 1s
negative.

3. The method according to claim 1, wherein said nor-
malizing step further includes a step of removing leading
zeros and a leading one from said mtermediate result.

4. The method according to claim 3, wherein said method
further 1includes a step of subtracting the number of leading
zeros and said leading one 1n said removing step from §.

5. A processor capable of performing a logarithmic esti-
mation on a floating-point number, wherein said floating-
point number includes a sign bit, a plurality of exponent bits,
and a mantissa having an 1mplied one and a plurality of

fraction bits, said processor comprising:

means for generating a fraction part of an estimate num-
ber via a lookup table utilizing said fraction bits of said
floating-point number as 1nput;

means for obtaining an integer part of said estimate
number by converting said exponent bits to an unbiased
representation;

US 6,182,100 B1
7 3

means for concatenating said integer part with said frac- 7. The processor according to claim S, wherein said
tion part to form an intermediate result; normalizing means further includes a means for removing
means for normalizing said intermediate result to yield a leading zeros and a leading one from said intermediate
mantissa, and producing an exponent part based on the 5 result.
normalization; and 8. The processor according to claim 7, wherein said
means for combining said exponent part and said mantissa processor further mcludes a means for subtracting the num-
to form a floating-point result. ber of leading zeros and said leading one 1n said removing
6. The processor according to claim 5, wherein said step from 8.

processor further includes a means for complementing said 10
intermediate result if said floating-point number 1s negative. %k k% ok

	Front Page
	Drawings
	Specification
	Claims

