(12) United States Patent

Archambault

US006173444B1

US 6,173,444 B1
Jan. 9, 2001

(10) Patent No.:
45) Date of Patent:

(54) OPTIMIZING COMPILATION OF POINTER
VARIABLES IN THE PRESENCE OF
INDIRECT FUNCTION CALLS

(75) Inventor: Roch G. Archambault, Scarborough

(CA)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Under 35 U.S.C. 154(b), the term of this

patent shall be extended for O days.

(21) Appl. No.: 08/956,416

(22) Filed: Oct. 23, 1997
(30) Foreign Application Priority Data
Mar. 24, 1997 (CA) e ieeeccieenreeces e eseenennees 2200812
(51) Int. CL7 e, GO6F 9/44
(52) US.ClL .iieeeeeecvieeeee. 717195 3957709
(58) Field of Search ... 395/709, 705,
395/704, 701, 702, 703, 706, 707, 708,
710
(56) References Cited
U.S. PATENT DOCUMENTS
4,567,574 * 1/1986 Saade et al.ccoeoeeeennnnnnen. 395/709
5,448,737 * 9/1995 Burke et al.cccoooeiiinnnnnnin 395/709
5,535,394 * 7/1996 Burke et al.ccccooeeennenni 395/709
5,555,412 * 9/1996 Besaw et al.c.coeeiieennnin. 395/708
FOREIGN PATENT DOCUMENTS
06348475 12/1994 (JP).

OTHER PUBLICAITTONS

Fundamentals of Data Structures E. Horowitz et al. pp.
301-309, Dec. 1983.%

Mathematical Structures for Computer Science G. Gersting
pp. 228,231-232,380-382, Dec. 1993.*

Compilers Principles, Techniques and Tools, Aho et al.
Chapters 1-10, Sep. 1985.%

Interprocedural Data Flow Analysis in the PResence of
Pointers, Procedure Variables and Label WVariables, W.
Weihl, Dec. 1980.*

Efficeincy Flow Sensitive Interprocedural Computation of
Pointer—Induced Aliases and Side Effects Choi, Dec. 1993.*

Analysis of Pointers and Structures David Chase, Dec.
1990.*

Points to Analysis bt Type Inference of Program with
Strucutres and Unions B. Steensgaard, Jan. 1996.%

Flow Insensitive Interprocedural Alias Analysis in the Pres-
ence of Pointers M. Burke et al., Jan. 1992.*

On the Efficemnt Engineering of ambitious Program Analy-
s1s, Choi et al, Dec. 1994 .*

Efficiency Detection of All Pointer and Array Access Errors
Austin et al., Jun. 1994 *

Interprocedural May—Alias Analysis for Pointers Beyond
k—limiting Deutch, Jun. 1994 .*

Context Sensitive Interprocedural Points to Analysis in the
Presence of Function Pointers Emami et al, Nov. 1993.*
Efficient Context Sensitive Pointer Analysis for C Programs
Wilson et al., Dec. 1995.%

A Storeless Modle of Aliasing and 1ts Abstractions using
Finite Reps. of Right Regular Equivalence Relations
Deutch, Apr. 1992.%

Set Based Program Analysis, by N. Heintze, Dec. 1992 %

Program Decomposition for Pointer—induced Aliasing
Analysis Zhang et al., Mar. 1996.*

* cited by examiner

Primary Examiner—Eric W. Stamber

Assistant Examiner—Todd Ingberg,

(74) Attorney, Agent, or Firm—Whitham, Curtis &
Whitham; Jay P. Sbrollini, Esq.

(57) ABSTRACT

Effective use of optimizing techniques during compilation 1s
difficult in programs that make liberal use of pointers or
indirect function calls. The indirection often means that the
compiler cannot precisely determine the set of objects
pointed to by a pointer at a specific location 1n the program,
and therefore cannot efficiently eliminate pointer redundan-
cies 1n the code. The present invention provides an optimis-
ing method that reduces the size of alias sets associated with
program pointers. During an initial compilation phase, intra-
procedural information about pointer variables referenced 1n
cach function of the program 1s gathered and saved 1n a data
structure called the pointer alias graph. In the middle phase,
the pointer alias graphs from all the compilation units for the
program are combined to form a universal pointer alias
oraph and then transitive closure 1s performed on the uni-
versal pointer alias graph to produce a reduced graph
contaming the list of objects that each pointer variable can
point to. In the final phase, all the files are re-compiled using
the umiversal pointer alias graph as input, resolving all
occurrences where pointer variables are de-referenced.

8 Claims, 3 Drawing Sheets

U.S. Patent Jan. 9, 2001 Sheet 1 of 3 US 6,173,444 B1

10
BUILD INITIAL POINTER
ALIAS GRAPH

12
DEFINE INITIAL ALIAS SETS
FOR GRAPH NODES

14
SAVE LOCATION F1G. T

INFORMATION FOR EACH
NODL

16
CREATE PSEUDO
VARIABLES, NODES AND
ALS SETS
fES
. ~ 22
18 2
LOCATE NEXT FUNCTION CREATE NEW NODE AN IO
LALL AND ALIAS SET ™
24 "
LOCATE NEXT INDIRECT
CALL POINT
% 28

ANY ADDITIONAL
FUNCTION POINTE
CALLSY

UREATE DEFINITION NODE
AND INITIALIZE ALIAS SET

30

r—— " /71

REPRESENT RETURN VALUE OF NO
CURRENT FUNCTION WITH
DEFINTION NODE AND AUAS SET

U.S. Patent

Jan. 9, 2001

40
StLECT A NODE WITH

AN R—VAL ELEMENT

42
COMPUTE IMMEDIATE
rACHING DEFINITIONS HOR
rACH R—VAL ELEMENT

44
REPLACE EACH R-VAL
cLEMENT WITH UNION OF
REACHING DEFINITIONS ALIAS
SETS

46
ANY REMAINING

NODES WITH R-VAL
cLEMENTS?

YES

NO

48
PERFORM TRANSITIVE

CLOSURE ON ALIAS SETS

OF LOCAL POINTER
VARIABLES

Sheet 2 of 3

F1G.2

US 6,173,444 B1

90
LOCATE RESOLVED

LOCAL POINTER
ALIAS SETS

02
REPLACE
INTRAPROCEDURAL
ALIAS SEIS WITH
RESOLVED ALIAS SETS

o4
REDUCE NUMBER OF
NODES IN POINTER ALIAS
GRAPH

96
SAVE ReDUCED

POINTER ALIAS GRAPH

U.S.

SAVE REDUCED
UNIVERSAL POINTER

Rel

AVE ALL INDIREC

POINTER ALIAS GRAPH

Patent Jan. 9, 2001 Sheet 3 of 3 US 6,173,444 B1

60
READ EACH ReDUCED POINTER ALIAS GRAP

62
MERGE ALL DEFINITION NODES OF POINTER VARIABLES
INTO SINGLE DEFINITION NODE/POINTER ALIAS SET

64
PERFORM TRANSITIVE CLOSURE OF ALIAS
otl> OF UNIVERSAL POINTER ALIAS GRAPH

NO

66
LOCATE NODE
REPRESENTING AN
INDIRECT CALL POINT

78 > THERE

ANOTHER INDIRECT
ALL POINT NODEJ

NU

CALLS BEEN
RESOLVED?

YES

68
> CALL POINT

80 RESOLVED?

ALIAS GRAPH

10

12)0t> CALL
MERGE ARGUMENT POINT ALIAS SET

RETURN VALUE T0 [~ \CONTAIN UNIVERSA
UNVERSAL OBJECT OBJECT?

82
RECOMPILE USING

UCED UNIVERSAL

4
MERGE ARGUMENTS
AND RETURN VALUES

10 NODES Or ACTUAL

-UNCTIONS

F1G.3

US 6,173,444 Bl

1

OPTIMIZING COMPILATION OF POINTER
VARIABLES IN THE PRESENCE OF
INDIRECT FUNCTION CALLS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present i1nvention generally relates to compiler
optimizations, and 1n particular to a technique for reducing
redundant pointer information.

2. Background Description

Compilation 1s a process used for translating high level
language statements 1n a computer program 1nto machine
instructions executable by the target computer. Optimization
1s a general term for modifications applied to source code,
object code or any intermediate code present during
compilation, in order to improve the efficiency of the pro-
oram being compiled. Usually optimization either:

a) aims to overcome pessimistic assumptions implied by
language rules that can cause redundancies in the
compiled code. This can result in unnecessary memory
allocation for the additional (that is, redundant) code;
Or

™

b) exploits a particular hardware for different environ-
ments. The present mnvention 1s directed to an optimi-
zation technique of the first type.

Compilation may, broadly speaking, be divided into a
front end phase 1n which the source code program 1is
translated, through steps of lexical, syntactic and semantic
analysis, into an intermediate representation, and a back end
phase 1n which the intermediate representation 1s translated
for output 1n object code modules, called compilation units,
for linking 1nto executable files. Optimization may take
place at various stages during this compilation process, but
generally speaking, occurs in the back end.

Usually optimization algorithms work on a representation
of the aspect of the program to be optimised. This repre-
sentation 1s usually produced by a pre-compilation step or by
the first pass of a two-pass compiler. For example, U.S. Pat.
No. 5,107,418 for “Method for Representing Scalar Data
Dependencies for an Optimizing Compiler” describes a
method for creating a local scalar data dependence graph for
cach basic block of the program. This local analysis 1s used
to form a global data dependence graph that shows data
dependencies 1n the context of a control flow graph within
a single function that can be used for later optimizations 1n
the compiler.

Most modern programming languages offer the capability
fo access a data object, or function object in the case of
object oriented programming languages like C++, indirectly
through the use of a pointer variable. A pointer 1s a reference
to the location or address of some region 1n memory where
the data or function is stored. Typically, the value of the
pointer variable 1s the object’s address 1n storage. Because
the reference to the object 1s indirect, through the pointer,
calls that use function pointers are referred to as indirect
calls.

Pomter references are particularly useful in complex
programs where the exact number of elements 1n different
types of data structures may not be ascertainable at compi-
lation time. The number may vary with the program’s
actions as 1t 1s running. The use of pointer references allows
individual pieces of storage to be allocated as needed, so that
the required amount of storage 1s available at any given
moment during program execution.

When used, the pointer variable 1s first 1nitialised to the
address of the specific object, and then de-referenced 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

order to access the object. Some languages permit the user
to modily or copy pointer variables for the purpose of
traversing an aggregate object, such as an array. Pointers
may also be modified or copied for dynamically selecting an
object to be operated upon.

These types of manipulations of pointer variables can lead
to situations where the compiler cannot precisely determine
the set of objects (data or function objects) pointed to by a
pointer variable at a specific location 1 the program. In
these situations, the compiler must use safe assumptions to
determine the scope of the pointer’s object set. These
assumptions, called aliasing assumptions, are usually speci-
fied by the language being compiled. Aliasing assumptions
are often very pessimistic. They drastically reduce the level
of optimization that can be performed by reducing the level
of redundancies which can be eliminated.

This problem can be illustrated using the following simple
code example 1n which the use of *p and *q indicate
de-referencing of the pointers p and g, respectively:

s2:

s5: .. =*p+2;

s’/

s9: . . =Fp+2;

The compiler can trace the values of p and g, and determine
that they are handles to different objects by keeping track of
the set of objects associated with a pointer variable. This set
of objects 1s the alias set associated with the pointer variable.

However, the compiler cannot normally tell 1f statement
s/ invalidates the value of the expression in statement s5,
and as a result, 1t cannot assume that the same expression
found 1n statement s9 1s redundant. It must generate code
which will recompute the value of the expression *p+2 for
statement s9.

While the example 1illustrates only a single redundancy,
the magnitude of the problem can be realised over a large
program of thousands of lines of code.

One way to reduce the size of the alias sets 1s to provide
the user with alias assertion options giving direct control
over the aliasing assumptions. However, correct use of these
options requires great skill and time on the part of the user,
and 1ncreased program complexity makes it much more
difficult to generalise appropriate aliasing assumptions.

The preferred approach 1s to develop an automatic solu-
tion to the problem, and to that end, a number of techniques
have been developed for computing the approximate set of
objects that a pointer can point to at any specific point 1n the

program, such as the following:

1) “Efficient context-sensitive pointer analysis for C
programs’, Robert Wilson and Monica Lam, SIG-
PLAN °95;

2) “Points-to analysis in almost linear time”, Bjarne

Steensgaard, Technical Report MSR-TR-95-08,
Microsoft Corporation;

3) “A safe approximate algorithm for interprocedural

pointer aliasing”, William Landi and Barbara Ryder,
SIGPLAN °92;

4) “ Almost linear time points-to analysis”, William Landi,
in POPL "95;

5) “Context-sensitive interprocedural points-to analysis in
the presence of function pointers”, Maryam Emami,

Rakesh Ghiya and Laurie Hendren, SIGPLAN "94;

US 6,173,444 Bl

3

6) “Interprocedural may-alias analysis for pointers:
Beyond k-limiting”, Alain Deutsch International Con-

ference on Computer languages, IEEE “92; and

7) “Efficient flow-sensitive interprocedural computation
of pomter-induced aliases and side effects”, Jong-Deok
cho1, Michael Burke and Paul Carini, SIGPLAN °93.

Many of the existing techniques are computationally

expensive and don’t provide a solution for programs that
contain 1ndirect calls.

SUMMARY OF THE INVENTION

It 1s therefore an object of the present invention to provide
a general use technique for reducing the size of alias sets 1n
production compilers that i1s precise enough to 1mprove
optimization.

It 1s also an object of the present invention to provide an

alias set optimization that 1s efficient in terms of computation
fime and memory usage.

A further object of the mnvention 1s to provide an alias set
reduction technique for all pointer references, mcluding
indirect calls that use pointer references.

Therefore, the present 1invention provides a method for
optimizing a program containing indirect function calls. The
method, implemented during compilation, includes the steps
of constructing, in each compilation unit, a data set of
interprocedural definitions for each referenced pointer in the
compilation unit. The data sets from all compilation units are
combined to construct a universal data set and transitive
closure 1s performed to eliminate redundant definitions and
reduce the universal data set. The program 1s recompiled
using the reduced universal data set.

Preferably each data set consists of a set of objects
associated with a pointer variable for each reference to that
pointer variable. Further, each data set consists of a pointer
alias graph developed through data flow graphing.

The 1invention also provides a computer program product
consisting of a computer usable medium having computer
readable program code means embodied thercon for pro-
gramming a computer to perform the method of the inven-
tion described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, 1n which:

FIGS. 1 and 2 are flow diagrams 1llustrating the applica-
tion of intraprocedural analysis to the uses and definitions of
all pointer variables within the scope of a single function.
Specifically,

FIG. 1 1s a flow diagram of the initial compilation phase
to gather intraprocedural information about pointer vari-
ables; and

FIG. 2 1s a flow diagram 1llustrating the steps for resolving
all values of local pointer variables in the pointer alias graph
to develop a pointer alias graph which summarizes the
function.

FIG. 3 1s a flow diagram 1illustrating the steps 1n inter-
procedural analysis for developing a universal pointer alias
oraph for use 1in a optimized recompilation, according to the
invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION
In summary, the preferred method of the mvention includes:

an 1nitial compilation phase in which intraprocedural
information about pointer variables referenced 1n each

10

15

20

25

30

35

40

45

50

55

60

65

4

function of the program 1s gathered and saved 1n a data
structure called the pointer alias graph;

a middle phase 1n which the pointer alias graphs from all
the compilation units for the program are combined to
form a universal pointer alias graph, and then transitive
closure 1s performed on the universal pointer alias
oraph to produce a reduced graph containing the list of
objects that each pointer variable can point to; and

a final phase 1n which all the files are re-compiled using
the universal pointer alias graph as input, resolving all
occurrences where pointer variables are de-referenced.

The preferred embodiment 1s described as 1t applies to

pointer variables mm C, a programming language that, in
ogeneral, makes liberal use of pointer variables. However, 1t
will be understood by those skilled in the art that the method
of the 1nvention applies to other programming languages
that support pointer use, including C++ and FORTRAN.

Conventional optimization techniques are generally intra-

procedural; summary information for each procedure 1s
collected during a first pass performed at compile time. The
present mvention also utilises interprocedural analysis, a
second pass performed at link time, in which the collected
information 1s merged and used to compute an interproce-
dural solution. The application is then re-built (re-compiled)
using the interprocedural solution to optimize the applica-
tion. A full discussion of a two-pass interprocedural analysis
system can be found 1n Canadian Patent Application No.
2,102,089 titled “Recompilation of Computer Programs for
Enhanced Optimization”, which 1s commonly assigned and
incorporated herein by reference. This application was laid

open on Apr. 30, 1995.

Referring to the drawings associated with the present
disclosure, FIGS. 1 and 2 illustrate the steps taken through
the 1nmitial intraprocedural analysis phase to develop a pointer
alias graph for each function for later use in the middle
interprocedural analysis phase illustrated 1n FIG. 3.

Terms used 1n this description of the preferred embodi-
ment have the following definitions:

the 1-val of an object 1s 1ts address. This includes the
addresses of functions and of nameless data object (for
example, from heap or stack storage). Heap or stack
storage acquired by a call to the malloc or alloca ANSI
C library routine 1s given a global name. In the

invention, the 1-val of heap or stack storage 1s treated 1n
the same manner as the 1-val of a named object;

the r-val of an object 1s 1ts value at a g1ven execution point
in the program. For the purposes of the present
invention, only the r-val of certain classes of pointer
variables are used: function calls (or local pointer
variables), external or file scope variables function
formal or actual areuments and function return values.
Most C implementations permit pointer variables to be
converted to and from integers. Therefore, any integer

variable that could possibly contain an address 1s also
included 1n the definition of r-val; and

the universal object represents the list of all I-vals 1n the
entire program, once program closure 1s reached. The
universal object represents the r-val of certain classes
ol pointer variables not included 1n the above definition
of r-val. These classes of pointer variables include
multiple levels of pointer de-referencing (one r-val
dependent on another r-val, as 1n the reference, 1n C, to
**p where p is declared as a pointer to a pointer),
pointer variables whose addresses have already been

US 6,173,444 Bl

S

taken (I-vals already exist), and pointer variables that
are structurally aliased, such as 1n a C union or array
construct.

Referring first to FIG. 1, a pointer alias graph 1s built for
cach function based on the information gathered in the first
intraprocedural pass of the compiler (block 10). Standard
data flow gathering techniques are used to develop the
pointer alias graph. The nodes 1n the graph represent either
a definition of a pointer variable or a use of a pointer
variable, and each node has an associated alias set. The
initial alias sets for the nodes of this graph are defined (block
12) as follows: the initial alias set for definition nodes 1s the
right hand side of the pointer variable assignment operation,
and the 1nitial alias set for use nodes 1s the value of the object
at that execution point (the r-val). Location information, the
basic block number (relative to the flow graph) and position
within the basic block, is saved for each node (block 14).

In order to provide a complete representation of pointer
use 1n the function for the mterprocedural analysis to follow,
oglobal unique names, called pseudo pointer variables, are
assigned to each formal arcument, function return value and
global (or file scope) variable. Corresponding nodes and
alias sets are created on the pointer alias graph (block 16).

Several actions follow, as 1llustrated 1n blocks 18 through
30 of FIG. 1. However, 1t should be pointed out that the
sequence of steps 1illustrated i1n these blocks of the flow
diagram are not intended to suggest temporality. Rather, the
representations of function calls, function pomter calls and
the return value for the function are created as these values
are encountered 1n the code.

For each function call encountered 1n the current function
(blocks 18 and 22), new nodes for the pointer graph and alias
sets are created (block 20). Each argument in the function
call 1s represented by a defimition node of the formal
arcument with an alias set initialized to the actual argument
(either an r-val or 1-val), and the return value for the function
1s represented by a definition node of a local pseudo pointer
variable representing the function’s return value at this call
point and an alias set initialised to the r-val of a global
pseudo pointer variable which represents the resolved return
value.

Indirect call points (calls through function pointers) are
also represented (blocks 24 and 28), cach by a definition
node of a global pseudo pointer variable. The alias set for
this node 1s 1nifialised to the r-val of the actual pointer
variable specified on the indirect call (block 26).

In addition, the return value of the current function is
represented by a definition node with an alias set which 1s
the union of all return points. The pseudo pointer variable
being defined represents the resolved return value (block
30).

The resulting alias graph includes nodes and alias sets for
all of the pointer uses in the function, and this i1s then
subjected to further analysis, following the steps set out 1n
FIG. 2, for resolution of the alias sets of all of the pointer
variables of local scope.

As 1llustrated 1n the flow diagram of FIG. 2, for each node
with an r-val element in its alias set (block 40), the imme-
diate reaching definitions for the r-val elements are com-
puted (block 42). Defining immediate reaches, or the value
cach element has reached at particular points in the program,
1s a common data flow problem, and a number of different
approaches for calculating immediate reaches i1n local
pointer analysis exist 1n the prior art. What 1s important 1s
that the algorithm used traverses all of the intervening
reaching definitions. This can be 1llustrated using the fol-
lowing example:

10

15

20

25

30

35

40

45

50

55

60

65

I'=p,

This short code segment has two branches; pl=q and
p2=&w. The expression r=p; 1s the join point. The reaching
definition of r=p; is the set {p=q; || p=&w;}, and r can simply
be redefined as:

r=(p1=|[=p2).

Each r-val element 1n the node’s alias set 1s replaced with the
union of alias sets of all reaching definitions (block 44), as
illustrated by the following example:

[nitial graph

C program nodes After immediate reaches
1| Ipl=&a; Ip1-1<={&a} Ip1-1<={&a}
2| Ip2=&b; Ip2-2<={&2} Ip2-2<={&b}
10 if(...)
11| Ip3=lpl+l; 1p3-11<={lp1} Ip3-11<={lp1-1}
12| else
13| Ip3=Ip2+j; 1p3-13<={Ip2} Ip3-13<={Ip2-2}
20 | lpd=lp3+k; 1p24-20<={1p3} Ip4-20<={1p3-11,1p3-13}
30| *lp4=3; Ip4-30<=>{lp4} Ip4-30<=>{1p4-20}

Once all nodes with local r-val elements have been resolved
(block 46), transitive closure, the elimination of intervening
logic statements, 1s performed on the alias sets of the local
pointer variables (block 48). A transitive relationship may
best be described as

If a=b and b=c, then a=c
Transitive closure 1s the 1iterative process ol propagating
transitive relationships until the alias sets are stable and
there 1s no possibility of the addition of further values. The
closure process 1s referred to as 1terative because some of the
relationships may be cyclic.

In the method of the invention, alias sets of global pointer
variables, formal arcuments and return values are not propa-
cgated at this stage because the mterprocedural information
for them 1s not yet available.

Using the example set out above, after transitive closure,
the nodes are as follows:

Ipl-1<={&a}
Ip2-2<={&b}
Ip3-11<={&a}
Ip3-13<={&b}
Ip4-20<={ &a, &b}
Ip4-30<={&a, &b}

The alias set for each use or de-reference of a local pointer
variable now contains only 1-val elements and 1s resolved.
The alias sets computed by the front end of the compiler for
mtraprocedural analysis are replaced with the resolved alias
sets (block 52). This results in a much smaller alias set
because a number of the pessimistic redundancies have been
removed.

US 6,173,444 Bl

7

In preparation for interprocedural analysis, the pointer
alias graph 1s reduced 1n size by eliminating some of the

nodes (block 54). This is done by:

removing all definition and use nodes that involve local
pointer variables;

removing all use nodes of global pointer variables and

function return values; and

merging all definitions nodes of a specific global pointer

variable, formal arecument or return value 1nto a single
definition (union alias sets). Interprocedural analysis of
the pointers will treat these 1n a flow 1nsensitive man-
ner.

The resulting pointer alias graph contains only definition
nodes for global pointer variables, the return value of the
current function and formal arcuments for any called func-
tion. The only r-val elements contained i1n the alias sets
assoclated with these definition nodes are of global pointer
variables, formal arguments and return values; the remain-
ing pointer values are 1-val elements.

The reduced pointer alias graph set is saved (block 56),
cither to persistent memory or written to a file, for use in the
interprocedural analysis described below 1n conjunction
with FIG. 3.

Each file of the application 1s compiled performing the
same steps of intra procedural analysis 1llustrated in FIGS.
1 and 2, and the resulting pointer alias graphs are saved.

The interprocedural analysis illustrated in FIG. 3 1s essen-
fially an extension of the intraprocedural analysis 1llustrated
in FIGS. 1 and 2. In summary, all of the pointer graphs
developed through the intraprocedural pass are gathered into
a universal pointer alias graph for the whole program.
Transitive closure 1s performed and the resulting reduced
ograph 1s used as mnput to a second interprocedural pass.

Referring now to FIG. 3, each reduced pointer alias graph
is read from memory (block 60). All definition nodes (from
the accumulated graphs) for each pointer variable are
merged 1nto a single definition node, and the alias sets of
each of the nodes are combined (union) to form the universal
alias set for a specific pointer variable (block 62).

Transitive closure of the alias sets 1n the universal pointer
alias graph is performed (block 64). The transitive closure
performed at this stage 1s similar to the process to create
alias sets performed during intraprocedural analysis except
that alias sets are propagated for all pointer variables in the
universal graph.

obtaining transitive closure of all the umiversal pointer
oraph may be an 1iterative process when the application
includes 1ndirect calls.

Program closure 1s a pre-requisite to most interprocedural
optimization techniques, mncluding the present one. In order
to achieve closure, all edges 1n a call graph must be resolved.
A program contains indirect calls must first be analysed to
resolve the indirect calls to reach program closure. The
indirect calls are resolved by tracing through the pointers
which functions are being called 1n order to propagate
aliases into (or out of) that function.

Once ftransitive closure has been performed of the alias
sets (block 64), nodes representing indirect call points are
located (blocks 66, 76). For each of these, if the call point
1s resolved, that 1s, the alias set contains only 1-val elements
(block 68) and the alias set does not contain a universal
object (block 70), then the argument 1s merged into and the
value nodes related to the call pomnt are returned to the
corresponding nodes of the actual function which may be
called (block 74). If the resolved call point does contain a
universal object (block 70), then the argument is merged into
and the value nodes related to this call point are returned to

10

15

20

25

30

35

40

45

50

55

60

65

3

the corresponding nodes of each function 1n the universal
object (block 72).

[f some indirect call points have not been resolved (block
78), the loop is reiterated, beginning with the performance of
transitive closure (block 64).

Once no unresolved indirect call point nodes remain 1n the
graph (blocks 76,78), the reduced universal pointer alias
graph is saved in persistent memory (block 80). Each of the
files 1s recompiled performing the intraprocedural algorithm
using the final universal pointer alias graph as input (block
82). Since the universal pointer alias graph represents the
complete aliasing relationships (following program closure),
this pass can propagate aliases mvolving global pointer
variables, leading to a much higher number of resolved alias
sets containing only 1-val elements.

The interprocedural stage of the ivention can be 1llus-
trated using the following C example:

double * accumulate (double * accumulator,
double * array,
int num__elements)

static double local__accumulator;

1nt index;

if (accumulator == NULL)

accumulator = &local_accumulator;
for (index = 0; index < num__clements; ++index)
* accumulator +=array|index];

return accumulator;

double * global_ ptr;

main ()

double acc;

double arr[10];

global__ptr = accumulate (&acc, &arr[0], 10);

Using this example, an initial global pointer alias graph of
accumulate function 1s constructed following the steps of
FIGS. 1 and 2. Pseudo pointer variables, accumulate-argl,
accumulate-arg? and accumulate-return_ value are created
to represent the formal argcuments and the return value for
the function. The return value 1s dependent on the actuals of
the first argument. Initially both arcument values are empty,
but once they are determined, the return value can be
computed.

After local pointer analysis at one call point, the relation-
ship of the pseudo variables for accumulate are as follows:

accumulate—argl —> list if actual values of argl

accumulate—arg? —> list of actual values of arg2

accumulate—return__value —> accumulate-argl,
&local__accumulator

The same steps are taken to define a global alias graph and
pseudo pointer variables for the main function. After local
pointer analysis, the relationship of the pseudo variables
representing the formal arcuments and return value are:

accumulate-argl —> &acc
accumulate—arg?2 —»> &arr
global-ptr —> accumulate-return_ value

These two global pointer alias graphs are combined to
form the universal graph (blocks 60, 62, FIG. 3) with the
following relationship:

US 6,173,444 Bl

accumulate-arg]l —» &acc

accumulate—arg? —> &arr

global__ptr —> accumulate-return__value

accumulate—return_ value —> accumulate—argl,
&local__accumulator

Following transitive closure (block 64), the graph is
reduced to:

accumulate—argl —» &acc

accumulate—arg? —> &arr

global-ptr —»> &acc, &local__accumulator
accumulate-return_ value-» &acc, &local_accumulator

In this stmple example, the remaining steps in FIG. 3 have
been dispensed with because there are no nodes remaining,
in the graph representing an indirect call point (blocks 66,
76). The information in the reduced graph is saved (block
80) for use in further optimization or in re-compilation

(block 82).

Further modifications to the invention that would be
obvious to those skilled 1n the art are intended to be covered
within the scope of the appended claims.

We claim:

1. A method, during compilation, for optimizing a pro-
oram with pointer variable references and indirect function
calls, comprising:

constructing, 1n each compilation unit, a pointer alias

oraph which describes the relationship between all
pointer variables being referenced 1n each respective
compilation unait;

constructing, using the pointer alias graph, a pointer target

set for each pointer variable referenced 1n each respec-
tive compilation unit;

combining pointer alias graphs from all compilation units

to construct a universal pointer alias graph;

performing transitive closure to eliminate intervening
nodes and reduce the universal pointer alias graph;

constructing, using the universal pointer alias graph, a
umversal pointer target set for each pointer variable
reference 1n the program; and

recompiling each compilation unit of the program using

the universal pointer target sets.

2. The method, according to claim 1, wherein each pointer
target set comprises a set of objects associated with a pointer
variable for each reference to that pointer variable.

3. The method, according to claim 2, wherein each pointer
target set 1s constructed using a pointer alias graph devel-
oped through data flow graphing.

4. The method, according to claim 1, further comprising
the step of replacing definitions for indirect calls 1n the
reduced umiversal pointer alias graph with definitions for
direct function calls prior to recompilation.

5. The method, according to claim 1, wherein the step of
recompiling all compilation units of the program includes
resolving all occurrences where pointers are dereferenced by
using the unmiversal pomter alias graph.

6. A program storage device readable by machine tangibly
embodying a program of instructions executable by the

10

15

20

25

30

35

40

45

50

55

60

10

machine to perform method steps for optimizing a program
with pointer variable references and indirect function calls
during compilation, said method steps comprising;:

constructing, in each compilation unit, a pointer alias
oraph which describes the relationship between all
pointer variables being referenced 1n each respective
compilation unit;

constructing, using the pointer alias graph, a pointer target
set for each pomter variable referenced 1n each respec-
tive compilation unit;

combining pointer alias graphs from all compilation units
to construct a unmiversal pointer alias graph;

performing transitive closure to eliminate intervening
nodes and reduce the universal pointer alias graph;

constructing, using the universal pointer alias graph, a
universal pointer target set for each pointer variable
reference 1n the program; and

recompiling the program using said reduced unmiversal
data set.

7. The program storage device, according to claim 6,
wherein said method steps further comprise the step of
replacing definitions for indirect calls in the reduced uni-
versal pointer alias graph with definitions for direct function
calls prior to recompilation.

8. In a two-pass optimizing compiler adapted to gather
intraprocedural function information during an initial com-
pilation pass, a method for reducing pointer alias sets for use
In a program recompilation comprising:

constructing, 1n each compilation unit, a local pointer

alias graph for each function based on the information
cgathered in the 1nitial compilation pass wheremn the
nodes 1n the graph represent all pointer definitions and
uses 1n the function and wherein each node has an
assoclated local pointer alias set;

constructing, using cach local pointer alias graph, a
pointer target set for each pointer variable referenced in
cach respective compilation unit;

for any node containing a value that 1s not an object
address, computing immediate reaching definition alias
sets and replacing that value with a union of the
immediate reaching definition alias sets;

performing transitive closure on all local pointer alias
Sels;

replacing local pointer alias sets with resolved local
pointer alias sets;

reducing the number of nodes 1n the local pointer alias
graph;

merging all definition nodes from all local pointer alias
oraphs 1nto a single definition node and corresponding

pointer alias sets to create a universal pointer alias
oraph for each pointer;

performing transitive closure on each unmiversal pointer
alias graph; and

resolving indirect callpoints and performing transitive
closure on each universal pointer alias graph.

	Front Page
	Drawings
	Specification
	Claims

