United States Patent |9

Fontana et al.

US006167564A
(11] Patent Number: 6,167,564
45] Date of Patent: Dec. 26, 2000

[54] SOFTWARE SYSTEM DEVELOPMENT
FRAMEWORK

|75] Inventors: James Albert Fontana, Mission Viejo;

Sridhar Srinivasa lyengar, Irvine;
Anthony Reginald Pitchford, Mission
Viejo; Norman Roy Smith, Lake
Forest; Douglas Marshall Tolbert,
Newport Beach, all of Calif.

| 73] Assignee: Unisys Corp., Blue Bell, Pa.

(211 Appl. No.: 09/156,028
(22] Filed: Sep. 17, 1998

51] Int. CL7 e, GO6K 9/45
52 US.CL o, 717/1; 717/2; 717/11
58] Field of Search ... 717/1, 2, 11
[56] References Cited

U.S. PATENT DOCUMENTS

5,977,967 11/1999 Berner et al. ...cooevvvvvvvevrvvnnnnen. 345/335
6,018,627 1/2000 Iyengar et al.c.ccoeervvvrveineennnnns, 717/1
6,023,578 3/2000 Birsan et al. ...coovveviiniiiiiiiinn, 717/2
6,038,393 3/2000 Iyengar et al.ccceeevveennennnees, 717/1
6,049,673 4/2000 McComb et al. ..coovevvrveveennnnnne. 717/11
6,052,525 4/2000 Carlson et al. ...eveenrvvvreennrnnnnn, 717/1
6,071,317 6/2000 Nagel ...coveerivviivinciinninriieneaene. 717/11

OTHER PUBLICAITONS

Fitzgerald, A.; “Enterprise = Resource Planning
(ERP)—Breakthrough or buzzword?”. IEEE/IEE Electronic
Library| online], Factory 2000, pp291-297, Apr. 1992.

Ludwig et al; “An Organizational Framework {for
Mass—Customized Business Applications”. IEEE/IEE Elec-
tronic Library|online|, Proceedings of the Second Euromi-

cro Conference on Software Maintenance and Reengineer-
ing, pp 37-43, Mar. 1998.

Perez, 1.; “Oracle links repositories; project Sedona offers

Single view of components from multiple tools”. PC Week,
v14, n20, pp 1-3, May 1997.

PR Newswire; “Ross Systems Releases SAM 3.1, Acceler-
ates Enterprise System Implementation”. PR Newswire,
p0603ATTUOO07, Jun. 1997.

. S —E R A — — e — — — ——— —— —— . — —_— — ——— — — —— ———

—_—_—— ———_————M—-—_——- - - - - - —_—_———— e — e — A . —— e EL L — = .

Lee et al.; “Analyzing Business Domain: A Methodology
and Repository System”. IEEE/IEE|online |, Hawaii Inter-

national Conference on System Science, v3, pp 409-419,
Jan. 1998.

Aiken et al,; “A framework for reverse engineering DoD
legacy information systems”, IEEE/IEE[online], Confer-
ence on Reverse Engineering, pp 180-191, May 1993.

Kozaczynski, W.; “Architecture Framework for Business

Components”. IEEE/IEE]online], Conference on Software
Reuse, pp 300-307, Jun. 1998.

(List continued on next page.)

Primary Fxaminer—Tariq R. Hafiz

Assistant Examiner—Kelvin E. Booker

Attorney, Agent, or Firm—IJ. Ronald Richebourg; Mark T.
Starr; Rocco L. Adornato

57 ABSTRACT

A system and method 1n a computer system for integrating
software development tools and applications into the com-
puter system 1n order to build, deploy and maintain enter-
prise business process applications 1n a heterogeneous
development framework. Integration of the applications and
software development tools are achieved through integration
of the key elements of the computer system which are
business models, domain models and components. In the
process of mtegration the origin of a first newly developed/
modified/existing business model 1s traced to a first newly
developed/modified/existing domain model and these mod-
els are linked together. Next, the constituent components of
a second newly developed/modified/existing domain model
are traced to a newly developed/modified/existing set of
components created and linked together. The system also
involves recovery of constituent components from a newly
developed/modified/existing system 1n a first heterogeneous
environment and those constituent components are recon-
structed 1nto usable components inside a third newly
developed/modified/existing domain model and are linked
together. The process also 1nvolves recovery of a fourth
newly developed/modified/existing domain model from a
second heterogeneous environment and linking 1t to a sec-
ond newly developed/modified/existing business model.

1 Claim, 14 Drawing Sheets

WORKROOM

. CLIENT

—— e ———————
J

> SERVER

6,167,564
Page 2

OTHER PUBLICAITTONS

Houston et al.; “Component—based development, CORBA
and RM—-ODP”. IEEE/IEE|online |, IEE Proceedings—Soft-
ware, v145, 1ssl, pp 22-28, Feb. 1998.

Poulin et al.; “A Reuse—Based Software Architecture for
Management Information Systems”. IEEE/IEE|onlinel],
Conference on Software Reuse, pp 94-103, Apr. 1996.

Benjamin et al.; “A Framework for Adaptive Process Mod-
eling and Execution(FAME)”. IEEE/IEE|online], Work-

shops on Enabling Technologies: Infrastructure for Collabo-
rating Enterprises, pp 3-9, Jun. 1998.

Iscoe, N.; “Domain Modeling—Overview and Ongoing
Resecarch at EDS”. IEEE/IEE]| online], International Confer-
ence on Software Engineering, pp 198-200, May 1993,

U.S. Patent Dec. 26, 2000 Sheet 1 of 14 6,167,564

CLIENT g%@
/ 001 | MIDDLEWARE)
2%
(LEGACY)
| ENVIRONMENT
/| REPOSITORY

271 L _I— \
23
Comanse ™

25

SERVER
24

FiIG. 1

6,167,564

Sheet 2 of 14

Dec. 26, 2000

U.S. Patent

7 O[] o o o m Jsvaviva) m 3SVYav.Lva v
A
/ A .H b o \@ pe ~ _ ce ~
4 N _ __ e g I S
Y Y o Y
L
by
13a0On _ 130N 1300W
HINYES 4 | _l ¢ e TAN aqy m NOS
_ b
]
| ; R . -
| | A
m .._..\.,_.,
|
|
[
.
r

IN3INO #

-

]

NAE

————————

m 4Svav.ivd V

LV

M~
N

6,167,564

Sheet 3 of 14

Dec. 26, 2000

U.S. Patent

Ve DIA

31d03d
$3SS3A004d
\nv S1ININNO0A \\J.
SNOILYOINddY
___SNOWLYOMddY __ _ _ _ oo o 5304dN0S
INFWIDVYNYIN /
- l\\
S304NOS
\\v >“__oo_>_m2m_mo\|j‘
1INJAN3d3a
SL3SSV agvaIy/ailng ————— — — — —ASO0TONHD3IL
FOVNVA ¥3A0D3Y
/ S13SSY
INION3daa . —
ADOTONHOIL
* E_oozm_Em_mo\\\J
1NJaN3d3a LNIAN3dIANI
———— mwwwﬂ — ADO0TONHO3L — -
S13SSV -
LN3AN3d3AaNI
\\lv ADOTONHOAL \\\\IJ_
NN AdIQOW/ALVIYD ST3AON
- — — — SSaNISIE ADOTONHOIL — —— - _ — — SSANISNd
1d4dON Ol dYi HIAOD3IH

S130OW SSANISNE \

AdIAOW/A1VdHO

S10VillaVv
SSANISNA

yaynoose q———————————

S3VHNOS

S13ASSY
IN3AN3d4d
ADOTONHO4L

ADOTONHOL ———————— — — —

S1dSSV
1INJANddJANI
ADOTONHO4L

S13A0On
SSANISNY

6,167,564

Sheet 4 of 14

Dec. 26, 2000

U.S. Patent

S1OV4lldV
SSINISNY

AO1d3ddd

- —
\N FHNOIANODda

- JONVHN3
1dvav

S30dN0OS

S1dSSY
INAdNdd3d
OO 1T0ONHO4L

FJHNLO3LIHOYY NOILLVOI'lddV M3IN

ADOTONHOd1 MdN

S1dSSY
1NJANId4dNI

ADO TONHO4L

e R R W I e S L

AN $zEEEEEEEEE TTERTepE—— e LSS s GG S E—

SSINISNG M4dN

S13dON
SSONISNA

SS300Yd SSANISNG M3N

U.S. Patent Dec. 26, 2000 Sheet 5 of 14 6,167,564

63 \
BUSINESS .
MODELS | £
MODEL W
BUSINESS ~ |
B
57 - 62 ¥
/ N >
, N |
B E N
~ | TECHNOLOGY W E
INDEPENDENT S
ASSETS T S
MODEL l E
ASSETS - C P
61
H R
53 I N A
56 f o S
A L E
TECHNOLOGY E g g
DEPENDENT A v /
I ASSETS T / "
=] N E |
E E W
| 60 c| N W |
> 51 \ ﬁ H . B
| =l A A U
N P l S
— C P |
| \ 8 E L N
SOURCES | E
R |
- C S
| APPLICATION / A S
MANAGEMENT S 0 | R T |
| = 218 ||
BUSINESS E N .
ARTIFACTS >
(APPLICATION,] A
DOCUMENT. o R
PROCESS PEQPLE) v C
ROCESS PEC 1M
I_ T ! T
FIG.4 |

6,167,564

Sheet 6 of 14

Dec. 26, 2000

U.S. Patent

S DIA

ADVOT]

d04 1001
INJWIOVNVIA
LININOdNOO

\

08

18

NOILVHLSININAY
NI TOOL
ONI'TAAOIN NIVINOQ

\

9.

cl

/

AN

3P,
M

/___

INTERFACE

|

INTERFACE

Od LNJI'TO NI
1001 ONI'3don
SSANISNA

. J— g

INTERFACE

- SNOISN31LX3 WOS |

ANV 1NN - 1001
SINdNOdNOO

NT

3

TO DOMAIN MODEL

4

TRACE DOMAIN
MODELS TO
COMPONENTS

TRACE COMPONE

M

(@
/
——————

TJAN 1001
14A0W NIVINOQ

> g

TRACE BUSINESS
MODELS TO DOMAIN

BUS MODELS

/

MODELS TO
o\
cY)

MODELS
TRACE DOMAIN

Y .\@@

SNOISNH.LX
ANV TAN 1001
134dOW SSANISIY

INTERFAC

Ad0OL1ISOddd

QO
O

o

INTERFACE

ACE l

INTERF

ADVOI
d04 1001
AHIAODSIA
ININOdWOO

84

A

4

g

A

s
AN

NOLLVHLSININAY
NI TO0L
ONI'TAAOIN NIVINOG

1001 LINJWHOVNVIA

NHOMINVH

NOILLVYOI'lddV 1VOILH3A

U.S. Patent

r

Dec. 26, 2000 Sheet 7 of 14 6,167,564
ASSET MODELING
: 93
DEPLOY
NEW APPLICATION
92
CLIENT GUI: VBSCRIPT. JSCRIPT, VBA
S
88 00
I | _/] I
ASSET coﬁggggm COMPONENT
GENERATOR CREATOR
O0L RECOVERY TO0L
| TOOL
A
87
89 - 91

35 I 84

COMPONENT GENERATOR

REPOSITORY

INTERFACE INTERFACE INTERFACE l - 89

COMPONENT "
MODEL

FIG. 6

U.S. Patent Dec. 26, 2000 Sheet 8 of 14 6,167,564
ICONNECTING 104
DIRECTORY PROTOCOLS
| SERVICES
105
/
100
REPOSITORY COM+ i —
SERVICES | VERTICAL
[‘ ’l APPLICATIONS
A
112 o -
TRANSACTION — 47
/ SERVICES | Y
| | — _ -
LEGACY | | CUSTOM
| SYSTEM | g | b= ’| APPLICATIONS
103
\] e / /
DATAWAREHOUSE L_>| i
SERVICES | HTTP |
— ' | NG |
j_/ " B I
Z
| 107 | = LEGACY
WEB M
SERVICES [© | /______\ 2 I i APPLICATIONS
114| COMPONENT, | ™
. MODEL [
SYSTEM
MANAGEMENT [~
| SERVICES
- 115
FRONT
OFFICE

FIG.7

6,167,564

Sheet 9 of 14

Dec. 26, 2000

U.S. Patent

V8 DI

i,

NOILVHLSININAY

SINdNOdINOD dlind

ONI'TAAOW LNIANOdWNOD

ONITAAOW SSINISNY

6,167,564

Sheet 10 of 14

Dec. 26, 2000

U.S. Patent

N .

(AHOMSSYd H3gGNdNTd ’

-}

AdOLISOd3d

ikl
PR R '
N

| -dlI NIDOT

_| B JHOMSSVd |

AHO1ISOd3d NIdO

ONId33T00dd 330434
AHOLISOd3d 3HL OL NO ©01 3Sv3'ld

NOOY YHOM FHL OL FNOI 1M

ccl

NOILVHLSININGY

_ SLNINOJWOD aliNg

d13H

_|| 440907 ‘ NOSOT |

WNOOH MHdOM

F—

ONIMT3IAONW LNINOdWOO ’

AL

ONITIA0OW wmmz_w:mll_ _

o

0cl

~

6,167,564

Sheet 11 of 14

Dec. 26, 2000

U.S. Patent

o
CO

S
N

—l

'ONISN
TOHEINOD IDHNOS 19NY1SNOD3IY dv N 130N
~~— N N N) X _”
'NOLLYHNOIANOD 1001
d13H
“'S371NY 1NO-MD23HD TFONVYD
1NO-MD3HD
NI-MO3HD
JZINOYHONAS

12NY1SNOD3AY gl
11a3

_ 3137130
N aav

:SIOVIOVC ANV STIAOW 1001

ONI'T3dOIN SSINISNG

6,167,564

Sheet 12 of 14

Dec. 26, 2000

U.S. Patent

SN—

1TOH1LNOD
404dN0S

JOIANVHIY

LONY1LSNOOIA S~

dVIA

144

9l

- 1001

10NHJ1SNODIH - dVIN 1ddON

‘NOILVHNDIANOD 1001

JOVMOVALSALY [| Iﬂ

LNINOJNODY |
LNINOJWOD8 | /
ININOdNODD |/

1dAONMOVd TINMLSHL L

|_

AOVAOVdHIHLONY

I=mci s

+

—1+]

-

13dAONMOVd TNNLS3L M

i

ONILSILAN A lv — -

|

:SIOWMOVd ANV STIAOW 1001

s DI

6,167,564

Sheet 13 of 14

Dec. 26, 2000

U.S. Patent

d 1dH

1dONVYO _

ddNA004d

J1VHIN3O

115 _

/\

1001 HOIAVHIg

1001

1001 11d3
-5 1001

L

-

ININOdWODYV | /
LNINOdWOoOg | /
/

ININOdWWOID

13AONAOVYd TANNLSHL i _I.E
_
LONY

FOVAIVdHdH

-SININOJNOD

| <|a] -]

HOIAVHIE 13AQ0W LNINOdWOoD () |

6,167,564

Sheet 14 of 14

Dec. 26, 2000

U.S. Patent

5
<
2

d13H J

- HOIAVHIY _

10Nd1SNOOdd

‘ 11V a'ling |

_ aling ‘

ONISN

dOINVHIY

_ TOHLNQD J0dN0OS
||\(|I|||||I\

‘NOILVAINOIANOD 1001

-SAH0O4LVO ANV SININOdINOD

6,167,564

1

SOFTWARE SYSTEM DEVELOPMENT
FRAMEWORK

A portion of the disclosure of this patent document
contains material that 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent disclosure, as it appears 1n the
Patent and Trademark Office patent files or records, but
otherwise reserves all copyright rights whatsoever.

CROSS REFERENCE TO RELATED
APPLICATIONS

This patent document relates to the following co-pending,
applications, assigned to the same assignee herecof, which
are 1ncorporated herein by reference.

U.S. Ser. No. 09/154,613, entitled A METHOD AND
SYSTEM FOR MONITORING AND CAPTURING ALL
FILE USAGE OF A SOFTWARE TOOL,;

U.S. Ser. No. 09/156,029, entitled A METHOD AND
SYSTEM FOR INTERFACING TO A VARIETY OF SOFT-
WARE DEVELOPMENT TOOLS;

U.S. Ser. No. 09/156,027, entitled A METHOD AND
SYSTEM FOR CONTROLLING AND TRACKING CLI-
ENT ACCESS TO SERVER SOFITWARE; and,

U.S. Ser. No. 09/156,026, entitled A METHOD AND
SYSTEM FOR BUILDING COMPONENTS IN A
FRAMEWORK USEFUL IN DEVELOPING INTE-
GRATED BUSINESS-CENTRIC APPLICATIONS.

FIELD OF THE INVENTION

The present mvention generally relates to a system for
integrating various software tools for a development
framework, and more particularly to a system for third party
tool mtegration for a development environment, which
system supports the entire software life cycle including
business process modeling, object modeling, component
management, application development and deployment, and
legacy 1ntegration.

BACKGROUND OF THE INVENTION

Windows NT 1s 1ncreasingly penetrating legacy
environments, thereby creating a need to integrate existing
applications with new applications based upon Windows
NT. Accordingly, the complexity of developing and manag-

ing applications 1n heterogencous environments 1s greatly
increased. Moreover, software system development 1s mov-
ing away from an application-centered view to one that is
centered on business processes. The starting point 1s a set of
business process models, and the applications are then
developed from the models. The result 1s a need for a
comprehensive set of tools to abstract existing legacy sys-
tems 1nto business models, and then to generate applications
from those models.

Business process models define business processes; and,
business processes describe activities that need to be per-
formed within an organmization. Examples of such activities
may 1nclude processing purchase orders, payroll processing,
or processing mnsurance claims. Actual software applications
may be dertved from business processes. These software
applications, 1n conjunction with other software systems and
a team of humans, may accomplish a defined business

PIOCCSS.

Creation of business applications results 1n the need for a
comprehensive environment that will support the entire
business application development process. The process may

10

15

20

25

30

35

40

45

50

55

60

65

2

start with the building of business models and progress to
representing the business models as a collection of object
models. Object models are a means for describing interac-
tions between functions that are amenable to being auto-
mated 1n a computer system, and which collectively repre-

sent the functionality necessary to implement a business
model.

The next step may include creating source code for the
functions defined in the object model (business logic); that
1s, the creation of methods for the business processes that
represent details of how the business runs. For example, 1f
the business process 1s the handling of purchase orders, one
function 1 the business process may be approval. The
approval process may be represented as one part of an object
model. Further, one detail about how this function 1s accom-
plished may be that purchase orders over $1,000 must be
approved by a manager. Computer source code may be
developed to implement the steps necessary to route pur-
chase orders over $1,000 to a manager for approval. The
development process may then proceed to building and
wrapping components (reusable pieces of code), building
applications from the components, and installing the new
applications and components 1nto the appropriate environ-
ments.

The development process results 1n a further need to
discover legacy systems; that 1s, existing applications,
components, business processes, or other legacy systems
that must be discovered and integrated into new business
models, which may 1n turn generate new business applica-
tions. The 1ncorporation of existing legacy items 1nto new
applications will help preserve mnvestments made 1n creating
the legacy systems. A tool for performing the discovery of
legacy systems 1s an example of one of the software tools
capable of being mtegrated with other tools by the method
and system of the present invention.

Current technology does not adequately address the needs
for integrating various tools for use in a single environment
that would support the process from beginning to end.
Another shortcoming of existing technology 1s the inability
to discover and reconstruct existing legacy items and incor-
porate them into new applications. Although there are tools
that allow transformation of some legacy items into certain
kinds of object models, these tools do not utilize the models
to generate business applications. Furthermore, these tools
are limited 1n their ability to abstract an object model from
an existing software 1mplementation, and are also not
ogeneralized, meaning that they are able to transform only
certain types of legacy items into object models.

A further shortcoming of the current technology 1s that
tools are usually inextricably linked to specific middleware,
requiring the pairing of a specific tool with a speciiic
middleware, when creating business applications. As an
example of this shortcoming, if one tool 1s used to develop
the business process model, one might be bound in the
selection of the same tool to create the application source
code for the model. The lack of tool independence 1s mainly
due to the mability to exchange information between tools.

SUMMARY OF THE INVENTION

A system 1s provided 1n a computer system for integrating
software development tools and applications 1nto the com-
puter system 1n order to build, deploy and maintain enter-
prise business process applications 1n a heterogeneous
development framework. Integration of the applications and
software development tools are achieved through integration
of the key elements of the computer system which are

6,167,564

3

business models, domain models and components. In the
process of 1ntegration the origin of a first newly developed/
modified/existing business model 1s traced to a first newly
developed/modified/existing domain model and these mod-
cls are linked together. Next, the constituent components of
a second newly developed/modified/existing domain model
are traced to a newly developed/modified/existing set of
components created and linked together. The system also
involves recovery of constituent components from a newly
developed/modified/existing system 1n a first heterogeneous
environment and those constituent components are recon-
structed into usable components inside a third newly
developed/modified/existing domain model and are linked
together. The process also 1nvolves recovery of a fourth
newly developed/modified/existing domain model from a
second heterogeneous environment and linking it to a sec-
ond newly developed/modified/existing business model.

It 1s an object of this invention to provide a system that
lets users develop business process applications, where such
system support legacy integration; and, support the entire
software life cycle of (1) business process modeling; (2)
object modeling; (3) component management; (4) applica-
tion development; and, (5) application deployment.

Another object of the present mnvention 1s to provide a
system that allows a user to develop business process
applications with the use of heterogeneous tools.

Still another object of the present 1nvention 1s to provide
a system that integrates a variety of software tools, such as
business modeling tools, component-modeling tools, com-
ponent behavior tools and component wrapping tools.

Yet another object of the present invention 1s to provide a
system that overcomes the prior art limitations of integrating
only those tools from the same vendor, or the lack of
functional scope for integrating newly developed tools, or
the lack of tool interoperability.

An object of the present invention 1s to take existing
software tools from a variety of vendors, and targeting a
variety of middleware, and to integrate them into a coherent
development framework 1n lieu of developing new tools.

A feature of the system of the present invention 1s the
ability to trace the influence of an action of one tool on other
tools, thereby making them interoperable and integrated.

Another feature of the system of the present invention 1s

the ability to update other tools when an action 1s taken by
a first tool.

Yet another feature of the system of the present invention
1s the ability to discover and reconstruct legacy programs.

An advantage of the system of the present invention 1s the
ability to integrate the best of market software tools thereby
providing a cooperative set of services under a unified
framework. Hence, the user may focus on the development
process and not be troubled with the mtegration or bridging,
of a variety of tools.

Still other objects, features and advantages of the present
invention will become readily apparent to those skilled 1n
the art from the following detailed description, wherein 1s
shown and described only the preferred embodiment of the
invention, simply by way of illustration of the best mode
contemplated for carrying out the invention. As will be
realized, the invention 1s capable of other and different
embodiments, and its several details are capable of modifi-
cations 1n various obvious respects; all without departing
from the invention. Accordingly, the drawings and descrip-
tion are to be regarded as illustrative 1n nature, and not as
restrictive, and what 1s 1intended to be protected by Letters

10

15

20

25

30

35

40

45

50

55

60

65

4

Patent 1s set forth in the appended claims. The present
invention will become apparent when taken 1n conjunction
with the following description and attached drawings,
wherein like characters indicate like parts; and, which the
drawings form a part of this application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a prior art development
system

FIG. 2 1s a block diagram of the system of the present
invention.

FIGS. 3A and 3B are conceptual diagrams of the evolu-
tion and development process implemented by the system of
the present invention.

FIG. 4 1s a process flow diagram of a method of the
present 1nvention.

FIG. 5 1s a block diagram showing the interrelationships
of the modules making up the business modeling develop-
ment framework of the present invention.

FIG. 6 1s a block diagram of the asset modeling devel-
opment framework of the present invention.

FIG. 7 1s a block diagram of the execution-time architec-
ture of the present invention.

FIGS. 8A through 8F illustrate top-level screens for the
user during operation of the process.

DETAILED DESCRIPTION OF ONE
EMBODIMENT

Before proceeding with a description of the system of the
present invention, a summary of Terminology used herein 1s
provided, which may be helpful mn understanding the dis-
closed embodiment.

An object 1s an abstract representation of a real-world
concept or thing. For example, an object can be used to
represent a customer account 1n a banking application. An
object has features, which can be either an operation or a
property. An operation defines an action that an object can
perform, or an action that can be performed on the object.
For example, “make withdrawal” could be defined as an
operation on a customer account object. Properties indicate
the state of an object. Every property of an object has a
value, and 1t 1s the property values that define the state of the
object. A property can be either an attribute or a reference.
An attribute defines a value that 1s stored within the object.
For example, “current account balance” could be an attribute
of the customer account object. The numeric value for the
customer’s account balance would be stored 1n the customer
account object. A reference 1s a link or pointer to another
object, and 1mplies a relationship to that other object. A
reference 1s typically used when 1t 1s desired not to duplicate
data. For example, the customer account object could store
the customer’s name and address as attributes. However, 1f
the customer opened multiple accounts, the customer’s
name and address would appear in multiple account objects.
Therefore, it 1s desirable to define a separate customer object
and place the name and address as attributes of the customer
object. The customer account object would then contain a
reference to the customer object.

A normal object program stores objects in a computer
system’s memory. When the program terminates, the
memory used by those objects 1s freed and reused by other
programs, making the objects that the program stored tran-
sient. An object database stores objects 1n a non volatile
memory, such as a computer disk. Since the information on
a computer disk remains 1n existence, even when the com-

6,167,564

S

puter 1s turned off, an object database provides the ability to
persistently store objects. An object program that uses an
object database thus has the option of storing objects tran-
siently or persistently.

The term protocol as used herein refers to a set of formal
rules describing how to transmit data, especially across a
network. Low-level protocols define the electrical and
physical standards to be observed, bit and byte-ordering and
the transmission and error detection as well as correction of
the bit stream. High-level protocols deal with message
formatting, including the syntax of messages, the terminal to
computer dialogue, character sets, sequencing of messages,
ctc.

The term schema as used herein refers to the logical
description of data in a database, including definitions and
relationships of data.

Referring now to the drawings and FIG. 1 1n particular, a
block diagram of a system 1s shown of the prior art technique
for execution of legacy programs 1n a Windows NT envi-
ronment. Windows NT 1s a proprietary operating system of
Microsoft Corporation of Redmond, WA. A user interface 20
1s coupled to a repository 21 by means of a software tool 22.
The tool 22 may have access to a legacy environment 24 by
means of middleware 25, and the repository 21 may have
access to a database 23.

The developer creating the tool 22 examines the descrip-
tion of the legacy environment 24, which is stored in the
repository 21. Using the information obtained, the developer
encodes 1nto tool 22 a set of calls to middleware 25, which
facilitate the required communication with the legacy envi-
ronment 24. At run time, the tool 22 may contact the legacy
environment 24 via the middleware 25 without reference to
the 1nformation stored in the repository 21.

Referring now to FIG. 2, the system of the present
invention 1s illustrated 1n block diagram form. For ease of
understanding, the system 1s illustrated 1n two parts. First,
there 1s a client 27 as bounded by a dashed line and a server
28, also as bounded by a dashed line. The client 27 and
server 28 communicate with one another over a network 29.
The network 29 may comprise any conventional network

(¢.g., TCP/IP), or the Internet.

A user mterface 30, which may be the same or different
from the user interface 20 depicted in FIG. 1, 1s coupled to
a workroom 31 and both are shown as part of the client. The
workroom 31 1s a front end component of the system of the
present invention and 1s coupled to the network 29, which 1s
coupled to a repository 32.

In the disclosed embodiment, the repository 32 1s a
specialized, extensible object-oriented database application
that adds value to a database system, which allows customi-
zation of a particular domain (such as application
development) and it may be the same as the repository 21
depicted in FIG. 1. The repository 32 is coupled to databases
33, 34, 35, ctc. for accessing modeling data stored therein.

The repository 32 further includes methods for
cataloging, browsing, modeling, and managing components
that make up an application. Methods to support these
services are disclosed i1n several patents and patent applica-

fions assigned to the assignee of this patent application,
including U.S. Pat. No. 5,671,398 for METHOD FOR

COLLAPSING A VERSION TREE WHICH DEPICTS A
HISTORY OF SYSTEM DATA AND PROCESSES FOR
AN ENTERPRISE; U.S. Pat. No. 5,644,764 for METHOD
FOR SUPPORTING OBJECT MODELING IN A REPOSI-
TORY; U.S. Pat. No. 5,581,755 tor METHOD FOR MAIN-
TAINING A HISTORY OF SYSTEM DATA AND PRO-

10

15

20

25

30

35

40

45

50

55

60

65

6

CESSES FOR AN ENTERPRISE; U.S. Pat. No. 5,557,793
for IN AN OBJECT ORIENTED REPOSITORY, A
METHOD FOR TREATING A GROUP OF OBIJECTS AS
A SINGLE OBIJECT DURING EXECUTION OF AN
OPERATION; U.S. Pat. No. 5,889,992 tor A METHOD
FOR MAPPING TYPES IN A MODEL IN A OBJECT-
ORIENTED REPOSITORY TO LANGUAGE CON-

STRUCTS FOR A C BINDING FOR THE REPOSITORY;
U.S. Pat. No. 5,721,925, for METHOD FOR GENERI-
CALLY INVOKING OPERATIONS IN AN OBJECT ORI-
ENTED REPOSITORY; U.S. Pat. No. 5,848,273, for A
METHOD FOR GENERATING OLE AUTOMATION
AND IDL INTERFACES FROM METADATA INFORMA -
TION; U.S. Pat. No. 5,765,039 for A METHOD FOR
PROVIDING OBJECT DATABASE INDEPENDENCE IN
A PROGRAM WRITTEN USING THE C++ PROGRAM-
ING LANGUAGE; U.S. Pat. No. 5,758,348, for A
METHOD FOR GENERICALLY MANIPULATING
PROPERTIES OF OBJECTS IN AN OBJECT ORIENTED
REPOSITORY; U.S. Pat. No. 5,701,472, for A METHOD
FOR LOCATING A VERSIONED OBIJECT WITHIN A
VERSION TREE DEPICTING A HISTORY OF SYSTEM
DATA AND PROCESSES FOR AN ENTERPRISE; pend-
ing application Ser. No. 08/655,553, filed on May 30, 1996,
for AMETHOD FOR PACKING/UNPACKING C OPERA-
TIONS TO/FROM RPC COMPATIBLE FORMAT USING
THE RPC PROTOCOL TO OPERATE REMOTELY WITH
AN OBIECT-ORIENTED REPOSITORY; U.S. Pat. No.
6,018,627, entitled TOOL-INDEPENDENT SYSTEM FOR
APPLICATION BUILDING IN AN OBIJECT ORIENTED
DEVELOPMENT ENVIRONMENT WITH DATA
STORED IN REPOSITORY IN OMG COMPLIANT UML
REPRESENTATION; and, U.S. Pat. No. 6,038,393, enfitled
SOFTWARE DEVELOPMENT TOOL TO ACCEPT
OBJECT MODELING DATA FROM A WIDE VARIETY
OF OTHER VENDORS AND FILTER THE FORMAT
INTO A FORMAT THAT IS ABLE TO BE STORED IN
OMG COMPLIANT UML REPRESENTATION; each of
which are hereby mncorporated by reference as if set forth 1n

full herein.

Tools 36 through 39 (within the client 27) are coupled to
the workroom 31 and are disposed for performing a variety
of tasks. For example, tool 36 may comprise a Visual Basic
tool. Tool 36 1s shown as being directly coupled to the
network 29, which 1s linked to the repository 32. Tool 37
may comprise for example, Select Component Manager,
which 1s available from Select Software Tools, Ltd. of
Gloucestershire, U.K. Tool 38 may comprise for example,
Select Enterprise, also available from Select Software Tools,
Ltd. Tool 39 may comprise for example, Rational Rose,
which 1s available from Rational Software Corporation of

Santa Clara, Calif.

Tools 37, 38 and 39 are linked to the repository 32 by
means of an XML component 41 (“Extended Markup
Language™), which 1s disposed within the Client 27. XML is
typically used to enable access, via the internet protocol, to
information stored in databases (e.g., databases 33, 34, and
35). Moreover, tools 38 and 39 may be coupled to another
XML tool 41, which 1s disposed within the server 28 for
running server component tools of the framework, e.g.,
UML, RDB, etc. XML 1s typically used for message

exchanging 1n the proper format.

The XML component 40 1s linked to two models within
the repository 32. The first is a relational database (“RDB”)

model 43 and the second 1s a Unified Modeling Language
(“UML”) model 44. The UML model 44 is based upon a set
of analysis and design notations, which are becoming a

6,167,564

7

de-facto industry standard for Object Oriented Analysis and
Design. Another exemplary model, SCM model 46, 1s also
illustrated within the repository 32. The SCM model 46 1s
based upon Select Component Manager, which 1s a tool that
manages components.

At development time, 1t can be appreciated from the
above that any model can be accessed by any tool within the
framework, including legacy integration tools allowing
modification, update and management of the system. Note
also that the Client and Server may be heterogeneous, that
1s they may be completely different or without interrelation
or may be from different manufacturers.

One of the primary advantages of the present invention 1s
the ability to allow applications to evolve 1n order to provide
new or enhanced functionality. Hence, the system disclosed
and claimed herein are derived from the basic principles
involved 1n the process of evolution. Evolution occurs when
something develops in a new direction. In an engineering
environment, evolution takes place through a deliberate
process of recovery, that 1s the discovery and abstraction of
existing assets by reverse engineering. Once the assets are
recovered, they can be developed mto new applications by
forward engineering. The process repeats itself, thereby
forming a cycle that may be entered at any point.

The concepts set forth above can be seen by reference to
FIGS. 3A and 3B. The system of the present invention
defines five layers: Business Models, Technology Indepen-
dent Assets, Technology Dependent Assets, Applications
and Business Artifacts. These layers are 1dentified along the
left hand side of both FIGS. 3A and 3B. To understand the
scope of the term Business Model 1t 1s important to under-
stand the term business domain. A business domain 1s
defined as an enfity 1n an organization that accomplishes
specific tasks for proper working of the organization as a
whole. Examples of business domains are sales department,
human resource department, or the information technology
department. A typical business domain generally comprises
a wide range of functionalities, which 1n aggregation form
the overall functions of a business domain. A clearly defined
coherent description of such functionalities are called busi-
ness models. They are the building blocks of an organiza-
tion. Examples of Business Models can be the recruiting
function of HR, the Intranet maintenance function of IT and
the forecasting function of sales. A Business Model includes
descriptions of people’s roles, processes and procedures, and
business rules.

A business asset 1s defined as a particular aspect of a
business, such as worktlow, rules, components, transaction,
database, people, strategy, laws, etc. Depending on whether
an asset 15 independent of or dependent upon technology,
they are classified as Technology Dependent and Technol-
ogy Independent assets. Examples of Technology Indepen-
dent assets are people and strategy while that of Technology
Dependent assets are databases and workilow.

A Business Artifact 1s defined as any of the things required
to operate an enterprise, mncluding programs, models, busi-
ness rules, documentation, procedures and 1nteractions. Arti-
facts are produced, for example, as part of the application
development life cycle.

Since there are five layers, there are four boundaries (or
stages) between them that represent the different stages of
the application development process. Each of the four stages
(shown on the right hand side of FIG. 3A) has its own set of
Recover/Reconstruct, Create/Modity and Map/Specialize
tools. At the lower levels, the reverse engineering process 1S
primarily the discovery of applications, 1.e., the locating and

10

15

20

25

30

35

40

45

50

55

60

65

3

cataloging of existing business arfifacts. At the middle
layers, it 1s primarily recovery (both technology dependent
and independent) - the abstraction of assets into less spe-
clalized models. At the higher layers, 1t 1s primarily recon-
struction - the process of combining information about
applications, processes and people into enterprise models.

An 1mportant concept 1s that, 1n general, the further an
application needs to evolve, the further up into the layers the
process needs to go. For example, simply reconfiguring or

redeploying an application needs very little abstraction.
More serious adaptation or enhancement of an application,
but still using the same environment (same language, same
operating system, same database, etc.), requires more
abstraction 1nto some form of technology-dependent mod-
cling. Changing technologies or application architecture
requires a further step of abstraction - the application must
be made independent of the old technology before evolving
into the new. Finally, re-engineering an entire business
process requires abstracting all the way up to a model of the
existing process before 1t can evolve.

With reference to FIG. 4, the first of the five layers,
Business Artifacts, 1s depicted by a block 50 and the second
layer, Applications, 1s depicted by a block 51. The first of the
four stages 1s Application Management, as depicted by a
circle 52. The third layer, Technology Dependent Assets, 1s
depicted by a block 53 and the second stage, Create Assets,
1s depicted by a circle 54. The fourth layer, Technology
Independent Assets, 1s depicted by a block 55 and the third
stage, Model Assets, 1s depicted by a circle 56. The fifth
layer, Business Models, 1s depicted by a block 57 and the
fourth stage, Model Business, 1s depicted by a circle 38.

Reconfiguring or redeploying an application needs very
little abstraction, as alluded to earlier. This cycle of the
process occurs within the Applications layer 51, the Appli-
cation Management stage 52 and the Business Artifacts layer
50 by linking through a reconfigure/redeploy path (block
60). An adaptation or enhancement of an application, while
still using the same environment, requires the use of the
Technology Dependent Assets 33, the Create Assets stage 54
and those layers and stages below by linking through an
Adapt/Enhance path (block 61). When the application must
be made independent of the old technology before evolving
into the new, requires the use of the Technology Independent
Assets level 55, the Model Assets stage 56 and those layers
and stages below, by linking through a New Technology/
New Application Architecture path (block 62). For
re-engineering an enftire business process, the Business
Models layer 57, the Model Business stage 58 and all the
layers and stages below are required. This latter cycle 1s

completed by linking through the New Business Process/
New Business path (block 63).

Referring now to FIG. 5, the interrelationships of the
modules making up the development framework of the
present 1nvention are shown 1n a block diagram. Included
within the repository 32 1s a Business Model module 66. As
noted, the module 66 may be written in UML with
extensions, which will be amplified heremafter. Also, there
1s shown a Domain Model module 67, which may also be
written 1n UML. Finally, there 1s shown a Components
module 68, also written in UML with SCM Extensions.
Examples of the tools 36 through 39 (FIG. 2) are illustrated
in FIG. 5 as follows. A Vertical Applications Framework
Management Tool 70 i1s coupled to the repository 32 by
means of an interface 71. The Vertical Application Frame-
work Management Tool 70 may typically comprise tools
such as the SAP R/3 application suite, which 1s available

from SAP AG of Walldort, Germany, or PeopleSoft HRMS

6,167,564

9

packages available from PeopleSoft of Pleasanton, Calif. A
Business Modeling Tool 1n a Client PC 72 1s coupled to the
repository 32 by means of an interface 73. The Business
Modeling Tool 72 may typically comprise a Select

Enterprise, which 1s available from Select Software Tools,
Ltd.

A Domain Modeling Tool in Administration 74 1s coupled
to the repository 32 by means of an interface 75. A second
Domain Modeling Tool in Administration 76 1s coupled to

the repository 32 by means of an interface 77. The Domain
Modeling Tools 74 and 76 may typically comprise any
available database for which a domain model exists 1n the
repository. A Component Discovery Tool for Legacy 78 1s
coupled to the repository 32 by means of an mterface 79. A
Component Discovery Tool, which may be useful for
Legacy 78, 1s available from the assignee hereof. Legacy 78
1s a software tool that discovers component descriptions for
legacy applications and imports them 1nto the repository 32.
Finally, a Component Management Tool for Legacy 80 is
coupled to the repository 32 by means of an interface 81.
The Component Management Tool for Legacy 80 may
typically comprise Select Component Manager, which 1s
available from Select Software Tools, Ltd.

The interfaces 71, 73, 75, 77, 79 and 81 are typically an
XML tool (see 40 and 41, FIG. 2) or a tool wrapper. A tool
wrapper useful 1n practicing the present invention 1s dis-
closed the above-cited co-pending patent application Ser.

No. 09/156,029, entitled A METHOD AND SYSTEM FOR
INTERFACING TO A VARIETY OF SOFTWARE
DEVELOPMENT TOOLS.

A major advantage of the system of the present invention
1s the ability to link or trace from the Business Model 66 to
the Domain Model 67, or to link or trace from the Domain
Model 67 to the Components module 68. Also, this system
can link or trace back from the Components module 68 to
the Domain Model 67 or from the Domain Model 67 to the
Business Model 66. In particular, the method of this inven-
fion provides traceability of the Business Models to the
Domain Models, or traceability of the Domain Models to the
Components. In a similar manner, the method provides
traceability of the Components to the Domain Models or the
Domain Models to the Business Models.

Referring now to FIG. 6, the asset modeling development
framework of the present invention 1s shown. The repository
32 has coupled thereto a component model 84. A component
generator 85 1s also coupled to the repository 32, which 1s a
“conductor” of the build process. Further amplification of
the component generator 85 may be had by reference to the
above-cited co-pending patent application Ser. No. 09/156,

026, entitled AMETHOD AND SYSTEM FOR BUILDING
COMPONENTS IN A FRAMEWORK USEFUL IN
DEVELOPING INTEGRATED BUSINESS CENTRIC
APPLICATIONS. The generator 85 can effect updates to the
Component Model 84. For example, the application under
development may require certain additions or changes to the
Model. Also, the generator 85 generates an interface to the
various tools. An asset generator tool 86 1s linked to the
component generator 85 through an interface 87. The asset
generator tool helps build new asset objects 1n the Compo-
nent Model 84 through the repository 32. Next, a legacy
component recovery tool 88 1s linked to the component
generator 85 by means of another interface 89. The recovery
tool 88 contacts legacy components and links them to the
Component Model 84. A component creator tool 90 1s linked
to the component generator 85 by means of an interface 91.
The component creator tool 90 helps build new components
and links them to the Component Model 84.

10

15

20

25

30

35

40

45

50

55

60

65

10

At this juncture, a user working at a client station through
a GUI (1.e., Graphic User Interface) 92 actually develops a
new application using the assets 1n the database and the
models 1n the repository 32. After this, the new application
1s deployed as depicted by a bubble 93.

Referring now to FIG. 7, a block diagram of the
execution-time architecture of the present invention 1s
shown. At this juncture, the facts of an environment have
been collected and used to build an application. Examples of

such an application are vertical applications 100, custom
applications 101 or legacy applications 102. Connecting,
Protocols 104 disposed between the Services and the Appli-
cations are used for exchanging messages between the
applications (e.g., Vertical Applications 100, Custom Appli-
cations 101 and Legacy Applications 102). A first example
of the Protocols 104 1s COM+ 105, which 1s an evolution of
the COM protocol from Microsoft Corporation of Redmond,
WA. Another example 1s Enterprise Java Beans 106, which
1s available from Sun Microsystems of Mountain View,
Calif. Other similar connecting protocols may be employed

in a like manner such as HI'TP NG 103 or a CORBA
Component Model 107.

Within the Server are a variety of services. First, there are
Directory Services 108, which 1s an internal system service
for file maintenance. For further imformation about the
Directory Services reference 1s made to the above-cited
co-pending patent application Ser. No. 09/154,613, entitled

A METHOD AND SYSTEM FOR MONITORING AND
CAPTURING ALL FILE USAGE OF A SOFTWARE
TOOL. Next, there are Repository Services 109. Examples
of the latter are Name Service, Composite Object Service,
Version Service, Metadata Service, etc. See the aforemen-
tioned patents and applications relating to the repository 32.
Transaction Services 110 are used for any transaction over
the framework and can use a transaction server like MTS of
Microsolt Corporation. Reference 1s made to the above-cited
co-pending patent application Ser. No. 09/156,027, entitled
A METHOD AND SYSTEM FOR CONTROLLING AND
TRACKING CLIENTACCESS TO SERVER SOFTWARE.
Data-warchouse Services 111 are used for storing data,
which may be accessed by the method of the present
invention. Note that a Legacy System 112 1s linked to the

Protocols 104 by means of the Transaction Services 110 or
the Data-warehouse Services 111.

In addition to the above, Web Services 113 and System
Management Services 114 are linked to the Protocols 104
for any services over the internet and can use Internet
Information Server, which 1s amplified 1n the above-cited
co-pending patent application Ser. No. 09/156,027, entitled
A METHOD AND SYSTEM FOR CONTROLLING AND
TRACKING CLIENTACCESS TO SERVER SOFTWARE.
Finally, a so-called Front Office 115 1s linked to the Proto-
cols 104 to handle user screens and tool manipulation.

Referring now to FIGS. 8A through 8F, a series of
top-level screens for the workroom, as viewed by a user, are
shown for the tool time process. FIG. 8 A 1llustrates the basic
screen that appears after system imitialization. FIG. 8B
illustrates the Log On screen, wherein a user enters a Logln
ID and a Password to gain access to the framework and the
repository. FIG. 8C illustrates the screen for business
modeling, which appears if the user clicks on the Business
Modeling button 120 (FIG. 8B). FIG. 8D illustrates the
screen for components, which would appear if the user
clicks on the Component Modeling button 122 (FIG. 8B).
FIG. 8E 1illustrates the screen for Component Model
Behavior, which would appear if a user clicks on the

Behavior button 124 (FIG. 8D). FIG. 8F illustrates the build

6,167,564

11

screen, which appear 1f a user clicks on the Reconstruct
button 126 (FIG. 8D).

The methods and apparatus of the present 1invention, or
certain aspects or portions thereof, may take the form of
program code (i.e., instructions) embodied in tangible
media, such as floppy diskettes, CD-ROMS, hard drives, or
any other machine-readable storage medium, wherein, when
the program code 1s loaded 1nto and executed by a machine,
such as a computer, the machine becomes an apparatus for
practicing the mvention. The methods and apparatus of the
present 1nvention may also be embodied in the form of
program code that 1s transmitted over some transmission
medium, such as over electrical wiring or cabling, through
fiber optics, or via any other form of transmission, wherein,
when the program code 1s received and loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the invention. When
implemented on a general purpose processor, the program
code combines with the processor to provide a unique
apparatus that operates analogously to specific logic circuits.

Although the invention has been described with reference
to a specific embodiment, this description i1s not meant to be
construed 1n a limiting sense. Various modifications of the
disclosed embodiment as well as alternative embodiments of
the mvention will become apparent to one skilled 1n the art
upon reference to the description of the invention. It 1s
therefore contemplated that the appended claims will cover
any such modifications of embodiments that fall within the
true scope of the invention.

What 1s claimed 1s:

1. A computer system having a repository program being
executed therein and a framework for integrating software
development tools into said system, for building, deploying

10

15

20

25

30

12

and maintaining applications 1n a heterogeneous develop-
ment framework, said framework comprising:

a. a first module disposed for representing business mod-
els derived from a business modeling tool;

b. a second module disposed for holding information
asscts;

c. means for tracing origin of a first newly developed
business model 1n said first module to a first newly
developed domain model in said second module and
linking said business model to said domain model 1n
said repository;

d. a third module containing a multiplicity of component
interfaces useful 1in building applications;

¢. means for tracing constituent components of a second

newly developed domain model in said third module to
a newly developed set of components created 1 a
process of building and deploying new applications and
linking both of them together 1n said repository;

f. means for recovering constituent components from an
existing system 1n a first heterogencous environment
and reconstructing said constituent components into
usable components inside a third newly developed
domain model and linking said constituent components
and said third newly developed domain model together
in said repository; and,

o. means for recovering a first previously built domain
model from a second heterogeneous environment and
linking 1t to a second newly developed business model
in said repository.

	Front Page
	Drawings
	Specification
	Claims

