United States Patent i
Kang

US006163581A
(11] Patent Number:

6,163,581

45] Date of Patent: Dec. 19, 2000

[54] LOW-POWER STATE-SEQUENTIAL
VITERBI DECODER FOR CDMA DIGITAL
CELLULAR APPLICATIONS

|75] Inventor: Inyup Kang, San Diego, Calif.

73] Assignee: The Regents of the University of
California, Oakland, Calif.

[21] Appl. No.: 09/072,654
[22] Filed: May 5, 1998

Related U.S. Application Data
60] Provisional application No. 60/045,713, May 5, 1997.

51] Int. CL7 s HO3D 13/41
52] US.CL .. 375/341; 375/262; 375/265;
704/242; 714/795
58] Field of Searchcc........ 375/262, 265,
375/341; 714/795; 704/242

[56] References Cited

U.S. PATENT DOCUMENTS

6,009,127 12/1999 Purainenccecceeeveveeeeennnnn. 375/341

OTHER PUBLICAITONS

Inyup Kang and Alan N. Willson, Jr., “A Low—Power
State—Sequential Viterb1 Decoder for CDMA Digital Cellu-

lar Applications,” IEEE, 1996, pp. 272-275.
Andrew J. Viterbi, “Error Bounds for Convolutional Codes
and an Asymptotically Optimum Decoding Algorithm,”

IEEE Transactions on Information Theory, vol. I'T-13, No.
2, Apr. 1967, pp. 260-269.

Jim K. Omura, “On the Viterb1 Decoding Algorithm,” IEEE
Transactions on Information Theory, Jan. 1969, pp.

177-179.
G. David Forney, Jr., “The Viterbi Algorithm,” Proceedings
of the IEEE, vol. 61, N. 3, Mar. 1973, pp. 268-278.

404 y

Gerhard Fettwels and Heinrich Meyr, “High—Speed Parallel
Viterbi Decoding: Algorithm and VLSI-Architecture,”
IEEE Communications Magazine, May 1991, pp. 46-55.
Peter J. Black and Teresa H. Meng, “A 140-Mb/s, 32—State,
Radix—4 Viterb1 Decoder,” IEEE Journal of Solid-State
Circuites, vol. 27, No. 12, Dec. 1992, pp. 1877—1885.
Jerrold A. Heller and Irwin Mark Jacobs, “Viterbi Decoding
for Satellite and Space Communication,” IEEE Transactions
on Communication Technology, vol. COM-19, No. 5, Oct.
1971, pp. 835—848.

(List continued on next page.)

Primary Fxaminer—Stephen Chin
Assistant Examiner—Paul N Rupert
Atiorney, Agent, or Firm—Gates & Cooper

57 ABSTRACT

A method, apparatus, and a program storage device useful in
performing computations to decode a convolutionally coded
sequence without resorting the use of switching elements 1s
disclosed. The method comprises the steps of computing a
first branch metric between a first input node and an output
node, adding a first mnput path metric to the first branch
metric to produce a first candidate output path metric,
computing a second branch metric between a second 1nput
node and the output node, adding the second branch metric
to a second path metric to derive a second candidate output
path metric, and configuring a decision bit based upon the
parity of the output state node state and upon whether the
first candidate output path metric 1s greater than the second
candidate output path metric. In one embodiment, a com-
parison between the first and the second candidate output
path metrics 1s compared to the parity of the output node by
an exclusive OR gate or a table lookup to determine the
decision bit. The mvention also 1s described by an apparatus
comprising a means for performing these steps and a pro-
oram storage device tangibly embodying instructions to
perform the steps.

19 Claims, 14 Drawing Sheets

404

Va 472

EVEN |—» |

¢_/

SWITCH
b
a
S
SWITCH

474
DG
1
402 478 476
0 480
484
DGy
1
\ 486
_ 482

502
»| EVEN i Xy Y [50
360 oo Y 504
902 y 512
» ODD Xy ; \514

6,163,581
Page 2

OTHER PUBLICAITTONS

Andrew J. Viterbi, “Convolutional Codes and Their Perfor-

mance 1n Communication Systems,” IEEE Transactions on
Communications Technology, vol. COM-19, No. 5, Oct.
1971, pp. 751-772.

Charles M. Rader, “Memory Management 1n a Viterbi
Decoder,” IEEE Transactions on Communications, vol.

COM-29, No. 9, Sep. 1981, pp. 1399-1401.

B.K. Min and N. Demassieux, “A Versatile Architecture for
VLSI Implementation of the Viterbi Algorithm,” IEEE,
V2.15, 1991, pp. 1110-1104.

C. Bernard Shung, et al., “A 30-MHz Trellis Codec Chip for
Partial-Response Channels,” IEEE Journal of Solid—State
Circuits, vol. 26, No. 12, Dec. 1991, pp. 1981-1987.
Robert Cypher and C. Bernard Shung, “Generalized Trace—
Back Techniques for Survivor Memory Management 1n the
Viterbi Algorithm,” Journal of VLSI Signal Processing, 3,
85-94, 1993, pp. 85-94.

U.S. Patent Dec. 19, 2000 Sheet 1 of 14 6,163,581

'/—100

104 108 112 114

CONV CONV

XMITR RCVR DECDR
102 106 110 116

115
-
'/— 104
126

102

[INPUT
OUTPUT STe
106 v 120

U.S. Patent Dec. 19, 2000 Sheet 2 of 14 6,163,581

10 | 11 ‘
OF

01 01
(1/ 00 (1)\‘
01
0 19
LEGEND : \ /0)
- Contents of K-1 11 1 11
MSB stages of shift (1)
register
(x) - Input bit
xx - Coded output bits n
C4s G

STATE
00
01
¢
202
10
204
11 i
|
t t+ 1 t+ 2 t+3 t+4
\ / -/

212 206

6,163,581

Sheet 3 of 14

Dec. 19, 2000

U.S. Patent

902
A
(A
€ +1 Z +])
® ® ||
® Ol
022 .
Qe L0 227
e 0O 10
"IN
q
€2e Al
bl 022

q e
[(‘Wg + 'Wd) ‘Ciag+ ‘Wd)] uiw = °wd

vic

ooz

e

WNd
0ec

00
e

G Ol

AR
L +1] !
° o ||
‘NG + 'Nd = Nd
® 0l
612
202
° ® |0
‘NS
10
812 -
00
1 | 0 |
NS + Wd = Wd Nd
912 EN\

U.S. Patent Dec. 19, 2000 Sheet 4 of 14 6,163,581

PMi 302
d
BM, ADD
308 310
PMO
COMP
304
BM,,
PM ADD
b
— d
308~
ADD COMPARE SELECT

FIG. ©

U.S. Patent Dec. 19, 2000 Sheet 5 of 14 6,163,581

KZOB /210 208
00 00 MNMe&————-L—-—2 01 00 00
f’ \\ // \"“.‘h
- ~ e ~
e N/ ™
ffj //\\ xhx‘\

,-"ff f',' \\ »‘

01 10 11 —————— 9 11 01 10

FIG. 7B

U.S. Patent Dec. 19, 2000 Sheet 6 of 14 6,163,581

EVEN
ADD PM. 360
) 302
ADD
206 310
ODD BM COMP
ADD PM 304 ?
PM
..
b
308
362
ADD COMPARE SELECT

FIG. 8

6,163,581

Sheet 7 of 14

Dec. 19, 2000

U.S. Patent

80¢

g
uoISINa(]

Nd
OLE

6 Ol

90¢

O

WNd
J41VAIANVO

dNODO

0O

Wd
J31VAIANYO

90%
OV
ng
aav - C
bz, > 4
Nd R
bOE “
_
)
_
|
“
90% |
_
"
OV “
_
Ng _
O _
aav o——
0 |
£l |
- b
20€ "
|
Z0% PN
POt

¢9t

b
Nd | Ol

Nd | 1O

Wd aav
aao

09¢

6,163,581
<
-
O
LL

i Nd | 0l -
] oo 1T .l .
~ 80€ Nd — 0™} 0")
31VAIANYD NG S I I

vot Wd aav
ado

Sheet 8 of 14
©

o dNOD
Nd

09¢

o) aay C _‘_ ®
E& @ E& ™) “
3LVAIANYD €', b [_ *_,u |
| |
_
_

OLE

90¢

——— e e e e]

Dec. 19, 2000
o

©
-
<

—

<(

O

Nd
c0t

05 y0P

U.S. Patent
S
<
Q

6,163,581

Sheet 9 of 14

Dec. 19, 2000

U.S. Patent

90V
OO
g80€ ~ dv0¢ Ng
D aav —
P'Z,
Nd
o dNOD o0V
\ dWOD
Nd © g90€ DIVO
dolLg dc0g ING
aav
€',
Nd
901
O1VO
V10¢C
V80€E ~ e
— dav
P _ bz,
Nd
dNOD 907
O
Wd 0 Y90¢ — 91O
VOLE \ FAN]S NS
aav

|

c9t

d0l Ol

U.S. Patent Dec. 19, 2000 Sheet 10 of 14 6,163,581

404 404
y y 472 470

EVEN

360 |

ODD

SWITCH
g
M
R
SWITCH

450 402

FIG. 11

dcl Ol

6,163,581

0LS
‘ >
N_‘m Nwm

)
-
S v0g p 805 oo
- v6Y
P A Gy Wl
i — |
7 905
08 <1
&
< Z8P |
y—
g o8t
R ED e € o
by " o

08P 0 S | 200 = 06¥

9L 84V 20¥| 3| oge 0S| 3
m | T T
P._ 88l

AL

/ oy A oy A
-

Vel Ol

o871
Xt c8Y
08t 87
12174
(x (x5
Xl ‘o
0/ 4274 QLY

86Y

96V

6,163,581

Sheet 12 of 14

Dec. 19, 2000

U.S. Patent

90%
yOP
80¢ ~ OO 29¢
p p |
ug e m
NOISIO3A Wd | 01
€2
0SS = aay 'Nd -
Nd nd | 1o
31vAIaNYD
pOE Wd aav
Q0 daao
IY1IAN | dWO9D
H1Vd HHUV
- VD
0LE 90¢ -
NS
"Wd —
J1VAIANVYD "Nl d

¢cOt

U.S. Patent Dec. 19, 2000 Sheet 13 of 14 6,163,581

START

580
COMPUTE A FIRST BRANCH METRIC BETWEEN A
FIRST INPUT NODE AND THE OUTPUT NODE
582
ADD THE FIRST INPUT PATH METRIC TO THE FIRST
BRANCH METRIC TO PRODUCE A FIRST CANDIDATE
OUTPUT PATH METRIC
o84
COMPUTE A SECOND BRANCH METRIC BETWEEN A
SECOND INPUT NODE AND THE OUTPUT NODE
586
ADD THE SECOND INPUT PATH METRIC TO THE
SECOND BRANCH METRIC TO PRODUCE A SECOND
CANDIDATE OUTPUT PATH METRIC
588

CONFIGURE A DECISION BIT DESIGNATING A PATH
TO THE OUTPUT NODE AS A MINIMUM ERROR
PATH BASED UPON A PARITY OF AN OUTPUT NODE
STATE AND WHETHER THE FIRST CANDIDATE
OUPUT PATH METRIC IS GREATER THAN THE
SECOND CANDIDATE OUTPUT PATH METRIC

FIG. 14

6,163,581

Sheet 14 of 14

Dec. 19, 2000

U.S. Patent

dgl Ol

V9

A I EE—— EE—— E— S SEEmps. SEm——y PR HEESS- YAREES B TS SIS SEE—— S——a— ATEE- - T Ay e e -

NIA

709
909

909
09

NIA

¢09

009

HOLIMS

HOLIMS

VGl Ol

I I IS LT EIISE LIS DI SIEESE DI IS BIIIE G SIS SIS B S S E—— e SE——ge g ey SR

HOLIMS

jE— EE——— Aa——— a— e TR TR IS T - B Sesls ek wsesks .. —— ———— E—— —

r-—-—-—""""""""—"="=""""”"=—"—"/”""—"/ /= T
m A I3 m
Il
| LA, |
_ A _ <2
| 029 909 W
_ 819 _ 009 | 3
_._u_‘@ A N_.wm 709 nHu |
_ “
G [
_ 919 m

809

6,163,531

1

LOW-POWER STATE-SEQUENTIAL
VITERBI DECODER FOR CDMA DIGITAL
CELLULAR APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATTIONS

This application claims benefit of U.S. provisional appli-

cation Ser. No. 60/045,713, filed May 5, 1997 by Inyup
Kang and entitled “A LOW-POWER STATE-

SEQUENTIAL VITERBI DECODER,” which application
1s hereby incorporated by reference herein.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The U.S. Government has a paid-up license in this inven-
fion and the right 1n limited circumstances to require the

patent owner to license others on reasonable terms as
provided for and by the terms of Contract No. N00014-95-

1-0231 awarded by the Office of Naval Research and Con-
tract No. MIP-9201104 awarded by the National Science

Foundation.

REFERENCES

This application also cites the following references, each
of which 1s hereby incorporated by reference herein:

Inyup Kang and Alan N. Willson, Jr., “Low Power Viterbi
Decoder for CDMA Mobile Terminals,” IEEE Journal of
Solid State Circuits, Vol. 33, No. 3, pp. 473482, March
1988;

Inyup Kang and Alan N. Willson, Jr., “A Low-Power State
Sequential Viterbi Decoder for CDMA Daigital Cellular
Applications,” 1996 IEEE Symposium on Circuits and

Systems, Proceedings of IEEE 1996 International Sympo-
sium on Circuits and Systems (ISCAS), Vol. 4, pp. 252-255,

May 7, 1996;
A. P. Chandrakasan and R. W. Brodersen, “Minimizing

Power Consumption 1 Digital CMOS Circuits,” Proceed-
ings of the IEEE, vol. 83, pp. 498-523, April 1995;

A. J. Viterbi, “Error Bounds for Convolutional Codes and
an Asymptotically Optimum Decoding Algorithm,” IEEE

Transactions on Information Theory, vol. IT-13, pp.
260269, April 1956;

J. K. Omura, “On Viterb1 Decoding Algorithm,” IEEE
Transactions on Information Theory, vol. IT-15, pp.
177-179, January 1969;

A. V. Aho, 1. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Reading, MA:

Addison-Wesley, 1974;

G. D. Forney, Jr., “The Viterb1 Algorithm,” Proceedings
of the IEEE, vol. 61, pp. 268-278, March 1973;

G. Fettweis and H. Meyr, “High Speed parallel Viterbi
Decoding: Algorithm and VLSI Architecture,” IEEE Com-

munication magazine, vol. 29, pp. 46-55, May 1991;

P J. Black and T. H. Meng, “A 140 Mb/s 32 State Radix-4
Viterb1l Decoder,” IEEE Journal of Solid-State Circuits, vol.
2’7, pp. 1877-1885, December 1992;

J. Heller and I Jacobs, “Viterbi Decoding for Satellite and
Space Communication,” IEEE Transactions on Communi-
cation Technology, vol. COM-19, pp. 835-848, October
1971;

A. J. Viterb1 and J. K. Omura, Principles of Daigital

Communication and Coding, New York: McGraw-Hill,
1979;

A. J. Viterb1y, “Convolutional Codes and Their Perfor-

mance 1n Communication Systems, IEEE Transactions on
Communication Technology, vol. COM-19, pp. 751-772,
October 1971;

10

15

20

25

30

35

40

45

50

55

60

65

2

C. M. Rader, “Memory Management 1n a Viterbi
Decoder,” IEEE Transactions on Communications, COM-

29, pp. 1399-1401, September 1981;

B. K. Min and N. Demassieux, “A Versatile Architecture
for VLSI Implementation of the Viterbi Algorithm,” in Proc.
ICASSP, pp. 1101-1104, May 1991;

C. B. Shung, P. H. Siegel, H. K. Thapar, and R. Karabed,
“A 30 MHz Trellis Codec Chip for Partial-Response
Channels,” IEEE Journal of Solid-State Circuits, vol. 26, pp.
1981-1987, December 1991;

A. Chandrakasan, S.Sheng, and R. W. Brodersen, “Low
Power CMOS Digital Design,” IEEE Journal of Solid-State
Circuits, vol. 27, p. 473—484, April 1992;

R. Cypher, and C. B. Shung, “Generalized Traceback
Techniques for Survivor Memory Management 1n the Vit-
erb1 Algorithm,” in Proc. GLOBECOM, pp. 1318-1322,
December 1990; and

Qualcomm, Inc., “Proposed EIA/TIA Interim Standard:
Wideband Spread Spectrum Digital Cellular System Dual-
Mode Mobile Station—Base Station Compatibility
Standard,” Apr. 21, 1992.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the decoding of
convolutionally coded signals, and in particular, to a low-
power, state-sequential Viterbi decoder for code division
multiple access applications.

2. Description of the Related Art

In recent years, there has been a rapidly increasing
demand for battery powered wireless communications. As
this demand continues to increase, minimizing decoder
power consumption becomes a critical concern.

Code-division multiple access (CDMA) modulation tech-
niques have been widely applied in a variety of wireless
communications products, including digital cellular tele-
phones. CDMA 1s a convolutional coding technique that
permits low power broadband transmission and reception of
information with reduced interference, increased security,
and adaptable channeling.

To support the large channel capacity required i digital
cellphone network, a small E,/N _ signal to noise ratio (SNR)
per bit for a given bit error rate (BER) is needed. This
requires that channel coding be performed with a relatively
large constraint length convolutional code. Unfortunately,
decoder computational complexity dramatically increases
with convolutional code constraint length. At the same time,
the demand for high bandwidth communications 1s
increasing, even for mobile communications. High band-
width transception requires decoding computations to be
performed at extraordinarily high rates. Because of these
channel capacity and bandwidth requirements CDMA
decoding techniques are typically implemented in special
purpose, very large-scale integrated (VLSI) circuits.

The power consumption, circuit size, and throughput of
these special purpose VLSI decoders are major design
concerns. Power consumption drives battery life, and
extended battery life will be a prerequisite 1n future designs.
Circuit size drives the size of the end-user product as well as
throughput. It can therefore be seen that there 1s a need for
a size and power efficient convolutional decoder. The
present 1nvention satisfies that need.

SUMMARY OF THE INVENTION

To address the requirements described above, the present
invention discloses a method, apparatus, and a program

6,163,531

3

storage device usetul 1n performing computations to decode
a convolutionally coded sequence. The method eliminates
the need for switching elements. The method comprises the
steps of computing a first branch metric between a first input
node and an output node, adding a first mnput path metric to
the first branch metric to produce a first candidate output
path metric, computing a second branch metric between a

second 1nput node and the output node, adding the second
branch metric to a second path metric to derive a second
candidate output path metric, and configuring a decision bit
based upon the parity of the output node state and upon
whether the first candidate output path metric 1s greater than
the second candidate output path metric. In one
embodiment, a comparison between the first and the second
candidate output path metrics 1s compared to the parity of
the output node by an exclusive or gate or a table lookup to
determine the decision bit. The invention also 1s described
by an apparatus comprising a means for performing these
steps and a program storage device tangibly embodying
instructions to perform the steps.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 1s a diagram 1llustrating a communications system
using convolutional coding;

FIG. 2 1s a diagram showing a generalized implementa-
tion of a convolutional coder;

FIG. 3 1s a diagram 1llustrating a state variable represen-
tation of the convolutional coder of FIG. 2;

FIG. 4 1s a diagram 1llustrating a trellis;

FIG. § 1s a diagram 1illustrating the application of the
Viterbi algorithm to a trellis;

FIG. 6 1s a block diagram of an add-compare-select
circuit;

FIG. 7A 1s a diagram of a trellis stage and associated
MeEMmOory;

FIG. 7B 1s a diagram 1illustrating an overwriting problem
for the memories associated with the trellis of FIG. 7A;

FIG. 8 1s a diagram of an add-compare-select circuit with
an even/odd parity segmented memory;

FIG. 9 1s a diagram of a switched add-compare-select
circuit with an even/odd parity segmented memory;

FIGS. 10A and 10B are diagrams of a double-switched

add-compare-select circuit with an even/odd parity seg-
mented memory;

FIG. 11 1s a trellis state diagram of a double-switched
add-compare-select circuit;

FIGS. 12A and 12B are diagrams showing how the
symmetrical relationship of a trellis state can be advanta-
ogeously utilized to eliminate add-compare-select switching
clrcuits;

FIG. 13 1s a diagram 1llustrating one hardware implemen-
tation of a low power add-compare-select circuit without
switching circuitry;

FIG. 14 1s a flow chart describing operations used to
practice one embodiment of the present invention; and

FIGS. 15A and 15B are trellis state diagrams showing,
alternate MSB partitioned embodiments of the present
invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

In the following description, reference 1s made to the
accompanying drawings which form a part hereof, and

10

15

20

25

30

35

40

45

50

55

60

65

4

which 1s shown, by way of 1llustration, several embodiments
of the present invention. It 1s understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present mnvention.

Convolutional Coding,

FIG. 1 shows a simple block diagram of communications
system 100 using convolutional coding. The system takes an
input data stream 102 and supplies 1t to a convolutional
coder 104. The convolutional coder 104 provides a convo-
lutionally coded data stream at the coder output 106, which
1s provided to a transmitter 108. The transmitter 108 per-
forms any necessary processing to broadcast 110 the con-
volutionally coded datastream. That signal 1s received by
receiver 112, and provided to a convolutional decoder 114.
Convolutional decoder 114 translates the received signal
into a measured datastream 116.

Operations performed by the convolutional coder 104,
transmitter 108, receiver 112, and convolutional decoder 114
can be performed by general purpose processor or similar
processing device, and istructions for performing these
operations can be stored or otherwise tangibly embodied in
a program storage device 115 such as a floppy disk, hard
disk, tape, or CD. Such instructions can also be stored 1n a
readable memory accessible to the general purpose proces-
sor. The operations can also be performed by special purpose
processors and associlated components.

Convolutional Coder

FIG. 2 1s a diagram showing a generalized implementa-
tion of convolutional coder 104. Convolutional codes oper-
ate on a sliding sequence of input data bits 102 to generate
a coded stream of bits at the coder output 106. Although
binary convolutional coding 1s shown 1n FIG. 1, convolu-
tional codes can also operate on symbol or bit groups.

The convolutional coder 104 generally consists of a
K-stage shift register 118, where K 1s also the constraint
length of the coder 104. The convolutional coder 104 of FIG.
1 has a 3-stage shift register 118. Input data bits 102 are
shifted into the shift register 118 one bit at a time. Alter-
nating modulo-2 sums computed by exclusive or gates 126
and 128, and are shifted out of the shift register 118 v times
as fast, where v 1s the number of different modulo-2 sums
that are coded mto the output stream. A coder outputting v
bits per 1nput bit 1s also called a rate 1-/v coder. For every
bit that 1s shifted in, two convolutionally encoded data bits
are sequentially read out, with the coder output 106 alter-
nating between ¢, and c,. This provides the following
logical relationship between ¢, and c.:

¢,=d,@Dd,Dd,
c,=dPd,
Assuming the shift register 118 1s mmitialized with all

zeros, this results 1n the input/output relationship shown 1n
Table 1 below:

TABLE 1
Time [nput Output Output
Interval Bits Bits Variable
1 0 0 Cq
2 1 1 o
3 1 0 o

6,163,531

S

TABLE 1-continued

Time [nput Output Output
[nterval Bits Bits Variable
4 0 0 o
— 1 Co
5 1 0 o
— 0 C,
6 0 1 o
— 0 Co
7 0] Cq
— c,
8 1 Cq
— c,

For example, at time interval three, leftmost K-1 stages
122 and 124 contain a “0” and a “1.” A “1” arriving 1n
interval three produces a “0” and a “1” for ¢, and c, as the
two output bits. If a “0” had arrived instead, the output
would have been a “1” and a “0,” as seen 1n time 1nterval s1x.

FIG. 3 1s an alternative representation of the convolu-
tional coder 104 shown 1 FIG. 2. In this representation, the
convolutional coder 104 1s visualized as a finite state
machine, moving from one stage, represented by the K-1
shift register contents (which are past input bits) to another.
In FIG. 3, the contents of the leftmost K-1 shift registers 122
and 124 are boxed, the 1input bit 102 1s shown 1n parentheses,
and the output bits ¢, and ¢, are shown next to their
respective state transitions.

FIG. 4 1s another representation of the logic of convolu-
tional coder 104, as represented by a trellis 200. The
gecometry of the trellis 200 1s determined by the relationship
between the mput data stream 102 and the content of the
shift register 118. In FIG. 4, the shiit register 1s assumed to
comprise two registers, and new data from the input data
stream 1s presumed to enter from the left (unlike FIG. 3, in
which new data was presumed to enter from the right).
Hence, if the present state of the shift registers 1s 00 (at time
t) and the next input bit is a one, as indicated in branch 202,
the shift register transitions to the state 10 at time t+1.
Similarly, if another 1 1s received, the shift register will
transition to state 11 at time t+2, as indicated by branch 204.
The remaining geometry of the trellis 200 defines the state
transition characteristics of the shift registers 118 for all
remaining possibilities. For the example illustrated, suc-
ceeding trellis stages do not change after trellis stage 206 at
fime t+3. It 1s important to note that the structure of the trellis
200 1s not dependent on the logic combining the shift
registers. That logic instead affects the value of outputs c,
and c¢,, for each branch.

Trellis stage 206 defines two distinct trellis butterilies,
including a first trellis butterfly 208 (indicated with a solid
line), and a second trellis butterfly 210 (illustrated with a
dashed line). Of course, if there are additional states (more
shift registers), additional trellis butterflies are defined.

Viterb1 Decoding

Ordinarily, a coded bit stream from the convolutional
coder 104 1s transmitted by a transmitter 108 to a receiver
112 over a noisy, power limited channel. In addition, both
the transmitter 108 and receiver 112 can exhibit non-
linearities and other distortions. Consequently, the received
convolutional signal 1s not, in general, an exact duplicate of
the transmitted signal. Transmission noise and other errors
can cause some of the bits received by the receiver 112 to be
decoded 1mproperly, causing one or more bit errors.

Convolutional coding reduces the 1impact of such errors
by introducing a known correlation between measured data.

10

15

20

25

30

35

40

45

50

55

60

65

6

When the coder 104 characteristics are known by the
decoder 114, they can be used to determine the most likely
input data stream 102 sequence that resulted 1n the received
output sequence. This 1s the essence of convolutional decod-
Ing.

One way of convolutionally decoding the original bit
sequence 1s to compare the received signal with the expected
received signal for all of the possible codewords (as if they
were perfectly transmitted and received), and to choose the
uncoded bit sequence associated with that received code-

word combination. For example, consider the sequences
shown 1n Table 2 below:

TABLE 2

Codewords

(coded bit Uncoded
sequences) bit Sequence
00 00 00 00 0000
00 00 00 11 0001
00 00 11 10 0010
00 00 11 01 0011
00 11 10 11 0100
00 11 10 00 0101
00 11 01 01 0110
00 11 01 10 0111
11 10 11 00 1000
11 10 11 11 1001
11 10 00 10 1010
11 10 00 01 1011
110101 11 1100
11 01 01 00 1101
11 01 10 11 1110
11 01 10 10 1111

A simple approach would be to compare the received
(coded) data block, compare it to all entries in the table, and
pick the closest one (least number of bits differing). This
procedure works well for short codewords (here there are
only four possible states), but this technique becomes com-
putationally prohibitive as the length of the codeword
increases, and as the size of the table increases exponen-
tially. Since relatively large constraint length (K) convolu-
tional codes are required for many commercial applications
(including applications to cellular digital phones), this tech-
nique 1s not feasible.

A better technique in such cases 1s to use a Viterbi
decoding algorithm. Like the brute force technique
described above, the Viterbi decoding algorithm chooses a
codeword with the smallest mean squared distance measure
(or, similarly, the highest correlation) to the received vector.
Although the Viterbr decoders implementing this technique
performs this task without examining the mean squared
distance for all possibilities, for relatively long constraint
lengths, good results are achieved. This 1s accomplished by
stage-by-stage computation of error distance values for
different paths 1n the trellis 200. Data for previous stages 1s
reflected 1 two values associated with each output node:
path meftrics, and decision bits. The decision bit indicates
which of the branches from each node of the trellis results
in the smaller error distance, and the path metric quantifies
the error distance for that path.

FIG. 5 1s a trellis diagram showing the first trellis stage
212 and the first trellis butterily 208 of the final trellis stage
206 shown 1n FIG. 3. The first trellis stage comprises an
input node 214 and two output nodes 218 and 219, coupled
by branches 216 and 202, respectively. Associated with
mnput node 214 and all other nodes 1s a path metric PM,
which represents the sum of the path and branch metrics

6,163,531

7

leading to mnput node 214. Since this 1s the first trellis stage,
the path metric for input node 214 1s zero.

Branch 216 extends from the input node 214 to first output
node 218. Associated with branch 216 1s a branch metric
BM,. The branch metric represents the difference between
the measured codeword (including noise) and the ideal (no
noise) value for the codeword in that branch. Branch 216
represents the situation where a zero 1s received 1n the 1nput
data stream of the shift register 118. After the shift, all of the
registers are still zero, so the state of the shift register does
not change from t to t+1. Hence, the ideal (no noise) values
for ¢,, ¢, should be “00.” Because of noise, however, the
measured value for the output data c¢,, ¢, will not be “00,”
but mstead another value. For exemplary purposes, if the
measured value of the output data 1s “0.1, 0.01”, the branch

metric BM, for this branch will be the error “distance” from
(0,0) to (0.1, 0.01).
Path metrics for output nodes 218 and 219 1s determined

as the sum of the path metric from the previous node and the
metric of the branch taken to reach that node. Since the node

metric PM. 1s zero, the path metric for nodes 218 and 219 are
equal to the metrics for branches 216 and 202, respectively.

Path metrics for succeeding trellis stages are determined
from the path metrics and branch metrics for the preceding
stage. The final trellis stage 206 comprises a first trellis
butterfly 208 and a second trellis butterfly 210. First trellis
buttertly 208 comprises a first input node 220, coupled to a
first output node 224 by a first branch 226, and a second
input node 222, coupled to the first output node 224.
Similarly, a second input node 222 1s coupled to a second
output node 226 via branch 232, and to the first output node
224 by branch 223. Recall that the state of the first input
node 220 at t+2 “00” and the state of the second input node
222 at t+2 15 “01.” Also note that at t+3, the state of the first
output node 224 1s “00” and the state of the second output

node 226 1s <“10.”

To compute the path metric for output node 224, the path
metric for input node 220 (denoted PM,) is added to the
branch metric for branch 230 (denoted BM). This sum is
compared to the sum of the path metric for node 222
(denoted PM,,) and the branch metric for branch 223
(denoted BM,). The path metric for node 224 is then
calculated as the smaller of the two candidate path metric
values:

PM_=min |[(PM,,+BM,), (PM,,+BM,)]

For each output node, a “decision” 1s stored. The decision
(typically, a bit) designates the branch that resulted in the
smallest error for each output node. For example, suppose
the following relationship 1s established:

(PM,+BM_)<(PM,+BM,)

In this case, branch 230 1s the minimum error path, and a
decision bit identifying branch 226 would be stored.
Typically, the decision bit 1s stored according to an arbitrary
but consistent paradigm (i.e., the decision bit is set to 1 if the
upper branch resulted in the smallest path metric). Of
course, 1n situations where an output state can be reached
from more than two input states, more than one bit may be
required. Note that the decision bits themselves are suflicient
to define the minimum error path. Path metrics need only be
stored to compute the path metrics and decision bits for the
next trellis stage. Once a path metric for a previous stage has
been used, 1t need not be retained to determine the actual
codeword sequence from the measured data. The actual

10

15

20

25

30

35

40

45

50

55

60

65

3

codeword sequence comprises the codewords associated
with each branch 1n the minimum error distance path.

FIG. 6 is a block diagram of an add-compare-select (ACS)

circuit 300, which 1s typically used to implement the fore-
ogoing process. The ACS circuit 300 comprises a first adder
302 and a second adder 304 for determining the sum of the
path metric associated with the mput nodes and the branch
metrics. Comparator 306 compares the outputs from the first
adder 302 and the second adder 304 to determine which 1s
of lesser magnitude That result 1s used to derive a decision
bit 308 and 1s also used to control switch 310 which
indicates the path metric for the output node.
Note that in FIG. 4, that trellis stage 206 comprises two
trellis butterflies, a ﬁrst trellis buttertly 208 and a second
trellis buttertly 210 Generally, the foregomg Viterb1 algo-
rithm must be apphed to all of the butterilies 1n the trellis to
ogenerate the minimum error distance path. This can be
implemented with dedicated circuitry for each butterfly, but
this technique would be costly in terms of memory,
processors, power consumption, and on-chip area. It 1s
therefore desirable to implement the Viterbi decoder with a
single butterfly. This would allow the decoding necessary for
the trellis shown 1n FIG. 4 to be performed with a single
ACS circuit.

FIG. 7A 1s a diagram showing trellis stage 206 and the
path metrics associated with each input node (PM,;;, PM,,,
PM,;, and PM,,, and output nodes (PM_,, PM_,, PM_, and
PM,_,). To simplify memory addressing circuitry, it 1s advan-
tageous store the result from each path metric computation
in a memory 350 associated with a memory address 352
corresponding to the state associated with that node.
Unfortunately, this technique would overwrite data needed
for computations on subsequent buttertlies. For example,
suppose the path metrics PM_, and PM_, are computed for
first butterfly 208, and the results stored in a memory
addressed by the sate of the associated output nodes. That
would mean that PM_; would be stored in the memory
addressed by “10,” overwriting the path metric PM .; needed
to perform the computations for the second butterily 210.

FIG. 7B 1s another diagram illustrating the overwriting,
problem. Note that the path metric for the “10” output state
in trellis butterfly 208 1s required at the mput state for “10”
in trellis buttertly 210. This requires that the path metric
computed for output state “10” must be switched to a
different mput node of trellis 208. Similarly, after the com-
putations for trellis 210 are completed, another switching
operation 1s required to provide the proper path metrics to
trellis butterfly 208.

FIG. 8 1s a diagram of an ACS circuit 300 with an
even/odd parity segmented memory. This ACS circuit 300
takes advantage of the even and odd parity relationship (that
1s, the parity of the “01” and “10” states are odd, and the
parity of the “00” and “11” states are even) between output
nodes for the first trellis 208 and the second trellis 210. In
this implementation, path metrics for even parity states are
stored together and at a separate memory from the odd parity
states. Here, a first memory 360 comprising even addresses
“00” and “11,” and a second memory 362 comprising odd
addresses “01” and “10” are used to store path metrics. Note,
however, that while this arrangement provides the proper
input path metrics for the first butterfly 208, it does not do
so for the second butterfly 210, because value of PM_; 1s
provided to the second adder 304, instead of the first adder
302. For this reason, this even/odd parity memory segmen-
tation technique requires a means to selectively provide
PM._, to the proper adder 302.

FIG. 9 shows the ACS and memory implementation of
FIG. 8, and includes a switch 402, which selectively pro-

6,163,531

9

vides the mput node path metric to the proper place. Switch
402 is controlled by a toggling signal 404 (denoted “y”),
which selectively toggles on and off to direct the values
stored 1n the first memory 360 and second memory 362 to
the proper adder. In one embodiment, the toggling signal
404 1s a parity bit required parity of Xy 1s even, where Xy
denotes the bit y appended to state X (i.e., if the state is 01,
the parity bit will be a “1”’). This implementation assures that
when the path metric computation i1s switched from the first
buttertly 208 to the second buttertly 210, the value of PM _,
1s not overwritten, and 1s still provided to the first memory
360. For simplicity, the computations performed to arrive at
the branch metrics for each branch are illustrated as being
performed by branch metric calculator 406.

Additional circuitry 1s required to assure that the proper
output node path metrics are provided to the memories 360,
362 for subsequent computations. That 1s because the loca-
fion of the second butterfly 208 “01” output state must be
switched to the second memory 362.

FIG. 10A 1s a block diagram of the ACS circuit 300
comprising a second switch to switch the output node path
metric to the second memory 362. When the output path
metrics are supplied to the adders 302 and 304 to perform
computations for the next butterfly, second switch responds
to the toggling signal 404 to route the output path metric to
the second memory 362. This ACS circuit 300 provides the
proper path meftrics to the proper adders 302 and 304 to
perform subsequent path metric computations. Ordinarily, as
shown in FIG. 10B, two ACS units are used to implement
the trellis state diagram 470. However, as FIG. 10A shows,
the two 1nput path metrics can be double buffered and a
single ACS can be used twice to perform a single buttertly
operation.

FIG. 11 1s a simplified block diagram showing the ele-
ments of the modified ACS unit of FIG. 10A, including the
first switch 402, second switch 450, first (even parity)
memory 360, and second (odd parity) memory 362. A trellis
state diagram 470 of the butterfly study 1s depicted 1n place
of the ACS unit of FIG. 10B. The “X” shown for trellis states
472, 476, 482, and 480 refers to one or more binary digits.
From a beginning state of “X0” 472, the trellis transitions to
a state of “O0X” 476 via branch “0” 474 when a “0” 1s
received as an mput. The trellis will transition from “X0”
472 to “1X” 480 along branch 478 it a “1” 1s received as an
input. Similarly, the trellis transitions from the “X1” state
482 to the “0X” state 476 along branch 484 when a “0” 1s
input, and to state “1X” 480 when a “1” 1s 1mnput. A single
ACS circuit 300 1s used to perform the add, compare, and
select operations of FIGS. 10A and 10B, using the switching
techniques described above

FIGS. 12A and 12B show how the symmetrical relation-
ship of a trellis state diagram 1s advantageously used to
climinate the switches of FIGS. 10A and 10B. Note that
trellis 496 and trellis 498 are symmetrically related, as the
transitions from one state to another occur the same way 1n
the same situations. The only difference between trellis 496
and trellis 498 1s that the logic of the decision bits 494 and
492 are inverted from those of decision bits 488 and 490.
Recalling that the decision bit determines which branch 1s
chosen (the upper branch or the lower branch) note that this
inverted relationship exists because of the mverted orienta-
fion of trellis 498.

Using the symmetrical trellis properties, the ACS circuit
of FIGS. 10A and 10B can be redefined without first switch
402 or second switch 450. These switches are eliminated by
advantageous use of the trellis symmetry and the toggling
properties of parity bit 404. Logical states 472, 476, 482, and

10

15

20

25

30

35

40

45

50

55

60

65

10

480 have been redefined 1n terms of parity bit 404 to logical
states 502, 504, 510, and 512, but as 1s demonstrated herein,
that redefinition 1s accomplished without any additional
circuitry.

FIG. 13 1s a diagram 1llustrating one hardware implemen-
tation of the ACS circuit of FIG. 12B. Note that this
conflguration dispenses with the first switch 402 and the
second switch 405, and provides the path metric inputs
directly to the first adder 302 and the second adder 304. The
proper logical relationship between the output node path
metrics 1s retained due to the characteristics of parity bit 404.
To retain the proper logical relationship with the decision
bit, the output of the comparator 302 1s not provided directly
as a decision bit output. Instead, the output 1s provided as an
input to an exclusive OR (XOR) gate 550. The parity bit 404
1s also provided as an 1nput to a decision bit controller such
as XOR gate 550, and the toggling characteristics of parity
bit “y” 404, assure that the output of the XOR gate 550
describes the proper relationship for the decision bit 308.

The foregoing described how a maximally partitioned
trellis (using a single butterfly to perform all ACS
operations) ACS unit can be fashioned to perform Viterbi
decoding while eliminating the need for two switching
networks. These switching networks require space on the
VLSI implementing the algorithm, consume power, contrib-
ute to path length, and degrade throughput. By eliminating
these switching networks, the performance of the convolu-
tional decoder 114 can be significantly improved.

FIG. 14 1s a flow chart showing the operations used to
practice the present invention. First, a first branch metric
between a first input node and an output node 1s computed
580. Then, the first branch metric 1s added to the first input
path meftric to produce a first candidate output path metric.
This step 1s shown 1n block 582. In block 584, a second
branch metric between a second mput node and the output
node 1s computed. Then, this value 1s added 586 to a second
input path metric. Finally, a decision bit 1s configured 588 so
as to designate a minimum error path through the trellis. This
conflguration 1s bases upon the parity of the state of the
output node and which of the two candidate output path
metrics 1s larger.

Instructions for performing the foregoing operations can
be tangibly embodied 1n a program storage device, such as
a loppy disk, tape, CD, or other device. These operations are
implemented by reading, interpreting and executing the
Instructions on a computer or other processing device.

MSB and LSB Partitioning

The foregoing example used maximal trellis partitioning,
in which a single butterfly unit was used to perform all
required computations. Other partitioning schemes are also
possible, and are preferred for high-throughput applications.
For example, the ftrellis can be partitioned so that the
buttertlies with a logical “1” for the most significant bit
(MSB) of the input node states can be grouped together. This
partitioning (called MSB partitioning) divides the trellis into
two partitioned trellises, each with one half the number of
butterflies as the unpartitioned case. Least significant bit
(LSB) partitioning, wherein the grouping is defined by the
LLSB of the states 1s also possible.

FIG. 15A 1s a logical diagram showing the use of MSEB
partitioning. A trellis describing the transition logic of the
input stream has been partitioned 1nto first partitioned trellis

608 and second partitioned trellis 610. The MSB of the 1nput
states 612 and 620 of trellis 608 are a logical “0,” and the
MSB of the input states 624 and 632 of trellis 610 are a

logical “1.” First memory 604 stores path metrics with an

6,163,531

11

even address, and second memory 606 stores path meftrics
with odd addresses. Switches 600 and 602 operate as before,
under control of the parity bit y (not shown).

Although the output states yOX 614 and y0X 622 of trellis
608 have the same parity as imput states 612 and 620,
respectively, the output states 614 and 622 can have a
different MSB from input states 612 and 620 depending on
the value of y. Therefore, we need switches 600 and 602 to
save the path-metrics of 614, 622, 626, and 634 to the MSB

partitioned path-metric locations.

FIG. 15B 1s a logical diagram showing another imple-
mentation of the present invention using MSB partitioning.
This embodiment also comprises switches 600 and 602,
which operates as previously described. Note, however, that
in this embodiment, the arrangement of the first memory 604
and second memory 606 arec symmetrically reversed from
the embodiment shown 1in FIG. 15A, and that the output
from each switch 1s always fed to the first memory 604 and
the second memory 606 associated with 1ts associated par-
titioned trellis.

The output states 646 and 659 have the same MSB as the
input states 644 and 654, respectively. The output states 646
and 659 can have different parities from the input states 644
and 654, respectively. We use switches 600 and 602 to save
the path-metrics of 646, 659, 664, and 674 to the parity

partitioned path-metric locations.

Conclusion

The foregoing description of the preferred embodiment of
the mvention has been presented for the purposes of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible 1n light of the
above teaching. It 1s intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto. The above specification, examples
and data provide a complete description of the manufacture
and use of the composition of the invention. Since many
embodiments of the invention can be made without depart-
ing from the spirit and scope of the invention, the invention
resides 1n the claims hereiafter appended.

What 1s claimed 1s:

1. A method of computing a decision bit for an output
node associated with an output state in a trellis butterily,
comprising the steps of:

computing a first branch metric between a first input node
and the output node, the first input node associated with
a {irst mput path metric, wherein the first branch metric
defines a difference between an error free first state of
a convolutionally coded sequence and a measured first
state of the convolutionally coded sequence;

adding the first input path metric to the first branch metric
to produce a first candidate output path metric;

computing a second branch metric between a second 1nput
node and the output node, the second input node
associated with a second 1nput path metric wherein the
second branch metric defines a difference between an
error iree second state of the convolutionally coded
sequence and a measured second state of the convolu-

tionally coded sequence;

adding the second input path metric to the second branch
metric to produce a second candidate output path
metric; and

configuring the decision bit designating a path to the
output node as a minimum error path based upon a

5

10

15

20

25

30

35

40

45

50

55

60

65

12

parity of the output node state and upon whether the
first candidate output path metric 1s greater than the
second candidate output path metric.

2. The method of claim 1, further comprising the step of
setting the output node path metric equal to the lesser of the
first candidate output path metric and the second candidate
output path metric.

3. The method of claim 2, wherein:

the step of adding the first mnput path metric to the first
branch metric comprises the step reading the first input
path metric from a first memory associated with the
first 1nput node; and

the step of adding the second input path metric to the
second branch metric comprises the step of reading the
second mput path metric from a second memory asso-
clated with the second mput node.

4. The method of claim 3 above, further comprising the
step of providing the output path metric to the first memory
and the second memory.

5. The method of claim 1, wherein the step of configuring,
the decision bit comprises the steps of:

comparing the first candidate output path metric and the
second candidate output path metric to determine
whether the first candidate output path metric 1s larger
than the second candidate output path metric; setting a
comparison variable according to whether the first
candidate output path metric 1s larger than the second
candidate output path metric;

determining the value of a parity variable y such that Xy
1s of even parity, wherein X 1s the output node state; and

setting the decision bit when a logical exclusive or
relationship between the comparison variable and the
parity variable 1s established.

6. An apparatus for computing a decision bit for an output
node associlated with an output state 1n a trellis butterily,
comprising:

means for computing a first branch metric between a first

input node and the output node, the first mput node

assoclated with a first mnput path metric, wherein the
first branch metric defines a difference between an error
free first state of a convolutionally coded sequence and
a measured first state of the convolutionally coded
sequence;

means for adding the first input path metric to the first
branch metric to produce a first candidate output path
metric;

means for computing a second branch metric between a
second 1put node and the output node, the second
input node associated with a second 1nput path metric
wherein the second branch metric defines a difference
between an error free second state of the convolution-
ally coded sequence and a measured second state of the
convolutionally coded sequence;

means for adding the second input path metric to the
second branch metric to produce a second candidate
output path metric; and

means for configuring the decision bit designating a path
to the output node as a minimum error path based upon
a parity of the output node state and upon whether the
first candidate output path metric 1s greater than the
second candidate output path metric.

7. The apparatus of claim 6, further comprising means for
setting the output node path metric equal to the lesser of the
first candidate output path metric and the second candidate
output path metric.

6,163,531

13

8. The apparatus of claim 7, wherein:

the means for adding the first input path metric to the first
branch metric comprises means for reading the first
input path metric from a first memory associated with
the first mput node; and

the means for adding the second input path metric to the
second branch metric comprises means for reading the
second 1nput path metric from a second memory asso-
ciated with the second 1nput node.

9. The apparatus of claim 8, further comprising means for
providing the output path metric to the first memory and the
second memory.

10. The apparatus of claim 6, wherein the means for
configuring the decision bit comprises:

comparing the first candidate output path metric and the
seccond candidate output path metric to determine
whether the first candidate output path metric 1s larger
than the second candidate output path meftric; setting a
comparison variable according to whether the {first
candidate output path metric 1s larger than the second
candidate output path metric;

determining the value of a parity variable y such that Xy
1s of even parity, wherein X 1s the output node state; and

setting the decision bit when a logical exclusive or
relationship between the comparison variable and the
parity variable 1s established.

11. An decision bit calculation device, comprising:

a first memory for storing a first mput path metric for a
first trellis input node and a fourth input path metric for
an fourth trellis 1nput node;

a second memory for storing a second mput path metric
for a second trellis mnput node and a third mnput path
metric for a third trellis input node;

a first adder, coupled directly to the first memory and a
first branch metric calculator, for adding the first input
path metric and the first branch metric to produce a first
candidate output node metric;

a second adder, coupled to the second memory and a
second branch metric calculator, for adding the second
input path metric and the second branch metric to
produce a second candidate output node metric;

a comparator for comparing an output of the first adder
and an output of the second adder to generate a com-
parator signal indicating whether the first output node
metric 1s greater than the second output node metric;
and

a decision bit controller for selecting togeling a decision
bit based upon the signal indicating whether the first
output node metric 1s greater than the second output
node metric and upon a parity of first output node and
the second output node.

12. The decision bit calculation device of claim 11,
wherein the first adder 1s coupled directly to the first memory
and the second adder 1s coupled directly to the second
memory.

13. The decision bit calculation device of claim 11,
wherein the decision bit controller comprises an exclusive or
gate coupled to the comparator signal and to a parity 1nput,
wherein the parity input has a logical state such that Xy 1s
of even parity and X 1s an output node state.

14. The decision bit calculation device of claim 11, further
comprising means for setting an output node path metric
equal to the lesser of the first candidate output path metric
and the second candidate output path metric.

10

15

20

25

30

35

40

45

50

55

60

65

14

15. A program storage device, readable by computer,
tangibly embodying one or more programs of instructions
executable by the computer to perform method steps of
computing a decision bit for an output node associated with
an output state 1n a trellis butterfly, the method steps
comprising the steps of:

computing a first branch metric between a first input node
and the output node, the first input node associated with
a first input path metric, wherein the first branch metric
defines a difference between an error free first state of
a convolutionally coded sequence and a measured first
state of the convolutionally coded sequence;

adding the first input path metric to the first branch metric
to produce a first candidate output path metric;

computing a second branch metric between a second 1nput
node and the output node, the second iput node
assoclated with a second 1nput path metric wherein the
second branch metric defines a difference between an
error free second state of the convolutionally coded
sequence and a measured second state of the convolu-
tionally coded sequence;

adding the second 1nput path metric to the second branch
metric to produce a second candidate output path
metric; and

configuring the decision bit designating a path to the
output node as a minimum error path based upon a
parity of the output node state and upon whether the
first candidate output path metric 1s greater than the
second candidate output path meftric.

16. The program storage device of claim 15, wherem the
method step of setting the output node path metric equal to
the lesser of the first candidate output path metric and the
second candidate output path meftric.

17. The program storage device of claim 16, wherein:

the method step of adding the first input path metric to the
first branch metric comprises the method step reading,
the first input path metric from a first memory associ-
ated with the first input node; and

the method step of adding the second input path metric to
the second branch metric comprises the method step of
reading the second input path metric from a second
memory assoclated with the second input node.

18. The program storage device of claim 17, wherem the
method steps further comprise the step of providing the
output path metric to the first memory and the second
memory.

19. The program storage device of claim 15, wherein the
method step of configuring the decision bit comprises the
method steps of:

comparing the first candidate output path metric and the
second candidate output path metric to determine
whether the first candidate output path metric 1s larger
than the second candidate output path metric; setting a
comparison variable according to whether the {first
candidate output path metric 1s larger than the second
candidate output path metric;

determining the value of a parity variable y such that Xy
1s of even parity, wherein X 1s the output node state; and

setting the decision bit when a logical exclusive or
relationship between the comparison variable and the
parity variable 1s established.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,163,581 Page 1 of 1
DATED : December 19, 2000
INVENTOR(S) : Inyup Kang

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 8,
Line 44, "208" should read -- 210 --;
Line 47, "208" should read -- 210 --.

Column 9,
Line 35, "unit" should read -- circuit --;
Line 39, "umt" should read -- circuait --.

Signed and Sealed this

Eighth Day of October, 2002

Afttest:

JAMES E. ROGAN
Artesting Officer Direcror of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

