US006141745A
United States Patent (19] 11] Patent Number: 6,141,745
Pickett 451 Date of Patent: *Oct. 31, 2000
[54] FUNCTIONAL BIT IDENTIFYING A PREFIX 0 651 322 A1 5/1995 European Pat. Off. .
BYTE VIA A PARTICULAR STATE 0651 324 5/1995  European Pat. Off. .
REGARDLESS OF TYPE OF INSTRUCTION 0718 758~ 6/1996  European Pat. Off. .
2263985  8/1993  United Kingdom .
. : : 2263987  8/1993 United Kingdom .
|75] Inventor: James K. Pickett, Austin, Tex. 2281422 3/1995 United Kingdom .
| 73] Assignee: Advanced Micro Devices, Inc., OTHER PUBIICATIONS
Sunnyvale, Calif.
Intel, “Chapter 2: Microprocessor Architecture Overview,”
| *] Notice: This patent 1ssued on a continued pros- 1994, pp. 2—1 through 2—4.
ccution application filed under 37 CFR Michael Slater, “AMD’s K5 Designed to Outrun Pentium,”
1.53(d), and 1s subject to the twenty year Microprocessor Report, vol. 8, No. 14, Oct. 24, 1994, 7
patent term provisions of 35 U.S.C. pages.
154(a)(2). Sebastian Rupley and John Clyman, “P6: The Next Step?,”
PC Magazine, Sep. 12, 1995, 16 pages.
21] Appl. No.: 09/070,499
211 Appl. No.: 09/070, (List continued on next page.)
22| Filed: Apr. 30, 1998
- i Primary Examiner—Meng-A1 T. An
:51: Illt. Cl- ...................................................... G06F 9/312 Assisfanf ExaminerAGautam R Patel
_52_ US.CL oo 712/204; 712/2006; 712/207; AIIO?‘HE?}?J Agenf} OF F_irmAConley? Rose & Tayon? PC; B.
712/213; 712/217 Noél Kivlin; Lawrence J. Merkel
58] Field of Search ... 712/204, 213,
712/206, 207, 217, 218,23 7] ABSTRACT
_ A superscalar microprocessor 1s provided that includes a
[56] References Cited predecode unit adapted for predecoding variable byte-length
US. PATENT DOCUMENTS ingtructions.‘The predecoide‘unit pyedecodes the 1nstructions
prior to their storage within an instruction cache. In one
3,585,605  6/1971 Gardner .......cccceeveenerveennnnen. 712/204 system, a predecode unit 1s configured to generate a plurality
4,044,338  8/1977 WOIL ooeerei e 365/49 of predecode bits including a start bit, an end bit, and a
4,453,212 6/1984 Gaither et al. ..ooeveenrvvereennnnn.. 711/2 functional bit for each 1nstruction by‘[e_ The plura]i‘[y of
49807?115 2/989 TOI'I'}g ...................................... 72/215 predecode bltS associated wﬂh each ins‘[mction by‘[e are
4,858,105 8/:989 Kuriyama et al. ....cccceeeeneneen. 7:2/235 collectively referred to as a predecode tag. An instruction
4,928,223 5/:h990 Dao et al. ...ooooiiiiiiiiens 7127247 alienment unit then uses the predecode tags to dispatch the
5?053?631 10/:991 Perlman et al. .......c.c.ooeennnnnnie. 708/508 variable byte-length instructions to a plurality of decode
gﬂgggﬂgg 12/ ggé ?%pta etal s ;?g/ ;gg units within the superscalar microprocessor. The predecode
PP 1 OUIBOIL evveemsemsemsnmsnnesseene / unit 1s configured such that the meaning of the functional bit
5,136,697  8/1992 Johnson ........cccccceeeeevvvneereennnnn. 712/239 f - oul decod < d d h r
5,179,674  1/1993 Williams et al. ...veeveoeeenen.n, 711204  OF @ parhicular predecode tag 1s dependent upon the status o
5,226,126 7/1993 McFarland et al. .................. 7121218 the end ?“' The ff’.demde .‘”“E 15.%“;11“ C‘f'f“ﬁg‘:“ed 1o
5,226,130  7/1993 Favor et al. ..oooooveeersveeerrrennn. 712/238 ~ generate lunciional biis associated with bytes ol an instruc-
tion other than the ending byte, which indicate whether the
(List continued on next page.) bytes of the 1nstruction other than the ending byte 1s a prefix.
The encoding of the predecode tags is such that a relatively
FOREIGN PATENT DOCUMENTS larce amount of predecode information may be conveyed
0259092  3/1988 Furopean Pat. Off. . with a relatively small number of predecode bits.
0381471 §/1990 European Pat. Off. .
0459232 12/1991 European Pat. Off. . 22 Claims, 7 Drawing Sheets
B66A : /fﬂ ” Second
I
;H*’_ ) | .J J |
— |
vy —— I l
S I L 11 L..
e U T
i L _ﬁ___ | Dispatch L w7 l
AN @\* "@_::_ - 82 :’« 208 200
. I‘;:t._f \\HJEB

framm

Decode MREOM
Uit nit 34
200

Cecode Decode
L rrit
2048

Unit
208

20

¥
ta Decode Unite



6,141,745

Page 2
U.S. PATENT DOCUMENTS 5,987,235 1171999 TIAN eevvvvivviieeeieeeeeeeeeeeeneeeeees 712/210
5,337,415 8/1994 Delano et al. .....oevvvvereennnennene. 712/213 OTHER PUBLICATTONS
5,357,618 10/1994 Mirza et al. .oovvevenniveiieiiinn, 711/3 _
5,438,668  8/1995 Coon et al. wevvevvervrrerrerrrenn, 7127204  lom R. Halthill, “AMD K6 Takes On Intel P6,” BYTE, Jan.
5,442,760  8/1995 Rustad et al. wovevveveveerrerennennn. 712/215 1996, 4 pages.
5,459,844 10/1995 Eickemeyer et al. ................... 712/213 “Intel Architecture Software Developer’s Manual, vol. 1:
5,488,710 1/1996 Sato et al. ...ovvvvevrerivineinnnnnn. 711/125 Basic Architecture”, Intel Corpora‘[ion, Prospect IL, 1996,
554995204 3/996 BE%I'I'@I'EI et al. e 365/49 1997} Chapter 8- Programming With The Intel] MMXTM
5,513,330 4/1996 SHIES ovvovrvvrierrerserirsn 712204 Technology, pp. 8-1 through 8—15.
5?530?825 6/996 Blﬂﬂk et ﬂl.- ............................ 711/213 HOIStad, S., :r;TutOI.ial Tuesday: Decoding MMXH Jaﬂ. 14?
5,535,347  7/1996 Grochowski .....ccceevvnnivennnnn... 712/204 : .
# # 1997, Earthlink Network, Inc. copyright 1997, 5 pages (see
5,537,629  7/1996 Brown et al. ...coocoveriiininnnnnn. 712/210 hito: hlink dail q MX
5544342 8/1996 DEAN wevoeooooeeooooooeooooeeeoooo 711/119 ttp://www.earthlink.net/daily/Tuesday/ MMX). |
5.551,010  8/1996 Tino et al. oeeveveeveverrrererrernnn, 711213 “Intel MMX™ Technology—Frequently Asked Questions™
5,559.975  9/1996 Christie et al. .ecvevveveeeeeveerenne. 712/230 6 pages (see http://www.intel.com/drg/mmx/support/faq/
5,560,028 9/1996 Sachs et al. ....ccoeveeeevnverenenne. 712/23 htm).
5,566,298 10/1996 Boggs et al. ..., 714/10 XP 000212140 Pleszkun, et al, “Structure Memory Access
5?586:,276 12/996 GI’OC]:IOWSki et al. .oovvrnniinnnnen 7127204 Architecture:’ Department of Computer Science! University
5,598,544 1/:h997 Ohshima ..oooeevvviviveiiievinns. 712/64 of Wisconsin, IEEE 1983, pp. 461-471.
5?6005806 2/997 BI’OY‘E’H et al. o, 7 12/204 XP 000411690 Hua, et al, “DeSigﬂiﬂg High—PerfOI‘maIlce
5,625,787  4/1997 Mahin et al. ...coovvvrveivniennnn 712/204 . .o
5644744 7/1997 Mahin et al. 712/207 Processors Using Real Address Prediction,” IEEE Transac-
5,644,748  7/1997 Utsunomiya et al. ......oooooo..... 711207 ~ tions on Computers 42 (1993) Sep., No. 9, New York, U.S.,
5,651,125 7/1997 Witt et al. ...ovvveerrrvrrnnrrrionnne 712/218  Pp. 1146-1151. | | |
5,689,672 11/1997 WALt €f al. woveevreererereeereeereeeenans 712/213 XP 000337480 Baer, “An Effective On—Chip Preloading
5,729.707  3/1998 Maki ...coovvvvviviiiineineenieeeeeeens 712/207 Scheme To Reduce Data Access Penalty,” Department of
5,742,791 4/1998 Mahalingaiah et al. ................ 712/146 Computer Science and Engineering? Univergi‘[y of Washing-
5,751,981 5/}998 Witt et al. oo 7}2/204 ton, Seattle, WA, ACM, 1991, pp. 176-186.
?;g g-’ﬂg g/ ggz i Ohnsonlet Al e, ;;g/ g% Minagawa, et al, “Pre-Decoding Mechanism For Supersca-
2 / . CC LAl vt . / lar Architecture,” IEEE Pacific Rim Conference on Com-
5,826,053 10/1998 WLt +.vevevvereeeeeeereereerereessereeneon, 712/210 S . .
5872943  2/1999 Pickett et al 712/204 munication, Computers and Signal Processing, May 9-10,
5,035,238 8/1999 Talcott et al. .....ooovveececerre 712206 1991, pp. 21-24. | . |
5,968,163 10/1999 Narayan et al. .....coocooooveven.... 712/204 Tomasulo, “An Efficient Algorithm for Exploiting Multiple
5,970,235 10/1999 Witt et al. .ocoovevneeveeevnreeeennnes 712/213 Arithmetic Units,” IBM Journal 1967, pp. 25-33.




6,141,745

Sheet 1 of 7

Oct. 31, 2000

U.S. Patent

wialsAsgng Alowspy Uleiy

T4
_\_(H|J ayoen ejeq
9z hun
210}S/PEO]

_TJT

Irc HUN
jreuonoun4

T

Jcc UONE]LS
UOIIBAIOSaY

!

> jeuoljoun 4

)

avc wun

P

ZS Jayng
19pI10aY

bl

0¢
3|14 I9)sibay

.

gzc uonels
LUOIJBAISSSY

leuoloun

L Ol

t e

V¥Z wun

r

\YZZ uoijels
UOlJeAlDSSY

_ jun 8pooaQ

vz L

—

N NOJN

Ve

—

O0¢ d0¢
| Juf} @2p09v3a( Hun spoo=(]
8l
UM JusWwuUblly uoljonlsul
=
Ep

ayoe ) uoIjonJisu}

>

.

jun
uoiIpald youeig

P

w—"% —z
T U 9p0Japald

T

walsAsgng

[Y91849.14

AJOWBN UIe\



U.S. Patent Oct. 31, 2000 Sheet 2 of 7 6,141,745

from Instruction Alignment Unit 18

| |
| |
| |
| \ A n _ |
, _I ;
|
|
Early Decode - Early Decode
40B 40C |
. :
|
|

| |
|
|
b
from N
MROM —— — —— :
Unit 34 | . l L ,
: AR I e
' 42B / | 42C _/ : |
' — o | to Register
' : : : File 30,
_ I !, Reorder
| : Buffer 32,
| I | | : and Load/
|| — | | — Store Unit
| | | 26
| |
| ' I
Opcode Decode Opcode Decode
448 44C
|
_— | —
|
- !
20B | | 20C |

to Reservation Stations 22

FIG. 2



U.S. Patent Oct. 31, 2000 Sheet 3 of 7 6,141,745

Instruction Cache Storage and Control
50

- |
60 \’Lnstructions :
|

Instruction Scanning Unit

52 !
|
- _ |
| |
Instruction Cache 16 :
.I. * — [ — - e e e e - _ |
Instructions - | Instructions /Taa, |
Block A - Block B a8 /
| G4A 64B
&82A -/ N 628 Instruction Data Instruction Data — I
- Block A - Block B
62 A | | Byte
| ' Queue
Status
———— 2 I e ———————_—————— -
| v Yy 4 L -
| — _ ]
E Subqueue 0 Subqueue 1 i Subqueue 2 I CTL ||,
E 60A l 66B | 66C 70 |
. — — - ]
] ] o o First Byte Queue 54 | |
| - 1 1 1 1 1 1l
BO |, | 1B L B2 || CTL | IPO P P2
72A 728 12¢ [ 18 74A 74B 74C
| ]

Second Byte Queue 56

- Instruction Alignment Unit 1

L] I L] L ] N

v v
to Decode Units 20 FIG 3

Qo




U.S. Patent Oct. 31, 2000 Sheet 4 of 7 6,141,745

‘/‘\54

Second

66A 668 66C

/- i : I /——I . ._[ | | QByte
Control S::’:E:

10 [ 11 | 12 | SH |« 0|11 |12 (SHe— 10| 11|12 |SH Unit |fe——

i ‘ TIT 1 _LE —

Bve — mil
F 0 . |
Y v_ i A A
88A 88B 4« 86A 86C
, | T )
IBO 1B IB2 Control N IPO P2
72A 728 2C Unit 76 74A 74C
| I ML L B
1 80 -/
| to to to
S Decode Decode Decode
I ! yr;c Unit Unit Unit
8
\QOA A 90B s 20A 20B 20C
Two | - 92
Inst.
v
\ 4 v v 84 \/ 56
to to to from
Decode Decode Decode MROM
Unit Unit Unit Unit 34

20A 20B 20C v
to Decode Units

20 FIG. 4



6,141,745

Sheet 5 of 7

Oct. 31, 2000

U.S. Patent

9 Ol

ovi

Sa)JAg uol}onJ)su|

G Ol

44
uonoiIpald youelig

8EL

MOJLIBAQ

0cl
Uied jse
/NOUW

—

8L
4sen
piIeA

e

S}l
|leuoijoun 4

oLl

1}d PU3

lla HElS

Sig
SSaIppy




6,141,745

Sheet 6 of 7

Oct. 31, 2000

U.S. Patent

L Ol

vSl
%o0|g
pu3

2st
3o0|g
Hels

44
uonoIpald
youelg

oclL

Yied jse
/INOJIN

all vil
id pu3 | 1d Hels

\./ 0G1L

41
PIEA




U.S. Patent Oct. 31, 2000 Sheet 7 of 7 6,141,745

Microprocessor
10

208

b il —— il —u“
I —

Bus Bridge Main Memory
202 | 204

I

206A
/0 Device '\

200

210
2068

/0 Device

_ i/

206N
I/0 Device

FIG. 8



0,141,745

1

FUNCTIONAL BIT IDENTIFYING A PREFIX
BYTE VIA A PARTICULAR STATE
REGARDLESS OF TYPE OF INSTRUCTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to superscalar microprocessors and
more particularly, to the predecoding of variable byte-length
computer instructions within high performance and high
frequency superscalar microprocessors.

2. Description of the Relevant Art

Superscalar microprocessors are capable of attaining per-
formance characteristics which surpass those of conven-
tional scalar processors by performing concurrent execution
of multiple mstructions. Due to the widespread acceptance
of the x86 family of microprocessors, efforts have been
undertaken by microprocessor manufacturers to develop
superscalar microprocessors which execute x86 instructions.
Such superscalar microprocessors achieve relatively high
performance characteristics while advantageously maintain-
ing backwards compatibility with a vast amount of existing

software developed for previous microprocessor generations
such as the 8086, 80286, 80386, and 8048&6.

The x86 1instruction set 1s relatively complex and 1s
characterized by a plurality of variable byte-length 1nstruc-
fions. An x86 1nstruction consists of from one to five
optional prefix bytes, followed by an operation code
(opcode) field, an optional addressing mode (Mod R/M)
byte, an optional scale-index-base (SIB) byte, an optional
displacement field, and an optional immediate data field.

The opcode field defines the basic operation for a par-
ticular instruction. The, default operation of a particular
opcode may be modified by one or more prefix bytes. For
example, a prefix byte may be used to change the address or
operand size for an instruction, to override the default
scgment used 1n memory addressing, or to instruct the
processor to repeat a string operation a number of times. The
opcode field follows the prefix bytes, if any, and may be one
or two bytes in length. It 1s understood that when the opcode
field 1s two bytes, the first byte thereof 1s considered a prefix.
The addressing mode (MODRM) byte specifies the registers
used as well as memory addressing modes. The scale-index-
base (SIB) byte is used only in 32-bit base-relative address-
ing using scale and index factors. A base field of the SIB byte
specifies which register contains the base value for the
address calculation, and an index field specifies which
register contains the 1ndex value. A scale field specifies the
power of two by which the index value will be multiplied
before being added, along with any displacement, to the base
value. The next instruction field 1s the optional displacement
field, which may be from one to four bytes 1n length. The
displacement field contains a constant used in address cal-
culations. The optional immediate field, which may also be
from one to four bytes 1n length, contains a constant used as
an 1nstruction operand. The 80286 sets a maximum length
for an instruction at 10 bytes, while the 80386 and 80486
both allow mstruction lengths of up to 15 bytes.

The complexity of the x86 1nstruction set poses difficul-
fies 1n 1mplementing high performance x86 compatible
superscalar microprocessors. One difficulty arises from the
fact that instructions must be aligned with respect to the
parallel-coupled 1nstruction decoders of such processors
before proper decode can be effectuated. In contrast to most
RISC 1nstruction formats, since the x86 1nstruction set
consists of variable byte-length instructions, the start bytes
of successive instructions within a line are not necessarily
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2

equally spaced, and the number of instructions per line 1s not
fixed. As a result, employment of simple, fixed-length shift-
ing logic cannot 1n 1itself solve the problem of instruction
alignment.

Superscalar microprocessors have been proposed (but not
published or otherwise made part of the prior art) that
employ 1nstruction predecoding techniques to help solve the
problem of quickly aligning, decoding and executing a
plurality of variable byte-length instructions in parallel. In
one such superscalar microprocessor, when 1nstructions are
written within the instruction cache from an external main
memory, a predecoder appends three predecode bits (e.g., a
start bit, a functional bit and an end bit, referred to collec-
tively as a predecode tag) to each byte. The start bit is set to
onc for the start byte of every istruction, and i1s zero
otherwise. The end bait 1s set to one for the end byte of every
mstruction, and 1s zero otherwise. The functional bit 1s the
predecode bit with a unique purpose. The functional bit
associated with the end byte 1s set to zero for fast path
mstructions, and set to one for MROM 1instructions. The
functional bits from the start bit to the end bit (not including
the end bit) are set according to whether the instruction is
fast path or MROM. In particular, all prefix bytes have their
assoclated functional bit set to one for fast path 1nstructions.
All non-prefix bytes have their functional bit set to zero for
fast path instructions. For MROM 1nstructions, all prefix
bytes have their functional bits set to zero, and all non-prefix
bits have their functional bits set to one.

Decoding instructions using this proposed type of prede-
code tag encoding requires that a determination of the
instruction as either a fast path or an MROM prior to
identification of the prefix and/or opcode bytes. In other
words, before prefix bytes could be processed within a
decode stage, the extra step of determining the type of
instruction as either fast path or MROM must occur which,
in turn, reduces the overall speed of processor operation.

SUMMARY OF THE INVENTION

The problems outlined above are 1n large part solved by
a superscalar microprocessor employing a predecode unit
adapted for predecoding variable byte-length instructions in
accordance with the present invention. In one embodiment,
a predecode unit 1s provided which 1s capable of predecod-
ing variable byte-length instructions prior to their storage
within an instruction cache. The predecode unit 1s config-
ured to generate a plurality of predecode bits for each
instruction byte. The plurality of predecode bits associated
with each instruction byte are collectively referred to as a
predecode tag. An 1nstruction alignment unit then uses the
predecode tags to dispatch the variable byte-length instruc-
tions to a plurality of decode units within the superscalar
microprocessor. Additionally, one or more instruction
decode stages within the superscalar microprocessor use the
predecode tags 1n decoding the instructions prior to their
execution.

In one 1implementation, the predecode unit generates three
predecode bits associated with each byte of mstruction code:
a “start” bit, an “end” bit, and a “functional” bit. The start b1t
1s set if the associated byte 1s the first byte of the instruction.
The start bit 1s cleared otherwise. Similarly, the end bit 1s set
if the associated byte 1s the last byte of the instruction. The
end bit 1s cleared otherwise. The encoding of the functional
bit 1s dependent on the end byte of the instruction. If the
mnstruction 1s a fast path instruction, the functional bait
assoclated with the end byte 1s cleared. If the instruction 1s
MROM, the functional bit associated with the end byte is
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set. For bytes of an instruction other than the end byte, the
encoding of the functional bit 1s dependent on whether the
assoclated byte 1s a prefix. Namely, the functional bit 1s set
when the associated byte 1s a prefix, and the functional bit
1s cleared when the associated byte 1s not a prefix, thereby
identifying the position of the prefix bytes. Since only prefix
bytes, 1f any, precede opcode bytes, the first cleared func-
tional bit identifies the position of the opcode byte.

The plurality of decode units to which the variable byte
length instructions are aligned utilize the predecode tags to
attain relatively fast decoding of the instructions. More
particularly, with the mnformation conveyed by the func-
tional bits, the decode units know the exact location of the
opcode and/or prefix bytes without having to first determine
whether the 1nstruction containing the opcode and/or prefix
bytes 1s fast path or MROM. Additionally, since the prefix
bytes are uniformly 1dentified by set functional bits, and
since the opcode byte 1s 1dentified as the first cleared
functional bit 1n the 1nstruction, the logic needed within the
decode units to identity the prefix and/or opcode byte
positions, 1s simplified 1n that there 1s no need to invert
functional bits associated with an MROM 1nstruction 1in
order to place the predecode tags 1n a condition which 1is
recognizable by circuitry which i1dentifies prefix bytes by set
functional bits.

Broadly speaking, the present invention contemplates a
superscalar microprocessor comprising an instruction cache
for storing a plurality of variable byte-length instructions
and a predecode unit coupled to the instruction cache and
configured to generate a predecode tag associated with each
byte of an instruction. The predecode tag includes a start bit
having a value indicative of whether the byte i1s a starting
byte of the instruction, an end bit having a value indicative
of whether the byte 1s an end byte, and a functional bit whose
meaning 1s dependent on the value of the end bit. The
superscalar microprocessor further includes a plurality of
decode units for decoding designated instructions which
correspond to the plurality of wvariable byte-length
instructions, and an instruction alignment unit coupled
between the instruction cache and the plurality of decode
units for providing decodable instructions to the plurality of
decode units.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the accompanying draw-
ings 1in which:

FIG. 1 1s a block diagram of one embodiment of a
superscalar microprocessor.

FIG. 2 1s a block diagram of one embodiment of a pair of
decode units shown 1n FIG. 1.

FIG. 3 1s a block diagram of one embodiment of an
instruction cache and an instruction alignment unit shown 1n

FIG. 1.

FIG. 4 1s a more detailed block diagram 1llustrating one
embodiment of the instruction alignment unit shown in FIG.

3.

FIG. 5 1s a diagram 1llustrating instruction i1dentification
information corresponding to one instruction within an
instruction block according to one embodiment of the
instruction alignment unit.

FIG. 6 1s a diagram 1illustrating instruction identification
information which is shared among the instructions within
an 1nstruction block according to one embodiment 1s of the
instruction alignment unit.
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FIG. 7 1s a diagram 1illustrating instruction identification
information stored 1n an mstruction position within a second
byte queue according to one embodiment of the mstruction
alignment unit.

FIG. 8 1s a block diagram of one embodiment of a

computer system including the microprocessor shown 1n
FIG. 1.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thercof
arc shown by way of example in the drawings and will
herein be described 1n detail. It should be understood,
however, that the drawings and detailed description thereto
are not mtended to limait the invention to the particular form
disclosed, but on the contrary, the mtention 1s to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
INVENTION

Turning now to FIG. 1, a block diagram of one embodi-
ment of a microprocessor 10 1s shown. Microprocessor 10
includes a prefetch/predecode unit 12, a branch prediction
unit 14, an instruction cache 16, an instruction alignment
unit 18, a plurality of decode units 20A—-20C, a plurality of
reservation stations 22A-22C, a plurality of functional units
24A-24C, a load/store unit 26, a data cache 28, a register file
30, a reorder buffer 32, and an MROM unit 34. Elements
referred to herein with a particular reference number fol-
lowed by a letter will be collectively referred to by the
reference number alone. For example, decode units
20A-20C will be collectively referred to as decode units 20.

Prefetch/predecode unit 12 1s coupled to receive instruc-
tions from a main memory subsystem (not shown), and is
further coupled to instruction cache 16 and branch predic-
tion unit 14. Similarly, branch prediction unit 14 is coupled
to mnstruction cache 16. Still further, branch prediction unit
14 1s coupled to decode units 20 and functional units 24.
Instruction cache 16 1s further coupled to MROM unit 34
and 1nstruction alignment unit 18. Instruction alignment unit
18 1s 1n turn coupled to decode units 20. Each decode unit
20A-20C 1s coupled to load/store unit 26 and to respective
reservation stations 22A-22C. Reservation stations
22A-22C are further coupled to respective functional units
24A-24C. Additionally, decode units 20 and reservation
stations 22 are coupled to register file 30 and reorder buifer
32. Functional units 24 are coupled to load/store unit 26,
register file 30, and reorder butfer 32 as well. Data cache 28
1s coupled to load/store unit 26 and to the main memory
subsystem. Finally, MROM unit 34 1s coupled to decode
units 20.

Generally speaking, instruction alignment unit 18 1s con-
figured to receive instruction blocks from instruction cache
16 and to align instructions from the instruction blocks to
decode units 20. Instruction alignment unit 18 employs a
first byte queue for storing the instruction blocks. Instruction
alienment unit 18 selects instructions from the byte queue
and stores them into a second byte queue. Based upon
predetermined selection criteria, mstruction alignment unit
18 selects one or more instructions from the second byte
queue for conveyance to decode units 20. Advantageously,
the relatively large number of instructions available 1n the
instruction blocks 1s reduced to a smaller number of mnstruc-
tions via the first stage of selection from the first byte queue
into the second byte queue. Because the second byte queue
stores a smaller number of instructions, the selection criteria
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for selecting 1nstructions for dispatch to the decode units 20
may be applied even in a high frequency implementation.
Additionally, the selection criteria may be more complex,
thereby allowing more mstructions to be selected for con-
current dispatch than selection criteria applied to a larger
number of instructions. Multiple mstructions may thereby be
identified for dispatch.

An 1mstruction block, as used herein, comprises a fixed
number of bytes within which up to a maximum number of
instructions per block are i1dentified. A particular 1nstruction
block may include fewer instructions than the maximum
number of 1nstructions per block within its fixed number of
bytes. Alternatively, a given fixed number of bytes within
instruction cache 16 may include more instructions than the
maximum number of instructions per block. In the latter
case, two or more instruction blocks are formed from the
orven fixed number of bytes. Each instruction block includes
the fixed number of bytes but 1identifies different instructions
within the fixed number of bytes as comprising the instruc-
tion block. The fixed number of bytes are aligned to a
boundary of the fixed number of bytes. In one embodiment,
instruction blocks comprise eight bytes aligned on an eight
byte boundary and the maximum number of mstructions per
block 1s three. The maximum number of instructions per
block 1s selected because the average length of an x86
instruction 1s three bytes. Therefore, each eight bytes of
instruction code includes 244 instructions on average. It 1s
noted that the maximum number of instructions per block
may be varied 1n various embodiments as a matter of design
choice.

Instruction cache 16 1s a high speed cache memory
provided to store instructions. Instructions are fetched from
instruction cache 16 and dispatched to decode units 20. In
one embodiment, 1nstruction cache 16 1s configured to store
up to 32 kilobytes of instructions 1n a 4 way set associative
structure having 32 byte lines (a byte comprises 8 binary
bits). Instruction cache 16 may additionally employ a way
prediction scheme 1n order to speed access times to the
instruction cache. Instead of accessing tags 1identifying each
line of instructions and comparing the tags to the fetch
address to select a way, instruction cache 16 predicts the way
that 1s accessed. In this manner, the way 1s selected prior to
accessing the mstruction storage. The access time of instruc-
tion cache 16 may be similar to a direct-mapped cache. A tag
comparison 1s performed and, i1f the way prediction 1is
incorrect, the correct instructions are fetched and the incor-
rect 1nstructions are discarded. It 1s noted that instruction
cache 16 may be implemented as a fully associative, set
associative, or direct mapped configuration.

Instructions are fetched from main memory and stored
into 1nstruction cache 16 by prefetch/predecode umit 12.
Instructions may be prefetched prior to the request thereot
from 1instruction cache 16 1n accordance with a prefetch
scheme. A variety of prefetch schemes may be employed by
prefetch/predecode unit 12. As prefetch/predecode unit 12
fransfers 1nstructions from main memory to 1nstruction
cache 16, prefetch/predecode unit 12 generates three prede-
code bits for each byte of the instructions: a start bit, an end
bit, and a functional bit. The predecode bits form tags
indicative of the boundaries of each instruction. The prede-
code tags may also convey additional information such as
whether a given instruction can be decoded directly by
decode units 20 or whether the instruction 1s executed by
invoking a microcode procedure controlled by MROM unait
34, as will be described 1n greater detail below. Still further,
prefetch/predecode unit 12 may be configured to detect
branch nstructions and to store branch prediction informa-
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tion corresponding to the branch mstructions into branch
prediction unit 14.

One encoding of the predecode tags for an embodiment of
microprocessor 10 employing a variable byte length instruc-
tion set will next be described. A variable byte length
instruction set 1s an 1nstruction set 1n which different instruc-
tions may occupy differing numbers of bytes. An exemplary
variable byte length instruction set employed by one
embodiment of microprocessor 10 1s the x86 instruction set.

In the exemplary encoding, if a given byte 1s the first byte
of an 1nstruction, the start bit for that byte 1s set. If the byte
1s the last byte of an instruction, the end bit for that byte 1s
set. Instructions which may be directly decoded by decode
units 20 are referred to as “fast path” instructions. The
remaining X886 1nstructions are referred to as MROM
instructions, according to one embodiment. The type of
instruction may be determined by examining the functional
bit corresponding to the end byte. If that functional bit 1s
clear, the instruction 1s a fast path instruction. Conversely, it
that functional bit 1s set, the instruction 18 an MROM
instruction. Regardless of whether the 1nstruction is fast path
or MROM, the functional bit associated with each prefix
byte 1s set. The opcode of an instruction may thereby be
located within either fast path or MROM 1nstructions as the
byte associated with the first clear functional bit 1n the
instruction. For example, a fast path instruction mcluding
two preflx bytes, an opcode byte, and two displacement
bytes would have start, end, and functional bits as follows:

Start bits 10000
Endbits 00001
Functional bits 11000

An MROM instruction including two prefix bytes, an
opcode byte, and two displacement bytes would have start,
end, and functional bits as follows:

Start bits 10000
End bits 00001
Functional bits 11001

MROM 1instructions are instructions which are deter-
mined to be too complex for decode by a single decode unit
20A-20C and for execution by a single functional unit
24A-24C. MROM 1nstructions may be an example of
microcode 1nstructions. Generally, microcode instructions
are 1nstructions which are separated by a microcode unit
(e.g. MROM unit 34) into two or more instructions, each of
which may be decoded by a single decode unit 20A-20C and
executed by a corresponding functional unmit 24A-24C.
MROM i1nstructions are executed by imnvoking MROM unait
34. More specifically, when an MROM i1nstruction 1s
encountered, MROM unit 34 parses and 1ssues the instruc-
tion 1nto a subset of defined fast path instructions to effec-
tuate the desired operation. MROM unit 34 dispatches the
subset of fast path instructions to decode units 20. A listing
of exemplary x86 1instructions categorized as fast path
instructions will be provided further below.

Microprocessor 10 employs branch prediction 1n order to
speculatively fetch instructions subsequent to conditional
branch instructions. Branch prediction unit 14 1s included to
perform branch prediction operations. In one embodiment,
up to two branch target addresses are stored with respect to
cach 16 byte portion of each cache line in mstruction cache




0,141,745

7

16. Prefetch/predecode unit 12 determines initial branch
targets when a particular line 1s predecoded. Subsequent
updates to the branch targets corresponding to a cache line
may occur due to the execution of instructions within the
cache line. Instruction cache 16 provides an indication of the
instruction address being fetched, so that branch prediction
unit 14 may determine which branch target addresses to
select for forming a branch prediction. Decode units 20 and
functional units 24 provide update information to branch
prediction unit 14. Because branch prediction unit 14 stores
two targets per 16 byte portion of the cache line, some
branch instructions within the line may not be stored in
branch prediction unit 14. Decode units 20 detect branch
instructions which were not predicted by branch prediction
unit 14. Functional units 24 execute the branch instructions
and determine if the predicted branch direction 1s 1ncorrect.
The branch direction may be “taken”, in which subsequent
instructions are fetched from the target address of the branch
instruction. Conversely, the branch direction may be “not
taken”, 1n which subsequent instructions are fetched from
memory locations consecutive to the branch instruction.
When a mispredicted branch 1nstruction 1s detected, instruc-
tions subsequent to the mispredicted branch are discarded
from the various units of microprocessor 10. A variety of
suitable branch prediction algorithms may be employed by
branch prediction unit 14.

Instructions fetched from instruction cache 16 are con-
veyed to instruction alignment unit 18. As instructions are
fetched from instruction cache 16, the corresponding pre-
decode data 1s scanned to provide information to instruction
alignment unit 18 (and to MROM unit 34) regarding the
instructions being fetched. Instruction alignment unit 18
utilizes the scanning data to align an instruction to each of
decode units 20. In one embodiment, mstruction alignment
unit 18 aligns instructions from three sets of eight 1nstruction
bytes to decode units 20. Decode unit 20A receives an
instruction which 1s prior to instructions concurrently
received by decode units 20B and 20C (in program order).
Similarly, decode unit 20B receives an instruction which 1s
prior to the mstruction concurrently recerved by decode unit
20C 1n program order.

Decode units 20 are configured to decode instructions
received from instruction alignment unit 18. Register oper-
and information 1s detected and routed to register file 30 and
reorder buffer 32. Additionally, if the instructions require
one or more memory operations to be performed, decode
units 20 dispatch the memory operations to load/store unit
26. Each instruction 1s decoded 1nto a set of control values
for functional units 24, and these control values are dis-
patched to reservation stations 22 along with operand
address information and displacement or immediate data
which may be included with the instruction.

Microprocessor 10 supports out of order execution, and
thus employs reorder buifer 32 to keep track of the original
program sequence for register read and write operations, to
implement register renaming, to allow for speculative
instruction execution and branch misprediction recovery,
and to facilitate precise exceptions. A temporary storage
location within reorder buffer 32 1s reserved upon decode of
an 1nstruction that involves the update of a register to
thereby store speculative register states. If a branch predic-
fion 1s 1ncorrect, the results of speculatively-executed
instructions along the mispredicted path can be mvalidated
in the buffer before they are written to register file 30.
Similarly, if a particular instruction causes an exception,
instructions subsequent to the particular mstruction may be
discarded. In this manner, exceptions are “precise” (i.c.
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Instructions subsequent to the particular instruction causing
the exception are not completed prior to the exception). It is
noted that a particular instruction i1s speculatively executed
if 1t 1s executed prior to instructions which precede the
particular instruction 1n program order. Preceding instruc-
fions may be a branch instruction or an exception-causing
instruction, 1 which case the speculative results may be
discarded by reorder buifer 32.

The 1nstruction control values and immediate or displace-
ment data provided at the outputs of decode units 20 are
routed directly to respective reservation stations 22. In one
embodiment, each reservation station 22 1s capable of hold-
ing instruction information (i.e., instruction control values as
well as operand values, operand tags and/or immediate data)
for up to three pending instructions awaiting issue to the
corresponding functional umit. It 1s noted that for the
embodiment of FIG. 1, each reservation station 22 1S asso-
cliated with a dedicated functional unit 24. Accordingly,
three dedicated “issue positions” are formed by reservation
stations 22 and functional units 24. In other words, 1ssue
position 0 1s formed by reservation station 22A and func-
tional unit 24A. Instructions aligned and dispatched to
reservation station 22A are executed by functional unit 24 A.
Similarly, issue position 1 1s formed by reservation station
22B and functional unit 24B; and issue position 2 1s formed
by reservation station 22C and functional unit 24C.

Upon decode of a particular instruction, 1if a required
operand 1s a register location, register address information 1s
routed to reorder buffer 32 and register file 30 simulta-
neously. Those of skill in the art will appreciate that the x86
register file includes eight 32 bit real registers (i.e., typically
referred to as EAX, EBX, ECX, EDX, EBP, ESI, EDI and
ESP). In embodiments of microprocessor 10 which employ
the x86 microprocessor architecture, register file 30 com-
prises storage locations for each of the 32 bit real registers.
Additional storage locations may be included within register
file 30 for use by MROM unit 34. Reorder buffer 32 contains
temporary storage locations for results which change the
contents of these registers to thereby allow out of order
execution. A temporary storage location of reorder buifer 32
1s reserved for each mstruction which, upon decode, 1is
determined to modily the contents of one of the real regis-
ters. Therefore, at various points during execution of a
particular program, reorder buffer 32 may have one or more
locations which contain the speculatively executed contents
of a given register. If following decode of a given instruction
it 1s determined that reorder butfer 32 has a previous location
or locations assigned to a register used as an operand in the
orven 1nstruction, the reorder buffer 32 forwards to the
corresponding reservation station either: 1) the value in the
most recently assigned location, or 2) a tag for the most
recently assigned location if the value has not yet been
produced by the functional unit that will eventually execute
the previous 1nstruction. If reorder buifer 32 has a location
reserved for a given register, the operand value (or reorder
buffer tag) is provided from reorder buffer 32 rather than
from register file 30. If there 1s no location reserved for a
required register 1n reorder buffer 32, the value 1s taken
directly from register file 30. If the operand corresponds to
a memory location, the operand value 1s provided to the
reservation station through load/store unit 26.

In one particular embodiment, reorder buifer 32 1s con-
ficured to store and manipulate concurrently decoded
instructions as a unit. This configuration will be referred to
herein as “line-oriented”. By manipulating several instruc-
tions together, the hardware employed within reorder buitfer
32 may be simplified. For example, a line-oriented reorder
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buffer included 1n the present embodiment allocates storage
sufficient for instruction information pertaining to three
instructions (one from each decode unit 20) whenever one or
more 1nstructions are dispatched by decode units 20. By
conftrast, a variable amount of storage 1s allocated 1n con-
ventional reorder buffers, dependent upon the number of
instructions actually dispatched. A comparatively larger
number of logic gates may be required to allocate the
variable amount of storage. When each of the concurrently
decoded 1nstructions has executed, the instruction results are
stored 1nto register file 30 simultaneously. The storage is
then free for allocation to another set of concurrently
decoded 1nstructions. Additionally, the amount of control
logic circuitry employed per instruction 1s reduced because
the control logic 1s amortized over several concurrently
decoded 1nstructions. A reorder buffer tag i1dentifying a
particular mstruction may be divided into two fields: a line
tag and an offset tag. The line tag identifies the set of
concurrently decoded instructions including the particular
instruction, and the offset tag identifies which instruction
within the set corresponds to the particular instruction. It 1s
noted that storing instruction results 1nto register file 30 and
freeing the corresponding storage 1s referred to as “retiring”
the instructions. It 1s further noted that any reorder buifer
configuration may be employed in various embodiments of
microprocessor 10.

As noted earlier, reservation stations 22 store nstructions
until the instructions are executed by the corresponding
functional unit 24. An 1nstruction 1s selected for execution if:
(1) the operands of the instruction have been provided; and
(i1) the operands have not yet been provided for instructions
which are within the same reservation station 22A-22C and
which are prior to the instruction 1 program order. It 1s
noted that when an instruction 1s executed by one of the
functional units 24, the result of that instruction 1s passed
directly to any reservation stations 22 that are waiting for
that result at the same time the result 1s passed to update
reorder buffer 32 (this technique is commonly referred to as
“result forwarding™). An instruction may be selected for
execution and passed to a functional unit 24A—24C during
the clock cycle that the associated result 1s forwarded.
Reservation stations 22 route the forwarded result to the
functional unit 24 in this case.

In one embodiment, each of the functional units 24 1s
coniigured to perform integer arithmetic operations of addi-
fion and subtraction, as well as shifts, rotates, logical
operations, and branch operations. The operations are per-
formed 1n response to the control values decoded for a
particular instruction by decode units 20. It 1s noted that a
floating point unit (not shown) may also be employed to
accommodate floating point operations. The floating point
unit may be operated as a coprocessor, rece1ving instructions
from MROM unit 34 and subsequently communicating with
reorder buifer 32 to complete the mstructions. Additionally,
functional units 24 may be configured to perform address
generation for load and store memory operations performed
by load/store unit 26.

Each of the functional units 24 also provides information
regarding the execution of conditional branch 1nstructions to
the branch prediction unit 14. If a branch prediction was
incorrect, branch prediction umt 14 flushes instructions
subsequent to the mispredicted branch that have entered the
instruction processing pipeline, and causes fetch of the
required instructions from instruction cache 16 or main
memory. It 1s noted that in such situations, results of
instructions 1n the original program sequence which occur
after the mispredicted branch instruction are discarded,
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including those which were speculatively executed and
temporarily stored 1n load/store unit 26 and reorder butfer
32.

Results produced by functional units 24 are sent to reorder
buffer 32 if a register value 1s being updated, and to
load/store unit 26 if the contents of a memory location are
changed. If the result 1s to be stored 1n a register, reorder
buifer 32 stores the result 1n the location reserved for the
value of the register when the instruction was decoded. A
plurality of result buses 38 are included for forwarding of
results from functional units 24 and load/store unit 26.
Result buses 38 convey the result generated, as well as the
reorder bufler tag identifying the 1nstruction being executed.

Load/store unit 26 provides an interface between func-
tional units 24 and data cache 28. In one embodiment,
load/store unit 26 1s configured with a load/store builer
having eight storage locations for data and address infor-
mation for pending loads or stores. Decode units 20 arbitrate
for access to the load/store unit 26. When the buffer is full,
a decode unit must wait until load/store unit 26 has room for
the pending load or store request information. Load/store
unit 26 also performs dependency checking for load memory
operations against pending store memory operations to
ensure that data coherency 1s maintained. A memory opera-
tion 1s a transfer of data between microprocessor 10 and the
main memory subsystem. Memory operations may be the
result of an 1nstruction which utilizes an operand stored 1n
memory, or may be the result of a load/store 1nstruction
which causes the data transfer but no other operation.
Additionally, load/store unit 26 may include a special reg-
ister storage for special registers such as the segment reg-
isters and other registers related to the address translation
mechanism defined by the x86 microprocessor architecture.

In one embodiment, load/store unit 26 1s configured to
perform load memory operations speculatively. Store
memory operations are performed in program order, but may
be speculatively stored into the predicted way. If the pre-
dicted way 1s incorrect, the data prior to the store memory
operation 1s subsequently restored to the predicted way and
the store memory operation 1s performed to the correct way.
In another embodiment, stores may be executed specula-
tively as well. Speculatively executed stores are placed into
a store bufler, along with a copy of the cache line prior to the
update. If the speculatively executed store 1s later discarded
due to branch misprediction or exception, the cache line may
be restored to the value stored in the buifer. It 1s noted that
load/store unit 26 may be conifigured to perform any amount
of speculative execution, mcluding no speculative execu-
fion.

Data cache 28 1s a high speed cache memory provided to
temporarily store data being transferred between load/store
unit 26 and the main memory subsystem. In one
embodiment, data cache 28 has a capacity of storing up to
sixteen kilobytes of data in an eight way set associative
structure. Similar to 1nstruction cache 16, data cache 28 may
employ a way prediction mechanism. It 1s understood that
data cache 28 may be implemented 1n a variety of speciiic
memory configurations, including a set associative configu-
ration.

In one particular embodiment of microprocessor 10
employing the x86 microprocessor architecture, instruction
cache 16 and data cache 28 are linearly addressed. The linear
address 1s formed from the offset speciiied by the instruction
and the base address specified by the segment portion of the
x86 address translation mechanism. Linear addresses may
optionally be translated to physical addresses for accessing
a main memory. The linear to physical translation 1s speci-
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fied by the paging portion of the x86 address translation
mechanism. It 1s noted that a linear addressed cache stores
linear address tags. A set of physical tags (not shown) may
be employed for mapping the linecar addresses to physical
addresses and for detecting translation aliases. Additionally,
the physical tag block may perform linear to physical
address translation.

Turning now to FIG. 2, a block diagram of one embodi-
ment of decode units 20B and 20C 1s shown. Each decode
unit 20 receives an mstruction from instruction alignment
unit 18. Additionally, MROM unit 34 1s coupled to each
decode unit 20 for dispatching fast path instructions corre-
sponding to a particular MROM mstruction. Decode unit
20B comprises early decode unit 40B, multiplexor 42B, and
opcode decode unit 44B. Similarly, decode unit 20C
includes early decode unit 40C, multiplexor 42C, and
opcode decode unit 44C.

Certain 1nstructions in the x86 instruction set are both

fairly complicated and frequently used. In one embodiment
of microprocessor 10, such instructions include more com-
plex operations than the hardware included within a par-
ticular functional unit 24A-24C 1s configured to perform.
Such 1nstructions are classified as a special type of MROM
instruction referred to as a “double dispatch” instruction.
These instructions are dispatched to a pair of opcode decode
units 44. It 1s noted that opcode decode units 44 are coupled
to respective reservation stations 22. Each of opcode decode
units 44A—44C forms an 1ssue position with the correspond-
ing reservation station 22A-22C and functional unit
24A-24C. Instructions are passed from an opcode decode
unit 44 to the corresponding reservation station 22 and
further to the corresponding functional unit 24.

Multiplexor 42B 1s included for selecting between the
instructions provided by MROM unit 34 and by early
decode unit 40B. During times 1n which MROM unit 34 is
dispatching instructions, multiplexor 42B selects instruc-
tions provided by MROM unit 34. At other times, multi-
plexor 42B selects instructions provided by early decode
unit 40B. Similarly, multiplexor 42C selects between
instructions provided by MROM unit 34, early decode unit
40B, and carly decode unit 40C. The instruction from
MROM unit 34 1s selected during times 1n which MROM
unit 34 1s dispatching instructions. During times 1n which the
early decode unit within decode unit 20A (not shown)
detects a double dispatch instruction, the instruction from
carly decode unit 40B 1s selected by multiplexor 42C.
Otherwise, the imstruction from early decode unit 40C 1s
selected. Selecting the instruction from early decode unit
40B mto opcode decode unit 44C allows a fast path mstruc-
tion decoded by decode unit 20B to be dispatched concur-
rently with a double dispatch instruction decoded by decode
unit 20A.

According to one embodiment employing the x86 instruc-
fion set, early decode units 40 perform the following opera-
fions:

(i) merge the prefix bytes of the instruction into an
encoded prefix byte;

(i1) decode unconditional branch instructions (which may
include the unconditional jump, the CALL, and the
RETURN) which were not detected during branch
prediction;

(ii1) decode source and destination flags;

(iv) decode the source and destination operands which are
register operands and generate operand size informa-
tion; and

(v) determine the displacement and/or immediate size so
that displacement and immediate data may be routed to
the opcode decode unait.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

Opcode decode units 44 are configured to decode the opcode
of the instruction, producing control values for functional
unit 24. Displacement and immediate data are routed with
the control values to reservation stations 22.

Since early decode units 40 detect operands, the outputs
of multiplexors 42 are routed to register file 30 and reorder
buffer 32. Operand values or tags may thereby be routed to
reservation stations 22. Additionally, memory operands are
detected by early decode units 40. Therefore, the outputs of
multiplexors 42 are routed to load/store unit 26. Memory
operations corresponding to instructions having memory
operands are stored by load/store unit 26.

Turning now to FIG. 3, a block diagram of one embodi-
ment of instruction cache 16 and instruction alignment unit
18 1s shown. Instruction cache 16 includes an instruction
cache storage and control block 50 and an instruction
scanning unit 52. Instruction alignment unit 18 includes a
first byte queue 54 and a second byte queue 56.

Instruction cache storage and control block 50 includes
storage for instruction cache lines and related control cir-
cuitry for fetching instructions from the storage, for select-
ing cache lines to discard when a cache miss 1s detected, etc.
Instruction cache storage and control block 50 receives fetch
addresses from branch prediction unit 14 (shown in FIG. 1)
in order to fetch instructions for execution by microproces-
sor 10. Instruction bytes fetched from instruction cache
storage and control block 50 are conveyed to instruction
scanning unit 52 upon an 1instructions bus 60. Instruction
bytes are conveyed upon instructions bus 60, as well as
corresponding predecode data (e.g. start, end, and functional
bits). In one embodiment, sixteen bytes stored in contiguous
memory locations are conveyed upon instructions bus 60
along with the corresponding predecode data. The sixteen
bytes form either the upper or lower half of the 32 byte cache
line employed by nstruction cache 16 according to the
present embodiment. The upper half of the cache line 1s the
half stored 1n memory addresses having larger numerical
values, while the lower half i1s stored in memory addresses
having smaller numerical values. Additionally, instruction
scanning unit 52 receives information regarding the bytes
within the sixteen bytes which are to be conveyed as
instructions to instruction alignment unit 18. Instruction
bytes at the beginning of the sixteen bytes may be 1gnored
if the bytes are fetched as the target of a branch instruction,
and the target address i1dentifies a byte other than the first
byte of the sixteen bytes. Additionally, 1f a branch 1nstruction
1s within the sixteen bytes and branch prediction unit 14
predicts the branch taken, then bytes subsequent to the
branch instruction within the sixteen bytes are 1gnored.

Instruction scanning unit 52 scans the predecode data
assoclated with the bytes which are to be conveyed as
instructions to instruction alignment umt 18. Instruction
scanning unit 52 divides the sixteen bytes conveyed by
instruction cache storage and control block 50 into two
portions comprising eight contiguous bytes each. One por-
tion forms the lower half of the sixteen bytes (1.e. the bytes
stored at smaller numerical addresses than the bytes forming
the upper half of the sixteen bytes). The other portion forms
the upper half of the sixteen bytes. Therefore, an eight byte
portion forms one of four quarters of the 32 byte cache line
employed by instruction cache storage and control block 50,
according to the present embodiment. As used herein, bytes
are configuous 1f they are stored in contiguous memory
locations in the main memory subsystem. It 1s noted that
particular sizes of various components are used herein for
clarity of the description. Any size may be used for each
component within the spirit and scope of the appended
claims.
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Instruction scanning unit 52 scans the predecode data of
cach portion of the instruction bytes mdependently and 1n
parallel. These portions scanned by scanning unit 52 com-
prise the fixed number of bytes defined to be an instruction
block. Instruction scanning unit 52 therefore scans the
predecode data to idenfify up to the maximum number of
instructions per block.

The 1nstruction bytes and instruction identification infor-
mation generated by instruction scanning unit 52 are con-
veyed to first byte queue 54 upon an 1nstructions bus 62 and
an 1nstruction data bus 64, respectively. As shown 1n FIG. 3,
instructions bus 62 includes an instructions—block A bus
62A and an instructions—block B bus 62B. Instructions—
block A bus 62A conveys the instruction bytes correspond-
ing to the first instruction block being scanned by 1nstruction
scanning unit 52 (in program order). Similarly,
instructions—block B bus 62B conveys the instruction bytes
corresponding to the second instruction block being scanned
by instruction scanning unit 352.

Instruction 1dentification information corresponding to
the 1nstruction bytes conveyed upon instructions—block A
bus 62A 1s conveyed upon instruction data—block A bus
64A. Similarly, mstruction 1dentification information corre-
sponding to the instruction bytes conveyed upon
instructions—block B bus 62B 1s conveyed upon instruction
data—block B bus 64B. Instruction data—block A bus 64A
and 1nstruction data—block B bus 64B comprise 1nstruction
data bus 64 as shown 1n FIG. 3. Each eight byte portion and
the corresponding instruction identification information
forms an instruction block.

First byte queue 54 receives the instruction blocks con-
veyed and stores them into one of multiple subqueues
included therein. In the embodiment shown, first byte queue
54 includes three subqueues: a first subqueue 66A, a second
subqueue 66B, and a third subqueue 66C. First subqueue
66 A stores the mstruction block which 1s foremost among
the 1nstruction blocks stored i1n first byte queue 54 1n
program order. Second subqueue 66B stores the 1nstruction
block which 1s second 1n program order, and third subqueue
stores the instruction block which 1s third 1n program order.

If a particular eight byte portion as scanned by instruction
scanning unit 52 includes more than the maximum number
of 1nstructions per block, then the particular eight byte
portion 1s retained by 1nstruction scanning unit 52. During
the following clock cycle, the particular eight byte portion 1s
scanned again. The predecode data corresponding to the
previously 1dentified mnstructions included within the previ-
ously dispatched instruction block 1s invalidated such that
instruction scanning unit 52 detects the additional instruc-
tions. If the other eight byte portion concurrently received
with the particular eight byte portion 1s subsequent to the
particular eight byte portion in program order, then the other
eight byte portion 1s rescanned as well. First byte queue 54
discards the instruction block received from the other eight
byte portion, in order to retain program order among the
instruction blocks stored i1n the byte queue.

A control unit 70 within first byte queue 54 conveys a byte
queue status upon byte queue status bus 68 to instruction
scanning unit 52. Byte queue status bus 68 includes a signal
corresponding to each subqueue 66. The signal 1s asserted 1f
the subqueue 66 1s storing an instruction block, and deas-
serted if the subqueue 66 1s not storing an instruction block.
In this manner, instruction scanning unit 52 may determine
how many mstruction blocks are accepted by first byte
queue 34 during a clock cycle. If two 1nstruction blocks are
conveyed during a clock cycle and only one instruction
block 1s accepted, mnstruction scanning unit 52 retains the
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rejected instruction block and rescans the instruction block
in the subsequent clock cycle.

As noted above, an instruction block may contain up to a
maximum number of instructions (e.g. three in the present
embodiment). Additionally, eight contiguous bytes are con-
veyed for each instruction block. However, due to the
variable byte length of the x86 instructions, an instruction
may begin within one set of eight contiguous bytes and end
in another set of eight contiguous bytes. Such an instruction
1s referred to as an overflow nstruction. If an overtlow
mstruction 1s detected, it 1s i1dentified as the last of the
maximum number of 1structions. Instead of being indicated
as a valid instruction within the instruction block, the
overflow 1nstruction 1s identified as an overtlow. Instruction
identification information is generated, but the mstruction is
handled somewhat differently, as will be explained 1n more
detail below.

In one embodiment, the instruction identification infor-
mation for each instruction includes: (1) start and end
pointers 1dentifying the bytes at which the 1dentified instruc-
tion begins and ends within the instruction block; (i1) a valid
mask including a bit for each of the bytes within the
instruction block; (iii) a bit indicative of whether the instruc-
tion is MROM or fast path; (iv) an instruction valid bit
indicating that the instruction is valid; and (v) an overflow
bit for the last instruction indicating whether or not it 1s an
overtlow. The valid mask includes a binary one bit corre-
sponding to each byte included within the particular mstruc-
tion (i.e. the bits between the start pointer and end pointer,
inclusive, are set). Zero bits are included for the other bytes.

Additional information conveyed with the instruction
identification information includes the taken/not taken pre-
diction 1f the 1nstruction i1s a branch instruction, bits indi-
cating which of the quarters of the 32 byte cache line the
eight bytes correspond to, the functional bits from the
predecode data corresponding to the eight bytes, and a
secgment limit identifying the segment limit within the eight
bytes for exception handling. The additional information 1s
provided by instruction cache storage and control block 50
except for the branch prediction, which 1s provided by
branch prediction unit 14.

Control unit 70 examines the instruction identification
information stored in the subqueues 66 to select instructions
from first byte queue 54. Control unit 70 selects a number of
instructions for conveyance to second byte queue 356
depending upon the number of instructions currently stored
in the second byte queue, and the number of instruction
blocks containing those instructions. Generally, control unit
70 selects as many instructions as possible for conveyance
to second byte queue 56 based upon the available storage
within second byte queue 56 for instruction blocks and
mstructions. In other words, control unit 70 selects a number
of 1nstructions which either fill mnstruction position storages
74 or the corresponding instruction blocks which are not
already stored 1n 1nstruction bytes storages 72 fill instruction
bytes storages 72.

Second byte queue 56 includes a plurality of mstruction
bytes storages 72A—72C, a plurality of instruction position
storages 74A—74C, and a control unit 76. Each instruction
bytes storage 72 1s configured to store the instruction bytes
comprising an instruction block. Therefore, 1n the embodi-
ment shown, second byte queue 56 may concurrently store
mnstructions which are drawn from up to three different
instruction blocks. Each instruction position storage 1s con-
figured to store an 1nstruction 1dentifier corresponding to one
instruction. Generally speaking, an “instruction 1dentifier” 1s
information which locates a particular instruction within
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instruction bytes storages 72A—72C. The information can be
used to select the instruction bytes which comprise the
instruction from 1nstruction bytes storage 72A-72C.
Therefore, in the embodiment shown, second byte queue 56
may concurrently store 1nstruction identifiers for up to three
instructions within the mstruction bytes stored in 1nstruction
bytes storages 72.

Control unit 76 1s configured to select mstructions from
second byte queue 56 for conveyance to decode units 20.
The mstruction represented within each instruction position
storage 74 1s dispatched to a corresponding decode unit 20,
subject to a selection criteria employed by control unit 76.
Generally, the instruction represented within instruction
position storage 74A may be dispatched to decode unit 20A
during a clock cycle (assuming no pipeline stalls from
decode units 20 or subsequent pipeline stages). If control
unit 76 determines that the instruction represented within
instruction position storage 74B may be concurrently dis-
patched with the instruction represented within instruction
position storage 74A, then the instruction may be dispatched
to decode unit 20B. Similarly, if control unit 76 determines
that the instruction represented within instruction position
storage 74C may be concurrently dispatched with the
instructions represented within instruction position storages
74A—74B, then the 1nstruction may be dispatched to decode
unit 20C. Upon dispatching one or more instructions, control
unit 76 causes the mformation within instruction position
storages 74A—74C to be shifted into adjacent instruction
position storages 74A—74B, thereby allowing for additional
instructions to be conveyed from first byte queue 54 into
seccond byte queue 56 while maintaining the identified
instructions 1n program order.

According to one embodiment, the selection criteria
employed by control unit 76 1s as follows:

(1)
(11)
(iii)

instructions are dispatched in program order;

up to three fast path instructions can be concurrently dispatched;
an MROM 1nstruction can be dispatched if a synchronization
signal from MROM unit 34 is asserted indicating that MROM unit
34 1s ready to dispatch an MROM 1nstruction;

an MROM 1nstruction being dispatched to decode unit 20A may
concurrently be dispatched with a fast path instruction to decode
position 20B and vice-versa (referred to as “packing” -- see further
discussion below);

at most one MROM 1nstruction 1s dispatched concurrently;

an MROM instruction is not dispatched to decode unit 20C (a
corollary to criterion (iv));

at most one predicted taken branch i1s concurrently dispatched; and
instructions from at most two cache lines are concurrently
dispatched (each cache line is represented by an address in reorder
buffer 32, and reorder buffer 32 employs two locations for storing
addresses for each set of concurrently dispatched instructions in the
present embodiment).

(v)
(Vi)

(vii)

(viii)

As mentioned above, an MROM istruction and a fast
path 1nstruction can be “packed” together (i.e. concurrently
dispatched). Some MROM instructions are parsed into two
fast path instructions, thereby leaving a decode unit 20
available for the concurrent dispatch of a fast path instruc-
tion. If MROM unit 34 indicates that the MROM 1instruction
to be dispatched 1s a two instruction MROM instruction,
then control unit 76 selects both the MROM 1nstruction and
the adjacent fast path instruction for dispatch. Otherwise, the
MROM 1nstruction 1s dispatched during a different clock
cycle than the adjacent fast path instruction. If no fast path
instruction i1s adjacent to the MROM 1instruction, the MROM
instruction 1s dispatched separate from other instructions
regardless of whether or not the MROM 1instruction parses
into two 1nstructions or more than two instructions.
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By using {irst byte queue 54 and second byte queue 56, the
location of variable byte length instructions within the
instruction blocks 1s separated from the dispatch of mnstruc-
tions to decode units 20A. These two operations are logi-
cally separate from each other and are generally serial in
nature. Therefore, first byte queue 54 performs instruction
location. Instruction identifiers locating the instructions are
placed 1nto instruction position storages 74. By first locating
a small number of instructions which are eligible for dis-
patch and conveying these 1nstructions to second byte queue
56, first byte queue 54 provides a smaller pool of 1nstruc-
tions to which second byte queue 56 may apply the dispatch
selection criteria. Since a relatively small number of mstruc-
fions are examined, the selection criteria may be applied
using a relatively small number of cascaded levels of logic.
A high frequency implementation of instruction alignment
may thereby be realized.

While the small pool of mnstructions stored by second byte
queue 56 allows a high frequency implementation, the larger
pool of 1nstructions maintained by first byte queue 54 allows
for more 1nstructions to be fetched from instruction cache 16
during a given clock cycle than if second byte queue 56 were
employed alone. Thus, first byte queue 54 may increase the
average number of 1nstructions dispatched during a given
clock cycle by rapidly providing instructions into second
byte queue 56 when 1instructions are dispatched.
Advantageously, instruction alignment unit 18 may provide
both a high bandwidth (i.e. instructions dispatched per clock
cycle) and high frequency alignment of instructions to
decode units 20.

It 1s noted that 1t may be advantageous to physically locate
control units 70 and 76 necar each other to facilitate high
speed communications therebetween. In addition, 1t may be
advantageous to duplicate control logic between control
units 70 and 76 to lessen the communication signals
employed between the control units.

It 1s noted that MROM i1nstructions are identified by
instruction scanning unit 52 as well. Instruction scanning
unit 52 routes the MROM i1nstructions to MROM unit 34.
However, the MROM 1nstructions may flow through instruc-
tion alignment unit 18 as well. In this manner, 1nstruction
alicnment unit 18 may detect the MROM mstruction and
convey 1t to decode units 20. MROM unit 34 may then 1nsert
the corresponding instructions between early decode units
40 and opcode decode units 44 when the MROM 1nstruction
arrives 1n early decode units 40, as described above with
respect to FIG. 2.

Control unit 70, upon detecting that all instructions within
a given struction block have been conveyed to second byte
queue 56, shifts the contents of each subqueue 66B—-66C into
an adjacent subqueue 66 A—66B. In this manner, the instruc-
tion block which has been exhausted of instructions 1is
discarded and other instruction blocks are maintained in
program order. Additionally, the instruction identification
information within a subqueue 66 1s shifted such that the first
field within the subqueue 66 stores the first instruction (in
program order) remaining within the subqueue. However,
overflow 1nstructions remain in the last field within the
subqueue. Control unit 70 further allocates subqueues 66 for
storing 1nstruction blocks provided by instruction scanning
unit 52.

Turning next to FIG. 4, a more detailed block diagram of
onc embodiment of first byte queue 54 and second byte
queue 56 1s shown. Each of subqueues 66 from first byte

queue 54 are illustrated as having various fields, including a
first instruction field (I0), a second instruction field (I1), and
third instruction field (I2), and a shared field (SH). Each of
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the first instruction field, the second 1nstruction field, and the
third instruction field are configured to store instruction
identification mmformation corresponding to one instruction
within the instruction block stored in that subqueue. The
information stored in the instruction fields and the shared
fields according to one embodiment of the subqueues 1is
shown below. A second byte queue status bus 80 1s coupled
between control unit 76 and control unit 70. Additionally,
control unit 76 1s coupled to a sync line 82 and a two
instructions line 84 from MROM unit 34. A plurality of
instruction multiplexors 86 A—86C are coupled between sub-
queues 66A—66C and 1nstruction position storages

74A—74C. A plurality of instruction bytes multiplexors
88A—88B are coupled between subqueues 66 A—66C and
instruction bytes storages 72B—72C. Additionally, a plurality
of output multiplexors 90A-90C are coupled between
instruction bytes storages 72A—72C and decode units 20.

Control unit 70 1s coupled to provide multiplexor selec-
fion controls to instruction multiplexors 86. Control unit 70
generates the multiplexor selection controls by scanning the
instruction valid bits corresponding to the instruction fields
within subqueues 66 and the mnformation conveyed upon
second byte queue status bus 80. Second byte queue status
bus 80 indicates which of instruction position storages 74
and which of instruction bytes storages 72 are empty upon
dispatching instructions during a particular clock cycle. For
example, second byte queue status bus 80 may comprise a
signal corresponding to each instruction position storage
74A—74C 1ndicative, when asserted, that the corresponding
instruction position storage 74 1s storing an 1nstruction
subsequent to dispatch of instructions during the current
clock cycle. Additionally, second byte queue status bus 80
may be include a signal corresponding to each instruction
byte storage 72A—72C indicative, when asserted, that the
corresponding mnstruction bytes storage 72 1s storing a block
of 1nstruction bytes subsequent to 1nstruction dispatch dur-
ing the current clock cycle.

Control unit 70 selects as many instructions as possible
from subqueues 66 to {ill instruction position storages 74.
Control unit 70 also considers availability of instruction
bytes storages 72 1n selecting instructions. Generally, control
unit 70 selects a number of instructions for instruction
position storages 74 which either fills instruction position
storages 74 or fills 1instruction bytes storages 72. Control unit
70 considers the validity of instructions within subqueues
66 A—66C 1n sclecting instructions for instruction position
storages 74. Advantageously, the type of instruction
(MROM or fast path) and other instruction properties stored
in subqueues 66 A—66C (such as whether or not an instruc-
tion 1s a predicted taken branch instruction, etc.) need not be
considered by control unit 70 1n selecting instructions to fill
instruction position storages 74. The logic for performing
the selection may be simplified, thereby allowing for a high
frequency implementation.

As shown 1 FIG. 4, instruction multiplexor 86A 1s
coupled to receive instruction information from the I0
instruction field of each subqueue 66 A—66C. Since 1nstruc-
tion position storage 74A stores the mstruction which 1s first
in program order, among instructions in instruction position
storages 74A—74C, and since subqueues 66A arc shifted
such that the first instruction in program order 1s the 1nstruc-
fion 1n field 10, mstruction multiplexor 86A 1s connected to
select from only the first instruction field of each subqueue
66 A—66C. Similarly, mnstruction multiplexor 86B 1s coupled
to select instruction information from either instruction
fields 10 and I1. Instruction multiplexor 86B 1s coupled to
select 1nstruction information from any field within sub-
queues 66.
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Instruction bytes storages 72 are coupled to receive blocks
of instructions from subqueues 66 via instruction bytes
multiplexors 88. Control unit 76 1s coupled to provide
selection controls for multiplexors 88 as shown 1n FIG. 4,
but control unit 70 may provide selection controls as well.
Instruction bytes storage 72 are maintained such that istruc-
tion bytes storage 72A stores a block of instruction bytes
corresponding to instructions which are prior to instructions
corresponding to blocks of instruction bytes in instruction
bytes storages 72B and 72C. Similarly, instruction bytes
storage 72B stores a block of instruction bytes correspond-
ing to instructions which are prior to instructions corre-
sponding to the block of instruction bytes in instruction
bytes storage 72C. Therefore, 1f instruction bytes storage
72A recelves a block of instruction bytes from subqueues 66,
the block of instruction bytes 1s drawn from subqueue 66A.
Blocks of instruction bytes in subqueues 66B and 66C are
subsequent to the block of instruction bytes in subqueue
66A. Additionally, instruction bytes storage 72A may
receive a block of instruction bytes shifted in from instruc-

fion bytes storage 72B. Similarly, mstruction bytes storage
72A may receive a block of instruction bytes from subqueue
66A or subqueue 66B, while mstruction bytes storage 72C
may receive a block of mstruction bytes from any subqueue
66.

For example, if mstruction bytes storages 72A—72C are
empty during a clock cycle, instruction bytes storage 72A
may receive a block of instruction bytes from subqueue
66A; instruction bytes storage 72B may receive a block of
instruction bytes from subqueues 66B; and mstruction bytes
storage 72C may receive a block of instruction bytes from
subqueue 66C. On the other hand, if instruction bytes
storage 72A 1s storing a block of instruction bytes during a
clock cycle, mstruction bytes storage 72B may receive a
block of instruction bytes from subqueue 66A and instruc-
tion bytes storage 72C may receive a block of instruction
bytes from subqueue 66B. Generally, a block of mstruction
bytes may be selected for storage into instruction bytes
storages 72 via instruction bytes multiplexors 88, and a
particular block of instruction bytes may be validated 1f an
instruction within the particular block of 1nstruction bytes 1s
conveyed 1nto instruction position storages 74.

Instruction identifiers stored in instruction position stor-
ages 74A-T74C are directly conveyed to corresponding
decode units 20A-20C. Control unit 76 signals which
instructions have been selected for dispatch via a dispatch
bus 92 coupled to decode units 20. If a decode unit 20A-20C
receives an indication that the corresponding instruction 1is
being dispatched, the decode unit 20 operates upon the
received 1nstruction information and corresponding instruc-
tion bytes selected via multiplexors 90. It 1s noted that, in the
case of overflow instructions, instruction bytes from more
than one of instruction bytes storages 72 may be selected by
a given output multiplexor 90A-90C.

Control unit 76 receives synchronization signals from
MROM unit 34 1n order to dispatch MROM i1nstructions.
The sync signal upon sync line 82 indicates, when asserted,
that MROM unit 34 1s prepared to dispatch an MROM
instruction. Control unit 76 does not select an MROM
mnstruction for dispatch unless the sync signal i1s asserted.
Control unit 76 asserts a similar sync signal to MROM unit
34 to mndicate that the MROM 1nstruction has been selected.
Additionally, a two instruction line 84 carries an indication,
when asserted, that the next MROM instruction to be
dispatched translates into two fast path instructions. Control
unit 76 uses the two 1nstruction indication to determine if a
fast path 1nstruction can be concurrently dispatched with the

MROM instruction.
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It 1s noted that, although multiplexors 86, 88, and 90 as
shown 1n FIG. 4 are individual multiplexors, the selection
represented by each multiplexor may actually be performed
by multiple multiplexors, arranged 1n cascade or 1n parallel.

Turning now to FIG. §, a diagram 1s shown depicting
exemplary information stored in a field 110 of subqueues
66 A—66C, according to one embodiment. For example, field
110 may be field 10, I1, or 12 for the first, second, or third
instruction within an instruction block. Each field stores
equivalent information regarding different instructions.
Field 110 stores a valid indication 112, a start pointer 114, an
end pointer 116, a valid mask 118, an MROM/fast path
indication 120, and a branch prediction indication 122.

Valid 1ndication 112 idenfifies the validity or invalidity of
the remainder of the mmformation stored in field 110. If the
valid indication indicates validity, then instruction identifi-
cation mnformation 1s stored in field 110. If the valid indi-
cation indicates invalidity, then instruction identification
information 1s not stored within field 110 (i.e. field 110 is
empty). In one embodiment, valid indication 112 comprises
a bit indicative, when set, that instruction identification
information 1s stored within field 110. When clear, the bit
indicates that instruction identification information 1s not
stored within field 110.

Start pointer 114 and end pointer 116 locate the byte
positions within the instruction block at which the 1nstruc-
tion 1dentified 1n field 110 begins and ends, respectively. For
embodiments 1n which an instruction block mcludes 8 bytes,
start pointer 114 and end pointer 116 each comprise three bit
values 1ndicating the numerical position between zero and
seven of the respective start or end point. Valid mask 118 1s
a mask of zeros and ones. Each bit 1n the mask corresponds
to one of the bytes within the instruction block. Bits in the
mask corresponding to bytes not included within the mstruc-
tion 1dentified by field 110 are set to zero. Conversely, bits
in the mask corresponding to bytes included within the
instruction are set to one. For example, if the instruction
identified by field 110 begins at the third byte within the
instruction block and ends at the fifth byte within the
instruction block, the start pointer 1s 010, the end pointer 1s
100, and the mask is 00111000 (all expressed in binary
format). The start pointer, end pointer, and mask are used to
generate selection controls for selecting bytes within the
instruction block when the instruction 1s selected for 1ssue.

MROM/fast path indication 120 indicates the MROM or
fast path nature of the instruction i1dentified by field 110. In
one embodiment, indication 120 comprises a bit indicative,
when set, that the instruction 1s an MROM 1nstruction. When
clear, the bit indicates that the instruction 1s a fast past
instruction. Finally, branch prediction imndication 122 com-
prises a bit indicative, when set, that the instruction 1s a
branch 1nstruction which 1s predicted taken. When clear, the
bit indicates that the instruction i1s either not a branch
instruction or 1s a branch instruction predicted not taken.

Turning now to FIG. 6, a diagram 1s shown depicting
exemplary information stored mn a shared field 130 of a
subqueue 66A—66C. Information stored 1n shared field 130
1s shared information valid for the entire instruction block,
according to one embodiment. An address bits field 132, a
functional bits field 134, a segment limit field 136, an
overtlow 1ndication 138, and an instruction bytes field 140
are included. Address bits field 132 stores a pair of address
bits which 1dentily the quarter of the cache line from which
the 1nstruction block was fetched. Functional bits field 134
stores the original functional bits from the predecode data
associated with the instruction bytes within the instruction

block.
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Segment limit field 136 1s used to detect instructions
being dispatched from outside the code segment. As will be
appreciated by those skilled in the art, the x86 micropro-
cessor architecture divides the memory space mto segments.
One of these segments 1s the code segment, from which
instructions are fetched. The segment has a defined limut,
which may be of arbitrary size. If instruction execution
proceeds outside of the code segment, a segment limit
violation exception 1s signalled. Microprocessor 10 may
handle segment limit violations as follows: if an entire set of
instructions fetched from instruction cache 16 during a clock
cycle lies outside the code segment, the instructions are not
conveyed to mstruction alignment unit 18. Instead, the
segment limit violation 1s signalled to reorder buffer 32 and
to the control logic within instruction cache 16. The control
logic generates a signal to MROM unit 34, causing MROM
unit 34 to begin dispatching the exception service routine
corresponding to the segment limit violation. If istructions
prior to the segment limit violation retire successfully (as
opposed to being discarded due to branch misprediction or
other exception), then the exception may be taken at that
time. However, the limit may be arbitrary and therefore may
fall within the set of instructions fetched from instruction
cache 16. Segment limit field 136 1s included for handling
this case. If the limit 1s crossed within the instruction block,
then segment limit field 136 indicates which byte position
represents the segment limit. In one embodiment, segment
limit field 136 comprises four bits to indicate a limit at one
of the sixteen bytes within the instruction cache line. If an
instruction beyond the limit imposed by segment limit field
136 1s dispatched, an exception 1s signalled to reorder bufler
32.

Overflow indication 138 indicates that one of the instruc-
tions within the instruction block overflows 1nto the subse-
quent 1nstruction block. Information regarding the overtlow-
ing 1nstruction 1s stored in field 12 of the corresponding
subqueue 66 A—66C. In one embodiment, overflow 1ndica-
tion 138 comprises a bit indicative, when set, that an
instruction within the instruction block overflows. When
clear, the bit indicates that no 1nstruction within the struc-
tion block overflows. If overflow 1ndication 138 1s set, then
the valid indication within field 12 1s clear. Alternatively,
overflow indication 138 is clear if the valid indication within
field 12 1s set. In this manner, field 12 1s indicated either to
store an overflow 1nstruction or a valid instruction ending
within the 1nstruction block, but not both. Additionally, field
I2 1s mdicated to be not storing an instruction 1f both
overflow mdication 138 and the valid indication for position
12 are clear. Instruction bytes field 140 stores the actual
instruction bytes included within the instruction block. In
one embodiment, 1nstruction bytes field 140 i1s eight bytes
wide.

Turning next to FIG. 7, an exemplary instruction identifier
150 stored by one embodiment of instruction position stor-
ages 74 1s shown. Other embodiments may employ different
instruction identifiers than the embodiment shown 1n FIG. 7.
As shown 1n FIG. 7, instruction 1dentifier 150 mcludes valid
indication 112, start pointer 114, end pointer 116, valid mask
118, MROM/Tast path indication 120, and branch prediction
122 from the instruction field of the subqueue 66A—66C
which stored the instruction when the mstruction was con-
veyed 1nto the instruction position storage 74.

Additionally, instruction identifier 150 includes a start
block field 152 and an end block field 154. Start block field
152 1dentifies which of instruction bytes storages 72 stores
the start byte of the instruction. Similarly, end block field
154 1dentifies which of instruction bytes storages 72 stores
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the end byte of the instruction. For non-overflow
mstructions, start block field 152 and end block field 154
store the same value. Using start block field 152, end block
field 154, start pointer 114, and end pointer 116, control unit
76 may form select controls for output multiplexors 90.
Turning now to FIG. 8, a computer system 200 including
microprocessor 10 1s shown. Computer system 200 further

includes a bus bridge 202, a main memory 204, and a
plurality of input/output (I/O) devices 206 A—206 N. Plural-

ity of I/O devices 206 A-206 N will be collectively referred
to as I/O devices 206. Microprocessor 10, bus bridge 202,
and main memory 204 are coupled to a system bus 208. 1/0
devices 206 are coupled to an I/O bus 210 for communica-
tion with bus bridge 202.

Bus bridge 202 1s provided to assist 1n communications
between I/0 devices 206 and devices coupled to system bus
208. 1/O devices 206 typically require longer bus clock
cycles than microprocessor 10 and other devices coupled to
system bus 208. Therefore, bus bridge 202 provides a buifer
between system bus 208 and input/output bus 210.
Additionally, bus bridge 202 translates transactions from
one bus protocol to another. In one embodiment, mput/
output bus 210 1s an Enhanced Industry Standard Architec-
ture (EISA) bus and bus bridge 202 translates from the
system bus protocol to the EISA bus protocol. In another
embodiment, mput/output bus 210 1s a Peripheral Compo-
nent Interconnect (PCI) bus and bus bridge 202 translates
from the system bus protocol to the PCI bus protocol. It 1s
noted that many variations of system bus protocols exist.
Microprocessor 10 may employ any suitable system bus
protocol.

I/0 devices 206 provide an interface between computer
system 200 and other devices external to the computer
system. Exemplary I/O devices include a modem, a serial or
parallel port, a sound card, etc. I/O devices 206 may also be
referred to as peripheral devices. Main memory 204 stores
data and instructions for use by microprocessor 10. In one
embodiment, main memory 204 includes at least one
Dynamic Random Access Memory (DRAM) and a DRAM
memory controller.

It 1s noted that although computer system 200 as shown 1n
FIG. 8 includes one bus bridge 202, other embodiments of
computer system 200 may include multiple bus bridges 202
for translating to multiple dissimilar or similar I/O bus
protocols. Still further, a cache memory for enhancing the
performance of computer system 200 by storing instructions
and data referenced by microprocessor 10 1mn a faster
memory storage may be included. The cache memory may
be mserted between microprocessor 10 and system bus 208,
or may reside on system bus 208 in a “lookaside” configu-
ration. It 1s still further noted that the functions of bus bridge
202, main memory 204, and the cache memory may be
integrated mnto a chipset which interfaces to microprocessor
10.

It 1s still further noted that the present discussion may
refer to the assertion of various signals. As used herein, a
signal 1s “asserted” if 1t conveys a value indicative of a
particular condition. Conversely, a signal 1s “deasserted” if
it conveys a value indicative of a lack of a particular
condition. A signal may be defined to be asserted when 1t
conveys a logical zero value or, conversely, when 1t conveys
a logical one value. Additionally, various values have been
described as being discarded in the above discussion. A
value may be discarded mm a number of manners, but
ogenerally involves moditying the value such that 1t is
ignored by logic circuitry which receives the value. For
example, 1f the value comprises a bit, the logic state of the

10

15

20

25

30

35

40

45

50

55

60

65

22

value may be 1inverted to discard the value. If the value 1s an
n-bit value, one of the n-bit encodings may indicate that the
value 1s mvalid. Setting the value to the mvalid encoding
causes the value to be discarded. Additionally, an n-bit value
may 1nclude a valid bit indicative, when set, that the n-bit
value 1s valid. Resetting the valid bit may comprise discard-
ing the value. Other methods of discarding a value may be
used as well.

Table 1 below indicates fast path, double dispatch, and
MROM i1nstructions for one embodiment of microprocessor
10 employing the x86 instruction set:

TABLE 1

x86 Fast Path, Double Dispatch, and MROM Instructions

X86 Instruction [nstruction Category

AAA MROM
AAD MROM
AAM MROM
AAS MROM
ADC fast path
ADD fast path
AND fast path
ARPL MROM
BOUND MROM
BSF fast path
BSR fast path
BSWAP MROM
BT fast path
BTC fast path
BTR fast path
BTS fast path
CALL fast path/double dispatch
CBW fast path
CWDE fast path
CLC fast path
CLD fast path
CLI MROM
CLTS MROM
CMC fast path
CMP fast path
CMPS MROM
CMPSB MROM
CMPSW MROM
CMPSD MROM
CMPXCHG MROM
CMPXCHGSB MROM
CPUID MROM
CWD MROM
CWQ MROM
DDA MROM
DAS MROM
DEC fast path
DIV MROM
ENTER MROM
HLT MROM
DIV MROM
[IMUL double dispatch
IN MROM
INC fast path
INS MROM
INSB MROM
INSW MROM
INSD MROM
INT MROM
INTO MROM
INVD MROM
INVLPG MROM
[RET MROM
[RETD MROM
Jee fast path
JCXZ double dispatch
JECXZ double dispatch
JMP fast path
LAHF fast path
LAR MROM
LDS MROM
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TABLE 1-continued TABLE 1-continued

x86 Fast Path, Double Dispatch, and MROM Instructions x86 Fast Path, Double Dispatch, and MROM Instructions

X86 Instruction [nstruction Category > X86 Instruction [nstruction Category

LES MROM SLDT MROM

LES MROM SMSW MROM

LGS MROM STC fast path

LSS MROM STD fast path

LEA fast path 10 STI MROM

LEAVE double dispatch STOS MROM

LGDT MROM STOSB MROM

LIDT MROM STOSW MROM

LLDT MROM STOSD MROM

LMSW MROM STR MROM

LODS MROM 15 SUB fast path

LODSB MROM TEST fast path

LODSW MROM VERR MROM

LODSD MROM VERW MROM

LOOP double dispatch WBINVD MROM

LOOPcond MROM WRMSR MROM

LSL MROM 0 XADD MROM

LIR MROM XCHG MROM

MOV fast path XLAT fast path

MOVCC fast path XLATB fast path

MOV.CR MROM XOR fast path

MOV.DR MROM

MOVS MROM Note: Instructions including an SIB byte are also considered double dis-

MOVSB MROM 25 patch 1nstructions.

MOVSW MROM o _ _ _

MOVSD MROM Numerous variations and modifications will become

MOVSX fast path apparent to those skilled 1n the art once the above disclosure

MOVZX fast path 1s Tully appreciated. It 1s intended that the following claims

MUL double dispatch be mterpreted to embrace all such variations and modifica-

NEG fast path 30 Hions

NOP fast path ' _ _ _

NOT fast path What 1s claimed 1s:

OR fast path 1. A microprocessor comprising:

OUT MROM an instruction cache for storing a plurality of instruction

83%5 ﬂﬁgﬂ bytes forming variable byte length instructions,

35 . . . . .

OUTSW MROM where{n a first of said variable byte length instructions

OUTSD MROM comprise at least one prefix byte; and

POP double dispatch a predecode unit coupled to said instruction cache,

ESEQD ﬂggﬂ wherein said predecode unit is configured to predecode

POPE MROM said plurality of instruction bytes prior to their storage

POPED MROM 40 Wl’?hl.ﬂ said 1nstruction cache, wherein 'Sald pr?decode

PUSH fast path/double dispatch unit 1s configured to generate a functional bit corre-

PUSHA MROM sponding to said at least one prefix byte, wherein said

EEE?D ?’Hfmfh functional bit is placed in a particular state if said

r dsl pa . . . . .

PUSHED fast path ‘f.farlable. byte length Instruction 1s a dn:ectly dt?cheable

RCT. MROM 45 mstruction, and wherein said functional bit 1s also

RCR MROM placed 1 said particular state 1f said variable byte

ROL fast path length instruction is a microcode instruction.

RDMSR MROM . The microprocessor as recited in claim 1, wherein sal

REP MROM predecode unit 1s further configured to generate a functional

REPE MROM 50 bit corresponding to each of said plurality of instruction

REPNE MROM bytes.

REPNY MROM 3. The MICTOPTOCESSOr as recited 1in claim 2, wherelq said

RE double dispatch predecode unit 1s further configured to generate a plurality of

RSM MROM predecode bits for each of said plurality of instruction bytes.

giiF Eﬂﬂt path 55 4. The microprocessor as recited in claim 3, wherein said
ast path plurality of predecode bits include said functional bit, a start

SAR fast path _ : _ _ T _

SHI. fast path bit, and an end bit, wherein said start bit 18 set if a

SHR fast path corresponding one of said plurality of instruction bytes 1s a

>BB fast path first byte of one of said variable byte length instructions,

SCAS double dispatch 60 herei ¥ d bit i ¢ if di £ qaid

SCASR MROM wherein said end bit is set if a corresponding one of sal

SCASW MROM plurality of instruction bytes i1s a last byte of one of said

SCASD MROM variable byte length instructions.

SElcc fast path 5. The microprocessor as recited in claim 4, wherein said

i ey instruct; he is further configured to store said pred

SIDT MROM instruction cache 1s further configured to store said prede-

SHID MROM 65 code bits.

SHRD MROM 6. The microprocessor as recited 1n claim 1 further

comprising:
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a plurality of decode units coupled to receive decodeable
instructions corresponding to said variable byte length
instructions, wherein said plurality of decode units are
configured to decode said decodeable instructions.

7. The microprocessor as recited in claim 6 further

COmMprises:

an 1nstruction alignment unit coupled to said plurality of
decode units, wherein said instruction alignment unit 1s
further coupled to said instruction cache, wherein said
instruction alignment unit 1s configured to provide said
decodeable 1nstructions from said instruction cache to
said plurality of decode units.

8. The microprocessor as recited 1n claim 7, wherein said
plurality of decode units 1s configured to determine a loca-
tion of said at least one prefix byte without having to first
determine whether said variable byte length instruction is
said directly decodeable instruction or said microcode
instruction.

9. The microprocessor as recited 1 claim 7 further
COMprises:

a microcode unit coupled to said instruction cache,
wherein said microcode unit 1s configured to implement
selected variable byte length instructions as microcode
routines stored 1n said microcode unit.

10. The microprocessor as recited in claim 1 wherein said

particular state 1s a binary one.

11. A method for predecoding variable byte length

Instructions 10 a MICrOProcessor comprising:

rece1ving a plurality of mstruction bytes forming variable
byte length 1nstructions, wherein a first of said variable
byte length instructions comprise at least one prefix
te;

generating a functional bit corresponding to said at least
one prefix byte, wherein said functional bit 1s placed 1n
a particular state 1f said variable byte length instruction
1s a directly decodeable instruction, and wherein said
functional bit 1s also placed in said particular state 1f
said variable byte length instruction 1s a microcode
Instruction.

12. The method for predecoding variable byte length

instructions as recited i claim 11 further comprising:

generating a functional bit corresponding to each of said
plurality of instruction bytes.
13. The method for predecoding variable byte length
instructions as recited in claim 12 further comprising:

generating a plurality of predecode bits for each of said

plurality of instruction bytes.

14. The method for predecoding variable byte length
instructions as recited in claim 13, wherein said plurality of
predecode bits include said functional bit, a start bit, and an
end bit, wherein said start bit 1s set 1f a corresponding one
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of said plurality of instruction bytes 1s a first byte of one of
said variable byte length mstructions, wherein said end bait 1s
set 1f a corresponding one of said plurality of instruction
bytes 1s a last byte of one of said variable byte length
Instructions.

15. The method for predecoding variable byte length
instructions as recited i claim 11 further comprises:

receiving decodeable instructions corresponding to said

variable byte length instructions.

16. The method for predecoding variable byte length
instructions as recited in claim 11, wherein said predecoding
said plurality of instruction bytes to determine the exact
location of said at least one prefix byte without having to
first determine whether said variable byte length 1nstruction
1s said directly decodeable instruction or said MROM
instruction.

17. The method as recited in claim 11 wherein said
particular state 1s a binary one.

18. A computer system comprising;:

a microprocessor mncluding;

an 1struction cache for storing a plurality of instruction
bytes forming variable byte length instructions,
wherein a first of said variable byte length instruc-
tions comprise at least one prefix byte;

a predecode unit coupled to said instruction cache;
wherein said predecode unit 1s configured to prede-
code said plurality of instruction bytes prior to their
storage within said instruction cache, wherein said
predecode unit 1s configured to generate a functional
bit corresponding to said at least one prefix byte,
wherein said functional bit 1s placed 1n a particular
state 1f said variable byte length instruction 1s a
directly decodeable instruction, and wherem said
functional bit 1s also placed 1n said particular state if
said variable byte length instruction 1s a microcode
instruction; and

an 1nput/output device configured to communicate
between said computer system and another computer
system to which said input/output device 1s capable of
being coupled.
19. The computer system as recited in claim 18, wherein
said 1mnput/output device 1s a modem.
20. The computer system as recited 1n claim 18, wherein
said mput/output device 1s a peripheral device.
21. The computer system as recited 1n claim 18 further
comprising:
an audio input/output device.

22. The computer system as recited 1n claim 18 wherein
said particular state 1s a binary one.
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