

US006120886A

United States Patent [19]

Grafe et al.

[11] Patent Number:

6,120,886

[45] Date of Patent:

Sep. 19, 2000

[54]	THERMALLY REFLECTIVE SUBSTRATE
	WRAP

[75] Inventors: Michael Grafe; Alan Grafe; Martin

Sheeran, all of Woodbridge, Canada

[73] Assignee: 1334495 Ontario Inc., Woodbridge,

Canada

[21] Appl. No.: **09/228,493**

Nov. 6, 1998

[22] Filed: Jan. 11, 1999

[CA]

[30] Foreign Application Priority Data

[51]	Int. Cl. ⁷	B32B 7/04 ; B32B 27/06;
		B32B 27/08; B32B 27/30
[50]	HC CL	420/215, 420/216, 420/255 NI.

[56] References Cited

U.S. PATENT DOCUMENTS

3,421,971	1/1969	Kamal 161/184
3,421,973	1/1969	Kamal 161/189
3,616,192	10/1971	Sinclair
3,880,690	4/1975	Fuchs et al
4,546,045	10/1985	Elias
4,786,350	11/1988	Nesbitt et al
5,478,629	12/1995	Norman
5,855,976	1/1999	Oyama et al 428/36.6

FOREIGN PATENT DOCUMENTS

1 459 369 2/1975 United Kingdom . 084 513 10/1981 United Kingdom .

OTHER PUBLICATIONS

Tedlar product monograph, pp. 1 to 10, Dupont, Oct. 1995. Dupont Material Safety Data Sheet, Tedler PVF Film; TED 002, pp. 1 to 8, Jul. 18, 1997.

Dupont Material Safety Data Sheet, Tedler PVF Film; TED 052, pp. 1 to 8, Nov. 27, 1997.

Dupont Material Safety Data Sheet, Tedlar PVF Film; TED 012, pp. 1 to 8, Jan. 8, 1998.

PPG Canada Inc. Material Safety Data Sheet, ENHR-GOLD, pp. 1 to 5, Feb. 25, 1998.

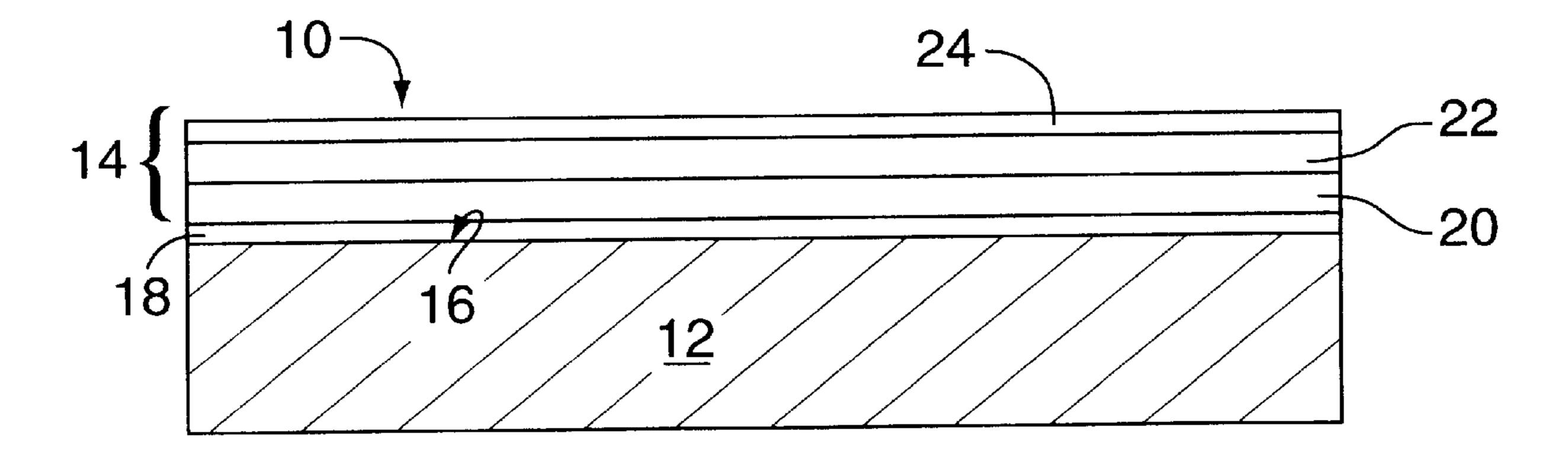
PPG Canada Inc. Material Safety Data Sheet, ENHR-WHITE, pp. 1 to 5, Feb. 25, 1998.

PPG Canada Inc. Material Safety Data Sheet, ENHR-RED, pp. 1 to 5, Feb. 25, 1998.

PPG Canada Inc. Material Safety Data Sheet, ENHR–REEN, pp. 1 to 5, Feb. 25, 1998.

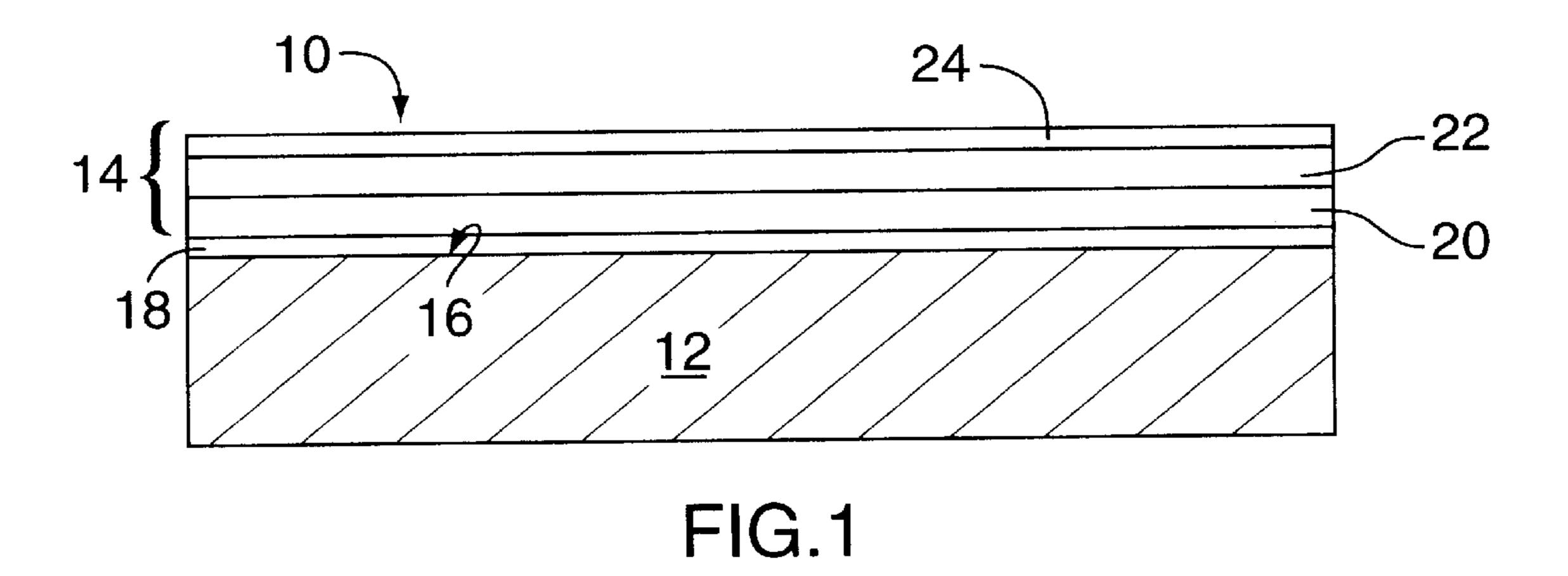
PPG Canada Inc. Material Safety Data Sheet, ENHR–BLACK, pp. 1 to 5, Feb. 25, 1998.

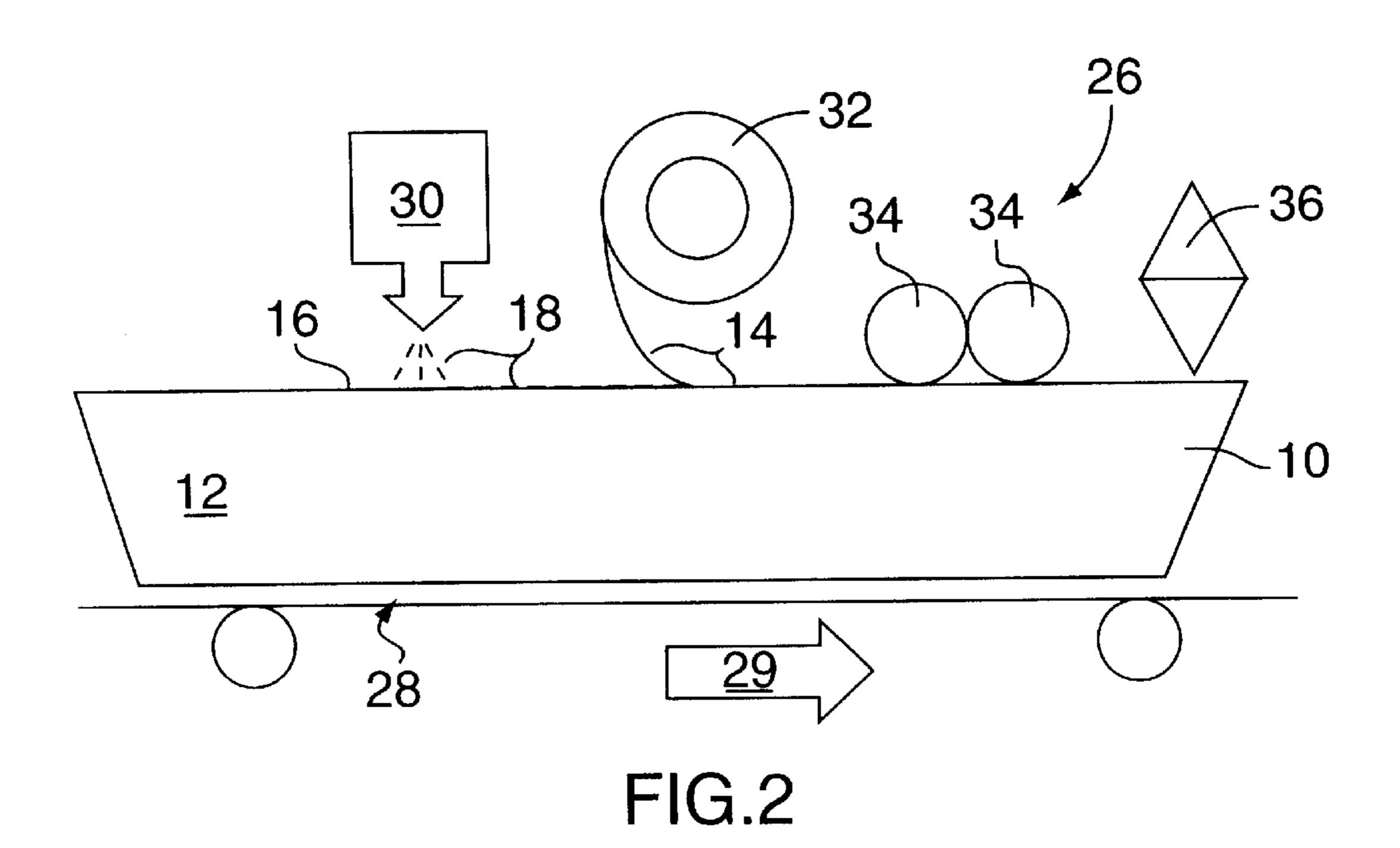
PPG Canada Inc. Material Safety Data Sheet, ENHR-YEL-LOW, pp. 1 to 5, Feb. 25, 1998.


PPG Canada Inc. Material Safety Data Sheet, ENHR-BLUE, pp. 1 to 5, Feb. 25, 1998.

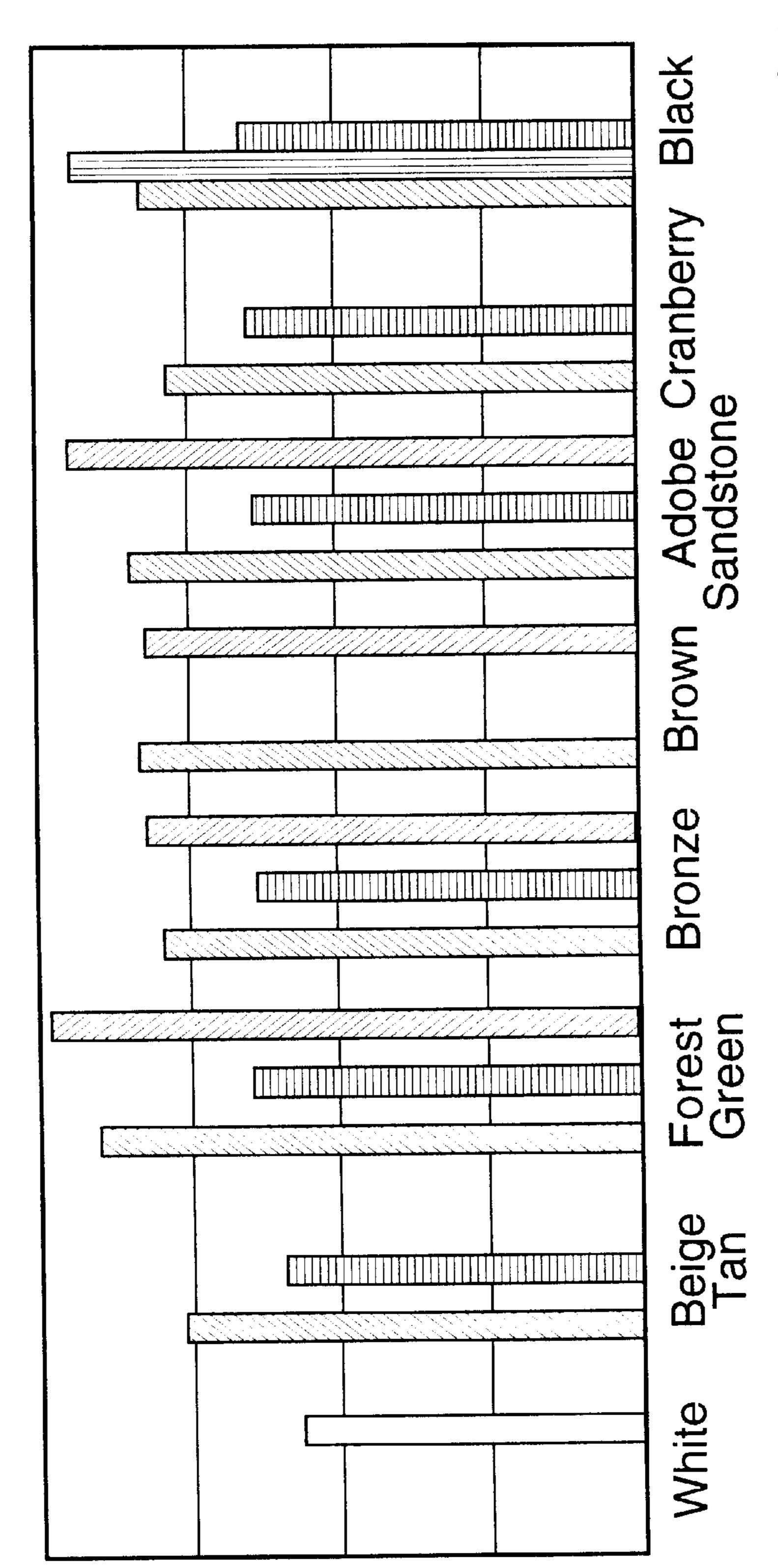
Primary Examiner—Vivian Chen
Attorney, Agent, or Firm—Riches, McKenzie & Herbert

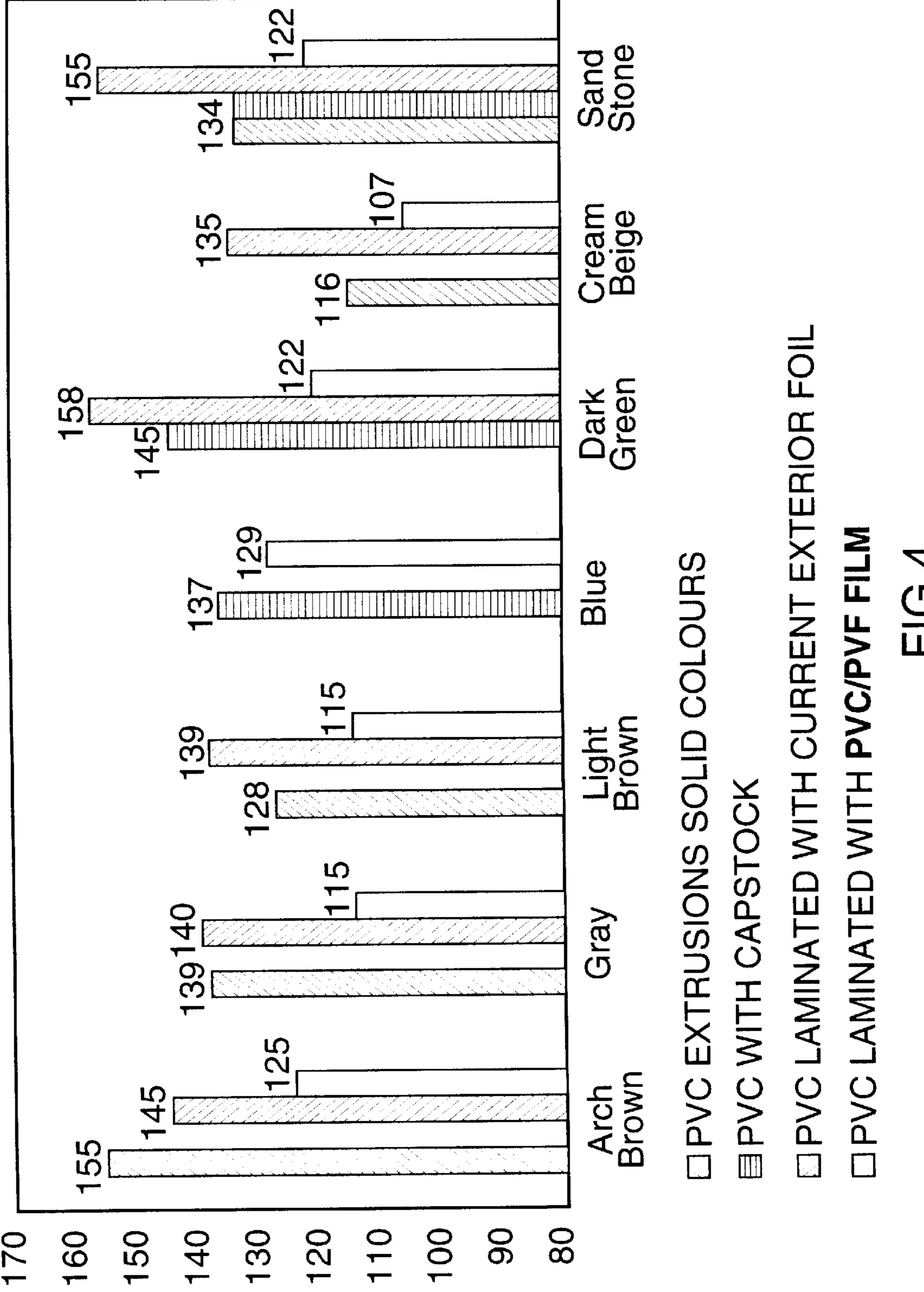
[57] ABSTRACT


A film wrap coating used to coat both metallic and non-metallic profiles for architectural and/or automotive components including a PVC backing layer which is bonded and at least partially cross-linked to a polyvinyl fluoride (PVF) film layer, and a paint or pigment layer applied to the PVF layer, most preferably, the paint is a thermally reflective latex paint. The film wrap is formed by aligning a sheet of PVF overtop of a flexible sheet of PVC. Following the alignment of the PVC and PVF sheets, a third layer of paint is then applied to the exposed surface of the PVF sheet and the three layers are heated so that the PVC and PVF sheets fuse to each other resulting in at least partial cross-linking therebetween, and the paint on the pigment layer cures and fuses to the PVF sheet.


10 Claims, 3 Drawing Sheets

Sep. 19, 2000


6,120,886



Sep. 19, 2000

1

THERMALLY REFLECTIVE SUBSTRATE WRAP

SCOPE OF THE INVENTION

The present invention relates to a thermally reflective substrate coating and a method for making and applying such a coating, and more particularly a wrap coating which may be applied to profiles such as those used to form architectural or automotive components and which has improved scratch and distortion resistance.

BACKGROUND OF THE INVENTION

Various spray coatings have been proposed for use in reducing the temperature rise associated with sun light 15 exposure on metallic and non-metallic substrates. One such coating is disclosed in U.S. Pat. No. 4,546,045 to Elias, which issued Oct. 8, 1985, and involves the application of a paint composition comprised of a film forming polymer and an infrared reflective pigment to polyvinyl chloride (PVC) 20 substrate profile. Following the application of the coating composition, the substrate profile is baked at 130° F. for approximately twenty minutes to ensure proper coating adhesion to the substrate profile.

A difficulty with conventional coating techniques exists in that depending upon the substrate or profile to be coated, it may not be economically or physically possible to bake the painted PVC profile to provide the required curing for proper adhesion of the thermally reflective paint. In particular, often it is desirable to provide coatings to PVC profiles which are used in the formation of architectural components such as pilasters, windows and doors. Such profiles are manufactured off site and are coated as elongated PVC or other plastic extrusions prior to final door or window assembly. Similarly, it is envisioned that various plastic profiles used in the automotive industry to form bumpers, fenders and other auto parts may be too large or cumbersome to heat cure and achieve the necessary adhesion of the thermally reflective paint.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to overcome at least some of the disadvantages of the prior art by providing a thermally reflective wrap coating which may be applied as a coating to a number of different profiles made from wood, metal, or American Architectural Manufacturer's Association (AAMA) #303 certified plastics including polyvinyl chloride (PVC), sheet moulding compound (SMC), acrylonitrile-butadiene-styrene resins (ABS), polyphenylene oxide (PPO), nylon, polystyrene, fibreglass and any other non-metallic or synthetic substrates including those suitable for use as architectural and/or automotive components.

Another object of the invention is to provide a coloured wrap coating for substrate profiles which includes a thermally reflective paint or pigment layer, and which may be secured to an exposed surface of the profile by conventional processes, including cold and/or hot gluing, sonic welding, hot welding, and the like.

Another object of the invention is to provide a wrap coating for non-metallic materials made from AAMA plastics which provides material with increased thermal reflectivity and ultraviolet (UV) protection, to prolong the product life.

Another object of the invention is to provide architectural or automotive components with factory-applied organic

2

coatings, which will provide and maintain a superior level of performance in terms of film integrity, exterior weatherability and general appearance over a period of many years.

The invention resides in an improved flexible film wrap which may be used to coat both metallic and non-metallic profiles, including wood and plastics, and which preferably include profiles used as architectural and/or automotive components. The film wrap includes a PVC backing layer or sheet which is bonded and at least partially cross-linked to a polyvinyl fluoride (PVF) film layer, and a paint or pigment layer applied to the PVF layer. Most preferably, the pigment layer is thermally reflective paint, as for example is disclosed in U.S. Pat. No. 4,546,045 to Elias.

To form the film wrap, a first surface of a flexible 0.5 to 3 mil thick sheet of PVF is aligned overtop of a flexible 1 to 7 mil thick sheet of PVC. Following the alignment of the PVC and PVF sheets, a third layer of the thermally reflective paint is then applied to the second other exposed surface of the PVF sheet and the three layers are heated. Most preferably, heating occurs at between approximately 275° and 375° F. for approximately 1 to 10 minutes until such time as the PVC and PVF sheets fuse to each other, resulting in at least partial cross-linking therebetween, and the paint or the pigment layer cures and fuses to the PVF sheet.

The paint layer may be applied to the PVF sheet in a number of different manners, as for example, by spraying, brush coating or roll coating. Most preferably, the paint layer is applied as a layer having a wet thickness of about 0.5 to 3 mil, and dries to a thickness of 0.5 to 1.2 mil, and more preferably 0.8 to 1 mil.

It has been found that the wrap coating may be secured as a covering layer to a number of different profiles. Most advantageous, however, it has been found that the PVC backing of the wrap coating may be secured to an exposed surface of a non-metallic profile, including those made from PVC, SMC, ABS, PPO, nylon, polystyrene and fibreglass, which are used to form either architectural components such as pilasters, window and door frames, or automotive components such as bumpers, dash boards, consoles and the like. The wrap coating may be secured to the profiles in a number of conventional manners, including by cold gluing, heat welding or fusing and sonic welding. The applicant has appreciated, however, one preferred method whereby a polyurethane reactive hot-melt glue is used to secure the PVC backing layer of the coating directly to the profile.

Accordingly, in one aspect the present invention resides in a thermally reflective flexible wrap for use in coating articles, comprising

a polyvinyl chloride backing layer,

65

- a polyvinyl fluoride layer at least partially crossed linked to the backing layer, and
- a pigment coating layer applied to the polyvinyl fluoride layer, said pigment coating layer having a thickness selected at between 0.5 and 2 mils.

In another aspect, the present invention resides in a method of manufacturing a flexible thermally reflective coating wrap comprising a polyvinyl chloride backing sheet, a polyvinyl fluoride sheet at least partially crossed linked to the backing layer, and a pigment coating layer applied to the polyvinyl fluoride layer having a thickness selected at between 0.5 and 2 mils, said coating wrap being formed by the steps of,

positioning a first surface said polyvinyl fluoride sheet in overlying juxtaposition with a first surface said polyvinyl chloride sheet;

applying said pigment to a second other surface of said polyvinyl fluoride sheet; and heating said polyvinyl

chloride sheet, said polyvinyl fluoride sheet and said pigment at a temperature selected at between about 250 and 400° F. to substantially cure said pigment and at least partially cross link polyvinyl fluoride sheet and said polyvinyl chloride sheet to each other.

In a further aspect, the present invention resides in a process for coating a substrate with a thermally reflective film coating,

said film coating comprising a polyvinyl chloride backing layer, a polyvinyl fluoride layer at least partially 10 crossed linked to the backing layer, and a pigment coating layer applied to the polyvinyl fluoride layer having a dry thickness selected at between 0.5 and 2 mils,

said substrate being coated by the steps of

applying a hot melt glue in a melted state to an exposed surface of said substrate; while said hot melt glue remains in said melted state positioning said film coating on said exposed surface.

In a further aspect, the present invention resides in a coated component comprising a non-metallic substrate selected from an architectural component and an automotive part component, and a thermally reflective wrap secured to at least one exposed surface of said non-metallic substrate, 25 said wrap comprising

- a polyvinyl chloride backing layer,
- a polyvinyl fluoride layer at least partially crossed linked to the backing layer, and a pigment coating layer applied to the polyvinyl fluoride layer, said pigment 30 coating layer having a thickness selected at between 0.5 and 2 mils.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects and advantages of the invention will appear from the following description taken together with the accompanying drawings in which:

FIG. 1 shows a schematic cross-sectional enlarged view of a wrap coated window sill profile in accordance with a 40 preferred embodiment of the invention;

FIG. 2 shows schematically a production assembly line used in the wrap coating of the window sill profile shown in FIG. 1;

FIG. 3 shows graphically the heat absorption for films of 45 various coloured PVC laminates and extrusions; and

FIG. 4 shows graphically the thermal reflective properties of coated and uncoated polyvinyl chloride extrusions.

DETAILED DESCRIPTION OF THE DRAWINGS

Reference is now made to FIG. 1 which shows a coated window sash component 10 in accordance with the preferred embodiment of the invention. The window sash component substrate 12 which has a flexible three layer wrap coating 14 secured to its outer exposed surface 16 by a layer of hot melt glue **18**.

The wrap coating 14 consists of an inner PVC backing layer 20, a polyvinyl fluoride (PVF) intermediate layer 22 60 and an outer paint layer 24. The PVC backing layer is formed from a flexible PVC sheet having a thickness of approximately 2 to 6 mils and more preferably 3 to 5 mils. As will be described, the backing layer 20 is cross-linked to the PVF intermediate layer 22 through partial heat melting. 65 The PVF layer 22 may for example be of a flexible film type sheet such as TEDLARTM films sold by DuPont to provide

enhanced UV blocking properties to the window sash component 10. The PVF layer 22 has a thickness of between about 0.7 and 2 mils, and more preferably 0.87 and 1.5 mil. For example, preferred PVF films would have compositional 5 ranges as shown in Table 1.

TABLE 1

	Components Material	% by weight
10	Polyvinyl Fluoride Polymer	64–86
	Titanium Dioxide	2-30
	Calcium Carbonate	0-15
15	Amorphous Silica	0-5
	Iron Oxide	0-5
	Other Nonregulated Colorants (optional)	0-1
	Dimethyl Acetamide (DMAC)	<1
	Hydrogen Fluoride	<1
	Nickel Antimony Titanium Yellow Pigment (optional)	0.04 - 25
	Carbon Black (optional)	<1

Decomposition temperature 204° C.

The outer paint layer 24 provides the wrap coating 14 with the desired finished colour. Most preferably, the paint layer 24 is water based to provide for reduced toxicity and may further be an infrared reflective paint such as those sold by PPG Canada Inc. under the product trade name Environ HRTM. The paint layer 24 has a dry thickness selected at about between 0.06 and 1.4 mils, and more preferably 0.08 and 1.1 mil. It has been found that improved thermally reflective properties may be achieved where the paint layer 24 is maintained at the preferred dry thickness. More particularly, if the paint layer 24 is too thick, the layer 24 will act as a heat sink, diminishing the thermally reflective properties of the coating 18.

The coating wrap layer 14 is formed by placing a first 35 surface of the PVF sheet 22 flat against a first surface of the PVC backing sheet 20. The infrared reflecting paint 24 is then applied to the exposed surface of the PVF sheet 22. The paint layer 24 is preferably applied by a spray applicator, however, other methods of paint application including brushing and rolling are also possible. To achieve the desired dry layer thickness, paint layer 24 is most provided applied in a wet thickness selected at between approximately 0.5 and 3 mil, preferably 1.8 and 2.6 mil, and more preferably about 2.2 mil.

Following the application of the paint layer 24 to the PVF layer 22, the three layers are heated to a temperature of between about 275 and 375° F., and more preferably about 325 to 330° F. for a period of between 1 and 5 minutes, until complete curing and bonding of the paint layer 24 to the 50 PVF layer 22 has occurred, and the PVF layer 22 bonds and achieves cross linking with the PVC backing layer 20. During curing, the wrap coating 14 is cast onto a teflon coated belt for final cooling.

Once cooled, the wrap coating 14 has been found to be consists of a polyvinyl chloride (PVC) sash profile or 55 quite stretchable and flexible with the paint layer 24 providing the desired pigment colour. In addition, the application of the paint layer 24 in a dry thickness of at least about 0.8 mil results in the wrap coating 14 being visibly free from flow lines, streaks, blisters or other surface imperfections in the dry-film state on exposed surfaces when observed at a distance of 10 feet (305 cm) from the coated surface and inspected at an angle of 90 degrees to the surface.

> While it is possible to wrap almost any profile or substrate with the film, including those made from wood or metals, such as steel, the wrap coating 14 is most preferably used with AAMA (#303) certified plastics including those such as PVC, SMC, ABS, PPO, nylon, polystyrene and fibreglass.

FIG. 2 shows a preferred apparatus 26 used in wrapping the PVC window sash profile 12 shown in FIG. 1. In use of the apparatus 26, the window sash profile 12 would be delivered uncut, as an elongated profile 5 to 20 meters in length. The uncoated profile 12 is moved via a conveyor line 5 28 in the direction of arrow 29. Initially the profile 12 moves on the conveyor 28 under a glue work station 30 where the hot melt glue layer 18 is first applied to the surface 16 of the profile 12. Immediately following the application of hot melt glue 18 and while the glue 18 remains in an uncured, melted 10 state, the wrap coating 14 is unrolled from a storage spool 32 and positioned as a flat sheet on the surface 16. Following the application of the wrap coating 14 on the exposed surface 16, the profile 12 is moved through a series of pressure rollers 34 which are used to press and properly 15 position the wrap coating 14 on the surface 16, and eliminate any air bubbles therebetween. As the hot melt glue layer 18 cools, the window sash profile 12 is then moved through a shearing station 36 where any excess wrap 14 is trimmed and removed. Following the completion of the coating 20 process, the sash component 10 may be cut into desired lengths for final assembly into a window frame (not shown).

FIG. 3 graphically illustrates the heat absorption properties of various coloured paints, concentrated European films, as well as those of black and white coloured polyvinyl ²⁵ chloride, as compared to the PVC/PVF film of the present invention. FIG. 4 similarly represents the properties of thermal reflectivity for PVC extrusions having either solid colours, those laminated with conventional exterior foils, and those when covered with a PVC/PVF wrap coating in accordance with the present invention. As is apparent, the PVC/PVF film of the present invention advantageously provides the wrapped substrate with thermally reflective properties which approach that of white PVC.

Although the preferred embodiment describes the use of ³⁵ a hot melt glue layer 18 to secure the wrap coating 14 to the exposed surface 16, other means of securing the coating 14 to the profile 12 may also be used. For example, if desired, the coating 14 could be secured in place by heat or sonically fusing the PVC backing layer 20 directly to the PVC profile 12. Alternately, cold adhesives or separate fusible layers could be inserted between the coating 14 and profile 12 to bond the wrap coating 14 in place.

While the detailed description describes the application of 45 the wrap coating 14 to a PVC window sash profile 12, the invention is not so limited. If desired, the coating 14 could be used as a coating for profiles made for various other purposes including other architectural components, automotive parts such as bumpers, consoles and dash boards, or with almost any other substrates which are currently wrapped with vinyl.

Although the detailed description describes various preferred embodiments of the invention, the invention is not so limited. Many modifications and variations will now occur 55 nylene oxide, nylon, polystyrene and fibreglass. to persons skilled in the art. For a definition of the invention reference may be had to the appended claims.

We claim:

1. A thermally reflective flexible wrap for use in coating articles, comprising

- a polyvinyl chloride backing layer having a thickness selected at between about 2 and 6 mil,
- a polyvinyl fluoride layer at least partially crossed linked to the backing layer, said polyvinyl fluoride layer having a thickness selected at between about 0.7 and 2 mil, and
- a pigment coating layer applied to the polyvinyl fluoride layer, said pigment coating layer having a thickness selected at between 0.5 and 2 mil.
- 2. The flexible wrap as claimed in claim 1 wherein the pigment coating layer comprises an infrared reflective paint.
- 3. The flexible wrap as claimed in claim 2 wherein said polyvinyl chloride backing layer has a thickness of between about 3 and 5 mil, said polyvinyl fluoride layer has a thickness of between about 0.87 and 1.5 mil, and said pigment coating layer has a dry thickness of between about 0.8 and 1.1 mil.
- 4. The flexible wrap as claimed in claim 1 wherein said polyvinyl chloride backing layer has a thickness of between about 3 and 5 mil, said polyvinyl fluoride layer has a thickness of between about 0.87 and 1.5 mil, and said pigment coating layer has a dry thickness of between about 0.8 and 1.1 mil.
- 5. In combination a thermally reflective wrap and a non-metallic substrate, said substrate selected from the group consisting of an architectural component and an automotive part component, said thermally reflective wrap secured to at least one exposed surface of said substrate and comprising,
 - a polyvinyl chloride backing layer,
 - a polyvinyl fluoride layer at least partially crossed linked to the backing layer, and
 - a pigment coating layer applied to the polyvinyl fluoride layer, said pigment coating layer having a thickness selected at between 0.5 and 2 mils.
- 6. The combination as claimed in claim 5 wherein said polyvinyl chloride backing layer has a thickness of between about 3 and 5 mil, said polyvinyl fluoride layer has a thickness of between about 0.87 and 1.5 mil, and said pigment coating layer has a dry thickness of between about 0.8 and 1.1 mil.
- 7. The combination as claimed in claim 5 wherein the pigment coating layer comprises an infrared reflective paint.
- 8. The combination as claimed in claim 7 wherein the polyvinyl chloride backing layer has a thickness selected at between about 2 and 6 mil, and the polyvinyl fluoride layer ₅₀ has a thickness selected at between about 0.7 and 2 mil.
 - 9. The combination as claimed in claim 8 wherein said substrate is made of a non-metallic material selected from the group consisting of polyvinyl chloride, sheet moulding compound, acrylonitrile-butadiene-styrene resin, polyphe-
 - 10. The combination as claimed in claim 5 further including a polyurethane reactive hot-melt glue securing said wrap to said exposed surface.