US006115802A
United States Patent (19] 11] Patent Number: 6,115,802
Tock et al. 45] Date of Patent: Sep. 5, 2000
[54] EFFICIENT HASH TABLE FOR USE IN Primary Examiner—Eddie P. Chan

MULTI-THREADED ENVIRONMENTS

Assistant Examiner—Kevin Verbrugge
Attorney, Agent, or Firm—Holland & Hart LLP

|75] Inventors: Theron D. Tock, Sunnyvale; Thomas
K. Wong, Pleasanton, both of Calif. [>7] ABSTRACT
A lockless-lookup hash table for use in a multi-threaded
[73] Assignee: Sun Mircrosystems, Inc., Palo Alto, processing system has a memory whose storage locations
Calif. hold elements. Each memory location 1s uniquely 1dentified
by an index value, and each element includes a key and a
[21] Appl. No.: 09/034,181 value. The target location for storing an input value 1s
determined by generating a hash value from an input key
[22] Filed: Mar. 3, 1998 value, and probing storage locations, beginning at the one
designated by the generated hash value, until an empty
Related U.S. Application Data location is found. In accordance with one aspect of the
invention, the hash table may be used as a commonly
[63] Continuation of application No. 08/543,215, Oct. 13, 1995, accessed resource in a multi-threaded environment without
abandoned. requiring locks associated with lookup operations. In such
51] Int. CL7 e, GO6F 12/00 cnvironments, incorrect results may be tolerated, so long as
52] US. Cle oo 711/216; 707/1; 707/200 the lookup operation is guaranteed never to return a value
58] Field of Search ... 711/147, 141, ~ ‘hathadneverbeenstored into the table by one of the threads
- _ in the system. This characteristic 1s provided 1n the present
711/145, 216; 707/1, 200, 201
invention by an insert operation that never writes the value
portion of the element 1into a location last. Instead, the last
56] References Cited thing stored by an 1nsert operation 1s the Key, or alternatively
any other portion of the element that 1s utilized by the lookup
operation for determining whether a sought-after element
U.s. PAIENT DOCUMENTS has been located. Other aspects of the invention relate to
4,996,663 2/1991 NEMES eveveveeerereeeeeereeeeeeerenn. 364/900 optimizing performance of the hash table during lookup and
5,100,511 4/1992 Nitta et al. ..oceeveeveevneereeeeennnnne. 395/650 delete operations, and to reducing the number of erroneous
5,121,495 6/1992 NEmMES .covvvevrevrrireriieeirrreeeennnne. 395/600 results produced when lockless-lookup Opera‘[ions proceed
5,287,499 2/1994 NEmMES ..covvvivrrrveneeivineeeennennnnss 395/600 in a multi-threaded environment.
5339.398 8/1994 Shah et al. ooovevevveverreeeererrrann, 3957400
5,495,609 2/1996 SCOLL ..oevrveneiiriieeeiiieee e eeeeenen 395/600 45 Claims, 9 Drawing Sheets

LOCATION

O HASH TABLE

. 327

401 403

KEY HASH OF KEY | VALUE

. 405

N-7

6,115,802

Sheet 1 of 9

Sep. 5, 2000

U.S. Patent

ol

ALdWS
AldiNd
4=Ad
=AM
=AM
d=A3M
V=A3A

Gl

ALldW3
3=A3N
3=AdN
=AM
O=A3N
d=A3
V=AM

vl

AldNS
3=A3N
3=A3N
3=A3M
D=A3INA
J=A3M
V=A3

el

4=A3N
A=A3NA
=AM
O=A3IMA

=AM
V=AM

cl

ALdN
A=A
3=A3M
d=AdM
=AM
ad313130
V=A3A

SIN3LNOO 718Vl

L1

AldN4
4=Ad
3=A3
=AM
O=AdMA
=AM
V=A3

JNIL

™ N OO T IO O O O

X3ANI

U.S. Patent Sep. 5, 2000 Sheet 2 of 9 6,115,802

205 201
KEY VALUE

INDEX

LOOKUP(KEY=5)

UNINITIALIZED
INSERT(KEY=6, VALUE)
203)
Fig. 2a
noEx__KEY VALUE

1
2
3
4
5 A 1
6 DELETED 2
7 C 3
8 D 4
9 E S
10 F 6
11 EMPTY |
12

—d
w

U.S. Patent Sep. 5, 2000 Sheet 3 of 9 6,115,802

INDEX KEY VALUE
.
2
3
4
5 A 1
6 D 2
7 C 3
8 D 4
9 E 5
10 F 6
11
12
13
Fig. 2c
NDEX \—KEY VALUE
1
2
3
4
5 A 1
6 DELETED 4
7 C 3
8 D 4
9 E <
10 F 6
11
12

—i
W

6,115,802

Sheet 4 of 9

Sep. 5, 2000

U.S. Patent

GLE

S0¢€

HOSS3004Hd

¢ ‘b1

ct

Z0€ LcE £LE £ [LE
JOHLNOD y
MSIa HIINIHd AVdSIQ AT QHYOgAIN

LIE

61L&

[0

NdO

JHOVO

aMOH -

6¢c€

£0€

Ol

60¢

LcE

319V.1
HSVH

6LE

GLE
IHOVD
HOSS3IOOHd

LOE 62€

U.S. Patent Sep. 5, 2000 Sheet 5 of 9 6,115,802

LOCATION
0 HASH TABLE
327
403
. 405
N-7
Fig. 4

HASH FUNCTION

HASH VALUE=KEY AND MASK

Fig. 5

INITIALIZE HASH
FUNCTION
ALLOCATE MEMORY FOR THE TABLE

MARK EACH TABLE ELEMENT AS EMPTY

Fig. 6

U.S. Patent Sep. 5, 2000 Sheet 6 of 9 6,115,802

LOOKUP

HASH=HASH_FUNCTION (KEY)
INDEX=HASH

CHECK= THE_TABLE(INDEX).HASH_OF_KEY

CHECK=

RETURN NO_~RESERVED
NOT FOUND EMPTY
?

YES 701
NO

/703

KEY=

THE

TABLE(INDEX).
KEY

?

YES
RETURN THE_
TABLE(INDEX).VALUE
INDEX=HASH_
FUNCTION(INDEX+1)

CHECK=THE
TABLE(INDEX).HASH_OF_KEY

Fig. 7

U.S. Patent Sep. 5, 2000 Sheet 7 of 9 6,115,802

LOCKOUT ALL OTHER INSERT & DELETE CPS

HASH=HASH_FUNCTION (KEY)

INDEX=HASH
CHECK=THE_TABLE(INDEX).HASH_OF_KEY

CHECK=
FIESEHVE?D_EM PT

803 YES
INDEX=HASH_FUNCTION (INDEX+1)
CHECK=THE_TABLE(INDEX).HASH_OF_KEY

THE_TABLE(INDEX).VALUE=VALUE
805

THE_TABLE(INDEX). KEY=KEY 807

THE_TABLE(INDEX).HASH_OF KEY=HASH 809

RETURN F-
(_RETURN Ig. 8

801

U.S. Patent Sep. 5, 2000 Sheet 8 of 9 6,115,802

901 L OCKOUT ALL OF THE INSERT & DELETE OPS

HASH=HASH_FUNCTION (KEY)

INDEX=HASH
CHECK=THE_TABLE(INDEX).HASH_OF_KEY

CHECK=
R ESEHVE7D_EM PT

902

NO
REMOVE LOCK
RETURN YES

NO

TABLE(INDEX) KEY

?

YES

INDEX=HASH_FUNCTION (INDEX+1)

CHECK=THE_TABLE(INDEX).HASH_OF_KEY

Fig. 9a

U.S. Patent Sep. 5, 2000 Sheet 9 of 9 6,115,802

THE_TABLE(INDEX). HASH_OF _KE Y=RESERVED_DELETED

HOLE=INDEX

OFFSET=TABLE_SIZE-INDEX-1

THE TABLE(HOLE). NO
HASH OF KEY
=RESERVED EMPTY

CHECK=
FiESEFWE?D_EM PTY

YES

REMOVE LOCK
909
RETURN

NO

HASH_FUNCTION (CHECK=OFFSET
<=HASH_FUNCTION (HOLE=OFFSET)

903
YES
THE_TABLE(HOLE).KEY=THE_TABLE(INDEX).KEY
905

THE_TABLE(HOLE). VALUE=THE_TABLE(INDEX).VALUE

THE-TABLE(HOLE).HASH_OF KEY=THE TABLE(INDEX).HASH_OF KEY

907 HOLE=INDEX

OFFSET=0OFFSET-1

INDEX=HASH_FUNCTION (INDEX+1)
» CHECK=THE_TABLE(INDEX).HASH_OF_KEY
Fig. 9b

0,115,802

1

EFFICIENT HASH TABLE FOR USE IN
MULTI-THREADED ENVIRONMENTS

This application 1s a continuation of application Ser. No.
08/543,215, filed Oct. 13, 1995 now abandoned.

BACKGROUND

1. Field of Use

The present invention relates to tables and table search
techniques and, more particularly, to an efficient organiza-
fion of a hash table and corresponding techniques for
accessing the hash table that are especially usetul in multi-
threaded environments.

2. State of the Related Art

In the computer sciences, various data structures, table
organizations and access techniques have been studied 1n an
cfiort to solve what may generally be referred to as the
“searching problem.” The term “searching problem” is used
here to refer to the problem of locating a particular item of

information that has been stored along with others 1n some
fashion.

In the prior art, 1t has been recognized that the particular
choice of an algorithm/data structure depends on the nature
of the storage medium (internal memory, magnetic tape,
disk, or other), on the nature of the data being organized, and
on the requirements of the search (e.g., must the search be
tailored to be fast on average, or 1s one concerned more with
the worst case performance).

In general, the data may be stored into a table of “n”
clements, where each element has a collection of fields
assoclated with 1t. In the table, each field 1s associated with
one of a number of attributes that, together, make up the
clement. One of the attributes 1s the “key” that refers to the
clement and on which the searching i1s based. Various
techniques for organizing a table include lists, binary search
trees, digital search trees and hash tables. The remainder of
this disclosure will focus exclusively on hash tables.

A number of hash table techniques are well-known 1n the
art. What these techniques have 1n common 1s that an
clement 1s stored 1n a table location that 1s computed directly
from the key of the element. That 1s, the key 1s provided as
an 1mput to a hash function, h, which transforms the key into
an 1ndex 1nto the table. If the location of the table addressed
by the index (represented here as T[index]) is empty, then
the element may be stored there. If 1t 1s not empty, then a
“collision” has occurred, and further techniques must be
applied to find an empty location in which to store the
clement. It can be seen, then, that the properties of the hash
table are determined, at least in part, by the hash function
and the collision resolution method. Under certain
circumstances, a hash table may be the best choice for
organizing data, because the average times for a search can
be made arbaitrarily close to constant by allocating sufficient
memory for the table.

Hashing techniques may be categorized as being either
“open hashing” or “closed hashing.” In principle, open
hashing techniques permit the size of the table to grow
indefinitely because the index generated by the hash func-
fion points to one of a number of classes, called “buckets”,
imnto which the element will be stored. Thus, each bucket
comprises a list of elements. By constructing the list as a
“linked list”, those having ordinary skill in the art will
recognize that the table size may be virtually unbounded.

In contrast to open hashing schemes, the number of
entries that can be stored into a closed hash table cannot

5

10

15

20

25

30

35

40

45

50

55

60

65

2

exceed a predefined number, which designates the size of the
table. Because of this limitation, open hashing techniques
may generally be preferred. However, several properties of
the closed hash table make it advantageous under certain
circumstances. One of these properties 1s the fact that one
need not store, at each enfry, a pointer to a next entry.
Instead, conventional closed hashing techniques require that
cach element include only the key and value fields. Conse-
quently where the size of the table 1s an important design
consideration, a closed hash table may be preferred.

Furthermore, a closed hash table may provide better speed
performance 1f the table 1s to be accessed by means of a
hardware cache. Cache techniques are well-known. Very
briefly, a computer architecture may include a slower, large
main memory, and a faster, smaller hardware cache memory.
In operation, the data used by a program 1s stored 1n the main
memory. When the processor desires to retrieve a particular
data 1item, 1t first looks for that 1item 1n the cache. If the data
is not found (called a “cache miss™), then the data item is
sought and retrieved from the main memory. In recognition
of the fact that programs tend to read and write data that are
stored at addresses that are close to one another in memory
(referred to as the “locality principle”), whenever a cache
miss occurs, the desired data item as well as a predefined
number of “nearby” items (as determined by address) are
retrieved from the main memory and loaded into the cache.
As a result, the next attempt that the processor makes to
retrieve a data item from the cache will likely result in
success (referred to as a “cache hit”), obviating the need for
the subsequent step of accessing main memory.

Because the collision resolution techniques employed 1n a
closed hash table usually result in the data item being stored
at a location that 1s at least close to the location designated
by the index value, a processor 1s less likely to take multiple
cache misses when attempting to access the table. Thus,
where a hardware cache 1s employed, the closed hash table
may be preferred over the open hash table, whose buckets
may 1nclude elements that are widely distributed throughout
the available address space.

It 1s known that a hash table can be shared by a number
of concurrently operating threads of execution, which will
hencetforth be referred to throughout this specification as
“threads.” Such concurrent operation may result from each
thread being assigned to a corresponding one of a number of
processors 1n a multi-processor environment. Alternatively,
logical concurrence may be achieved by an operating system
using “time slice” techniques on only a single processor

“uni-processor”).

When a hash table 1s to be shared by two or more threads,
efficiency becomes a critical 1ssue because 1t 1s often nec-
essary to deny table access to all but one of the threads 1n the
system 1f the table 1s to provide accurate insert, delete and
lookup operations. For example, if Threadl were permitted
to store two characters, “AB” while Thread2 were concur-
rently storing the two characters “CD” to the same table
location, one possible outcome would be that Threadl would
oet as far as storing the first character “A,” at which time
Thread2 might store 1ts two characters “CD.” When Threadl
subsequently completes 1ts operation by storing the final
character “B,” the resulting stored data, “CB”, 1s a character
string that was stored by neither thread.

Conventional solutions for ensuring that every thread has
a consistent view of information in the shared hash table
require severe forms of concurrency control which can
detrimentally affect system performance due to excessive
contention for access to the shared environment. For

0,115,802

3

example, any of a number of well-known concurrency
control locking strategies (henceforth referred to as “locks™)
may be applied to serialize the occurrence of table lookup,
insert and delete operations. That 1s, one thread’s access to
the hash table 1s permitted, while all other threads are
required to wait their turn. If the duration of the lockout is
for any appreciable amount of time, a waiting thread 1n a
fime-sliced uni-processor system may be forced, by its
operating system, to relinquish other system resources that
it has acquired. Consequently, when that thread 1s subse-
quently granted access to the hash table, 1t may be forced to
waste even more time reacquiring those resources which had
been relinquished. In multi-processor systems, a thread that
1s waiting for a lock to become available may simply be left
waiting, without any useful work being performed by the
thread’s processor. Consequently, reducing locking 1n this
situation 1s very important for achieving good scalability.
One hash table operation that may be relatively time-
consuming mvolves the deletion of a stored element from a
closed hash table. This 1s because one cannot simply locate
the element to be deleted and then mark it “empty” because
doing so would disrupt the probe sequence for elements that
collided with the one to be deleted. Therefore, 1t 1s further
necessary, 1n some deletion algorithms, to have the addi-
fional capability of marking an element as “deleted.” A
location that has been marked as “deleted” acts like an
empty location with respect to insertions, but like a full

location with respect to searches.

However, marking a table location as “deleted” has a
drawback 1n that search times will not improve after a
deletion. That 1s, 1f the table becomes substantially full at
some point, searches will never become more efficient no
matter how many entries are deleted after that. One method
of addressing this problem 1is by performing a process called
“rehashing,” 1n which each table location 1s scanned 1n turn
and 1ts contents, 1f any, are relocated as necessary. Because
this process 1s time-consuming, it 1s not performed after
every delete, but 1s 1nstead scheduled only periodically in
conventional practice.

Another method of improving the search efficiency of the
table after a delete 1s described by D. Knuth 1n The Art of
Computer Programming, Volume III: Sorting and
Searching, 1972, Reading, Mass. There, a method 1s taught
in which each delete comprises first locating the element to
be deleted, then marking this first location as “empty”, and
then scanning subsequent locations in turn for an element
whose probe sequence has been disrupted by the first
“empty” location. This element, if any, 1s then moved into
the first empty location, and the newly vacated location 1is
then marked as “empty.” The process then continues to
identify and move any other elements whose probe
sequences have been disrupted by the introduction of a new
empty location, and these are similarly moved. The process
ends when an already existing empty location 1s found. It
can be seen that, 1f the table becomes relatively full, deletion
of an element may require more and more time as a result of
the necessity of 1initially marking many locations as “empty,”
followed by movement of other elements 1nto those tempo-
rarily “empty” locations.

Because a great proportion of data processing involves the
need to store and search for data elements, 1t 1s desirable to
provide techniques that allow for even greater efficiency
than 1s conventionally known, both 1n uni- and multi-
threaded environments.

SUMMARY OF THE INVENTION

The invention comprises a number of means for 1mprov-
ing the performance of hash tables. A lockless-lookup hash

5

10

15

20

25

30

35

40

45

50

55

60

65

4

table for use 1n a multi-threaded environment comprises
storage means comprising a plurality of locations, wherein
cach location 1s for storing an element, each location 1is
uniquely 1dentified by an index value, and wherein each
clement comprises a key and a value. The lockless-lookup
hash table also 1ncludes means for mserting an mput element
into a location of the storage means. The inserting means
comprises means for generating one of the index values
from the key of the mput element; means for determining
whether the location designated by the generated index
value 1s empty; means for locating an empty location 1if 1t
was determined that the location designated by the generated
index value was not empty, wherein the locating means
scarches for the empty location 1n accordance with a pre-
determined probe sequence that uses the generated index
value as a starting point; means for storing the element mto
the location designated by the generated index value 1f 1t was
determined that the location designated by the generated
index value was empty, and for storing the element into the
located empty location 1if 1t was determined that the location
designated by the generated index value was not empty.
Further 1n accordance with this aspect of the invention, the
storing means writes the key of the input element into the
storage device after it has written the value of the input
clement 1nto the storage means. By performing the write
operations 1n this order, 1t 1s guaranteed that a concurrent
lookup operation will never return a lookup value that had
never been written 1nto the storage device by any of the
threads 1n the system. That 1s, a concurrent lookup operation
may return an erroneous value, but that value 1s guaranteed
to be one that had been stored 1nto the storage device by one
of the threads m the system, and not an uninitialized value.

In accordance with another aspect of the invention, each
clement of the lockless-lookup hash table may further com-
prise a hash value. During lookup operations, the hash value
of an mput key 1s generated. Then, instead of comparing the
key of each probe location with the mput key, an initial
comparison between the stored hash value and the generated
hash value 1s performed. If the two match, then the lookup
operation continues on by comparing the input key with the
stored key. This technique has the advantage of speeding up
lookup operations whenever the keys are long or otherwise
fime-consuming to compare.

In yet another aspect of the invention, designating a
location as “empty” may be performed by setting the stored
hash value to a predefined value. This feature saves having
to utilize extra storage bits in the table to hold this indicator.
In one embodiment of the invention, the predefined value 1s
an 1llegal value that 1s not equal to any of the index values.

In still another aspect of the invention, designating a
location as “deleted” may be performed by setting the stored
hash value to another predefined value. This strategy also
saves having to utilize extra storage bits 1n the table to hold
this indicator. In one embodiment of the invention, the
predefined value 1s an illegal value that 1s not equal to any
of the index values.

In yet another aspect of the invention, the inefficiency
associated with the prior art’s strategy of first copying an
clement from a later location to an earlier one and then
marking the later location as “empty” 1s replaced by the
following optimized delete function: First, a previously
stored element to be deleted 1s located, and a “deleted”
indication 1s set at that location. Then, the table 1s recon-
structed by copying a first subsequent table element into the
delete location and then further reconstructing the table
beginning at the first subsequent location, wherein further
reconstructing the table changes the first subsequent location

0,115,802

S

by copying a second subsequent table element from a second
subsequent location 1nto the first subsequent location with-
out ever setting a “deleted” indication at the first subsequent
location, and without ever setting an “empty” indication at
the first subsequent location. This strategy provides speed
improvements over prior art techniques in that 1t eliminates
intermediate steps associated with designating locations as
“empty” or “deleted.”

For example, the location from which the element 1s to be
deleted (call it Locl) is first marked as “deleted”, and
subsequent locations are scanned in turn for an element
whose probe sequence would be disrupted 1f Locl were to
be marked as “empty.” This element, 1f any, 1s then moved
from its location (call it Loc2) into Locl. However, instead
of marking Loc2 as “deleted”, the present contents of Loc2
are permitted to remain there while the process continues to
identify and move any other elements whose probe
sequences would be disrupted if Loc2 were to be marked as
“empty.” If one 1s found, say at Loc3, then 1t 1s simply
copied 1nto Loc2, and the process again continues by 1den-
tifying and moving any other elements whose probe
sequences would be disrupted if Loc3 were to be marked as
“empty.” At some point, an already existing empty location
will be encountered 1n the probe sequence, indicating that no
additional elements need to be moved. At this point, the
“empty” indicator can safely be set at the last location where
it was proposed. It can be seen that this aspect of the
invention 1mproves performance because, for each of the
clements that were simply moved without subsequently
being marked as “empty” or “deleted”, a programming step
has been saved, thus speeding up the entire process.

In still another aspect of the mvention, erroneous results
in lockless-lookup multi-threaded environments are reduced
by providing a table reconstruction mechanism (for use
during delete operations) that performs element copy opera-
tions by copying the key of an element to be copied after first
copying the value of the element to be copied. In this way,
a lookup operation, taking place concurrently with a delete
operation, 1s less likely to match 1ts mmput key value with that
of a table element whose value has not yet been moved as
part of the table reconstruction process.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood by reading the
following detailed description 1n conjunction with the draw-

ings in which like parts are 1dentified with the same refer-
ence characters.

FIG. 1 1s a diagram of hash table transformations that
occur during a delete operation 1n accordance with one
aspect of the mvention;

FIGS. 2a-2d are diagrams of exemplary hash table con-
tents to show one aspect of lockless-lookup capability 1n
accordance with one aspect of the invention;

FIG. 3 1s a block diagram of an exemplary multi-threaded
system for use with the ivention;

FIG. 4 1s a block diagram of an exemplary hash table
clement 1n accordance with one aspect of the 1nvention;

FIG. 5 1s a flow chart of an exemplary hash function in
accordance with one aspect of the invention;

FIG. 6 1s a flow chart of a hash table 1nitialization routine
in accordance with one embodiment of the invention;

FIG. 7 1s a flow chart of a hash table lookup operation in
accordance with one aspect of the invention;

FIG. 8 1s a flow chart of a hash table insert operation in
accordance with one aspect of the invention; and

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 9a and 9b together depict a flow chart of a hash
table delete operation 1n accordance with one aspect of the
invention.

DETAILED DESCRIPTION

A necessary step when either locating or deleting an
clement from a hash table is the need to compare the key of
the element to be located/deleted with the key of an element
already stored 1n the table. In practice, keys may take on any
of a number of different forms, such as mteger values and
character strings. In some cases, comparing one key to
another may be a relatively simple, and therefore short
operation. However, 1t 1s sometimes the case that comparing
keys 1s a lengthy operation. In accordance with one aspect
of the present invention, this mefficiency 1s reduced by
storing, as part of each element, the hash value of the key.
Generally, the hash values will be integers which can be
quickly compared with one another. Then, further in accor-
dance with this aspect of the invention, the lookup and delete
operations initially compare the stored hash value with the
hash value of the key to be located/deleted. This can
ogenerally be expected to be a short operation. If the two hash
values are not equal, then the locate/delete operation can
continue on to examine the next stored element, without
having to perform a time-consuming comparison of keys.
Only when the two hash values are equal 1s i1t necessary for
the locate/delete operations to compare the two keys. Those
skilled 1 the art will recognize that this last step 1s necessary
because there 1s nothing to prevent two different keys from
mapping onto the same hash value.

So far, the discussion here has mentioned that each
location within a closed hash table will either contain a valid
clement, or else 1t will be empty. Thus, a way must be
provided for marking each table location to indicate its
present status. It 1s further recognized 1n the art that deleting
an element from a closed hash table poses special problems.
One cannot simply locate the element to be deleted and then
mark 1t “empty” because this will disrupt the probe sequence
for elements that collided with the one to be deleted.
Therefore, 1t 1s further necessary, in some deletion
algorithms, to have the additional capability of marking an
clement as “deleted.” A location that has been marked as
“deleted” acts like an empty location with respect to
insertions, but like a full location with respect to searches.

In accordance with another aspect of the invention, the
need for storing a separate valid/empty/deleted indicator at
cach location 1s eliminated by utilizing two “impossible”
(i.e., illegal) hash values to respectively represent “empty”
and “deleted.” Since the hash value will be stored at each
table location anyway, no additional memory space 1s taken
up to perform this additional function. For example, if hash
values can only take on positive values from 0 through n-1,
where n 1s the table size, then one might utilize hash__
value=-1 to represent the fact that a location 1s empty, and
hash_ value=-2 to represent the fact that a location had an
clement deleted. A valid entry would be recognized by the
presence of a hash value having a positive value.

In accordance with yet another aspect of the invention, the
method for deleting a stored element from a hash table, as
taught by Knuth and described in the BACKGROUND
section of this specification, can be improved upon 1n several
respects. For one thing, Knuth’s deletion strategy relies on
the premise that only one thread at a time has access to the
table. However, 1f the hash table 1s intended for use 1n a
multi-threaded environment that allows lookups to occur
concurrently with a deletion, then the concurrent lookup

0,115,802

7

may erroncously return “not found” as a result of the
temporarily placed “empty” indication.

Moreover, the delete operation as taught by Knuth has an
inherent 1nefficiency in that it requires two write operations
every time the table 1s changed during the reconstruction
process: first an element 1s moved from a later location mto
an earlier “empty” location, and then an “empty” indication
must be stored into the later location.

To reduce the occurrence of erroneous “element not
found” reports that can occur in conventional practice when
lookup operations are permitted to proceed concurrently
with a delete operation, the delete operation 1n accordance
with the invention first locates the element to be deleted (call
it Locl), and then marks it as “deleted”, rather than “empty.”
As a result, the probe sequence of any concurrently active
lookup operation will not be interrupted. Of course, this does
not guarantee that a concurrent lookup cannot return an
erroncous report of “element not found,” but the likelihood
of this occurrence 1s significantly lessened, thereby improv-
ing overall performance in a multi-threaded environment.

Next, subsequent locations are scanned in turn for an
clement whose probe sequence would be disrupted 1f Locl
were to be marked as “empty.” This element, 1f any, 1s then
moved from its location (call it Loc2) into Locl. However,
instead of marking Loc2 as “deleted”, the present contents
of Loc2 are permitted to remain there while the process
continues to identifty and move any other elements whose
probe sequences would be disrupted if Loc2 were to be
marked as “empty.” If one 1s found, say at Loc3, then it 1s
simply copied 1nto Loc2, and the process again continues by
identifying and moving any other elements whose probe
sequences would be disrupted if Loc3 were to be marked as
“empty.” At some point, an already existing empty location
will be encountered 1n the probe sequence, indicating that no
additional elements need to be moved. At this point, the
“empty” indicator can safely be set at the last location where
it was proposed. It can be seen that this aspect of the
invention 1mproves performance because, for each of the
clements that were simply moved without subsequently
being marked as “empty” or “deleted”, a programming step
has been saved, thus speeding up the entire process.

An example of the delete operation 1s illustrated 1 FIG.
1, wherein only the key of each element 1s shown, for
simplicity of illustration. It will be recognized that each
clement could also have a value associated with 1t. The
mitial state of the table 1s shown at time=T1. In FIG. 1, six
entries are indicated, having keys equalto A, B, C, D, E and
F, respectively. In this example, the hash values, h(), for
cach of the keys are as follows: h(A)=5, h(B)=6, h(C)=7,
h(D)=6, h(E)=5, h(F)=9. It can also be seen from the figure
that location 11 1s already empty.

Suppose 1t 1s desired to remove the element for which
key=B. In that case, the element 1s first found at location 6,
and marked “deleted” (time=T2). Next, the probe sequence
continues until it 1s found that the entry for key=D, currently
stored at location 8 but having a hash value of “6”, would
never be found if location 6 were marked as empty.
Therefore, the element at location 8 1s copied 1nto location
6, as depicted at time=T3. Continuing with the example, it
1s determined whether location 8 can be marked as empty, or
whether this would disrupt the probe sequence of another
entry. Upon scanning further entries, it 1s found that marking
location 8 as “empty” would make 1t 1impossible to ever
locate the element at location 9, whose key=E has a hash
value of h(E)=5. Consequently, the element at location 9 is
copied into location 8 (time=T4). Continuing still further, it

10

15

20

25

30

35

40

45

50

55

60

65

3

1s found that, were we to mark location 9 as “empty”, the
element at location 10 would never be found, because its
key=F has a hash value of h(F)=9. Therefore, the present
embodiment calls for copying the element at location 10 1nto
location 9 (time=T5). Finally, a further probe reveals that
location 11 1s already marked as empty. Consequently,
location 10 can be marked as empty without fear of destroy-
ing future probe sequences. This final step 1s depicted at
time=T16. It can be seen that by never having marked
locations 8 and 9 as either “empty” or “deleted” during this
process, at least two instructions have been saved 1n com-
parison to prior art approaches.

In one embodiment, the performance of a closed hash
table 1s further improved by making the size of the hash table
an exact power of two and by selecting a hash function of the
form:

h(key)=key AND bit__mask,

where “AND” represents the “bit-wise logical and”
operation, and bit__mask 1s a binary value consisting of m
0’s concatenated with n contiguous 1°s, where the size of the
hash table 1s 2", and m+n 1s the number of bits required to
represent the key. For example, 1f the size of the hash table
is 16 (=2"), and the key is 16-bits long, then a hash function
may be selected to be:

h(key)=key AND b0000000000001111

The placement of the 1’°s as the least significant bits in the
bit__mask 1s not a requirement.

The above-described procedures yield improvements that
are particularly advantageous 1n multi-threaded
environments, where a hash table 1s available for concurrent
access by several independently operating processes or
threads.

In some multi-threaded environments, an incorrect result
can be returned from a lookup operation when 1t takes place
in parallel with an insert or delete operation. One way of
cguaranteeing correct results in a multi-threaded environment
1s to acquire a lock that prevents insertions and deletions
from taking place concurrently with the lookup operation.
However, the user of the hash table may not require that the
hash table always give perfect results. Instead, the return of
stale or otherwise inaccurate values, or even of lookup return
codes that mnaccurately report “element not found” may be
acceptable, so long as the hash table guarantees that no
lookup operation will ever return a value that had never been
inserted into the table by one of the threads in the system.
This criterion may be important, for example, where the
stored values 1n the hash table are themselves pointers to
other memory locations where the desired data structure
may actually be found. Were the hash table capable of
returning a randomly generated value, the use of this value
as a memory pointer could result 1n a failure of the computer
system. By guaranteeing that, in the worst case, a returned
value merely points to an actual, albeit wrong, memory
location, the above-described system failure can be avoided.
Values obtained from such a hash table could be regarded as
“hints” that the user thread may be able to productively
utilize. Examples of the use of such a hash table are set forth
in the following. The advantage of this approach 1s the
climination of locks that can detrimentally affect the scal-
ability of the multi-threaded system.

The hash table which will now be described 1s particularly
well-suited for use 1n a multi-threaded environment because,
by being permitted to provide “hints” rather than always-
correct answers, 1t 1s capable of allowing lockless lookup

0,115,802

9

operations to occur concurrently with either one isert or
one delete operation. That 1s, while it 1s still a requirement
that only one 1nsert or delete operation be permitted to take
place at a time, other threads may be permitted to perform
an unlimited number of lookups concurrently with the one
allowed 1nsert or delete. This greatly reduces the amount of
waiting that threads will have to experience. The fact that the
lockless lookup hash table can be relied on only to provide
“hints” rather than uniformly correct results, where 1t 1s
cguaranteed that the “hint” will never be a value that was not
at some point written into the hash table, can be accommo-
dated by any of a number of ways, including doing nothing.
One technique for utilizing such a lockless lookup hash table
1s described 1n Wong et al.’s U.S. Pat. No. 5,701,432,
enfitled “A Multi-threaded processing system Having A
cache That Is Commonly Accessible to Each Thread,”
assigned to the same assignee as that of this invention and
incorporated herein by reference.

Thus, this aspect provides the above-described lockless
lookup hash table that 1s suitable for use 1n any multi-
threaded environment by complying with both of the fol-
lowing requirements:

1) The user of the lockless lookup hash table, or in some
embodiments the table mechanism itself, must provide a
locking mechanism to ensure that at most, only one 1nsert or
one delete operation takes place at a time. It 1s impermissible
to have insert and delete operating concurrently, and 1t 1s
also 1mpermissible to have multiple concurrent inserts or
multiple concurrent deletes. Thus, a lock must be 1mposed
prior to the start of either an insert or delete operation. The
lock should be released upon completion of the insert or
delete operation 1n order to allow other threads to have a
chance at inserting 1nto, or deleting from, the table.

2) It 1s assumed that, in general, the insertion of an
clement into a table location or the movement of an element
from one location to another cannot be performed as an
atomic operation. For example, 1f the processor upon which
the hash table 1s implemented will allow, at most, 32-bit
operands to be uninterruptably moved, then a 64-bit element
will require that two mstructions be executed to complete
the move. Since a concurrently operating thread might
perform a lookup to a location that 1s being modified, 1t 1s
possible that 1t will read an item after the first 32-bits have
been stored, but before the second 32-bits, thereby returning
an erroneous result. In order to provide the guarantee that no
erroneous result will ever be a value that had not, at some
fime, been written 1nto the table, the hash table operations
must comply with the following strategy: Whenever an
clement 1s to be inserted into the table, the value portion of
the element must never be the last part of the element stored.
Rather, that portion of the element that will cause a lookup
operation to determine that 1t has identified the sought-after
location (e.g., the key, or the hash value) must be written
last. To clarify this point, consider the hash table 201
depicted 1in FIG. 2a. It 1s assumed 1n this example that an
insert operation 203 and a lookup operation 205 are oper-
ating concurrently, and that both have key=5 as an input
arcument. If the location x to which key=5 hashes 1s mitially
uninitialized, then the lookup operation 205 would return an
uninitialized value if the timing were such that msert had
previously completed writing the key portion of the element
into location x, but had not yet written the value portion.
Thus, to prevent this occurrence, the implementation of the
insert operation 203 must write the value first and the key
last. By doing so, a concurrent lookup operation 205 will, at
worst, return “element not found” because 1t has not been
able to find a key that matches its own key parameter. Since

10

15

20

25

30

35

40

45

50

55

60

65

10

this error does not violate the guarantee that the only value
returned will be one that, at some point, had been written
into the table, this 1s a permissible error.

In another aspect of the invention, rule #2 above 1s
extended to delete operations so that whenever an element 1s
to be moved from one location to another, the value portion
of the element must never be the last part of the element
moved; rather, that portion of the element that will cause a
lookup operation to determine that 1t has identified the
sought-after location must be written last. The benefit
achieved by incorporating this strategy into the delete opera-
tions 1s to 1ncrease the probability that a concurrent locate
operation will find the correct value of an element that 1t 1s
scarching for. This point will be made clearer by considering
a second example, 1llustrated in FIG. 2b. Here, the state of
the table of FIG. 1 at time=12 1s again depicted, this time
showing associated values for each element. It will be
recalled that, at this point 1n the delete operation, the element
at index 6 1s being deleted, and that the element at location
8 must be copied into location 6 1n order to avoid destroying
its probe sequence for future searches (the hash value of
key=D is h(D)=6). If one were to perform this copy opera-
tion by first writing the key portion of the element, the table
would look as depicted in FIG. 2¢. It 1s apparent that a
concurrent lookup operation with key=D that begins its
probe sequence at this instant will find a match at location
6 and erronecously report a value of 2. By contrast, if the
strategy of the present invention 1s applied, then a hash table
1s produced having an intermediate state as depicted i FIG.
2d. Here 1t can be seen that a concurrent lookup operation
with key=D will find the “deleted” indicator at location 6,
and consequently will continue its probe search where 1t will
either locate the desired element at location 8 and return a
correct value of 4, or else produce a return code of “element
not found” 1n the event that the timing of the two concur-
rently operating threads results 1n the element at location &
first being deleted. However, either result may be preferable
to returning the wrong value, as previously shown 1 FIG.
2c, 1f for example the hash table 1s being used by a cache
with a high hit ratio. Under such circumstances, it would be
reasonable for the cache to perform some extra checking on
a hash table miss. However, 1t 1s desired not to perform this
extra work on every lookup, so the strategy described above
reduces the number of lookups that return values for a
different key. Of course, other applications of the hash table
might have different requirements, making it desirable to
favor erroneous values over erroneous “not found” indica-
tions. In such cases, the techniques described above would
be modified accordingly.

A number of strategies have been described for improving
the performance of hash tables and/or for making a closed
hash table suitable for use as a lockless lookup table having
the guarantee that no lookup operation will ever return a
value that had never been 1nserted into the table by one of
the threads 1n the system. Those having ordinary skill i the
art will recognize that these strategies can be employed
together, or alternatively be employed selectively, depend-
ing on the requirements of the system being designed. The
remainder of this disclosure will describe a preferred
embodiment 1n which all of the above techniques have been
employed.

In a preferred embodiment, the hash table 1s implemented
on a Sun workstation and/or server having multiple
“SPARC™” processing units. (Sun and SPARC are trade-
marks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries.) Referring now to
FIG. 3, an exemplary computer system for utilizing the

0,115,802

11

inventive techniques 1s shown. The system includes two
identical processors 301, each coupled to a common dual-
port memory (DPM) 303 via a hardware cache 329. Each
processor 301 includes a central processing unit (CPU) 305,
a random access memory (RAM) 315, a read-only memory
(ROM) 317, and a common system bus 319 connecting each
of the above elements. Each processor 301 1s also connected,
via the bus 319, to a shared input/output (I/O) controller 309.
The 1/0 controller 309 allows the processors to be coupled
to the mput devices 307, 311 and 323, and to the output
devices 313 and 321. Each of these components 1s well-
known 1n the art, and need not be described here 1n further
detail.

Each processor 301 includes a number of pieces of
software which can be executed by the CPU 305. One of
those pieces of software 1s an operating system, which may
alternatively execute out of the ROM 317 or the RAM 3135.
SOLARIST™ 1s the preferred operating system. (Sun and
Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other
countries.) Operating systems are well-known in the art, and
the description of the operating system 1s beyond the scope
of this specification. In an alternative embodiment, the
system may have only a single processor 301 and an
operating system that has multitasking capability, so that
threads may operate concurrently. In this alternative
embodiment, it 1s the multiple threads that are allowed
common and concurrent access to a hash table stored 1n a
memory.

Returning to the embodiment depicted in FIG. 3, each of
the processors 301 operates independently from one another
by executing programs stored in either the RAM 315 or
ROM 317. In this example, each processor 301 includes a
hash table control program 325 which governs that proces-
sor’s access to a hash table 327 which 1s stored in the DPM
303.

The format of the hash table 327 will now be described 1n
greater detail with reference to FIG. 4. The hash table 327
has N locations, having addresses within the range O through
N-1. The number of locations 1n the hash table 327 should
be at least one more than the maximum number of elements
to be stored 1n the table, 1n order to ensure that there 1s
always at least one empty element 1n the table. In a preferred
embodiment, the number of locations 1n the hash table 327
1s rounded up to the closest power of two, so that a bit-wise
AND can be used as a hash function. Each location has a
number of fields for storing, respectively, a key 401, a hash

of key 403, and a value 405.

Referring back now to FIG. 3, the operation of the
exemplary hash table control program 325 will now be
described in greater detail by the following pseudocode, and
also with reference to FIGS. 5-9. According to the
pseudocode, English text 1s formatted into a program-like
structure to indicate the nature and order of data movement
and transformation. It should be understood that although
the following discussion refers to various values, this 1s done
merely as a convenience, and that the following process
actually describes one embodiment of means for generating
control signals that control the operation of the exemplary
computer system. Those having ordinary skill in the art will
recognize that the following examples merely illustrate one
embodiment of the mnvention, and that modifications to the
exemplary embodiment can be made which would still fulfill
all of the requirements described 1n this disclosure.

In FIG. 4, the key 401, hash of key 403, and value 405 are
defined by the following statements:

10

15

20

25

30

35

40

45

50

55

60

65

12

type Element is aggregate of {
Integer key, hash__of key, value;

h

In the exemplary embodiment, the hash of key 403 1s set
to one of two values that will never be produced by the hash
function whenever 1t 1s desired to mark a location as
alternatively “empty” or “deleted”. Also, the table will be
defined as an array of elements. These are represented by the
following pseudocode:
constant Reserved__empty=-1;
constant Reserved_ deleted=-2;
type Table 1s array of Element;

The hash function 1s a bit-wise logical AND of the input
key and a bit-mask as shown 1n the following pseudocode,

and also 1n the Howchart of FIG. 5:

Integer

hash__function(Integer input)

1
-- Use bit-wise logical AND to obtain value
-- in range |O..table__size—1]
return input AND (table_ size — 1);

h

The following pseudocode, also depicted in the flowchart
of FIG. 6, initializes the hash table for use:

-- Prepare a hash table for use
Table
initialize_ table (Integer number_of elements)
{
[nteger table size = next-higher-power-of-two(number_of elements);
Table the_table = allocate-memory(number__of elements * size of
(Element));
for each Element e in table do {
-- Mark the table element as empty
e.hash__of__key = Reserved__empty;

h
h

The lookup operation, which returns a value associated
with the mput key, 1s defined by the following pseudocode,
and 1s also 1llustrated in the flowchart of FIG. 7:

Integer
lookup__in__table(Table the_ table, Integer key)
1
Integer hash = hash_function(key);
[nteger index = hash;
Integer check = the_ table|index].hash_ of key;
-- Loop until an empty slot 1s found
while (check != Reserved empty) {
-- If the hash values don’t match,
-- don’t bother comparing keys
if (hash == check) {
if (key == the table[index]key) {

return the table|index].value;

h
;

-- Check next element (use hash function
-- to handle the wrap-around automatically)
index = hash_ function(index + 1)

check = the_table|index].hash_of key;
h

0,115,802

13

-continued

return Not_ found;

h

It can be seen from the above lookup routine that the
stored hash of key value is utilized in step 701 (see FIG. 7)
to eliminate a possibly much more costly comparison of
keys. Only 1f the computed hash value of the input key
matches the stored hash of key value does the routine
perform a comparison of keys (step 703). As stated earlier,
the comparison of keys 1s necessary 1n this instance because
it 1s possible that different keys could generate the same hash
value. Therefore, the check at step 701 cannot be relied upon
as the final determination that the desired element has been
found.

The 1nsert operation, which inserts a value into a location
determined by the mput key and the state of the table at the

fime of the insert 1s defined by the following pseudocode,
and 1s also 1illustrated in the flowchart of FIG. 8:

insert__into__table(Table the_table, Integer key, Integer value)
{

lock out all other insert and delete operations;

[nteger hash = hash_ function (key);

[nteger index = hash;

Integer check = the table|index].hash_of key;

while (check != Reserved empty) {

index = hash_ function (index + 1)

check = the_ table[index].hash__of key;

he_ table|index].key = key;
he table|index].hash_of key = hash;
remove lock;

h
the__table|index].value = value;
{
{

™

The following remarks are offered in connection with the
above-described 1nsert operation. First, the locking and
unlocking steps 801 and 811 are necessary for the proper
operation of the hash table. However, in alternative
embodiments, these may be omitted, and the burden placed
on the user of the hash routines to ensure that proper locking
1s mmvoked. Often, the user may desire to lock an operation
assoclated with an entity that utilizes the inventive hash
table, so that the provision of locks within the 1nsert opera-
tion would be redundant.

Also 1n connection with the insert operation, it 1s noted
that 1n the event of a collision during the probe sequence,
stecp 803 generates a new index by supplying the value
index+1 to the hash function. However, because of the way
the hash function has been defined, this reduces to merely
incrementing the index by 1, modulo table_ size.

Finally, it 1s worth pomting out that the sequence of steps
805, 807 and 809 has been designed 1n accordance with the
teachings presented above, so that the value 1s not the last
clement field stored. Rather, the hash wvalue, which will
determine whether a concurrent lookup finds a match, 1s the
last 1tem to be written. This guarantees that any lookup
operation acting concurrently with the insert operation will
never return a value that had never been written into the
table by one of the threads in the system.

The delete operation, which locates an element that
matches an input key, deletes that entry from the table and
then reorders the table to provide maximum efficiency
during future lookup operations 1s defined by the following
pseudocode, and 1s also illustrated 1n the flowchart depicted

in FIGS. 94-9b:

10

15

20

25

30

35

40

45

50

55

60

65

14

delete_ from__table(Table the_ table, Integer key)
{
Lock out all other insert and delete operations
Integer hash = hash_ function(key);
[nteger index = hash;
Integer check = the_ table |index].hash_of key;
while (check != Reserved__empty) {
if (hash == check) {
if (key == the table[index]key) {
goto found_ key;

h
h

index = hash__function(index + 1);

check = the_ table[index].hash_of key;
h
-- [tem not present in table, return immediately.
remove lock;
return;
found_ key:
-- Mark the element as deleted right away
the_ table|index].hash__of key = Reserved__deleted;
-- Hole 1s the position we are trying to fill
-- with a valid element.
[nteger hole = index;
-- Offset 1s used to eliminate ordering problem
-- when comparing hash values.
[nteger offset = table__size — index — 1;
-- Try to find an element to fill the hole.
while (check !'= Reserved empty) {

- If current element hashes above hole,

-- use 1t to {ill hole.

if (hash function(check + offset) <=

hash function(hole + offset)) {
the__table|hole]key = the_ table [index].key;
the__table|hole].value = the__table |index].value;
the_ table|hole].hash_of key =
the__table[index].hash_of key;

-- Now we have a new hole to fill.

hole = index
h
offset = offset — 1;

index = hash_ function(index + 1),
check = the_ table[index].hash_ of key;

h

-- Now we can finally mark the table element as empty
the__table| hole|.hash__of key = Reserved empty;

Remove lock;

h

With respect to the above-described delete operation, the
following points may be made. First, like the insert
operation, the provision of locks (steps 901, 902 and 909) to
prevent any concurrent insert or delete operations 1s
necessary, but may be omitted 1n alternative embodiments
where the user may be relied upon to provide an equivalent
locking mechanism.

Also, the sequence of steps 903, 905 and 907 has been
designed, as described above, to increase the probability that
a concurrent lookup will locate an 1tem that 1s 1n the process
of being moved. This 1s accomplished by making sure that
all parameters necessary to locate this element (1.e., the key
in conjunction with the stored hash value) are not both
moved prior to moving the value of the element.

The imnvention has been described with reference to a
particular embodiment. However, 1t will be readily apparent
to those skilled in the art that 1t 1s possible to embody the
invention in specific forms other than those of the preferred
embodiment described above. This may be done without
departing from the spirit of the invention. The preferred
embodiment 1s merely illustrative and should not be con-
sidered restrictive 1n any way. The scope of the mnvention 1s
orven by the appended claims, rather than the preceding
description, and all variations and equivalents which fall
within the range of the claims are intended to be embraced
therein.

0,115,802

15

What 1s claimed 1s:

1. In a processing system having a hash table that is
accessible to only one thread, the hash table having a
plurality of locations each being 1dentified by an index value
and each adapted for storage of a stored entry therein, each
stored entry comprising a stored key, a stored value, a stored
hash value derived from a first operation on the stored key,
and an 1ndication that the location at which the stored entry
1s stored contains a valid stored entry, a previously deleted
stored entry, or 1s currently empty, a method of performing
a lookup operation of a stored entry having a matching
lookup key, the method comprising:

a) generating an index value from the lookup key using
the first operation;

b) selecting from the hash table one of the stored entries
as a check entry, the check entry forming one of a
sequence of one or more check entries;

¢) determining if the check entry is empty and returning
a lookup failure result if the check entry 1s empty;

d) if the check entry 1s not empty, comparing the lookup
key with the stored key of the check entry only 1f the
generated index value matches the stored hash value of
the check entry;

¢) returning a lookup successful result with the check
entry as a matching entry if the stored key and the
lookup key are identical; and

f) if the stored key and the lookup key are not identical,
selecting from the hash table another stored entry as the
check entry and repeating steps c)—f).

2. The method of claim 1, wherein the step of selecting a

stored entry as the check entry comprises:

1) if the selected check entry is the first entry of the
sequence, selecting as the check entry the stored entry
identified by the generated index value;

i1) if the selected check entry is not the first entry of the
sequence, selecting as the check entry the stored entry
identified by the smallest index value of the hash table
if the previous check entry in the sequence has the
highest index value of the hash table; and

i1) if the selected check entry is not the first entry of the
sequence and 1f the previous check entry in the
sequence does not have the highest index value of the
hash table, selecting as the check entry the stored entry
having the smallest index value of the hash table that 1s
orecater than the index value of the previous check
entry; and

iv) repeating steps 1)—iv) if the selected check entry is a

previously deleted stored entry.

3. The method of claim 1, wherein the indication that a
location contains a valid stored entry is provided by the
stored hash value of the stored entry at a location having an
index value that identifies one of the entries 1n the hash table.

4. The method of claim 1, wherein the 1indication that a
location 1s empty 1s provided by the stored hash value of the
stored entry at a location having a unique predetermined
index value that does not identily any entries 1n the hash
table.

S. The method of claim 1, wherein the indication that a
location contains a previously deleted entry 1s provided by
the stored hash value of the stored entry at a location having
a unique predetermined index value that does not idenfify
any entries 1n the hash table.

6. In a multi-threaded processing system having a hash
table that 1s accessible to each thread, the hash table having
a plurality of locations each being identified by an index

10

15

20

25

30

35

40

45

50

55

60

65

16

value and each adapted for storage of a stored entry therein,
cach stored entry comprising a stored key, a stored value,
and a stored hash value derived from a first operation on the
stored key, and an indication that the location at which the
stored entry 1s stored contains a valid stored entry, a previ-
ously deleted stored entry, or 1s currently empty, a method of
performing a lookup operation of a stored entry having a
matching lookup key, the method comprising:

a) generating an index value from the lookup key using
the first operation;

b) selecting from the hash table one of the stored entries
as a check entry, the check entry forming one of a
sequence of one or more check entries;

c¢) determining if the check entry is empty and returning
a lookup failure result if the check entry 1s empty;

d) if the check entry 1s not empty, comparing the lookup
key with the stored key of the check entry only if the
generated 1ndex value matches the stored hash value of
the check entry;

¢) if the stored key and the lookup key are not identical,
selecting from the hash table another stored entry as the
check entry and repeating steps c)—e);

f) verifying that the check entry contains a stored key that
1s 1dentical to the check entry, the step of verilying
comprising:

1) acquiring a mutual exclusion lock that grants exclu-
sive access at least to the check entry;

i1) returning a lookup successful result with the check
entry as the matching entry if the stored key of the
check entry and the lookup key are identical;

111) returning a lookup failure result if the check entry
and the lookup key are not 1dentical.

7. The method of claim 6, wherein the step of selecting a

stored entry as the check entry comprises:

1) if the selected check entry is the first entry of the
sequence, selecting as the check entry the stored entry
identified by the generated index value;

i1) if the selected check entry is not the first entry of the
sequence, selecting as the check entry the stored entry
identified by the smallest index value of the hash table
if the previous check entry m the sequence has the
highest index value of the hash table; and

i11) 1f the selected check entry is not the first entry of the
sequence and if the previous check entry in the
sequence does not have the highest index value of the
hash table, selecting as the check entry the stored entry
having the smallest index value of the hash table that 1s
oreater than the index value of the previous check
entry; and

iv) repeating steps 1)—1v) if the selected check entry is a

previously deleted stored entry.

8. The method of claim 6, wherein the indication that a
location contains a valid stored entry 1s provided by the
stored hash value of the stored entry at a location having an
index value that identifies one of the entries 1n the hash table.

9. The method of claim 6, wherein the 1ndication that a
location 1s empty 1s provided by the stored hash value of the
stored entry at a location having a unique predetermined
index value that does not identify any entries in the hash
table.

10. The method of claim 6, wherein the indication that a
location contains a previously deleted entry 1s provided by
the stored hash value of the stored entry at a location having
a unique predetermined index value that does not identify
any entries 1n the hash table.

0,115,802

17

11. In a processing system having a hash table that is
accessible to at least one thread, the hash table having a
plurality of locations at least one of which 1s empty, each
location being 1dentified by an index value and each adapted
for storage of a stored entry therein, each stored entry
comprising a stored key, a stored value, a stored hash value
derived from a first operation on the stored key, and an
indication that the location contains a valid stored entry or
1s currently empty, a method of inserting an iput entry
having an input entry key into an empty location compris-
Ing:

a) generating an index value from the input entry key

using the first operation;

b) selecting from the hash table one of the stored entries
as a check entry, the check entry forming one of a
sequence of one or more check entries;

¢) determining if the check entry is empty;

d) repeating steps b)—d) if the check entry is not empty;

¢) inserting the input entry into the location of the check
entry, wherein the step of inserting comprises:

1) replacing the stored value of the check entry with the
value of the mput entry;

i1) replacing the stored key of the check entry with the
key of the mput entry; and

111) replacing the stored hash value of the check entry
with the generated 1index value; and

f) setting the indication of the location containing the
check entry as containing a valid stored entry by
replacing the stored hash value of the check entry
with a generated index value from the key of the
input entry.

12. The method of claim 11, wherein the step of replacing
the stored value precedes the step of replacing the stored
key, and wherein the step of replacing the stored key
precedes the step of replacing the stored hash value.

13. The method of claim 11, wherein the step of selecting
a stored entry as the check entry comprises:

1) if the selected check entry is the first entry of the
sequence, selecting as the check entry the stored entry
identified by the generated index value;

i1) if the selected check entry is not the first entry of the
sequence, selecting as the check entry the stored entry
identified by the smallest index value of the hash table
if the previous check entry in the sequence has the
highest index value of the hash table; and

i1) if the selected check entry is not the first entry of the
sequence and 1f the previous check entry in the
sequence does not have the highest index value of the
hash table, selecting as the check entry the stored entry
having the smallest index value of the hash table that 1s
oreater than the index value of the previous check entry.

14. The method of claim 11, wherein the indication that a
location contains a valid stored entry 1s provided by the
stored hash value of the stored entry at a location having an
index value that identifies one of the entries 1n the hash table.

15. The method of claim 11, wherein the indication that a
location 1s empty 1s provided by the stored hash value of the
stored entry at a location having a unique predetermined
index value that does not identify any entries in the hash
table.

16. In a processing system having a hash table that is
accessible to at least one thread, the hash table having a
plurality of locations each being 1dentified by an index value
and each adapted for storage of a stored entry therein, each
stored entry comprising a stored key, a stored value, a stored
hash value derived from a first operation on the stored key,

5

10

15

20

25

30

35

40

45

50

55

60

65

138

and an 1ndication that the location at which the stored entry
1s stored contains a valid stored entry, a previously deleted
stored entry, or 1s currently empty, a method of deleting from

the hash table a stored entry having a key matching a key of
an mput entry, the method comprising:

a) generating an index value from the key of the input
entry using the first operation;

b) locating a stored entry having the matching key;

¢) returning a delete failure result if a stored entry having
a matching key 1s not located;

d) deleting the located stored entry by setting the indica-
tion of the location that contains the located stored
entry as having a previously deleted stored entry;

¢) selecting the deleted entry as a check entry;

f) selecting a next check entry from the hash table;

g) copying the contents of the location of the next check
entry 1nto the location of the check entry only if the
next check entry location 1s not indicated as empty and
the stored hash value of the next check entry 1s less than
or equal to the stored hash value of the check entry, the
step of copying comprising:

1) replacing the stored value of the check entry with the
stored value of the next check entry;

i1) replacing the stored key of the check entry with the
stored key of the next check entry;

ii1) replacing the stored hash value of the check entry
with the stored hash value of the next check entry;
and

1v) replacing the indication of the location of the check
entry with the indication of the location of the next

check entry;

h) if the next check entry is not empty, repeating steps
g)—h) using the next check entry as the check entry and
another entry from the hash table as the next check
entry; and

i) setting the indication of the location containing the

check entry as empty.

17. The method of claim 16, wherein steps 1)—-iv) of step
g) are performed in sequence starting with step 1) and ending
with 1v).

18. The method of claim 16, wherein the new next check
entry 1s determined as follows:

if the check entry has the highest stored index value of the
hash table, the new next check entry 1s the stored entry
identified by the lowest index value of the hash table;

if the check entry does not have the highest index value
of the hash table, the new next check entry 1s the stored
entry 1dentified by the lowest index value of the hash
table that 1s greater than the index value of the location
of the check entry.

19. The method of claim 16, wherein the indication that
a location contains a valid stored entry i1s provided by the
stored hash value of the stored entry at a location having an
index value that identifies one of the entries 1n the hash table.

20. The method of claim 16, wherein the indication that
a location 1s empty 1s provided by the stored hash value of
the stored entry at the location having a unique predeter-
mined mndex value that does not identify any entries in the
hash table.

21. The method of claim 20, wherein the step of setting
the indication of the location containing the check entry as
empty comprises replacing the stored hash value of the
stored entry at the location containing the stored entry with
the unique predetermined index value.

22. The method of claim 16, wherein the indication that
a location contains a previously deleted entry 1s provided by

0,115,802

19

the stored hash value of the stored entry at a location having
a unique predetermined index value that does not idenfify
any entries 1n the hash table.

23. The method of claim 22, wherein the step of setting
the 1ndication of the location that contains the located stored
entry as having a previously deleted stored entry comprises
replacing the stored hash value of the located stored entry
with the unique predetermined 1ndex value.

24. A hash system for use 1n a single-threaded processing
system, the hash system comprising;:

storage means comprising a plurality of locations each
being 1dentified by an index value and each adapted for
storage of a stored entry therein, each stored entry
comprising a stored key, a stored value, a hash value
derived from a first operation on the stored key, and an
indication that the location at which the stored entry 1s
stored contains a valid stored entry, a previously

deleted stored entry, or 1s currently empty; and

lookup means for performing a lookup operation of a
stored entry having a matching lookup key, the lookup
means comprising:

means for generating an index value from the lookup key
using the first operation;

means for selecting from the storage means one of the
stored entries as a check entry, the check entry forming
one of a sequence of one or more check entries;

means for determining 1f the check entry 1s empty and for
returning a lookup failure result if the check entry 1s
cmpty;

means for comparing the lookup key with the stored key
of the check entry if the check entry 1s not empty and
only if the generated index value matches the stored
hash value of the check entry;

means for returning a lookup successful result with the
check entry as a matching entry if the stored key and
the lookup key are 1dentical; and

means for causing said means for selecting to proceed to
a different stored entry as the check entry if the stored
key and lookup key are not identical.

25. The hash system of claim 24, wherein the means for
selecting selects as the check entry the stored entry identified
by the generated index value 1f the selected check 1s the first
entry of the sequence, selects as the check entry the stored
entry 1dentified by the lowest index value of the storage
means 1f the selected check entry 1s not the first entry of the
sequence and 1f the previous check entry 1n the sequence has
the highest index value of the storage means and selects as
the check entry the stored entry having the lowest index
value of the storage means that 1s greater than the index
value of the previous check entry 1f the selected check entry
1s not the first entry of the sequence and if the previous check
entry in the sequence does not have the highest index value
of the storage means, and wherein the means for selecting
does not select a previously deleted stored entry as the check
entry.

26. The hash system of claim 24, wherein the indication
that a location contains a valid stored entry 1s provided by
the stored hash value of the stored entry at a location having
an 1ndex value that identifies one of the entries 1n the storage
means.

27. The hash system of claim 24, wherein the indication
that a location 1s empty 1s provided by the stored hash value
of the stored entry at a location having a unique predeter-
mined 1ndex value that does not identily any entries 1n the
storage means.

28. The hash system of claim 24, wherein the indication
that a location contains a previously deleted entry 1s pro-

10

15

20

25

30

35

40

45

50

55

60

65

20

vided by the stored hash value of the stored entry at a
location having a unique predetermined index value that
does not 1dentify any entries in the storage means.

29. A hash system for use in a processing system having
a plurality of threads capable of accessing the hash system,
the hash system comprising:

storage means having a plurality of locations each being
identified by an index value and each adapted for
storage of a stored entry therein, each stored entry
comprising a stored key, a stored value, a stored hash

value derived from a first operation on the stored key,

and an 1ndication that the location at which the stored

entry 1s stored contains a valid stored entry, a previ-

ously deleted stored entry, or 1s currently empty;

lookup means for performing a lookup operation of a

stored entry having a matching lookup key, the lookup

means comprising:

means for generating an index value from the lookup
key using the first operation;

means for selecting from the storage means one of the
stored entries as a check entry, the check entry
forming one of a sequence of one or more check
entries;

means for determining 1if the check entry 1s empty and
for returning a lookup failure result if the check entry

1S empty;

means for comparing the lookup key with the stored
key of the check entry if the check entry 1s not empty
and only if the generated index value matches the
stored hash value of the check entry;

means for causing the means for selecting to select
from the storage means another stored entry as the
check entry 1f the stored key and the lookup key are
not 1dentical; and

means for veritying that the check entry contains a
stored key that 1s identical to the check entry, said
means for verilying acquiring a mutual exclusion
lock that grants exclusive access at least to the check
entry, returning a lookup successtul result with the
check entry as the matching entry if the stored key of
the check entry and the lookup key are identical, and
returning a lookup failure result if the check entry
and the lookup key are not 1dentical.

30. The hash system of claim 29, wherein the means for
selecting selects as the check entry the stored entry identified
by the generated index value 1f the selected check entry 1s
the first entry of the sequence, the stored entry 1dentified by
the lowest index value of the storage means if the previous
check entry in the sequence has the highest index value of
the storage means and if the selected check entry 1s not the
first entry of the sequence, and the stored entry having the
lowest index value of the storage means that 1s greater than
the index value of the previous check entry if the selected
check entry 1s not the first entry of the sequence and 1f the
previous check entry 1n the sequence does not have the
highest index value of the storage means, and wherein the
means for selecting does not select a previously deleted
stored entry as the check entry.

31. The hash system of claim 29, wherein the indication
that a location contains a valid stored entry i1s provided by
the stored hash value of the stored entry at a location having
an 1ndex value that identifies one of the entries 1n the storage
means.

32. The hash system of claim 29, wherein the indication
that a location 1s empty 1s provided by the stored hash value
of the stored entry at a location having a unique predeter-
mined 1ndex value that does not identify any entries in the
storage means.

0,115,802

21

33. The hash system of claim 29, wherein the indication
that a location contains a previously deleted entry 1s pro-
vided by the stored hash value of the stored entry at a
location having a unmique predetermined index value that
does not 1dentify any entries in the storage means.

34. A hash system for use 1n a processing system having

at least one thread capable of accessing the hash system, the
hash system comprising:

storage means having a plurality of locations at least one
of which 1s empty, each location being 1dentified by an
index value and each adapted for storage of a stored
entry therein, each stored entry comprising a stored
key, a stored value, a stored hash value derived from a
first operation on the stored key, and an indication that
the location contains a valid stored entry or 1s currently
empty; and

insertion means for mserting an input entry into an empty

location, the 1nsertion means comprising:

means for generating an index value from the key of the
input entry using the first operation;

means for selecting from the storage means one of the
stored entries as a check entry, the check entry
forming one of a sequence of one or more check
entries;

means for determining 1if the check entry 1s empty and
for selecting from the storage means a new check
entry if the check entry i1s not empty;

means for inserting the 1nput entry into the location of
the check entry by replacing the stored value of the
check entry with the value of the 1input entry, replac-
ing the stored key of the check entry with the key of
the 1nput entry, and replacing the stored hash value
of the check entry with the generated index value;
and

means for setting the indication of the location con-
taining the check entry as containing a valid stored
entry by replacing the stored hash value of the check
entry with a generated index value from the key of
the 1mnput entry.

35. The hash system of claim 34, wherein the means for
inserting replaces the stored hash value after replacing the
stored key, and replaces the stored key after replacing the
stored value.

36. The hash system of claim 34, wherein the means of
selecting a stored entry selects as the check entry the stored
entry 1dentified by the generated index value if the selected
check entry 1s the first entry of the sequence, the stored entry
identified by the lowest index value of the storage means 1t
the previous check entry in the sequence has the highest
index value of the storage means 1f the selected check entry
1s not the first entry of the sequence, and the stored entry
having the lowest index value of the storage means that is
orcater than the index value of the previous check entry it
the selected check entry 1s not the first entry of the sequence
and 1f the previous check entry 1n the sequence does not have
the highest index value of the storage means.

J7. The hash system of claim 34, wherein the indication
that a location contains a valid stored entry i1s provided by
the stored hash value of the stored entry at a location having
an 1ndex value that 1dentifies one of the entries 1n the storage
means.

38. The hash system of claim 34, wherein the indication
that a location 1s empty 1s provided by the stored hash value
of the stored entry at a location having a unique predeter-
mined 1index value that does not i1denfify any entries 1n the
storage means.

39. A hash system for use 1n a processing system having
at least one thread capable of accessing the hash system, the
hash system comprising:

10

15

20

25

30

35

40

45

50

55

60

65

22

storage means having a plurality of locations each being
identified by an index value and each adapted for
storage of a stored entry therein, each stored entry
comprising a stored key, a stored value, a stored hash
value derived from a first operation on the stored key,
and an indication that the location at which the stored
entry 1s stored contains a valid stored entry, a previ-
ously deleted stored entry, or 1s currently empty; and
means for deleting from the storage means a stored entry
having a key matching the key of an input entry, the
means for deleting comprising:
means for generating an index value from the key of the
input entry using the first operation;
means for locating a stored entry having the matching
key;
means for returning a delete failure result 1f a stored
entry having a matching key 1s not located,;
means for deleting the located stored entry by setting
the indication of the location that contains the
located stored entry as having a previously deleted
stored entry;
means for selecting the deleted entry as the check entry;
means for selecting a next check entry from the storage
means;
means for copying the contents of the location of the
next check entry into the location of the check entry
only 1if the next check entry location 1s not indicated
as empty and the stored hash value of the next check
entry 1s less than or equal to the stored hash value of
the check entry, said means for copying replacing the
stored value of the check entry with the stored value
of the next check entry, replacing the stored key of
the check entry with the stored key of the next check
entry, replacing the stored hash value of the check
entry with the stored hash value of the next check
entry, and replacing the indication of the location of
the check entry with the indication of the location of
the next check entry;
means for causing the means for selecting to select the
next check entry as a check entry and another entry
from the storage means as the next check entry if the
next check entry 1s not empty; and
means for setting the indication of the location con-
taining the check entry as empty.
40. The hash system of claim 39, wherein the new next
check entry 1s determined as follows:
if the check entry has the highest index value of the
storage means, the new next check entry 1s the stored
entry 1dentified by the lowest index value of the storage
means;

if the check entry does not have the highest index value
of the storage means, the new next check entry 1s the
stored entry 1dentified by the lowest index value of the
storage means that i1s greater than the index value of the
location of the check entry.

41. The hash system of claim 39, wherein the indication
that a location contains a valid stored entry i1s provided by
the stored hash value of the stored entry at a location having
an 1ndex value that 1dentifies one of the entries 1n the storage
means.

42. The hash system of claim 39, wherein the 1ndication
that a location 1s empty 1s provided by the stored hash value
of the stored entry at the location having a unique prede-
termined 1ndex value that does not 1dentily any entries in the
storage means.

43. The hash system of claim 42, wherein the means for
setting the indication of the location containing the check
entry as empty replaces the stored hash value of the stored

6,115,302
23 24

entry at the location containing the stored entry with the 45. The hash system of claim 44, wherein the means for
unique predetermined index value. setting the indication of the location that contains the located

44. The hash system of claim 39, wherein the indication stored entry as having a previously deleted stored entry
that a location contains a previously deleted entry 1s pro- replaces the stored hash value of the located stored entry

vided by the stored hash value of the stored entry at a s with the unique predetermined index value.
location having a unique predetermined index value that
does not 1dentify any entries in the storage means. k% ® ok ok

	Front Page
	Drawings
	Specification
	Claims

