US006108812A
United States Patent 119] 111] Patent Number: 6,108,812
Born [45] Date of Patent: *Aug. 22, 2000
[54] TARGET DEVICE XOR ENGINE 5,404,454 471995 Parks ..ceveviiiiiiiiiieiieeean, 710/21
5,410,546 4/1995 Boyver et al.cccccvveenniniel, 371/37.1
[75] Inventor: Richard M. Born, Fort Collins, Colo. 5,426,654 6/1995 Hayashi et al.cooeeveenneenens 714/781
5,446,691 8/1995 North et al.uuu...eee.. 365/189.02
(73] Assignee: LSI Logic Corporation, Milpitas, LI KR TITULD FY, R —— 371/40.1
Calif 5,574,736 11/1996 Bandycccooeeemrvcrreeerrennne. 378/17
_ _ _ _ FOREIGN PATENT DOCUMENTS

| *] Notice: This patent 1ssued on a continued pros-
ecution application filed under 37 CFR 0503417 9/1992 FEuropean Pat. Off. GO6F 11/10
0662660 7/1995 FEuropean Pat. Oftf. GO6F 11/10

1.53(d), and 1s subject to the twenty year
patent term provisions of 35 U.S.C. Primary Examiner—Albert De Cady

154(a)(2). Assistant FExaminer—McDieunel Marc
211 Appl. No.: 08/667,204 571 ABSTRACT
771 Filed: Jun. 20. 1996 A distributed XOR device that preferably mcludes a data
- " buffer. The data buffer preferably stores at least two data
51] Imt. CL7 .o, GO6) 11/10; HO3M 13/00 blocks 1n an interleaved manner. The data blocks contain
52] US.Cl o, 714/807; 7147702 data words, and a speciiic data word for each data block
58] Field of Search ... 395/800, 275, contains CRC bits. In response to certain addresses, the data

395/575, 182.2, 182.03, 182.04; 714/770, words of the data blocks are output from the data buffer in

755, 763, 787, 756, 764, 716, 752, 758, an 1nterleaved manner. An XOR engine circuit receives the

807, 701, 702 interleaved data words. The XOR engine circuit preferably

includes a data XOR circuit and an error detection circuit.

[56] References Cited The data XOR circuit preferably performs an exclusive-OR
function on pairs of data words, where one data word 1s from

U.S. PATENT DOCUMENTS a one data block and the other data word in from the other

4188,616 2/1980 Kazami et al. ...oovevevrennn... 340/146.1 data block. The generated combinations or results are output
4,527,269 7/1985 Wood et al. .eeoeeveveeeeeeanne. 714/703 to the error detection circuit. The error detection circuit
5,103,451 4/1992 FOSSEY evevrevrerevrcrrrerenreneeannen. 714/757 generates CRC bits from the generated combinations or
5,157,669 10/1992 Yu et al. .cooevevvevnevririieeinnenn. 714/758 results. Preferably? the CRC bits are encoded with a constant
5?241?546 # 8/}993 Pﬂtﬁl’f‘:ﬂﬂ et Ell. 7:54/761 IDC‘RC"' These encoded CRC bitS are Compared to the I-esult
g-’ggéﬂgg ;“8/ ggg gr’flda et f‘l‘ """"""""""""" ggg/ ggé of the exclusive-OR function on the CRC bits of the data
P . / . ULAC el Al oo, / blocks. If these bits are not equal, an error signal 1s output.
5,274,799 12/1993 Brant et al. ...covveevvviivriierinennnen, 714/6 Th . theref hecks whether the XOR :
5.287.462 2/1994 Tibbe et al. wveveveerererreererersaans 710/36 QE comparison therefore Checks whether the cngine
5301.297 4/1994 Menon et al. wooveeeovveovveessrn 711/114 cireuit or the data blocks are 1n error.
5375127 12/1994 Leak et al. weveeeveveeereereerernnns 714/772
5,383,204 1/1995 Gibbs et al. vevvevereerrerererrernns 714/758 18 Claims, 3 Drawing Sheets
/120
145
L/ Al
o B
160 A2
pl - B2 140
MUX \ -
> 155 A_CRC
165 / 8 CRC
T T B}
e]
| »—:@4 \ |
! 180" 905 1 200
e A
I ~_ M:X\ <10 E
: 242 : 220

1 ID COUNTER

;
&
1
N\
&
I
B3 &

—— e wwT— —rwr ——— ——— ——i— Ll SIS I I TS I SIS SIS B T PR TR TETTe Tl ey e pe—p e —

r—l—...-__-_.l_u__n_-.l._——————_—h-ﬂ*-ﬂﬂ-‘r“*————————j

170

6,108,812

Sheet 1 of 3

Aug. 22, 2000

U.S. Patent

14V @31V
L J4NOI

U.S. Patent Aug. 22, 2000 Sheet 2 of 3 6,108,812

FIGURE 2
RELATED ART

21 26 30

28

U.S. Patent Aug. 22, 2000 Sheet 3 of 3 6,108,812

FIGURE 3

TN RN EEeEEE EpEEE s pabaaas Seeeslkas shinesh SEEEEEE SEEEmE ESammms wnias waniFaly Emikillla TEEEEE 1 EEEEEEE TR . T Teee—

6,103,312

1
TARGET DEVICE XOR ENGINE

FIELD OF THE INVENTION

The present invention relates to redundant arrays of
inexpensive disks and in particular to a distributed
exclusive-OR function for target devices to perform a read-
modify-write operation.

BACKGROUND OF THE INVENTION

The mtegrity of data stored in storage systems 1s typically
protected by error detection code methods. One such method
is the Reed-Solomon Cyclic Redundancy Check (R-S CRC).
This method generates a code word for each data block
stored 1n the storage system. The first k bits of an n bit code
word represent the data block and the last n-k bits are the

CRC bits. The CRC bits are created from a modulo-2
function of the data block k bits and a generator polynomaial.

When the data 1s retrieved from the storage system, the
data 1s checked for any errors. The check can be performed
by executing the modulo-2 function of the data block k bits
and the generator polynomial again. The resulting CRC baits
are then compared to the previous CRC baits. If they are not
equal, an error 1n either the data or 1ts transmission occurred.
Appropriate error correction techniques are then imple-
mented.

Redundant arrays of inexpensive disks (RAID) are an
example of a data storage system. RAIDs include the
capability of correcting or recreating erroncous data and for
remedying a complete failure of a disk 1 an array. Of the
five RAID architectures 1-5, RAID 5 1s presently the most
popular since 1t provides high data reliability with a low
overhead cost for redundancy, good data read performance
and satistactory data write performance.

RAID 5 utilizes a known error detection concept based on
an exclusive-OR function and distributes the calculated
parity bits, as well as the data, among all the disks m the
array. The error detection 1s performed by an array
controller, which also oversees other operations of the disk
arrays. The array controller typically incorporates multiple
small computer system interface (SCSI) buses.

The array controller provides and receives data from the
disks of the array through associated disk controllers. Each
of these disk controllers can have a high bandwidth, such as
160 Mbytes/s. However, the bandwidth between the disk
medium and the disk controller can be much less, such as 20
Mbytes/s. As a result, the disk controller has a considerable
amount of bandwidth remaining that can be employed for
other functions.

Transferring the error detection operation from the array
controller to each disk controller has been proposed to take
advantage of the remaining disk controller bandwidth. This
operation transfer allows the use of a standard SCSI con-
troller as an array controller for the RAID 5 architecture. The
transfer would also reduce the amount of hardware 1n the
array controller required to support the RAID 5 architecture
and would free up bandwidth of the array controller.
Moreover, the total overhead of the error detection operation
for each disk controller would be less than the overhead for
that operation in the array controller.

To transfer the error detection operation from the array
controller to each disk controller, a Read-Modily-Write
operation must be supported by each disk controller. The
Read-Modify-Write operation 1s used any time a write
operation needs to be performed on the array, such as the
writing of data from a host.

10

15

20

25

30

35

40

45

50

55

60

65

2

There are two architectures that an array controller must
support: a multiple interface striping configuration and
single interface striping configuration. Briefly, striping is
storing of data constituents, anywhere from a bit to a disk
sector, onto separate disk drives of the array at related
addresses. A multiple interface configuration has the disk
drives of the array on separate buses or loops. A single
interface configuration has the disk drives on the same bus
or loop. A disk drive of any array can communicate directly
with another disk drive 1n the single interface configuration,
but must communicate with the other disk drive through the
array controller in a multiple interface configuration.

For both of these architectures, the disk controller of each
disk drive should have the capability to store new data,
perform a logic function (such as an exclusive-OR (XOR)
function) on that new data with old data from the logical
address of the new data, and output the result of that XOR
function for use by a parity drive. The disk controller should
also have the capability to receive from another drive 1n the
array parity bits from an XOR function of the old and new
data, XOR that result with the old parity bits corresponding
to the old data stored on the other drive, and store the
resulting new parity bits to the address of the old parity bats.
Further detail 1s available in “RAID 5 Support on SCSI Disk
Drives”, Rev. 1.5, Seagate Technology, which 1s hereby
incorporated by reference.

An example of these capabilities 1s shown 1 FIG. 1,
which 1illustrates a multiple interface striping configuration
with a distributed XOR function. An array controller 10
receives new data from a host (not shown) via a lead 12 and
stores the new data 1n a new data buifer 14. New data from
new data buffer 14 1s supplied to a port 16 via a lead 18.
From port 16, the new data 1s supplied to distributed XOR
device 20 and disk medium 22 of data disk drive 24 via lead
26. XOR device 20 performs an exclusive-OR function on
the new data and the old data supplied from disk medium 22
via lead 21. The old data 1s retrieved from the old data
address on disk medium 22. A CRC check of the data 1s also
performed. The result from XOR device 20 1s supplied via
lead 27 to buffer 28. The host then reads the XOR result from
buffer 28 to port 16 over a lead 30.

Port 16 provides the result to XOR buifer 32 via lead 34.
The result 1s then output from port 36 via lead 38 to parity
drive 40 via lead 42. Distributed XOR device 44 of parity
drive 40 receives the result and performs an exclusive-OR
function on the result and the old parity bits from disk
medium 46. For a single interface striping configuration, the
output from buffer 28 of data disk drive 24 would be
supplied directly to XOR device 44 of parity drive 40. The
old parity bits corresponds to the old data of data disk drive
24. The resulting new parity bits are written to the disk
medium 46.

To support the distributed XOR function, distributed
XOR device 20 of data disk drive 24 1n FIG. 1 contains XOR
buffering. A traditional arrangement would utilize two sepa-
rate buffers. To illustrate, FIG. 2 shows a distributed XOR
device 20 having data buffers 50 and 60, along with tem-

porary butfer 70 and XOR logic 80.

Still referring to FIG. 2, old data 1s written to data buffer
50 in response to a write command from the host (not
shown) and stored in temporary buffer 70. New data from
the host 1s stored 1n a data buffer 60. XOR logic 80 receives
the data from both buffers 60 and 70, and performs an
exclusive-OR function on both data. The result of the
exclusive-OR function 1s then stored 1n temporary buffer 70.
Since temporary buffer 70 i1s usually not large enough to

6,103,312

3

store the entire contents of the result, the result 1s then stored
in buifer 28. Buffer 28 can then supply data to either array
controller 10 or parity disk drive 40 (FIG. 1), depending on
whether a multiple or single interface striping arrangement
1s used.

Disadvantages of the traditional arrangement described
above are 1ts costs. If data buffers 50 and 60 are large, then
temporary buifer 70 must be correspondingly large, which 1s
expensive. If temporary buffer 70 1s not large enough to store
the result of the exclusive-OR function, additional buffer
bandwidth must be used to write the result to bufler 28. If
temporary buifer 70 1s too small, then the old and new data
cannot not be read 1n long bursts from data buifers 50, 60.
This exacts a time cost since data will take longer to be read
from data buffers 50, 60. Buffer 28 also imparts a time delay.

In addition, a read from and a write to temporary butfer 70
occurs for every data bufler 60 read. Consequently, tempo-
rary bufler 70 must maintain twice the bandwidth required
for reading data buffer 60. The bandwidth of temporary
buffer 70 will either put a limit on the bandwidth of
distributed XOR device 20, or will be expensive to imple-
ment in hardware.

SUMMARY OF THE INVENTION

The present mvention provides a distributed logic func-
fion device, preferably including an XOR function, that
includes a storage device, such as a data buffer. The data
buffer stores at least two data blocks 1n a preferred inter-
leaved manner. The data blocks contain data words, and a
specific data word for each data block contains CRC bits. In
response to certain addresses, the data words of the data
blocks are output from the data buffer 1n an interleaved
manner.

A logic function engine circuit, such as an XOR engine
circuit, recerves the interleaved data words. The XOR
engine circuit preferably includes a data logic function
circuit, like a data XOR circuit, and an error detection
circuit. The data XOR circuit combines pairs of data words,
preferably by performing an exclusive-OR function, where
one data word 1s from one data block and the other data word
in from the other data block. The generated results are output
to the error detection circuit.

The error detection circuit generates CRC bits from the
results. Preferably, the CRC bits are encoded with a constant
ID .. These encoded CRC bits are compared to the result
of the exclusive-OR function on the CRC bits of the data
blocks. If these bits are not equal, an error signal 1s output.

The comparison therefore checks whether the XOR engine
circuit or the data blocks are 1n error.

The present invention also provides a method of data error
detection. This method preferably includes the steps of
receiving at least two combined data blocks and performing
a CRC check on the combined data blocks. It the CRC check

determines that there is an error, an error signal 1s output.

Numerous other advantages and features of the present
invention will become readily apparent from the following
detailed description of the invention and the embodiments
thereof, from the claims and from the accompanying draw-
ings 1n which details of the invention are fully and com-
pletely disclosed as a part of this specification.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a RAID multiple interface
striping architecture having a distributed Read-Modity-
Write operation according to a related art;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 1s a block diagram of the distributed XOR device
and buffer according to the related art of FIG. 1; and

FIG. 3 1s a block diagram of a distributed XOR device
according to the present 1nvention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

While this mvention 1s susceptible of embodiment in
many different forms, there 1s shown in the drawings and
will be described herein 1n detail a specific embodiment
thercof with the understanding that the present disclosure 1s
to be considered as an exemplification of the principles of
the mvention and 1s not to be limited to the specific embodi-
ment described.

FIG. 3 1llustrates a distributed XOR device 120 according,
to the present invention. Distributed XOR device 120
includes a data buffer 140 coupled to receive addresses over
an address lead 145. Data buffer 140 1s also coupled to
recerve data from a MUX 150 over a lead 155. MUX 150
receives data from data leads 160, 165. Data buffer 140 1s
coupled to an XOR engine circuit 170 via a lead 180.

XOR engine circuit 170 includes a data XOR circuit 200,
an error detection circuit 220 and a MUX 260. Data XOR
circuit 200 mcludes XOR logic 205 that 1s coupled to data
buffer 140 via lead 180. An XOR MUX 210 1s coupled to
XOR logic 205 via a lead 208 and 1s coupled to data buifer
140 via lead 180. An XOR register 215 1s coupled to XOR

MUX 210 via a lead 212 and 1s coupled to XOR logic 205
via a lead 216.

Data XOR circuit 200 1s coupled to error detection circuit
220 and MUX 260 via a lead 218. Error detection circuit 220
includes a CRC generator 225 coupled to data XOR circuit
200 via lead 218. An error detection XOR logic 230 1s
coupled to CRC generator 225 via a lead 226. An ID counter
235 1s coupled to error detection XOR logic 230 via a lead
232. Error detection XOR logic 230 1s coupled to a com-
parator 250 and MUX 260 via a lead 235. Comparator 250
1s coupled to data XOR circuit 200 via lead 218. Comparator
250 and MUX 260 provide output signals on respective

leads 255 and 265.

The operation of distributed XOR device 120 will be
explamned with reference to FIG. 3. An array controller sends
a write command to a buffer manager (not shown) of the disk
conftroller that mcludes distributed XOR device 120. New
(written) and old (stored) data blocks are provided to data
buffer 140 by MUX 150 on data leads 160 and 163. It 1s
preferred that one of data leads 160, 165 1s coupled to a disk
medium (not shown) and the other lead is coupled to the
array controller.

Addresses are provided over address lead 145 to data
buffer 140 to load the multiplexed data blocks. It 1s preferred
that lead 145 1s coupled to the bufier manager. The buifer
manager preferably provides addresses that are selectively
incremented by one or two. Providing the two-increment
addresses allows data to be read from or written to all even
or all odd addresses.

Distributed XOR device 120 loads or stores a data block
in data buffer memory 140 in response to a command from
the host. Specifically, MUX 150 1s controlled to provide
over lead 155 to data bufier 140 an old data block received
over one of data leads 160, 165. Coincidentally, addresses
incremented by two are provided via lead 145 to store the
old data block 1n alternating address locations, for example

odd address locations. This data storage 1n data buifer 140 1s
represented by data words A1, A2, ..., A_CRCin FIG. 3.

Distributed XOR device 120 then loads a new data block
in data buffer 140. MUX 150 1s switched to provide over

6,103,312

S

lead 155 to data buffer 140 the new data block received over
the other one of data leads 160, 165. Addresses incremented
by two are concurrently provided via lead 145 to store the
new data block 1n alternating, even address locations. This
data storage 1n data buifer 140 1s represented by data words
B1,B2,...,B_ CRCin FIG. 3. The new and old data blocks
are stored 1n data buffer 140 1n a preferred interleaved
manner as 1llustrated.

Each stored data block 1s a code word that was generated
by a conventional CRC technique. For example, old data
blockAl,A2, ... ,A CRCi1s acode word where all the data
words Al, A2, ... except A CRC are the actual data. Data
word A__ CRC includes CRC bits that were generated by the
conventional CRC technique. Data word A__ CRC 1s
encoded with a logical sector address (LSA) of the disk
medium. The LSA represents the starting address of the disk
medium that stores the old data block. The LSA 1s included
in data word A_ CRC to confirm that the read data block 1s
the correct data block that was addressed. New data block
B1l,B2,...,B_ CRCi1s asimilar code word with an encoded
LSA that 1s the same as the LSA encoded for the old data
block.

Once data buifer 140 1s loaded, the builer manager
provides addresses successively incremented by one to data
buffer 140. This causes data blocks to be read out in an
interleaved series, e.g., Al, B1, A2, B2, . . . , A_CRC,
B_ CRC, and are provided to XOR engine circuit 170.
Briefly, XOR engine circuit 170 will perform a preferred
exclusive-OR function to combine corresponding data
words (e.g. Al, B1l) from the data blocks. XOR engine
circuit 170 will detect any error 1n the combined data words.
Combining data includes arithmetic and Boolean functions.

In particular, an address associated to data word Al 1s
provided to data buifer 140. Data word Al 1s then provided
over lead 180 to MUX 210 which 1s selected to output data
word Al to register 215. At about the same time, an address
associated to data word B1 1s provided to data buifer 140.

Data word B1 1s then provided to XOR logic 205 and 1is
exclusive-ORed (combined) with data word Al from XOR
register 215 via lead 216. The result 1s latched 1n XOR
register 215 via MUX 210.

The exclusive-OR result (combined data) of data words
Al and B1, temporarily stored in XOR register 215, 1s then
provided to both error detection circuit 220 and MUX 260
via lead 218. MUX 260 1s seclected to pass this result over
lead 2635 to another buffer, such as buffer 28 shown 1n FIG.
1. Or, lead 265 can be multiplexed onto one of leads 160,
165 1n response to a write command.

Subsequent sequential even/odd addresses are provided to
data butfer 140 to read out all the data words. The operation
discussed above 1s performed for each pair of corresponding
data words of the new and old data blocks. The exclusive-
OR result (combined data) for each pair of data words is
output from XOR register 215 to CRC generator 2235 of error
detection circuit 220. CRC generator 225 uses all these
results or combined data to generate CRC bits for the
exclusive-OR (combined) results of the data word pairs.
Error detection XOR logic 230 performs a preferred
exclusive-OR function on the CRC bits from CRC generator
225 and a constant ID 5~ (explained below) output from ID
counter 235.

MUX 260 1s selected to provide the exclusive-OR result
of the CRC bits and the constant ID -~ from error detection

XOR logic 230. Comparator 250 compares the exclusive-
OR result of data words A_ CRC and B_ CRC from XOR

register 215 to the exclusive-OR result of the CRC bits and

10

15

20

25

30

35

40

45

50

55

60

65

6

the constant ID_5-. If the results are not equal, an error
signal 1s transmitted over lead 2385 to preferably either the
array controller or a parity (CRC) disk drive.

As discussed above, the data words A. CRC and B. CRC
arec preferably encoded with an LSA. This “end loading”

encoding 1s performed with an exclusive-OR function by
preference. When the data words A_ CRC and B_ CRC are

exclusive-ORed together by XOR logic 205, the LSA encod-
Ing 1s removed.

However, the result of the exclusive-OR of the data words
A__CRC and B_ CRC does not represent the correct CRC
bits for the exclusive-OR of the previous data words Al,
A2, . . . and Bl, B2, . . . Therefore, the result of the
exclusive-OR of the data words A__CRC and B_ CRC 1s
preferably encoded with the constant 1D, The constant
ID .~ represents the CRC bits generated by the conven-
tional CRC technique of an all zero data block.

When a data read command 1s requested by the host,
MUX 150 1s controlled to provide over lead 155 to data
buifer 140 an old data block received from the disk medium
over one of data leads 160, 165. Addresses are provided over
address lead 145 to data buffer 140 to load the old data
blocks. The old data blocks are output to XOR engine circuit
170. MUX 210 1s selected so that the old data blocks bypass
XOR logic 205 via lead 180. The old data blocks are passed
through register 215 to MUX 260. MUX 260 1s selected to
output the old data blocks from lead 218 to lead 265.

While the old data block 1s output on lead 265, the old
data block 1s also provided to error detection circuit 220.
CRC generator 225 generates CRC bits for the data words of
the old data blocks. These CRC bits are encoded with the
corresponding LSA stored 1n ID counter 235. ID counter 235
1s incremented for the next data block.

When the CRC bits of the old data block are available on
lead 218, MUX 260 1s selected to output the generated CRC
bits that are encoded with the corresponding LSA.
Concurrently, comparator 250 compares the CRC bits of the
old data block to the output of the generated CRC bits that
are encoded with the corresponding LSA. If the two CRC
bits are not equal, an error signal 1s provided on lead 255.

The preferred embodiment of the present invention pro-
vides numerous advantages. First, the use of data buffer 140
that outputs data 1in an interleaved manner allows the XOR
engine circuit 170 to perform the data word combination and
the error detection on-the-fly while still maintaining burst
access to data buffer 140. This approach halves the neces-
sary available bandwidth of the storage device, e.g. data
buffer 140. If two storage devices are used instead of the
single storage device, the maximum burst length 1s reduced.

Second, end loading has the advantage that constant
ID -~ (representing an all zero data block) is calculated
once for all the data blocks with different LSAs. If the LSA
were part of the seed data of the CRC generator, the 1D, -
would have to be recalculated for each data block. This
recalculation would require another CRC generator. The
presently preferred XOR engine circuit, therefore, has less
hardware, particularly another CRC generator used to recal-
culate the constant 1D, for each data block. In addition,
the circuitry of XOR engine circuit 170 not only checks data
integrity as 1t 1s read and written, but also checks the XOR
engine circuit 170 hardware integrity.

Numerous variations and modifications of the embodi-
ment described above may be effected without departing
from the spirit and scope of the novel features of the
invention. For example, the preferred embodiment illus-
trated mm FIG. 3 includes the illustrated leads that are

6,103,312

7

preferably buses. These buses allow the distributed XOR
device 120 to process data 1n parallel. However, serial leads
can be used without parting from the scope of the present
invention.

Another example 1s that the preferred embodiment of the
present invention as illustrated in FIG. 3 shows error detec-
tion circuit 220 coupled to data XOR circuit 200 as a direct
connection, which 1s not required for the present invention.
Although not preferred, error detection circuit 220 may be
coupled to data XOR circuit 200 through another device or
circuit, such as a buffer. The other device or circuit would
cause a time delay, and thus prevent data combination and
error detection on-the-ily.

It 1s to be understood that no limitations with respect to
the specific device 1llustrated herein are mtended or should
be inferred. It 1s, of course, intended to cover by the
appended claims all such modifications as fall within the
scope of the claims.

I claim:

1. A device configured to perform error detection, said
device comprising:

a data buffer containing an interleaved series of new and
old data;

a data circuit configured to serially receive the interleaved
series of new and old data from the data buffer, and
combine the new and old data; and

an error detection circuit configured to receive the com-
bined data from the data circuit and perform error
detection thereon.

2. The device of claam 1 wherein the error detection
circuit generates CRC bits 1n response to the interleaved
series of new and old data received, encodes the CRC bits
with a constant, and compares at least a portion of the
interleaved series to the encoded CRC bits.

3. The circuit of claim 2 wherein the error detection
device generates an error signal if the portion of the inter-
leaved series and the encoded CRC bits are not equal.

4. An error detection method comprising the steps of:

configuring old and new data into an interleaved series;

serially transmitting said interleaved series along a lead to
a data circuit which 1s configured combine the new and

old data; and

using an error detection circuit to perform error detection
on the combined data.

10

15

20

25

30

35

40

3

5. The method of claim 4 wherein the interleaved series of
old and new data includes at least one data block comprising
old data and at least one data block comprising new data.

6. The method of claim 5 wherein the data blocks mclude
data words and the step of combining data includes com-
bining pairs of the data words.

7. The method of claim 4 further comprising the step of
performing error detection on a data block.

8. The method of claim 4 further comprising the step of
receiving data through a direct connection.

9. A method of data error detection comprising the steps
of:

serially receiving data blocks along a single lead, said data
blocks comprising an interleaved series of old and new

data;
combining the data blocks; and

performing a CRC check on the combined data blocks.

10. The method of claim 9 further comprising the step of
providing an error signal 1n response to an outcome of the
CRC check.

11. The method of claim 9 wherein the data blocks include
data words and the step of performing a CRC check includes
combining pairs of the data words.

12. The method of claim 11 wherein the step of perform-
ing a CRC check further includes generating CRC bits from
a plurality of the combined pairs of the data words.

13. The method of claim 12 wherein the step of perform-
ing a CRC check further includes encoding the generated
CRC bits.

14. The method of claim 13 wherein the step of perform-
ing a CRC check further includes comparing the encoded
ogenerated CRC bits with a one of the combined pairs of the
data words.

15. The method of claim 13 wherein the step of encoding
the generated CRC bits includes combining a constant with
the generated CRC bits wherein the constant 1s generated by
an all zero data block and a generator polynomaial.

16. The method of claim 9 further comprising the step of
receiving a data block and performing a CRC check on the
data block.

17. The method of claiam 9 wherein the receiving step
includes receiving the data blocks through a direct connec-

tion.
18. The method of claim 9 wherein the data blocks are end
loaded.

	Front Page
	Drawings
	Specification
	Claims

