United States Patent [
Hayes, Jr.

US006108712A
(11] Patent Number: 6,108,712
45] Date of Patent: Aug. 22, 2000

[54] CLIENT-SERVER SYSTEM WITH CENTRAL
APPLICATION MANAGEMENT AND
PROVIDING EXPORT AGENT CAPABILITY
FOR RETROFITTING EXISTING
HARDWARE AND APPLICATIONS INTO
THE SYSTEM

|75] Inventor: Kent Fillmore Hayes, Jr., Chapel Hill,

N.C.

| 73] Assignee: International Business Machines
Corp., Armonk, N.Y.

[21] Appl. No.: 09/073,166

22| Filed: May 5, 1998

51] Imt. CL7 e, GO6F 15/16;, GO6F 15/167
52] US.CL o, 709/246; '709/212; 709/216;
709/218; 709/219
58] Field of Search ... 709/246, 212,
709/216, 218, 219, 104, 203; 395/500.44,
370/352

[56] References Cited

U.S. PATENT DOCUMENTS

4,885,770 12/1989 Crollccoeieeieieivierrrreveereenns 379/269
5,440,744 8/1995 Jacobson et al.coceveeeennnnnen.. 709/203
5,442,749 8/1995 Northcutt et al. ...ccoevveennnnnen. 709/219
5,442,791 8/1995 Wrabetz et al.ccovvveennnnnn... 709/104
5,588,148 12/1996 Landis et al. ...oveevvvenvevveneeennnnnnen, 707/1
5,754,830 5/1998 Butts et al.ceevvvrevennnnnnnen. 395/500.44
5,867,495 2/1999 FElliott et al.covvvevennirnnnnnnn. 370/352

OTHER PUBLICAITTONS

http://nt/pdc97/profiles_and_policies.htm “Guide to
Microsoft Windows NT 4.0 Profiles and Policies” pp. 1-76.
http://www.1etl.org/html.charters/acap—charter.html “Appli-
cation Configuration Access Protocol (acap)”, 68 pages.

Workstation :

=
102
Desktop PC

100
Network

IBM Network Station Manager for Windows N'T Server 4.0,
Chapter 5. Using the IBM Network Station Manager, pp.
5-1 to 5-15.

http://www.software.ilbm.com / 0os / warp / library/sq202822.
htm, “WorkSpace on—Demand Handbook™, Chapters 2.3.1;
6.2; 6.3; 6.3.1; 6.3.3; 6.5.

http://www.triteal.com/SoftNC, Java Desktop Environment
from Triteal, pp. 1-2.

http://java.sun.com / products / hot—javaviews / admin.html,
“HotJava Views”, pp. 1-24.

http://esuite.lotus.com/eSuite/eSuite, “The Right Work

Environment for Network Centric Computing”. 24 Pages.

Primary Fxaminer—L_e¢ Hien Luu
Attorney, Agent, or Firm—Jerry W. Herndon

57 ABSTRACT

A system with a network interconnecting a server and a
plurality of user stations. The system provides a means
whereby vendors of existing hardware and software can

integrate the hardware or software into the environment of
a centrally managed network computing system, without

having to retrofit the hardware with new firmware or without
having to redesign the existing software. An export service
allows a system administrator to generate configuration files

in the format that the existing hardware or software expects
and to store the files at the server 1n a way that the existing,
hardware or software can access the files in the manner for
which it 1s designed.

4 Claims, 22 Drawing Sheets

106
Workstation

Administrator

104
Laptop computer

U.S. Patent Aug. 22, 2000 Sheet 1 of 22 6,108,712

FIG. 1
106
Workstation
100
Network

Desktop PC Laptop computer

FIG. 2 Server 202

Database 212

User Data
Group Data
Software Access Data
Software Preferences

Administrator Client
200

206

Profile
Manager

214
Profile Manager Serviet
Profile Mgm Properties P Web Server

U.S. Patent Aug. 22, 2000 Sheet 2 of 22 6,108,712

FIG. 3

AllUsers
com.ibm.App3: BG=Blue, x=1, y=2, z=3

com.lotus.App3: x=2, y=3, z=4
com.ibm.App4: BG=Gray,x=2,y=2, 2=2
com.ibm.App5: BG=White,x=2, y=3, z=1

GroupY
com.ibm.App3: X =2

com.ibm.App6: a=1, b=2

e, i il e ol e i Bl s ol e ol e i il el e s el - i

| GroupY?2
.!. com.ibm.App5: y = 4

GroupY
com.ibm.App3: y =3
com.ibm.App6: a=33

o e B e L

Fr "= "9 s¥Fy P FIFIT T 3101

UserN
; : com.ibm.Appb: x=2
| com.ibm.App4: y=3
Usert
com.ibm.App3: BG = Green|

:

B e B Bkl b L B

gty

FIG. 4

UserList

[[Priori
Useri: AllUsers.GroupX 1

AllUsers.GroupY.GroupYt1 2
AllUsers 3
UserN: AllUsers.GroupY.GroupY2 1
AllUsers 2

6,108,712

Sheet 3 of 22

Aug. 22, 2000

U.S. Patent

X80y 18s

916
|dV
seiuedoid peojoy

d seluedoud
wbw ejyoid
0LS

Jeus)s|| ebueyd xejuod AWY/PPY
80UB]SISIo48|qeus
seluadold eAes/peo)
1SI7 |OJ)UOD) SSBO0Y 19K

IX9jU0D) 19%)
GLS | IdV
18jAlS
10AI8S QM lebeue
81S 8|i0id (1xeju0o ‘seiuedoid)uodxe

VLS

J01ejSIUIUPY

TR
F = O

lebeuey

e|ljoid
906G

Jeus)s!
JUSAT

¢S

806G - Lie|ddy

SIeMpIey

jueby podx3 poeNijo.}el 10}

02S

(s)ely Byuod
22S
202 1oA18S

U.S. Patent Aug. 22, 2000 Sheet 4 of 22 6,108,712

FIG. 6
602
600 User Applet2
User

Load() Save() List () Context()

enable
Persistence

Load/Save
Properties

Get Access
Control List

604
Profile Mgm Properties P

Properties

Get
Context

606
Server

U.S. Patent Aug. 22, 2000 Sheet 5 of 22 6,108,712

700 702
Client FIG. 7 Server

704 serverURL.Desktop.htmi

706 Challenge

708 User ID, Password

712
Load and execute

710 Desktop Object

Desktop Object

714
End User Desktop
Object - Generate
ProfileManProperties

Object P

716
P.enablePersistence(this)
1) Get URL of Profile
Manager Serviet 214
from Desktop Object,

2) Get user ID from 719 Context (ID, User)
Desktop Obiject,

3) Generate Key = 720 Req. preferences (Key, Context(ID, User))
fully qual'ed class (ID, Password)
name for Desktop |

Obiject

718 Req. context of user (ID, Password)

722 Preferences

To Fig. 8

U.S. Patent Aug. 22, 2000 Sheet 6 of 22 6,108,712

From From
Fig. 7 FIG. 8 Fig. 7
Client - Server -
Continued Continued
800
Desktop object - get
desktop preferences
802 Req. Applet list (Context(ID, User)) ID, Password
804 Applet List

806
Build Applet folder in
memory and
generate applet
window

references
include Applet
outside of

Applet

window?

Yes

810 No
Check user authorization OK
to Applet
OK 814

Delete Applet from

812 preferences

Generate Applet

preferences icon 818 Save(Context, Key,

816 Preferences) ID, Password
Save preferences
820 Save response

U.S. Patent Aug. 22, 2000 Sheet 7 of 22 6,108,712

302
FIG. 9 Server

904 URL.ProfileManager.htmi

906 Challenge

908 User (Administrator) ID, Password

910 Profile Manager Object

912
Load and execute

Profile Manager

914
Profile Manager -
Generate
ProfileManProperties

_nonContextFloating
Object P_NCF

916
P_NCF.enablePersis
tence(This)

1) Get URL of Profile
Manager Serviet 214
from Profile Mqr,

2) Get Adm ID from 920 Context
Profile Manager,

3) Generate Key =

fully qual'ed class

name for Profile

Manager

918 Req. Adm context (ID, Password)

922 Req. Adm preferences (Key, Context(ID, User) ID, Password

924 Preferences

To Fig. 10 To Fig. 10

U.S. Patent Aug. 22, 2000 Sheet 8§ of 22 6,108,712

From From
Fig. 9 FIG. 10 Fig. 9
Continued Continued
1002 Req. info for tree (ID, Password)

Build left panel of
Tree Info

adm config window

1004
Adm selects config.
context from left panel

1006
Adm selects applet
to be configured

1008

Adm clicks
Run/Customize to run config
applet (or end user applet)

1009 Request applet

1011 Return applet

1010
Config. applet (or end user
applet) generates its
ProfileManagement object P

1012
Config. applet calls P.enablePersistence
(this, full qual'ed class of applet being configured)

1014
Register as context change event listener
To Fig. 11 To Fig. 11

U.S. Patent Aug. 22, 2000 Sheet 9 of 22 6,108,712

Fig. 10 FIG. 11 Fig. 10
Continued Continued

1104 1105 Req. preferences (Key, Context)
Config. applet calls (ID, Password)
P.load() to get
preferences for

config. context

1107
Configure and save

1108
Administrator changes
context

1106 Preferences

1110
Call to config. Applet
to reload preferences
for new context

e 1114 Req preferences (Key,
Event listener does new context) (ID, Password)
P.loadO.

1116 Preferences

1118
Profile Mgm Properties object
P updates preferences

6,108,712

Sheet 10 of 22

Aug. 22, 2000

U.S. Patent

¢l "Old

c0cl

 BURRINI SRR (JIR01] NG 33UJsIS 1 WOMING WQt WO Ry
WiginAS 9}

s8pwnoid juswadeuen
8|y0ld Ul

QONB ‘Alledyiiads

‘g1aAs| dnoib

pue Jash ay yiog

1@ $83U8.18)8.d j91dde
pue suojssijuLied
ja|dge 00U

0} Ayjiqe 2yl sapn|iu
sy ‘sdnoif-1asn pue

583N 0 efuel ay) Jo} 0cl

sasusiejaid 8InB U0 Q3N "%
0} I0}RASIUjWPE

m;a__mz_m.:cwmamcwﬁ juswabeuew ajjoid L
8111014 N puewis-u) pooyioqulbisN (&

SN +9-4

1BN8STBM 00 MO gy

H
auswabeuey 9)1J01d 0] SWOIoM o N..w

* nuatuabeuep 81y0id 0} 3WOI|BM —S 1$81-bu0) @ S

_ *disH | * 8l _ * djaH _ *suondo | “peoajes | “saip |

:BEM&EEE HONRINS T UN) PUBUEY([-U() JIOMNJON D urey

L I I

G0cl

00¢t

6,108,712

Sheet 11 of 22

Aug. 22, 2000

U.S. Patent

SIUBWILOD)

Niomis Naswqiruogsel-buoldgy

MM U0

—_—

slalaweled jaldddy

4R PUBLIBUO HIOMIBNE WO IO

suleu sseja payenb Aing4

58|14 Bupoddng 8je)1I0ssy

37 XEAWPU LIS QUOTTALLHWAMAALD
81y jwy jo Yied a18idwod
8 Xgarpuewaquonsal-bucly dpy
N

| Jaio|dx3g aseqeleQ)

auiey)a|ddy

80t 1

[omn

AIPOIN

8114 Wol4)15 jejddy podw

90¢t

A E

1 ’

| 1881 A
Z 188 A

ddvy JOpUBA

UDD MIOMIAN S puBLIBQUD
T_an,q 6o mBIA 881 1/607
2 puewigq-up sebessew
pueLla uQ sabiessailxy

S4N

dldl
| 1810)dx3} sseqeleq
isyaiune9|ddy
uewa-uD pooysoquybiaN
uewsaq-up poouioqubiieN
InByuoo Ajjae 4 8rel /807
Allj13e 4 8ael /807

12 pueweag-up sebessan
puglua U salessSaN

S4N

dldl
1940)dx3 aseqgele(

i

sjerddy (]

Ay

oLt Jorkhy

1S{71j8jddy

puews-ug pootuoqybieN (o
SN *n-B

43

QINLL "

/' Qdid) %

uswabeuews sjyoid .ﬂ

iBAIBSGOAA O SNIOT .-d.im

1§ 81-buo) @ £)

“die | “apd _...n_mI *sucido m-nmzm_mm _...mm.F !

JUDWRCRUB A UONRINGIIUN) PUBUID(] -U() Y10MII\ ..

U.S. Patent Aug. 22, 2000 Sheet 12 of 22 6,108,712

Import Applet List From File

Importing an applet list from a file will cause any pending
changes that have not been saved to be lost.

Complete path of file

‘ Import nowl
Done...l

6,108,712

Sheet 13 of 22

Aug. 22, 2000

U.S. Patent

S Ol

_ paAes Jou sabueyn

gzgL [T Ouew
1B | UMiB LU
URsSnN

saall 092G | 0204

pIOMmSSed . Uiuay
opuN

_ WIHIUOD ses|

_ niomsseyq | [f©18180 quig

Apoom
AJ8q

NIPOW

\\ :

0cSt

DIEMDOOA 331G _

? SU0ISSIWIad jalday [k sdnoi6ans ey

EE\‘ fmr\ﬂﬂ

HENTRY UBA :Q_.E:mc:ou PUBUII(] -UI() YHOMIIN\]

al| chystagiop

G3NIL *o-3

Odidl 3.@

_ siesn ¢ 8 _
9}ea4d sdno.Jx) 19s) g.@
B8lje8il S}8|ddy a,ﬂ
<M3N>» jJuaweabeuew ajyoid i

pueweg-uQ poouloqubieN ¢
IS 488N SIN *g

\ . JBAIBSQEM 00 SN0 g
4] dno.B siy} O SI8qIBL J191|dX8 8. SIasN ||V dOHO *a
. Ecsl dnoJo Jejsey :noio SNQQ %o

SI8QWSeN @ 1s8]-buos @-m

“diaH | “84 _.n_mx _..mcoano _.um_um_mm _...mm.F

“I, " b._ »
et

6,108,712

Sheet 14 of 22

Aug. 22, 2000

U.S. Patent

IP8AES J0U Sebueyd

229l

_ OpuUn

iNB)8|8p 8q jouue
WRE] J _Em_mo m._oE‘:mE_Enq

SUBWIWO Y

AIPOI

8lesin

S10]eNSIUIWPY \
P 8291

ﬁ SUOISSIWIad Ja1ddy (3]

91 "Old

[] E Q3NLL *-8

Qdlil *o-®

siasn @ -
1881 oﬂ -3

Wl i-&

S10je4SIUILIPY 1_

sie|ddy (]
«m@ 1 emeep | jusweleuew a|yoid il
<M3N> pueweq-up poowsoqybieN ¢&-
S4N
stuey E-Ewglmjm“ﬂneﬁo “m anascomnan ek “
029 dnasp rarsem xdnoso M“MN H”- .*
| sdnosBans g} — SIBQWAN @ 1se1-buos -8

_ disd | “ a4 “ di84 _ sSuondo — pejlejes — 881

WIDWAGCIE A IODRINSTJU0") PUBTHI([-1() YIOMJoN e

6,108,712

Sheet 15 of 22

Aug. 22, 2000

U.S. Patent

L1 "Old

el —

raZiligisSnoun

AluQ siaiddy peniwiied mous |

" 3@Q-ug pooyloqubiaN
g-uQ poowtoqubiaN
00 Aliroe 4 el 1 /607

Ande 4 asel1yBo7
leuIaq-uQ sabessan
ipeAes jou sefueys | pewag uQ sabessan
S4N

dldl

$53J3e dnoid AU3

S881

AUsp
nuied
Auep
AUBP |
Auap
wiad
punied |
Ausp

JULESUVLE NN 15i0|dxg asegeleg puuad

e

ISM18|ddy

Ocll dnoro 1e1seiy o 10

SU0!SSIWIBd Ja|ddy (F) _ sdnoifans g # sIsqusw @

Q3L " $
Qdldl = .8

s19s @ .ﬂ

__

_

|

$10]J1SIUILIPY _
sdnoJin) 198s

9 495N LLRe

ﬂ

S18|d 8
juawadeuew 8|yo.id i

puewsq-u0 pooyioqudbien «_ﬂu_
S3N o§.+
1BAIBSQBAA 0O SN0 g
dOHQ "
SNQQ (&
15 81-buo. m ¥~

-m—l_w—-—*“-—

“.n_mx 1P _.n_ax __..w:o:ao * peyeleg __..os._.

JUQWIOGRUE A HONRINGTIUO) PUBUID(| -U() {HOMFIN Srras 1

6,108,712

Sheet 16 of 22

Aug. 22, 2000

U.S. Patent

81 "Old

Wwbwold oﬁ
ebpBamIN _3..
Jwtwn 8-

OV8l —————Pp | 'si85N 81818 Q/AIRON/BIREID
AlUO Siaquisul 1211dxe Mous L

+ >
* bhuo) pajuelu elemyog i} ,
SIUWIDY ou 893IM88 i
Byrew pajusyui IEMpIEH :o
12U oy el {
0z0qQ palusyul

— il iiliep———————

siojess|uWpy ¥
sdnNoiO) 108N .3

|

Bxau pajueyu)

Ipsaes Jou sabueys Ylusy pajusyul o1ddy B |
dn016 ui0l) 8ADWIBY sesii paeyul |
qegL ——» quin ou juswebeueu 8jyoid iﬁ

_ dn016 0} ppY | SAIN> DUBWIBE-UQ POOYIOGUBION S8~
S o] g

1BAIBSGOAA 0O SN0 g |

9e81 rad

1S17 1850
028} dOHQ %o
Justudojanaq) dnom SNQOO h*.l_
— Su0ISSILLB d ja1ddy (7] _ $dnoiBans gy — SIOQUEN @ - 1ser-buos f B
* diop _ * 814 “ “dioms * *suondo _ “ peyre|esg _ e -1-771
JUAUILCIE [N VONEINSTHIO) PUBHIY([-1) JHOM o\ a4

61 "Old

'I

|
JWwbinold iJ
afipaminN uﬂ...__

|
|
u
i

6,108,712

IpBARS JOoU S3BueyD _ auoQg

-t =l Lo o o e e e R s e s L D

iy vl

Sheet 17 of 22

Aug. 22, 2000

I
{
AlUD slanuiaiu 1adxas mous ||_ h_
M4BUU0D - _ |
QoON i%-6 .
juswdolanaq i, :
| buol pajuayul aiemyos Y- ,
| lensiujwpy ou seames W) |
Gyiewi DalIoyLy |
SIUBUIIOD IR U ou SJEMpIEH —ﬁi_ | _-
piomssed — 0Z0Qg polioyul nel i
_ WIYUO D) _ pun - siolensiuIWpY i
AN PeIBIL! sdnoiIf) 188
_ DIOMSSE Y _Em_Eu LB pajueyu 085N W
818 |ddy ﬂu
070 i amugﬂ.. SESH pajliayul .%
n_ qwn oy juawefeueld aIpold -3
| aueu <SAIN> puelwB-u0 pooy:oqullioeN 24—
020 _ [N
: : - ql nEmEanE- SiN *8-B
JBAIBSTBAA O -
1SN J88N AOM 00 ST %
dOHQ *%-&
Ocol ustudojsasq :dnoto SNAQ ...Oim
| suoissiuiag gy [T | sdno:6ang g — JELILIT - 1se1-buos {7 -©

“ * g1 _ * 3y _ “digH | “suondQ _ " pajeas _ -1-V]1

JHOWEDA UBTA] VONRINGIUNT) PUBUIN(]-U) JIOMJIN]S

It o’
g -1 88 2

U.S. Patent

6,108,712

Sheet 18 of 22

Aug. 22, 2000

U.S. Patent

ipaaes jou sebuey”n

UAAD] Ul UMO|I MBU

SjUaWIWO D
piomssed

sansa _ WHyuo D
eane _ plomssed
AlS NN _ Qi

UMOID "L ™A _

JUDWBALUB Y HONRINLHUNT) PUBUIR(] -U) JIOM]I\ I

]

OpPUN

313|18()

g

AIPOW

:

[ewers

0¢ Ol
4 | L
buo!
olesIviIpyY Q3N % &
e QdLil % 6
yMiew S1os f Bt ”
020G didiep | SANO0IO J8SN i& “
o 100y G0 |
yjusx juawatieueul 8{jjoid -ﬁmw
sesl PUBWIQ-UQ POOWOGYUBIAN @ -]
quiy

SN -4

13M3SQBM 0O SN0 x|

sl dOHQ Jﬁ

_ SNQQ &% -
casn # 1S8]1-bua; ﬁ =

|
{
“die | ‘814 _ * dijs _ “ suondp _ “ pa}28138 _ * a9y

- h :, -
FELR A

6,108,712

Sheet 19 of 22

Aug. 22, 2000

U.S. Patent

|

}¢ "Old

ybai
yabioel

WiaQez||a
puaa||od

_..L.I 0204

syeq
ON d.1d se|ueyd

'100018A8D INO Res)usialieueyy 8[yoid

SIUBWIWIOD

_ piomssed Wiguod
_ opun _ _ DIOMSSEJ

[Apow PUBWBQ-UQ POOYIOGYBIEN (O
JWEE]F ai
_ buseiod] SiN *n

AT AN AN IojegSILWIpY @ -1

|
M-u—-r‘--—_
byl ey

!
S S S

B 0 0 B B @ 9
bl

fuoraQ usaayod _ aweu ||n4 13AIBSQ3M 09 SN0 g

PUIANOI ;IS

Su0ISSIWIad 18jddy [N sdiysiaquiaiy dnoio ey — UOIIBWIO| J3S @ -

dOHQ %
SNQQ o
1$8)-bu0J m -8

_..a_mI * a4 __.a_mx _.mco_ao “ pejsjes _..ue._.

Juauion L.:m.—& =Om=ﬂ3b:=.‘vu ﬁ.:—ﬁ..:_uwﬁ—l._ﬁv 1—.—3.5?422

1.l o'y
NRCa.)

- i gl EE—

6,108,712

Sheet 20 of 22

Aug. 22, 2000

U.S. Patent

¢¢ Oid

_ _ aveit @ |

2 A sdiysiaquisiy dnolo aaswWadppY . yatiocab ¢ m

151 ayy jo doj ayj le sieadde AQuoudisaybiyauyy | Jiegezie ¢ tm w

_ pusa|jod e |

P] [_ 000 @ “

s g

saieyd @ - m

jolensuiugy @ ,m w

siasn ¢ B “

sdnolg) 188 g!m m

sdnoJn 1as sielddy (5] %
ipaaes jou sabuey)] L Yy188 | 'SAN0IO JasN w awaliruell ajyoid im_
_ﬂmm.m- ﬁll (8480 JEMYOS Bl SINDIp JBsN PUBWSQ-UQ POOLIOQUDIBN Lo -

vy dnog| 84N ...#mw

. IBAIBSOBAA OF) SN0 gy - .

0222 . dIHO *o-@

ptI2a|jood ;198N SNQQ _....v_

_, SUO|SSIWIA 131ddY) ~ sdiusIaquia dnoio gt y UOHBWNOU| JASN @ = 188}-buo - =

" peyrsieg

_.,a_m_._ “ang ﬂ.a_mz * suondQ

JUDWBAVUB A HONRINGTIUOY) PUBUID(]-U() YHOM]IN]S

6,108,712

Sheet 21 of 22

Aug. 22, 2000

U.S. Patent

£¢ Olid

ipaAes jou sabueyn _ “auoQ

i i
A . |

sajeg [~
bunexiew -

2
S
0

wodd [J-
gawil]~
uafine -
dlil [~

- wbnyoid N -

ey Wentrabine sl Snlieie-Biiviniie Sebdt P

1
[T G —— N—— e - e— —— WY w FEAE WL R o R

sdiysiaquian dnoio
INIBBA00 108

_ SU0ISSIWLIad 18|ddy] — $d1uS13QLIBW 8N0IO 1Y ~ UONBWIOU] J8S @

h

ybail
yaBioad
yieqezie
91UISISIII0e

L

i

el Al S W e ey iy ey el sl kv el

02049
sueq
s$aiueyd =)
I01eNSIULPY aum
siesnN ¢
sdnoio 19sN 3—
sie|ddy [y
juawafieuew 8|yold i
puewag-up pooyoqybiaN ¢
SN o
18AI9SQBAA 00 SMOT -
dOHQ Jx@
SNQQ _:._.,.._
1$8)-buo. —w £)

“ die _ * suondo _ * pallsjes _ “08i]

B0 T, ISR J

o *8 '@ @ *8 @ @ °

sheiigel g inincnlels - ey el - P B - A P —

JUSWASCUR AT UONRINGIJUO) PUBUIY(] -U() JIOMFIN ULIPY

6,108,712

Sheet 22 of 22

Aug. 22, 2000

U.S. Patent

ve Ol
] |
yba:b ¢ . ﬂ
YOV e | BTWOISNOMNY ysficel ¢ .._.m
;
AjUQ sjaiddy padiuwiad MOYS h_ kLl ...‘ _
PU33||03 "I
‘ ' 0200 @ ...M _
» dl3 Huuad sueq g ..H m
euely adA] aanosay Jwiad seliey) @ L |
lewaq uo sabessapw w3 | _
ICleSIVIUIRY @ -4
1810|0%3 aseqeie juwuad &)a8 _ _
leyoiunen isjddy Huwiiad N 6
3Q-UQ pooyogybiaN pued
Anoe 4 eaes 11607 nuued

$S8338 138N AUBQ]

\\ $S533JB J8SN JlWia
oeve

iews uQ saliessap huued
1810]dx3 aseqgeleq Huwuad

oLt i ddy] torssiuuiog]

1snjejddy

413974 ‘
077 PUSeRod LS

A SUOISSIWIad131ddy (7] ﬁ sdiysiaquiay dnolo 8 ~ uonewuguiiesn @ | I+

18AI8SQEAA OO SNJCT] "

puewag-u0 poowsoqudieN -

S3N g

dOHO
SNQQ
188}-buol @..m

.em.. _.m__h_ " dioH _..wg_ao *.osg_om fﬁ»

JUIWdo :&.—d :O:ﬂ::gc:-vu ﬁ-:::ﬁﬁ—..:ﬁv ,/—._O..f:.vzaw

VAT
DPCLAL

6,103,712

1

CLIENT-SERVER SYSTEM WITH CENTRAL
APPLICATION MANAGEMENT AND
PROVIDING EXPORT AGENT CAPABILITY
FOR RETROFITTING EXISTING
HARDWARE AND APPLICATIONS INTO
THE SYSTEM

TECHNICAL FIELD

The invention relates generally to the fields of personal
computing and networking. Specifically, 1t relates to the new
and evolving field of network computing in which desktop
computer users use a personal computer, possibly diskless,
connected to a network such as a corporate intranet, the
Internet, or to an network or Internet Service Provider (ISP)
to gain access to applications which are then executed on the
desktop computer. More specifically, the invention relates to
server-based storage of software preferences (configuration
data) for software retrieved from a server and executing at
the desktop computer

BACKGROUND OF THE INVENTION

The field of network computers 1s presently 1n 1ts infancy.
However, 1t 1s expected to evolve rapidly, especially 1n the
corporate environment, for a number of reasons. The expec-
tation 1s that as companies and possibly individual users
reach hardware and software upgrade points, 1t will be more
cficient and less expensive to move to this new field, rather
than upgrade in the traditional way with disk equipped
computers and locally stored and administered software
applications. For example, 1n the corporate environment, a
user can be connected to a corporate intranet, using, for
example, the TCP/IP and HTTP protocols of the Internet,
and download software applications as they are needed
directly from a network server to the desktop computer. An
application 1s executed on the desktop in the traditional
manner by the user to perform useful work. An advantage of
this configuration 1s that network computers are substan-
tially less expensive than traditional disk equipped comput-
ers. It might also cost less to purchase the required number
of software licenses for users, rather than purchase indi-
vidual copies of software for each user. Certainly, the
software administration problems that attend large numbers
of corporate users will be substantially reduced. At the
present time, each user of a disk equipped computer or
workstation often 1s effectively his or her own system
administrator, a role that often consumes excessive
resources due to lack of expertise. It 1s expected to be a great
advantage to eliminate this problem by effectively offloading
the problem to a small number of server administration
experts, rather than having many users struggle with the
problems of software installation, upgrades and computer
admainistration.

As mentioned above, this vision of the future of personal
computing 1s presently 1n its infancy. As a result, there are
presently many problems and deficiencies with existing
systems.

Typically, in network computer systems, an administrator
creates user profiles that are stored on a network server. The
proiiles may contain different types of information, such as
user desktop preferences and user permissions for access to
different software applications that might reside on the
server. When a user logs onto the system, the user identifies
him or herself to the server, the server locates the profile for
the user and transmits 1t to the user computer where it 1s used
to configure the computer and generate a desktop. The
desktop might include a number of 1cons representing appli-

10

15

20

25

30

35

40

45

50

55

60

65

2

cations to which the user presumably has access. The profile
likely also contains other attributes of the computer and
desktop, such as for example, the background color of the
desktop, or character fonts and point sizes used on the
desktop, or data file search paths, etc. that are unique to the
user. The profiles may be user modifiable or non-modifiable.

In an environment 1n which users can modity their own
prodiles, a modified profile 1s uploaded back to the server at
log-off time, where 1t 1s stored for retrieval the next time the

user logs-on. In some prior art systems, to the best of our
knowledge, the users can generate on their desktops any
conflguration of application icons they wish, whether or not
they exist on the server, and whether or not a user actually
has access permission to an application on the server. The
Lotus Workplace Desktop (previously called Kona Desktop)
system 15 an example of this type of operation. In other
systems, the server presents a list to the user of all applica-
tions that the server has, from which the user can pick. In this
case, there 1s no guarantee that the user actually has access
permission to an application that 1s selected from the list for
inclusion on the desktop. The Sun Hot Java Views system 1s
an example of this type of system. In other words, the prior
art systems do not correlate between what the user can
configure for the set of desktop application icons and
applications to which the user actually has permission
access. In such a case, when the user clicks on a i1con to
execute an application, an error message may occur (such as
an unauthorized access message) if access permission is not
present, or In a worse case, the user’s computer may crash.

Another limitation with existing art 1s that a flat data
structure 1s used to model users, user groups, terminals and
oroups of terminals. Modeled after a common scheme for
managing user access to computer resources, known net-
work computer implementations (e.g., Lotus Administration
Facility for Desktops, Microsoit Windows NT Profiles and
Policies, and Sun Hot Java Views) implement a flat “groups™
structure on the server for managing software preferences
(or attributes) in various contexts. A “context”, as used here,
refers to an 1individual user, user group, terminal, or terminal
ogroup. Any grouping structure for managing software prei-
erences on the server allows an administrator to define
preference attributes for different groups of users as well as
for individual users. However, flat systems are inflexible in
many environments, especilally in environments having
large numbers of users. It 1s desirable to provide an admin-
istrative tool supporting the organization of preference infor-
mation 1nto a hierarchical structure.

Another limitation with existing systems 1s that they are
limited 1n the ways that administrators and users have to
perform user configuration of workstation desktops. For
example, administrators are presently required to configure
user preferences using configuration programs that are sepa-
rate from, but associated with, a user application. It is
desirable to allow vendors to provide only a single applica-
tion. To require only an end user application from a vendor
necessitates that the central management facility be able to
execute the end user application in a context of a user or user
oroup. The prior art does not allow this administrative
flexibility of operation. In other words, 1n the prior art, to the
best of our knowledge, an administrator does not have the
ability to run a user application in the context of a user to set
preferences for that user and application. Further, 1n the art,
an administrator cannot run a user application to set pref-
erences 1n the context of a group of users.

Still another limitation in the prior art known to the
inventors 1s the manner in which the prior art partitions
server permanent storage space to guarantee that a unique

6,103,712

3

space 1s reserved for storing user preferences related to the
different applications on the server. To the knowledge of the
inventors, the problem of preventing collisions 1n the storage
of preference information for different applications in
object-oriented systems, 1n which an object can be queried
for its fully qualified class name which uniquely 1dentifies
and differentiates it from other classes, 1s solved by having
a first central authority assign a unique designation that
applies to a vendor and by then having a second authority at
the vendor assign a second designation relative to the first
designation for each vendor application. For example, ven-
dor A might be assigned the designation vendorA by the first
authority and that designation 1s guaranteed to be unique
within the architecture for which the first authority is acting.
The second authority at vendor A then assigns the second
designation for each of its applications within that architec-
ture. For example, one of vendor A’s applications might be
designated-vendorA.Appl; another might be designated
vendorA.App2. The art maps the unique designation for
cach application 1 a system to a location in permanent
storage of the system to guarantee that preference data for
the different applications do not collide 1n storage. An
application, when running, informs the network computer
server of 1ts unique storage location and 1t 1s the responsi-
bility of the server to partition an area at the starting location
according to a context (user, user group, terminal or terminal
group) for storing preference information so as not to collide
with preference information 1n a different context. Clearly,
this manner of administering storage space 1s awkward and
undesirable. It 1s desirable to devise a method to automati-
cally generate unique storage locations for storing prefer-
ence 1nformation for the afore mentioned object-oriented
applications, without resorting to the requirement of having
central authorities assign unique designations for the pur-
pose ol preventing collisions 1n the storage of preference
information and without coding storage location information
into an application.

Still another limitation 1n the art lies 1n the lack of any
provision to migrate existing applications and hardware 1nto
the new environment of the centrally managed network
computing world without requiring changes to the existing
hardware and applications. Existing hardware, a terminal for
example, 1n a networked environment, gets 1ts configuration
information at boot-up time from a file 1n a specific format
located on a server. The terminal 1s programmed to know
how to access 1ts configuration file. The terminal uses a
unique 1dentifier to access the file from the server. The
unique identifier is often the media access control (MAC)
address of the terminal. However, in a new centrally man-
aged environment mvolving protocols and API’s that are
different from that to which the terminal 1s designed, the
terminal cannot access preference information in the new
environment, the terminal can only access 1ts configuration
file 1n the way for which it 1s designed. This 1s a serious
problem, because there are many such existing devices in
use. The 1nability to use them 1n new systems impedes
substantially the incentives for users to migrate to the new
systems.

Still another limitation i1n the prior art concerns the
interface between an administrator and the configuration
management system. When configuring software within an
administration facility to configure preference mformation
for various users and user groups, and terminals and terminal
groups, the administration software launches in the context
(user, user group, terminal or terminal group) set by the
Admuinistrator who 1s running the facility. When the Admin-
istrator changes the context that the application is running

10

15

20

25

30

35

40

45

50

55

60

65

4

under, the application needs to be relaunched to load con-
figuration information for the new context. The process of
relaunching software each time a context 1s changed 1s time
consuming and mmconvenient for an administrator, especially
in systems with many users. In such systems, 1t 1s expected
that an administrator will change contexts many times while
conilguring an application.

The system described herein provides a common reposi-
tory for configuration information for users and applets in a
client-server environment. This 1s referred to as client profile
management. The system allows users to roam, that 1s, to
log-1n from any computer in the system at any time and have
it configured automatically at run time according to the
preferences stored for the user at the server. The preferred
embodiment is a Java (Java 1s a Trademark of Sun, Inc.)
based system and the client computers use a web browser
interface arranged to execute Java applications. Thus, 1n the
preferred embodiment, user applets and the desktop applet
are assumed to be Java applets. However, it 1s not intended
to limit the invention to a Java environment. Preferences for
the locally stored applications might be stored locally 1 the
traditional manner, while preferences for the server-based
applets might be handled in the way described herein.

The invention provides a means whereby vendors of
existing hardware and soft ware can integrate the hardware
or software 1nto the environment of a centrally managed
network computing system, without having to retrofit the
hardware with new firmware or without having to redesign
the existing software. The system provides an export service
that allows a system administrator to generate configuration
files 1n the format that the existing hardware or software
expects and to store the files at the server 1n a way that the
existing hardware or software can access the files in the
manner for which 1t 1s designed. To take advantage of the
export service, a hardware vendor, for example a vendor of
an existing terminal, creates a special configuration appli-
cation and an export agent module. The special configura-
fion application 1s executed at a system admuinistrator station
and allows the administrator to create configuration infor-
mation for the hardware. The export agent module resides on
the server. When the vendor supplied configuration appli-
cation 1s executed by an administrator and a request 1s made
to save the configuration information generated by the
conflguration application on the server, the save call to the
server 1ncludes an export tag parameter that tells the server
to 1nvoke the specified export agent. The export agent takes
the configuration mformation from the configuration appli-
cation and modifies its format to that required by the
hardware. In addition, the context being configured 1s passed
to the export agent. The context includes information unique
to the particular instance of hardware that i1s being
coniligured, typically but not necessarily the media access
control address of the hardware, that provides information to
the export agent indicating where to store a file or files that
contain the modified configuration so that it does not collide
with similar information for other mstances of the hardware
and can be accessed directly by the piece of hardware from
the server 1n the way that 1t 1s designed to do. Existing
software applications can also be retrofitted 1nto the system
without redesign, 1f desired, in the same way.

In the preferred embodiment, the system comprising a
network which interconnects mterconnecting a server and a
plurality of user stations. The server stores a plurality of end
user applications for downloading to user stations and
further stores configuration preferences for the end user
applications 1n the context of different groups and subgroups
of users. A profile manager 1s provided at an administrators

6,103,712

S

station. The profile manager 1s arranged to execute a con-
figuration application for the non-native stations or
applications, whereby the administrator can specity configu-
ration preferences for non-native stations or applications 1n
the context of different groups and subgroups of system
users. An export agent corresponding to the configuration
application 1s also provided at the server. The export agent
1s invoked when a request 1s made by the profile manager to
store preference information on the server for the non-native
terminal or application. The export agent reformats the
preference mformation 1nto a format compatible with the
non-native terminal or application, and 1t stores the refor-
matted information in a location on the server which 1is
known to the non-native terminal or application for direct
access by the non-native terminal or application.

BRIEF DESCRIPTION OF THE DRAWING

In the Drawing,

FIG. 1 shows an 1llustrative network and user stations,
including an administrator’s station, 1n which the mvention
might be practiced;

FIG. 2 shows an illustrative block diagram form of the
administrator’s station 1in communication with a server, and
components of the administrator’s station and the server for
providing the central profile management and preference
administration;

FIG. 3 shows one 1llustrative hierarchical organization of
user groups and users of a system. The illustrative hierar-
chical organization might also contain imndividual terminals
and terminal groups; however, these are omitted for sim-
plicity;

FIG. 4 shows one 1llustrative listing of individual users
and the group priority order that 1s used to determine a set
of preferences from the hierarchical organization of FIG. 3
that apply to a user and a specific application executed by the
user;.

FIG. 5 shows a more detailed view of the administrator’s
station and server of FIG. 2;

FIG. 6 shows an 1illustrative view of the software objects
at a user’s terminal, including a user application and the API
between the application and other components, that coop-
crate to establish the user preferences during execution of
the application as the user’s terminal;

FIGS. 7 through 8 show 1illustrative operations at both a
user’s terminal and a server for user log-on and initially
cstablishing the user’s desktop, including desktop
preferences, at the user terminal;

FIGS. 9 through 11 show 1llustrative operations at both an
administrator’s terminal and a server for administrator user
log-on, establishment of the administrator’s desktop, and, by
way of example, the selection of an application and a context
for configuration; the example also 1llustrates a context
change during configuration the user’s desktop and the
resulting operations; and

FIGS. 12 through 24 show a variety of actual adminis-
frator screen snapshots 1 various phases of application
administration, including building of a hierarchy of which
FIG. 3 1s a representation of an example of, the creation and
deletion of users, etc. the establishment of application pret-
erences for applications, and context changes during prei-
erence establishment.

DETAILED DESCRIPTION

The system described herein provides a common reposi-
tory for configuration information for all users and applets in

10

15

20

25

30

35

40

45

50

55

60

65

6

a client-server environment. This 1s referred to as client
proille management. The system allows users to roam, that
1s, to log-1n from any computer 1n the system at any time and
have 1t configured automatically at run time according to the
preferences stored at the server. The preferred embodiment
is a Java (Java is a Trademark of Sun, Inc.) based system and
the client computers use a web browser interface arranged to
execute Java programs.

The terms “applet” and “servlet” are established terms 1n
the Java programming language art and will be used herein,
since the terms have meaning to those skilled in this art
“Applet” refers to an independent software module that runs
within a Java enabled web browser. Servlet refers to a
software module that resides on a Java enabled web server.
It 1s to be understood that the use of the terms “applet” and
“servlet” herein 1s not intended to limit the mnvention 1n any
way. For clarification, the phrase “configuration applet” 1s
used herein to refer to a software module used to configure
preferences for an end user software application such as a
word processor, a database manager, etc. Since software
applications are also “applets” 1in the Java environment, the
phrase “user applet” or just “applet” 1s used herein to refer
to an end user application.

In the preferred embodiment, user applets and the desktop
applet are assumed to be Java applets. However, 1t 1s
understood that the invention 1s not limited to a Java
environment. The invention can be used in any client-server
system. For example, if desired, the system could be
designed to use proprietary communication protocols and
applications written and compiled 1n any desired program-
ming language. Further, even 1n the preferred Java based
environment, disk-based computers might access some
applications locally, and other applets from the server.
Preferences for the locally stored applications might be
stored locally 1n the traditional manner, while preferences
for the server-based applets might be handled in the way
described herein. Preferably, however, preferences for
locally stored applications are stored on the server using the
Profile Management Properties API 1 addition to the pret-
erences for server based applets described herein.

A simple Application Program Interface (API) allows
applets written to the API to easily store and retrieve
preference data when the applet 1s executed by a user or
administrator. Applet permissions and user preferences can
be defined based on group memberships and individual
1dentity.

Client profile management includes the following ser-
VICES:

Log-on support—mapping to a user profile;

User support—the administrative ability to create user
identifications and provide services and preferences directly
to users,

User groups support—the administrative ability to create
hierarchical groups of users and to provide services and

preferences based on group memberships;

User applet context transparency—automatic determina-
tion of the context of user applet execution. That 1s, the
determination of the user and/or group profiles that apply to
a user applet execution and the automatic establishment of
the proiile environment;

User applet preferences repository—context-sensitive
server storage for user applet configuration data;

Dynamic user applet preferences i1nheritance—
hierarchical load-time coalescence of user applet prefer-
ences via the object-oriented principal of mheritance; and

6,103,712

7

User applet access control—control of user applet execu-
fion based on group default membership privileges. The
administrator can override default group privileges and
permit or deny additional access privileges for individual
USErs.

Profile management provides a framework through which
these tasks are performed. Some tasks are supported by
proflle management directly, €.g. user/group management,
applet lists, context switching, preference inheritance, etc.,
while configuration services specific to user applets are
usually supported by separate configuration applets invoked
by a system administrator within the client profile manage-
ment environment. Some end user applets might provide the
conilguration capability as part of the end user applet. If this
is the case, the administrator can run the end user applet (as
opposed to a separate configuration applet) in the context of
individual users and groups to set the configuration prefer-
ences for those users and groups.

FIG. 1 shows one high level view of an intended envi-
ronment for practicing the invention. A network 100 1is
provided for interconnecting a plurality of user stations,
such as desktop personal computers 102, mobile laptop
computers 104, workstations 106 (e.g., RISC computers), an
administrator’s station 108 and a server 110. In one
embodiment, network 100 might be a local area network. In
another embodiment, network 100 might include wide area
networking for entities such as corporations that have geo-
oraphically displaced sites that are still included within the
system. There 1s no mtent to limit the environment in which
the mvention might be practiced; indeed, a network of any
type that interconnects many types of stations 1s envisioned.

A high-level diagram of the profile management admin-
Istrative operating environment 1s shown i FIG. 2. An
administrator client network computer 200 1s represented on
the left of the Fig. and a server 202 for the system 1s on the
rigcht. The client and server communicate via a network
represented as 203. The particular example of FIG. 2
assumes that the client computer 1s a system administrator’s
computer.

Profile manager 206 on the client side allows the admin-
istrator to configure user applet preferences at both user and
ogroup levels. The administrator can create new users and
oroup hierarchies, add users to different groups, specily
applet permissions for each group and for individual users.
And the administrator can configure applets in the context of
an 1ndividual user or a group. The administrator can add,
delete and reset passwords for users. Profile management
support 1s transparent to the general user. The administrator
can mvoke the profile manager 206 1n the context of any user
or group. Only the administrator can change from his/her
context to administer clients (users) and groups. The server
will not allow a user without administrative authority to
switch context. When a request comes 1nto the server, 1t will
query the authenticated ID of the user trying to access this
function. If the user does not possess administrative
authority, (i.e., is not a member of the AllUsers.Adminis-
trator group), the Profile Manager Servlet 214 will reject the
request.

Profile manager 206 1nvokes other applets, such as
appletl (208), as shown in FIG. 2. In this example, appletl
might be the administrative applet for configuring prefer-
ences related to user desktops. Or appletl could be a
configuration utility related to an end user applet, such as
editors, word processors, databases, etc. It 1s preferred, but
not required, that configuration applets such as 208 exist as
modules separate from their corresponding user applets. In

10

15

20

25

30

35

40

45

50

55

60

65

3

the context of FIG. 2, Appletl 1s typically a configuration
applet for a user applet; the administrator runs the configu-
ration applet appletl under a group context to set group
preference and permission defaults, or in a user context to
customize user applet configurations for an individual. By
implementing appletl as a module separate from 1ts user
applet, performance 1s enhanced, since the configuration
appletl will likely be small compared to the user applet.
Also, separate configuration applets allow the administrator
to control the end users ability to configure the user applet.

Traditional stand-alone computers store user applet con-
figuration information locally in association with its the user
applet. Traditional stand-alone Java based computers store
user applet configuration information using the format pro-
vided by the java.util.Properties class. Both arrangements
require that the user applet specity the name of a local file
in which to store configuration information related to the
user applet. In other words, a relationship 1s required
between the computer and the user applet loaded on it.
Profile management as described herein provides the famil-
lar capabilities of a real java.util.Properties object plus
additional facilities supporting user-roaming capabilities
and scamless pluggability into a powerful admainistrative
framework (the Profile Manager).

ProfileManagementProperties P 210 1s a properties object
for appletl and provides an API between Appletl and the
server that allows the server to determine where to store
conflguration mmformation for appletl i1n the context of users
and groups. The ProfileManagementProperties object class
provides all of the functionality of the java.util.properties
class with the further ability to provide create, save, and
retrieve the configuration information for software from
permanent storage. Storing such information in a central
location makes management of user and group configura-
tions possible. When a user 1s 1n the role of administrator,
ProfileManagementProperties 210 allows the administrator
to configure the user applet corresponding to configuration
appletl, or to configure appletl if appletl 1s an end user
applet, and store the configuration information in the proper
place on the server in the proper context. This allows the
establishment of a relationship between the user applet and
the user, rather than between user applet and computer as in
traditional systems. ProfileManagementProperties 210 1s an
extension of the java.util.Properties class. The extension
allows the key/value pairs of preference information of a
Properties object to be associated with a key, as opposed to
a stream, as with java.util.Properties. This, 1n turn, allows
application developers to use the key to specily a unique
location relative to a context for preference information,
rather than a file name and path. ProfileManagementProp-
erties 210 determines the key automatically. The generation
of the key 1s discussed more 1n connection with FIGS. 8 and
9. By modeling ProfileManagementProperties 210 after the
java.util.Properties class, the system can take advantage of
preference 1nheritance through recursive class-default evalu-
ation. Thus, this extended class provides a “group default”
capability by accumulating preferences starting at a current
context, as discussed with respect to FIG. 3, and traversing
up the contextual hierarchy for defaults.

Server 202 includes a database 212 that stores user data
and group data, such as user and group preferences and user
applet access permissions. Webserver 218 represents a typi-
cal web server with support for Java applets. Profile Man-
ager servlet 214 maps user and group identifications to
preference data. It also maintains an access control list to
manage user access to applications on the server.

User and group preferences are stored as a tree hierarchy,
as shown 1n FIG. 3. All users of the system automatically

6,103,712

9

belong to the top group AllUsers. All users belong to the
AllUsers group; this group contains the default preferences
for some or all user applets on the server. In FIG. 3, 1t 1s
assumed that the server contains at least three user applets,

identified as App3, App4 and AppS. As indicated in the
AllUsers group, the default background (BG) for App3 is
BG=blue. Other 1llustrative preferences labeled as x, v and
z are shown to have the default values of 1, 2 and 3
respectively. The terms x, y and z are intended to represent
any desired preference and the values 1, 2 and 3 are arbitrary
and used merely to illustrate the point. The x preference
might for example be the screen font for the desktop; the
value x=1 might call for a default font of Times-Roman.
Similarly, the default preferences for App4 for all users are
BG=gray, x=2, y=2 and z=2..

The default values 1n the AllUsers group can be modified
in any desired way for other contexts, such as for other user
ogroups and 1ndividual users. By way of example, 1n addition
to the context of AllUsers mm FIG. 3, four other groups
(GroupX, GroupY, GroupY1l and GroupY2) are shown.
Additionally, two 1ndividuals Userl and UserN are shown.
Users can be members of more than one group. In FIG. 3,
Userl 1s a member of AllUsers, GroupX and GroupY1;
UsenN 1s a member of AllUsers and GroupY2. If a user 1s
a member of more than one group (another group in addition
to AllUsers), then the groups are prioritized for the purpose
of selecting the preferences for a given applet for that user.
The administrator configures the group priorities for a user.
Group priority 1s illustrated in FIG. 4. In FIG. 4, Userl has
GroupX (identified by the fully qualified name of AllUsers.
GroupX for his or her highest priority group. Userl’s next
highest priority oSroup 1S GroupYl
(AllUsers.GroupY.GroupY1). Userl’s lowest priority group
1s the AllUsers group. When a user, say Userl, requests to
run an applet say App3, the preferences are coalesced from
the tree of FIG. 3 according to the group or groups to which
the user belongs and the user applet 1s configured on the user
desktop accordingly.

The first step 1n coalescing preferences for any context 1s
to get the defaults. The defaults for a user, if there are any,
1s the coalesced set of preferences for the applet from the
highest priority group from which preference mformation
for the applet can be obtained. The defaults for a group, it
there are any, 1s the coalesced set of preferences for the
applet from the groups parent (1.e., The AllUsers group is the
parent of AllUsers.GroupX). If a group has no parent (i.e.,
the top level AllUsers group) , there are no defaults for that
ogroup. To coalesce the preferences for an applet at a context,
the preferences for the applet explicitly stored at the context,
overwrite the default preferences for the applet for the
context. Thus, to coalesce preferences into the default set for
an applet 1n a group context, recursive calls are made from
cach group node up to the AllUsers group requesting each
parents set of preferences for the applet. Please refer to FIG.
3 to Illustrate the following example. For example, it the
context 1s Allusers.GroupY.GroupY1, a call 1s made to the
parent of GroupY1, which 1s GroupY, requesting 1ts default
preferences for the applet. GroupY1 makes a recursive call
to 1ts parent, which 1s AllUsers. AllUsers has no parent, so
AllUsers returns it set of preferences for the applet to the call
from GroupY. This set of preferences 1s modified by the
preferences stored 1 GroupY for the applet, if any. This 1s
now the default set of preferences for the applet for the
context of GroupYl. This set of default preferences 1is
returned to GroupY1 as a result of the recursive call from
GroupY1 to GroupY, and are modified by the preferences at
GroupY1 for the applet, if any, to become the actual set of

10

15

20

25

30

35

40

45

50

55

60

65

10

preferences to be used 1n this instance. The set of preferences
for the context of a user 1s built in the same way, except that
the highest priority group from which preference informa-
fion can be obtained for the user 1s used to first establish the
group context from which the defaults will be obtained.
Then the recursive procedure described above 1s used to
build the actual set of preferences for the user and the applet
requested by the user.

The following examples 1llustrate the above preference
coalescence and should be read 1n conjunction with FIG. 3.

Example 1: An administrator runs a configuration applet
for App3d to set preferences for the group AllUsers.GroupX.

To set the preferences for App3d i1n the context of
Allusers.GroupX, the present set of preferences must be
determined. AllUsers.GroupX requests defaults for its par-
ent AllUsers. Since AllUsers 1s the top level group, it returns
its preferences for App3d to GroupX. These are the default

preferences for Appd in the context of GroupX. Since
GroupX has no preferences for App3, the default set from
Allusers 1s the real set of preferences to be used. In this
example, these preferences from the AllUsers group are :
BG=Blue, x=1, y=2, z=3. The administrator can now modily
use the configuration applet to modify the coalesced pret-
erences 1n any desired manner.

Example 2: Userl requests execution of com.ibm.AppJ3.
Preferences must be coalesced for com.ibm.App3d 1n the
context of Userl.

FIG. 4 shows that the highest priority group for Userl 1s
AllUsers.GroupX; this branch of the group hierarchy will be
checked first for preference information pertaining to App3.
From here on, the example i1s essentially the same as
example 1 above, except that the coalesced set of prefer-
ences 1s used to configure App3 on the user’s workstation.
The preferences for Appd for Userl are : BG=Green, x=1,
y=2, z=3 since the BG=Green preference stored in the
Userl’s context for Appd over rides the default BG=Blue
preference obtained from the AllUsers.GroupX branch of
the preference tree.

Example 3: Coalescing preferences for com.ibm.App6 1n
the context of Userl.

This example 1llustrates the situation of the highest pri-
ority group containing no coalesed preferences for the
context of Userl. Again, the highest priority group for Userl
1s GroupX. This group and 1ts parent AllUsers contain no
preferences for Appb6. Therefore, the next highest priority
ogroup 1S searched. The next highest priority group for Userl
1s GroupY1. A set of preferences can be obtained from this
ogroup for App6. The coalescence of preferences proceeds as
described 1in example 1. Recursive calls are made from
GroupY1 up the tree to the root AllUsers group and the
preference sets are returned back down the recursive calls
and modified along the way to form the default set. The
default set 1s then modified with the preferences stored in
GroupY1 to form the coalesced set of preferences that apply
to this context. Stated briefly, Allusers returns a null set of
preferences, since 1t has no preferences for App6. GroupY
modifies this null set with the values a=1 and b=2 and
returns this set to GroupY1 as the default set. GroupY1l
modifies the default set with a =33. This set 1s returned to the
Userl context for use as its default set. Since there are no
preferences for App6 stored at the Userl context, the
defaults obtamned from the GroupY1 branch of the prefer-
ence tree represent the fully coalesced set of preferences for
Appb. The real set of preferences thus becomes a=33, b=2
for this context.

The above 3 examples described the gathering of prefer-
ences In response to a load() for a particular piece of

6,103,712

11

software. When preference information 1s saved for a piece
of software, any preferences that have been explicitly writ-
ten at the Context being saved to will be written to the data
store (212) at the location specified by the combination of
the Context the software 1s being run 1n and the key for the
software whose preferences are being stored.

Permissions operate similarly: a new group has access to
all the applet names permitted by the group itself as well as
to all applets permitted by its supergroups. However, just as
Java allows the programmer to override a superclass
method, Profile Management allows the System Adminis-
trator the ability to override an inherited permission. This 1s
called overriding a permaission.

As with Java’s form of 1inheritance, Profile Management’s
form of preferences and permissions inheritance 1s called
single mheritance. Single inheritance means that each Pro-
file Management group can have only one supergroup
(although any given supergroup can have multiple
subgroups).

Profile Management users (leaf nodes) may require mem-
bership 1n multiple groups, so a facility i1s required to limit
preference inheritance to a single hierarchical group to
minimize the chance of corrupt configurations due to the
introduction of mcompatible variable subsets introduced by
cross group branch coalescing. By allowing a user’s group
memberships to be prioritized, profile management can
follow a search order when looking for preferences related
to a particular applet. In other words, starting with the group
with the highest priority, the search will stop at the first
oroup found to contain configuration data for the applet
attempting to load 1its preferences.

A user 1nherits software permissions from group mem-
berships. With careful enterprise modeling, the admainistra-
for can assign software access to many users without having
to navigate through panels, one user at a time. Profile
management controls access by programming the web
server to permit/deny access to applets. The web server
enforces the access control. The profile manager servlet 1s
also protected by the WebServer requiring user ID’s and
passwords to be passed to the webserver for authentication
purposes. It 1s standard browser functionality to prompt for
user passwords as required.

FIG. 5 shows the system of FIG. 2 m more detail.
Configuration applet Appletl 1s invoked by the administra-
tor within the profile management framework. Appletl may
implement the application program interface (API) 515 for
querying information about 1ts operational environment
(e.g., query context, context changed events, query access
control list for this context, etc.) to integrate tightly within
the profile management framework, but this 1s not a require-
ment for a configuration applet. In any event, the designer of
appletl need only understand the basic API methods:
enablePersistence(), load(), and save() in addition to the
basic methods of a java.util.Properties object used to get
preference information into and out of a java.util.Properties
object. API 515 additionally provides list() and
getContext() methods. Appletl need only register with the
ProfileManagementProperties class and call these methods
as appropriate. The load() method can be called to retrieve
the present state of preferences for the user applet being
coniigured in the context of a user or group selected by the
administrator The administrator can then modily the pref-
erences as desired and store them using the conifiguration
save functionality provided by the applet (which uses the
save() method of its ProfileManagementProperties object.
Similarly, if appletl needs the list of user applets authorized

10

15

20

25

30

35

40

45

50

55

60

65

12

for access by a user, it can use the list() method to obtain
the list from the server. The getContext() method can be
used by the applet to display the name of the context that 1t
1s running 1n or even to ensure that 1t only runs 1n a certain
context (i.e., if an applet wanted to configure a service on the
server using the export agent, 1t might only allow 1tself to be
run at the AllUsers context since the configuration being
exported 1s server specific as opposed to user specific. For
appletl to run 1n the profile management framework, all that
1s required 1s for the applet to register with ProfileManage-
mentProperties 410 and implement the ProfileManagement-
Properties class, an extension of the java.util.Properties

class.

The profile manager 506 also provides a context change
API 516 for configuration applets. Appletl may implement
a context change event listener 512. The API 516 and the
event listener 512 allows the administrator to change con-
texts (user or group) while running the configuration applet,
without having to stop and restart 1t. For example, when
configuring applet user preferences, the administrator will
likely change contexts many times during the configuration.
If the configuration applet 1s registered as a listener to such
events, profile manager 506 will notily it of a context change
via API 516. This allows appletl to refresh its preferences
from the server for each new context. Without the event
listener API, appletl would have to be terminated by the
administrator and restarted after a new context has been
selected to reference the existing preference information for
the new context and avoid being stopped and restarted by the
Profile Management applet. To register, appletl calls a
method on its properties object ProfileManagementProper-
ties 510 i.e., addContextChangeListener (API 516) to reg-
ister 1tself. When the administrator sets a new context,
profile manager 506 performs a set context call (API 516) to
object 510, which in response calls the reload method (API
516) on event listener 512. Event listener 512 now performs
a load properties call to its properties object 510 to get the
new preference data from the server for the new context, and
causes appletl to updates it GUI and internal variables to
reflect the new preference information.

The above functionality avoids the possibility of a net-
work administrator reading data from one context, changing
context, and accidentally overwriting with a save() when
intending to load() before making configuration changes in
the new context.

Applets that do not register as listeners will be stopped,
destroyed, reloaded, and restarted by the profile manager
applet when the administrator forces a context change.

The profile management also provides a “properties
export” service to allow the easy retrofitting of existing
hardware and software into this profile management envi-
ronment. The properties export service allows profile man-
ager 514 to support user workstations (the physical
hardware) as well as users, groups, and user applications.
Since existing workstations do not know about ProfileMan-
agementProperties 510, the export service allows worksta-
tion vendors to create workstation-configuration applets that
specifles an export agent 520 to be invoked on the server
when the vendor applet saves it preference mmformation. The
export tag causes an instance of a vendor-supplied class (the
export agent 520 object) to be created and the export method
to be mvoked on the object to specily that workstation
conilguration mmformation be saved in whatever proprictary
file format and/file location(s) that are required by the
workstation being configured.

Assume that appletl 1s the configuration applet provided
by a vendor for an existing terminal that 1s incompatible with

6,103,712

13

the present profile management system. The vendor also
supplies export agent 520. An administrator can configure
the terminal for operation 1n this system by running profile
manager 506, set the context to the terminal being
coniigured, runs the vendor supplied configuration appletl
and configures the applet. When the administrator saves the
conilguration, part of the mnformation that is transmitted to
the server 1s a unique 1dentifier that identifies the terminal
being configured. Typically, this 1s the Media Access Control
(MAC) address of the terminal. Profile manager servlet 514
detects that an export agent 1s speciiied on the save. Profile
manager servlet 514 detects this from one of the preferences
being saved that specifies need for the export agent. The
preference speciifies the export tag in the form of a key value
pair of

XXXXEXPORT_AGENTXXXX={fully qualified class name of
export agent |

The Export Agent’s export(Context context, config
properties) method is called by the profile manager servlet
514 to create one or more files 522 on the server from the
save prelerences mformation. The specific file or files are
identified by the unique 1dentifier of the terminal that came
with the properties information from appletl. When the
terminal later boots up, it uses 1ts unique identifier to locate
and retrieve 1ts configuration information from files 522 on
the server in the same manner that 1t always did, independent
of the profile management system.

FIG. 6 1llustrates an applet2 running on a client computer.
Applet2 might be an end-user applet such as a word pro-
cessor. In any event, applet2 has access to some of the the
same API methods as shown at 515 of FIG. § if it desires.
Applet2 uses the load method to retrieve preferences and the
save method to save any preferences that might be changed
by the end user. EnablePersistence initializes the Profile
Management Properties object for applet2 with context
equal to the user and generates the unique key for identifying
the preference mformation storage location on the server, as
described above relative to the admainistrator.

FIG. 7 shows the situation of a user bringing up his or her
desktop. The user on the client (700) points his or her web
browser at the URL of the desktop applet on the server and
at step 704 sends a message http://server/Desktop.html).
Since Desktop.html 1s a file that the server protects, a
challenge 1s sent back to the web browser on the client at
706. The web browser on the client responds by prompting
the user for a user ID and password. The client then sends
the user ID and password mformation to the server at 708.
The user ID and password are shown 1n bold at 708 of FIG.
3 to illustrate that this information i1s passed by the web
browser 1tself. This type of nomenclature 1s used 1n other
places to illustrate the same thing. Since, presumably, the
user has permission to run the desktop applet, the request
will be honored.

There are a series of interactions between the client and
the server (not shown) where the code for the desktop applet
1s loaded to the client from the server. The desktop object 1s
created and begins to execute at 712. The desktop object
needs its preference information (i.e., configuration
information) so it can tailor the desktop for the end user who
1s 1nvoking it. To this end, as part of the desktop object’s
initialization process, the desktop creates a ProfileManage-
mentProperties object P at 714, which 1s used to load,, get,
cache, set, and save a copy of the user’s preference infor-
mation from the server for the desktop applet. The desktop
object then performs an API call P.enablePersistence

(desktopObject (applet)) at 716, which, at step 1) of 716,

10

15

20

25

30

35

40

45

50

55

60

65

14

initializes the ProfileManagementProperties object P with
the URL of the profile manager servlet 214. This URL 1s
derived from the URL of the desktop applet that was loaded
from the server previously. The ProfileManagementProper-
ties object P sends a request 718 to the proifile manager
servlet 214 to get the context for the user running the
desktop applet. In this case, the context consists of two
components, a context name which is the ID of the user, and
a context type which in this case i1s User. The profile
manager servlet gets the ID of the user from the request 718
and returns the user context at 719. At step 2 of 716, the
ProfileManagementProperties object P 1s initialized with the
context of the user running the desktop. At step 3 of 716, the
ProfileManagemenProperties object P generates a unique
key for the desktop software by asking the Java desktop
object P for 1ts fully qualified class name. All Java objects
know their class name. This unique key 1s combined with the
user’s context information to provide a parameter that
specifles a unique location 1n the database 212 for storing the
user specific preference mformation for the desktop applet.
Any desired method can be used for mapping the string
consisting of the fully qualified class name and the user
context information into the data store location. Next, a
request 720 1s sent to the profile manager servlet 214 to get
the preference information, tailored for the user, for the
Desktop applet. The context and key are passed as part of the
request 720 to 1dentity the requested preference information.
The profile manager servlet 214 responds with the requested
preference 1nformation at 722, which 1s cached in the
ProfileManagementProperties object P 604.

Continuing on at FIG. 8, at 800 the Desktop object reads
it’s preference information out of its ProfileManagement-
Properties object P, and begins to update the desktop accord-
ingly (i.e., it might set the screen color to blue, get infor-
mation about the position of icons, etc.). The desktop object
calls a method on its ProfileManagementProperties object P
to get a list of the software to which the user has access
permission. The ProfileManagmentProperties object P
requests the mnformation at 802 from the profile manager
servliet 214, which generates a response with the requested
information at 804. For each such applet to which the user
has access, the information includes a user friendly name,
the applet’s URL, the URL of an icon for the applet, etc.
(information that is required for the desktop to represent the
applet on the desktop and to load and launch it). and other
optional material which 1s not relevant to the invention. This
information 1s stored in the ProfileManagmentProperties
object P, and returned to the desktop object. At 806, the
desktop object uses the applet information to build a folder
for the applets and to generate a window displaying the 1cons
and the user friendly name for each applet to which the user
has access.

Assume that 1 a previous run of the desktop by the user,
the user dragged and dropped the icons for some of the
software displayed 1n the folder that was just described. It 1s
possible that at this time the user no longer has access to the
applets that were dragged and dropped from the folder to the
desktop. However, these desktop objects normally would be
a part of the users preferences that were saved during the last
run and would still be displayed on the desktop . To avoid
this situation, the desktop examines its preferences from 1t’s
ProfileManagmentProperties object P to check for applets
that are configured to appear outside of the window that 1s
generated to display all applets to which the user has access.
FIG. 8 assumes that there 1s only one applet outside of the
applet window that 1s generated. If there were more than one
such applet outside of the applet window, the following

6,103,712

15

procedure would be looped for each such applet. At step 810
the desktop checks each of these applets appearing outside
of the applet window against the list of applets from the
server to which the user has access. If the applet appears 1n
the list, the 1con for the applet 1s placed on the desktop at 810
in the same position as before. If the user no longer has
access to the applet, the applet 1s removed from the desk-
top’s preferences at step 814 and removed from the Profile-
ManagmentProperties object P. If any applets are removed
as part of this process, the desktop tells the ProfileManag-
mentProperties object P to save the preferences at step 816.
The ProfileManagmentProperties object P sends a request
818 with the preference, key, and context information to the
proflle manager servlet 214 to save the new preferences
information 1n the Database 212. The server sends a
response 820 to the ProfileManagmentProperties object P
informing the ProfileManagmentProperties object P that the
request was successiully completed.

FIG. 9 illustrates the situation of an administrator running,
a configuration applet to configure preferences for an applet
for other users or groups of users. It 1s understood that the
principles discussed here also apply generally to the con-
figuration of terminals or groups of terminals. The admin-
istrator on the client 900 points his or her web browser to the
URL of the profile manager applet 214 on the server, which
1s to be run. The URL 1s sent to the server at 904. Since
ProfileManager.html 1s a file that the server protects, a
challenge 906 1s sent back to the web browser on the client.
The web browser responds by prompting the administrator
for a user ID and password. The request to get ProfileMan-
ager.html 1s then repeated at 908 to the server with the user
ID and password information included 1n the message. Since
presumably the administrator has permission to run the
proille manager, the request 1s honored and a profile man-
ager applet 1s downloaded to the administrators terminal at
910. There are a series of interactions between the client and
the server (not shown) where the code for the profile
manager applet 1s loaded to the client from the server. The
proiile manager object 1s created and begins to execute at
step 912.

A ProfileManagementProperties__nonContextFloating 1s
used by the profile manager instead of a normal ProfileM-
anagementProperties object.. It has the same behavior as a
ProfileManagementProperties object with one exception:
when preferences are loaded and saved, they are loaded and
saved to and from the context of the administrator who 1s
running the profile manager, as opposed to loading and
saving to and from the context (i.e., user or user group) for
which the administrator 1s configuring.

The profile manager object needs its preference informa-
tion (1.e., configuration information) so it can tailor the
proiile manager for the administrator 1s mnvoking 1t. To this
end, as part of the profile manager object’s 1nitialization
process, the profile manager <creates a
ProfileManagementProperties_ nonContextFloating object
P_ NCF at step 914, which 1s used to load, get, cache, set,
and save a copy of the administrator’s preference informa-
fion from the server for the profile manager applet. The
proiile manager object then calls P_ NCF.enablePersistence
(profileManagerObject (applet)), which in step 1 of 916
initializes the ProfileManagementProperties_
nonContextFloating object P_ NCF with the URL of the
proiile manager servlet 214. This URL 1s derived from the
URL of the profile manager applet. The
ProfileManagementProperties_ nonContextFloating object
P_ NCF sends a request 918 to the profile manager servlet
214 to get the context name (ID) of the administrator and the

10

15

20

25

30

35

40

45

50

55

60

65

16

context type (USER). The profile manager servlet gets the
ID of the administrator from the request (918). The web
browser passes the administrator ID and password 1n the
message along with the information sent by the
ProfileManagementProperties_ nonContextFloating object
P__NCF. The ProfileManagementProperties__
nonContextFloating object P_ NCF 1s 1nitialized with the
context of the administrator running the applet at step 2 of
916. At step 3 of 916, the ProfileManagementProperties_
nonContextFloating object P_ NCF generates a unique key
for the profile manager applet by asking the Java profileM-
anagerObject object (passed as a parameter in the enableP-
ersistence call) for its fully qualified class name (i.e.,
profileManagerObject.getClass().getName(). This unique
key, combined with the administrator’s context information,
1s mapped to specily a unique location 1n the database 212
for the administrator’s speciiic preference information for
the profile manager applet.

A request (922) is sent to the profile manager servlet 214
to get the preference information tailored for the profile
manager applet as configured for the administrator. The
request (922) includes the appropriate context name and
type and key imnformation to identify the appropriate prefer-
ence mformation. The profile manager servlet 214 responds
with the requested preference information (924), which is
cached 1n the ProfileManagementProperties__
nonContextFloating object P_ NCF. The profile manager
reads 1ts preference 1nformation out of the
ProfileManagementProperties_ nonContextFloating and
updates itself accordingly (i.e., sets its background color to
blue for example).

Operation continues at FIG. 10. The profile manager
requests the information about existing users, user groups,
and software from the profile manager servlet 214 and builds
the tree 1n the left panel of the profile managers configura-
tion window at 1002. See FIGS. 13 through 24 for examples
of the administrator’s left panel. At this point 1004, the
administrator selects a desired context for configuring by
clicking on a user or group from the left panel tree. The
proille manager sets the context for ProfileManagement-
Properties objects by calling P_ NCF.setContext(selected
context). See FIG. 13 for a selected context of “User
Groups”, which refers to the group of all system users, or to
FIG. 18, where a group context of “Development” 1is
selected, or to FIG. 21 where a user context “colleend” 1s
selected. Next, at step 1006, the administrator selects an
applet to be configured from a list of all the applets on the
server. See FIG. 17 for an example of selecting an applet. At
step 1008, the administrator then clicks a Run/Customize
button to run the applet selected for configuration. This
applet might be a separate configuration applet for an end
user applet, or it might be the end user applet itself. The
selected applet 1s requested and loaded from the Server at
1009 and 1011. At step 1010, the configuration applet object
1s created and begins to execute and to generate its Profile-
ManagementProperties object P.

If 1t 1s assumed that the applet 1s a separate configuration
applet for an end user applet, then at step 1012, the applet
calls p.enablePersistence(configAppletObject,
fullyQualifiedClassNameOfAppletBeingConfigured). On
the other hand, if the applet 1s a user applet, rather than a
separate configuration applet, the call would be
p.enablePersistence(endUserAppletObject) since it wants to
conilgure its own preference mmformation as opposed to the
preference miormation for another applet. The current Con-
text 1s already known by the ProfileManagementProperties
object P since it was previously set by the administrator via

6,103,712

17

the administrator’s ProfileManagementProperties__
nonContextFloating object PM__NCF. The location of the
proiile manager servlet 214 was previously generated when
enablePersistence was called on the Profile Managers
ProfileManagementProperties_ nonContextFloating object
PM_ NCF. In the case of a configuration applet, the unique
key for the applet does not need to be generated because it
1s passed by the configuration applet to the ProfileManage-
mentProperties object P 1n the enablepersistence call.

At step 1014, the configuration applet registers itself with
its ProfileManagementProperties object P as a context
change listener. As discussed earlier, this allows the applet’s
ProfileManagentProperties object P to notify the applet it the
administrator makes a context change so that the applet can
load the preference information for the new context and
update its Graphical User Interface to reflect the new con-
figuration information, without requiring that the applet be
terminated and relaunched 1n the new context.

Operation continues at FIG. 11. At step 1104, the con-
figuration applet tells the ProfileManagementProperties
object P to load the preferences from the current context for
the applet being configured. A request 1105 1s sent to the
profile manager servlet 214 to get the preference
information, tailored for the context previously selected by
the administrator, for the applet being configured. The
request 1105 includes the appropriate context name (the
context the administrator has selected) and the context type
(USER, USER__GROUP, or ALL_USERS_GROUP as
appropriate) and key information to specify the location of
the appropriate preference information. The profile manager
servlet 214 responds with the requested preference informa-
fion at 1106, which 1s cached in the ProfileManagement-
Properties object P. The configuration applet gets prefer-
ences from the ProfileManagementProperties object P and
updates 1ts Graphical User Interface accordingly.

The administrator configures the applet at 1107 and saves
the modified preferences, for example by clicking a SAVE
button provided by the applet. As a result of this operation,
the configuration applet calls the save() method on its
ProfileManagementProperties object p. The ProfileManage-
mentProperties object P sends the preferences and the
unique key for the applet being configured and the infor-
mation specifying the current context to the profile manager
servliet 214. The proifile manager servlet stores the prefer-
ence mformation 1n the database 212 1n the location speci-
fied by the Context and the key.

Step 1108 1s an example of the administrator now chang-
ing context, while the configuration applet 1s still running.
The administrator selects a new context by clicking on a user
or user group (see FIG. 18 for examples of new contexts in
the administrators left screen panel). As a result of the
context change, profile manager 506 sends a set context
message to ProfileMangementProperties object P (510) by
calling P_ NCF.setContext(selected NEW context), which
in turn causes object P to notily event listener 512 of the
context change via the reload properties APl 515. This
occurs at step 1110. At step 1112, the event listener 512
performs a load() call to retrieve the preferences for the new
context and the object P 1s updated with the new preferences
at step 1118. The administrator can now proceed to modify
the new preferences for the new context, if desired, and to
save them 1f required, and then to proceed on with a new
context change 1f necessary as described above.

The remaining FIGS. 12 through 24 show actual screen
snapshots of an administrator’s workstation while running
portions of the profile manager 206.

The main configuration window 1200 is shown 1 FIG.
12. The tree view panel 1202 on the left of the window

10

15

20

25

30

35

40

45

50

55

60

65

138

depicts profile management 1204 as one of several services
available on the server. When this item 1204 1s selected as
shown 1n FIG. 12, the right panel 1205 of the main window
displays a welcome message for the profile management
service. Expand and contract icons such as 1208 are used to
control the appearance of sub-1tems under an item 1n the left
panel, if any exist. The “+” 1n 1208 1s called an “expand
icon” and indicates that there are sub-i1tems beneath “Profile
management”. The administrator can display these sub-
items by clicking on the expand 1con 1208, which will then
become a “contract icon” (“=").

FIG. 13 1llustrates an expansion of the Profile manage-
ment item 1208 1n FIG. 12, which results 1n the display of
three default sub-items 1n FIG. 13— Applets” 1300, “User
Groups” 1302 and “Users” 1304. Expansion icons indicate
that these items can also be expanded. “Applets”™ 1300
allows the administrator to define the user applets available
on server 202, “User groups” 1302 allows the administrator
to create and populate the user group tree of FIG. 3 and to
set group preferences. “Users” 1304 allows the administra-
tor to create new users and to set their preferences or to
change preferences for existing users. In the example of
FIG. 13 “Applets” 1300 1s selected. When this item 1s
selected, panel 1305 on the right of the window displays a
list 1306 of user applets that have already been defined to the
system. Attributes of the application that 1s selected 1n 1306
are shown at 1308. The administrator defines a new applet
by selecting <NEW> 1n 1306 and entering the name and
location 1information requested 1n 1308. An existing applet
“Database Explorer” 1s shown selected 1n 1306. At 1308, the
“Applet name” field displays this applet name. The “URL”
(Universal Resource Locator) field displays the Intranet or
Internet web address of this applet on server 202. The field
“Complete path of html file” displays the directory path and
file name of the applet 1n the disk directory structure of
server 202. The field “Fully qualified class name” displays
the fully qualified class name of the applet. The field “Icon
URL” displays a web address of the image file used to
ogenerate an 1con for the applet on a users desktop. The
remaining fields are for optional information that may be
required by the software upon invocation. A command
button 1310, “Import Applet List from File”, allows the
administrator to append definitions of applets to the existing,
list 1306 from an existing text file. When button 1310 is
clicked, the window shown in FIG. 14 pops-up and allows
the administrator to enter the path and file name of the text
f1le containing the applet definitions to be appended. To save
all pending changes, the administrator clicks on File 1312
and then Save (not shown).

In the left panel, the User Groups item 1302 corresponds
to the AllUsers group of FIG. 3 (“User Groups™ and “AllUs-
ers” are used interchangeably herein). FIG. 15 shows the
richt panel of the administrators station when the “User
Groups” item 1302 1s selected. In FIG. 15, a notebook panel
1s displayed on the right that contains three tabs—a Mem-
bers tab 1514, a Subgroups tab 1516 and an Applet Permis-
sions tab 1518. The Members tab 1s selected 1n FIG. 15. The
Members panel contains a list 1520 of the log-on 1dentifi-
cations of all members that have been defined to the system.
To create a new user (who will automatically gain member-
ship 1nto the presently selected group context—*“User
Group”), the administrator selects <NEW> from the list
1520, enters the appropriate information in the entry fields
1522 to the right of the list, and then clicks on the Create
button 1522. When an existing member 1s selected from the
list 1520, the attributes previously saved for that user are
displayed at 1522. These attributes include the full name of

6,103,712

19

the selected member, the member’s system ID, password
and any desired comments. The attributes, except ID, may
be edited and the changes committed (but not Saved) by
clicking the Modity button 1524, or the user may be
removed from the system entirely by clicking the Delete
button 1526. Any pending change may be removed by

selecting the entry in the list 1520 and clicking the Undo
button 1528.

FIG. 16 shows the administrator’s right panel that 1s
displayed when the Subgroups tab 1516 1s selected. Sub-
group list 1620 shows existing groups that are subgroups of
the 1tem selected 1n the left panel, which 1s “User Group™ in
this example. Therefore, list 1620 displays all immediate
subgroups of the “AllUsers” group. In the left panel, “User
Groups” 1s expanded. The subgroups shown 1n list 1620 are
also the expanded items under “User Groups” 1n left panel.
In list 1620, a status field shows the present status of each
subgroup, such as “! delete”, “! Modity”, and “! Create”. An
empty Status field 1n list 1620 indicates that the subgroup
exists and no actions are pending to be saved. The “!”
symbol indicates that the status is pending (not yet saved).
Attributes for the subgroup selected 1n list 1620 appear in
1622. These attributes include the subgroup name and
desired comments about the subgroup. To create a new
subgroup, the administrator selects <NEW> from list 1620,
enters the subgroup name and desired comments in 1622,
and clicks the Create button 1628. An entry of “! create
<subgroup name>" then appears 1n list 1620 as a pending
action. To save all pending changes, the administrator clicks
the File button in the top menu bar and then Save (not
shown).

FIG. 17 shows the right panel that 1s displayed when the
Applet Permissions tab 1518 1s selected. List 1720 shows all
names of all applets that have been defined to the system and
the permission status (permit or deny access) that is assigned
to each applet for the group or subgroup (the current
“context”) that is selected in the left panel. As with other
notebook pages described, an exclamation point indicates
that the status depicted 1s a change that 1s pending a Save.
In FIG. 17, the group “User Groups” 1s selected in the tree
shown 1n the left panel, which corresponds to the “AllUsers”
group shown 1n FIG. 3. Since all users of the system have
membership 1n the “User Groups™ group, list 1720 shows the
oglobal default permissions for all system users for each
applet defined to the system. For example, the default
permission status for applet “Database Explorer” 1s “permit”
(meaning access 1s permitted) for the “AllUsers” group;
similarly, the default permission status for all users to applet
TFTP is “deny” (access i1s denied). The administrator can
change the permission status of an applet by selecting it 1n
list 1720 and clicking the “Permit group access” button 1730
or the “Deny group access” button 1732. Furthermore,
regardless of an applet’s permission status for the selected
context, an administrator can select an applet from 1720 and
click the “Run/Customize” button 1734 to execute the user
applet under the selected context. The panel region previ-
ously showing the notebook for the current context then
becomes occupied by the executing user applet. If the user
applet happens to be a configuration applet for other
software, the administrator can then save software prefer-
ences (through the configuration applets unique facilities
provided for this function) which will then be saved as the
software’s default preferences for the selected context. If the
applet 1s an end user applet, the functions are the same,
except the end user applet loads and saves 1t own preferences
rather than preferences for a separate piece of solftware.

FIG. 18 shows the complete expansion of the adminis-
trators left panel subgroup tree beneath “User Groups™.

10

15

20

25

30

35

40

45

50

55

60

65

20

Immediately beneath “User Groups”, there are two sub-
ogroups “Administrators”, a default subgroup that cannot be
removed, and “IBM”, a subgroup defined by the admainis-
trator. The “IBM” subgroup has also been expanded and
contains three subgroups “Hardware”, “Services” and “Soft-
ware”. The “Software” subgroup has been expanded and
contains at least one subgroup called “Development”. The
“Development” subgroup contains at least one subgroup
called NCoD. Subgroup “NCoD” contains a number of
subgroups, such as ConfigFW 358, which have no children.
Also 1n this example, subgroup “Development” 1s selected
in the expansion tree. Since “Development” 1s not at the top
of the tree hierarchy (the “All Users” group), the notebook
shown 1n the right panel 1s somewhat different from that of
FIG. 15 when “User Groups” was selected, because all users
are not automatically a member of “Development”, as they
arec of “User Groups”. The list 1820 displays the log-on
system IDs of all system members. The status beside each
user ID 1n list 1820 shows whether the user owns a mem-
bership in the “Development” subgroup. A status of “yes”
indicates that the user 1s a member of the “Development”
subgroup, “no” indicates that the user 1s not a member of the
“Development” subgroup, and “inherited” indicates that the
user mherits membership within the “Development™ group
by belonging to at least one of Development’s subgroups
further down the tree. A user’s membership status for a
subgroup 1s modified by the administrator by selecting the
user 1n list 1820 and then clicking on the “Add to Group”
button 1836 or “Remove from group” button 1838. If the
administrator wishes to create a new system user, or modify
or delete an existing member, the administrator clicks on the
“Create/Modify/Delete Users” button button 1840. This
action brings up the notebook page shown 1n FIG. 19. The
right panel of FIG. 19 1s similar to that of FIG. 15 and allows
the administrator to create a new system user by selecting
NEW 1n list 1920 and then clicking the “Create” button.
Similarly, the administrator can modify or delete an existing
system user by selecting the appropriate user 1n list 1920 and
clicking the appropriate button “Modify” or “Delete”. Users
created at any subgroup context (e.g., “Development™) not
only gain the required membership 1n “User Groups”, but
are automatically made members of the selected subgroup.
Changes to the system user list are saved by clicking on
“File” 1n the top menu bar of the right panel and then
clicking “Save” (not shown).

FIG. 20 shows a direct way to get to the system user list
for editing, rather than through the group and subgroup route
shown 1 FIG. 19. To get to FIG. 20, the administrator
selects “Users” 1304 1n the left panel of FIG. 13, for
example. Then in the right panel shown 1n FIG. 20, the
administrator can create new users and modify and delete
existing users, as already discussed., without being in the
context of a group or subgroup.

In FIG. 21, the administrator wishes to work directly on
information corresponding to a user whose ID 1s “colleend”.
To do this the administrator expands “Users” 1n the left panel
of FIG. 21, for example, and then selects “colleend”, as
shown. The right panel then appears, which 1s devoted to
colleend’s system information. The right panel contains
three tabs. The first tab “User Information” 1s selected by
default. In this tab, the administrator can modily the name,
ID, password and comments pertaining to colleend.

FIG. 22 shows the right panel when the administrator
selects the second tab “Group Memberships”. List 2220
shows all subgroups of which colleend 1s a member. The
subgroups are shown 1n this list in the order of subgroup
priority for colleend. The administrator can change col-

6,103,712

21

leend’s subgroup priority by selecting a subgroup and using
the up and down arrows to the right of list 2220 to move the
selected subgroup up or down the list as desired. If the
administrator clicks the “Add/Remode Group Member-
ships” button 2242 i FIG. 22, the right panel then shows the
contents of FIG. 23. The FIG. 23 right panel allows the
administrator to modily the subgroups of which colleend 1s
a member. The administrator does this by clicking on an
appropriate box corresponding to a desired subgroup. If the
box is clear (meaning that colleend i1s not presently a
member), then a check mark is added to the box to include
colleend 1n the subgroup. Conversely, 1f a subgroup box 1s
already checked, then clicking on the box clears the check
mark and removes colleend from the subgroup.

FIG. 24 shows the right panel when the Applet Permis-
sions tab of FIG. 22 1s selected by the administrator. In this
right panel, list 2420 displays all applets that are defined 1n
the system. The administrator can permit access by colleend
to an applet by selecting the applet 1 list 2420 and then
clicking the “Permit user access” button 2430; or access can
be denied to colleend by clicking the “Deny user access
button” 2432. The administrator can also launch an applet in
the context of colleend by clicking the “Run/Customize”
button 2434. When this 1s done, the applet selected 1n list
2420 1s launched 1n the right panel. The administrator can
then modify any preferences that the applet allows and save
the preferences 1n the manner provided by the applet. A
typical scenario here 1s for the administrator to launch a
configuration applet then to fill in a variety of preference
fields. However, 1f a separate configuration is not provided
for a user applet, the administrator can launch the user applet
in the context of a user and set preferences from the user
applet. A typical scenario here i1s for the administrator to
select a group or user context and then to launch the user
applet as described above. The administrator can then typi-
cally modily preferences from an options menu and save
them 1 any manner provided by the user applet. For
example, typically, the user preferences are saved when the
options dialogue 1s closed, or the user applet may provide
other methods of saving the preferences. In any event, since
the administrator 1s running the applet in the context of
colleend 1n this example, the preferences set up by the
administrator through the user applet are saved on the server
as 1f colleend had entered them directly herseltf by running
the applet.

Not shown 1n the figures 1s a scenario whereby a user can
modily some preferences that pertain to a user applet. For
example, a user applet may allow a user to select a window
background color or fonts and font sizes, so that each system
user can 1ndividualize the applet to some extent when the
user applet executes on the users desktop. In this case, the
user modified preferences are saved in the same way as they
are when the administrator runs the user applet. One
difference, however, 1s that the administrator can run user
applets to set preferences 1n group contexts, whereas users
can only affect preferences for their individual context.

It 1s to be understood that the above described arrange-
ments are merely 1llustrative of the application of principles
of the 1nvention and that other arrangements may be devised
by workers skilled 1n the art without departing from the spirit
and scope of the mvention.

We claim:

1. In a network system comprising a network intercon-
necting a server and a plurality of user stations, wherein the
server stores a plurality of end user applications for down-
loading to user stations and further stores configuration
preferences for the end user applications or stations, a

10

15

20

25

30

35

40

45

50

55

60

65

22

method of retrofitting non-native stations or non-native
applications 1nto the system for central management, said
method comprising

providing a profile manager at an administrators station,

arranging the profile manager to execute a configuration
application for the non-native stations or applications,
whereby the administrator can specily configuration
preferences for non-native stations or applications in
the context of different groups of system users,

providing an export agent at the server corresponding to
the configuration application,

invoking the export agent when a request 1s made by the
proiile manager to store preference information on the
server for the non-native station or application,

reformatting the preference information by the export
agent 1nto a format compatible with the non-native
station or application, and

storing the reformatted information 1n a location on the
server known to the non-native station or application
for direct access by the non-native station or applica-
tion.

2. For use 1n a network system comprising a network
interconnecting a server and a plurality of user stations,
wherein the server stores a plurality of end user applications
for downloading to user stations and further stores configu-
ration preferences for the end user applications or stations,
apparatus for retrofitting non-native stations or non-native
applications into the system for central management, said
method comprising

a profile manager at an administrators station,

means for arranging the profile manager to execute a
conflguration application for the non-native stations or
applications, whereby the administrator can specily
conflguration preferences for non-native stations or
applications 1n the context of different groups of system
USETS,

an export agent at the server corresponding to the con-
figuration application,

means for mmvoking the export agent when a request 1s
made by the profile manager to store preference infor-
mation on the server for the non-native station or
application,

means for reformatting the preference information by the

export agent 1mto a format compatible with the non-
native station or application, and

means for storing the reformatted information in a loca-
tion on the server known to the non-native station or
application for direct access by the non-native station
or application.

3. A program product for retrofitting non-native user
stations or non-native applications into a networked system,
said system further comprising a network server for storing
proiile mmformation for stations or applications, said product
comprising a storage medium for storing program instruc-
tions executable by the server, said product further compris-
Ing,

a first code segment for implementing a profile manager

at an administrators station,

a second code segment for arranging the profile manager
to execute a configuration application for the non-
native stations or applications,

a third code segment for providing an export agent at the
server corresponding to the configuration application,

a fourth code segment for invoking the export agent when
a request 15 made by the profile manager to store

6,103,712

23

preference mnformation on the server for the non-native
station or application,

a fifth code segment for reformatting the preference
information by the export agent into a format compat-
ible with the non-native station or application, and

a sixth code segment for storing the reformatted informa-
tion 1n a location on the server known to the non-native
station or application for direct access by the non-
native terminal or application.

4. A computer data signal embodied 1n a carrier wave
comprising computer nstructions for retrofitting non-native
user stations or non-native applications 1nto a networked
system, said system further comprising a network server for
storing profile information for stations or applications and
for executing said instructions, said computer instructions
further comprising

a first code segment for implementing a profile manager
at an administrators station,

10

15

24

a second code segment for arranging the profile manager

to

execute a configuration application for the non-

native stations or applications,

a third code segment for providing an export agent at the
server corresponding to the configuration application,

a fourth code segment for invoking the export agent when

d

request 1s made by the profile manager to store

preference information on the server for the non-native
station or application,

a fifth code segment for reformatting the preference

111

1b.

'ormation by the export agent 1into a format compat-
e with the non-native terminal or application, and

a sixth code segment for storing the reformatted informa-
tion 1n a location on the server known to the non-native
station or application for direct access by the non-

Nna

tive station or application.

	Front Page
	Drawings
	Specification
	Claims

