United States Patent

Colwell et al.

[19]

(11

]

[45]

Patent Number:
Date of Patent:

USO006101597A

6,101,597
Aug. 8, 2000

[54] METHOD AND APPARATUS FOR
MAXIMUM THROUGHPUT SCHEDULING
OF DEPENDENT OPERATIONS IN A
PIPELINED PROCESSOR
|75] Inventors: Robert P. Colwell, Portland; Michael
A. Fetterman, Hillsboro; Glenn J.
Hinton, Portland; Robert W. Martell,
Hillsboro; David B. Papworth,
Beaverton, all of Oreg.
| 73] Assignee: Intel Corporation, Santa Clara, Calif.
[21] Appl. No.: 08/176,370
22| Filed: Dec. 30, 1993
51] Int. CL7 s GO6F 9/30
S52] US.CLo e, 712/218
58] Field of Searchccooceveein 395/800, 375;
7127218
[56] References Cited
U.S. PATENT DOCUMENTS
4,736,288 4/1988 Shintani et al. ..ccoevvvvvveennnnn.n. 395/375
4,752,873 6/1988 Shonai et al. ...ccoeevvvvvvvernnnnnn.n. 395/800
5,136,697 8/1992 Johnsoneveeveivveneennnne. 395/375
5,142,633 §/1992 Murray et al. ... 395/375
5,222,244 6/1993 Carbine et al. .ccovvvvvvveennnnnn.n. 395/800
5,313,644 5/1994 Matsuo et al. ..coevverevvneennnnnenn. 395/800
5,333,296 7/1994 Bouchard et al. 395/425
5,345,569 9/1994 Tran ..ccceveeeievneeinieierieeeeinne 395/375
5,355,457 10/1994 Shebanow et al.cooeeeeeenne. 395/375
FOREIGN PATENT DOCUMENTS
WO93/01546 1/1993 WIPO ..o, GO6F 9/38

OTHER PUBLICAITONS

Mike Johnson, Superscalar Microprocessor Design, 1991,

pp 1-289.
V. Popescu, et al.,, “The Metalow Architecture,” IEEE

Micro, pp. 10-13 and 63-73, Jun. 1991.

IE 6
CAM 1 MATCH BITS s Bpl:qux%ﬂ ‘ e Elf1_7|
WB BUS 120
A (S R PISTIND BT T .
A A
18 Pnsm:_
DISPATCH DISPATCH
]PDST | TPDST 2 T3 oata |1] paTA ‘
Y SINGLE —) "‘Wi .y
PSRC 1 CAM2 | CAM1 perez| | CAMZ CAMt | | CYCLE | wop SRC1 SRCZ
230 | 240 230 | 240 BIT CODE| (LDST| PDST [LSRC1| DATA| S1V|LSRC2| DATA | S2v
0 0
f 1
2| > | > > > 2| LOAD | o | EBX[ROBg | MEM [DATA| 1 [>T
3 | ROBs | ROBs ROBy, | ROBq 3| ADD | 1| EAX|{ROBy [EAX {DATA| 1 | EBX | DATA|0—>1
4 | ROBq | ROBq ROB; | ROB; 4| SUB [1|Ecx|ROBg| ECX [DATA| 1 | EAX [DATA|0—>1
Rz A Fiﬂ R R 2
7 [ROB, ;| ROB [®oB; ROB;I 7| YOR | 1] EDX|ROB{| EDX |DATA| 1 | EAX | DATA o-:-ul
Ry A A R A R
11[R0B,3|ROB{ 3 ROB7 ROB?I (1[AND [1| t [ROB;4 t |DATA| t | EAX |DATA O—HI
Res A R o7 R A
19 l\?”-" 19 |
MATCH hl
BITS * 212 \uup SCHEDULER 250 |

I S I S S - - - T - . S - - - . e Y TR O T TR P BT B T B T B T B T BT T B T B B B G B B T B B B -

Primary Fxaminer—John Follansbee
Attorney, Agent, or Firm—DBlakely, Sokoloif

Zatman LLP

[57]

ABSTRACT

, Taylor &

Maximum throughput or “back-to-back” scheduling of

dependent 1nstructions 1n a pipelined processor 1s achieved

by maximizing the e
mines the availability of t

instruction and provides t.

Ticiency 1n which the processor deter-

e source operands of a dependent

nose operands to an execution unit

executing the dependent instruction. These two operations

arc 1mplemented through number of mechanisms. One

mechanism for determining the availability of source

operands, and hence the readiness of a dependent instruction

for dispatch

prospective ¢

0 an available execution unit, relies on the

ctermination of the availability of a source

operand before the operand 1tself 1s actually computed as a

result of t

addresses o

ne execution of another instruction. Storage

' the source operands of an mnstruction are stored

in a content addressable memory (CAM). Before an instruc-

fion 1s executed and its result data writ
location address of the result 1s provic

associatively compared wi
stored therein. A CAM ma

en back, the storage

ed to the CAM and

h the source operand addresses
ch and 1ts accompanying match

bit indicate that the result of the instruction to be executed

will provide a source operand to the dependent instruction

wailting 1n
mechanism, 1

the reservation station. Using a bypass
' the operand 1s computed after dispatch of the
dependent 1nstruction, then the source operand 1s provided
directly from the execution unit computing the source oper-

and to a source operand 1nput of the execution unit executing,

the dependent instruction.

;1 READY LOGIC 240 |"§

ok ol B mmn mmm ek sk I BN DENF DN e mmn e mmm e wme e mee s s ek BN ke el bl M S BN SN BN EEN BN BN BN BEE BU DY PRI SN SN SIS SIS BEL SIS BN SN S BEE SIS B BN S SIS SIS NS SEEE BEE BEEE B S B B B B B SIS S B B B B S S S S . . -

b e e e B I I el I S ————

42 Claims, 9 Drawing Sheets

6,101,597

Sheet 1 of 9

Aug. 8, 2000

U.S. Patent

ININ3AI13

|
80 404

XOVEILIAM
“ @ 0O ” N. — —
‘ e | n3van

HOLVdSId

021
Na NVEILIAM

eenl memt S SN SEES SNAN SLEE SRAS Amilk oas D oael D D ek Sekld el Sk sk LIS e LA IS IS SDND DDDD DDDS DN SDNE WA DEI DLGS SN DDGS DEGS DG DDA DEST GEST DN WIS T ey vy Gemy vemb Gme sl GG SEEL BN ADES DS BEas e BEEEE BEEEG BNPW IS SEEE Bmmw Gk GERE G B S B e el S

0bZ 21901 AQV

6,101,597
N
)
SN
NS

A%/ 511
HOLV

S s o O s [> o
S I A e o "B N - ~ |3
olwve [a1 Jwval 1 Praoa [olaw e || [Toon [Caoa] | [Faon[Feon]

05Z 43INQIHIS don

|
“
|
i
|
|
|
|
]
|
|
|
N “
S _
= '~ P
o | 1<o|viva| Xv3 | 1 [viva| X3 ['*80dXa3 |1] doX | hms_ hms_ E _mo
2 o~ | s
7 | r<o(viva | xva | 1 [viva] X03 (8303 [X03 |1] ans |+ hms_ hms_ mvms_ amom b
| 1<o|viva [xa3 [1 |viva] Xv3 [£90d|Xv3|)| aav | € 9903 | 9903 $90% | 580 | ¢
|
_ | D<DX| v |viva] van |9a04 | xea |0 | avon |2 <K < [><]z
i
= R - IR
5 L L e - | o
d “ Eﬁﬂﬂ@% ow_ﬂgﬂ-ﬂ o Hl Ns_za o |
|
< | £0¥5 don 310A0 | | JWVD | ZHYD ZWYD
“ — T J19NIS
“ -n VIva Il VIVa
“ HOLV4SIa zog_w_ai I 1504
]
“ 1544 q
|

113 aIMYA 1544

L 092 XNW d8 STig FOLVW T VD
SEEE

0Z1 35Ng am

U.S. Patent

U.S. Patent Aug. 8, 2000 Sheet 3 of 9 6.101.597

RESULT DATA LDST

ROBs | DATA

ROBg DATA

ROB; | DATA

ROBg | DATA ECX
ROBg [DATA

G, 3

6,101,597

Sheet 4 of 9

Aug. 8, 2000

U.S. Patent

ANV

40X

!
wTalale[s v

TWV) <—— ZWYD
Bjep (£g90¥) #spd
|
o olw o] v
TWY) <—— ZWYD
BJBp (990%) tspd

|
wTw] n [a[ale]slv]oo

6,101,597

Sheet 5 of 9

Aug. 8, 2000

U.S. Patent

0bZ

&
N
o™~

6,101,597

Sheet 6 of 9

Aug. 8, 2000

U.S. Patent

JWLL

A9

S

_
Q¥33 NAG
g1
|
¢ QYA 3INGIHOS

018

(P)$08

SOVdAS

L8 _) 7
av3a JILVLS

(9)$08 (1508

HO1VdSia JINAIHOS

aEmy N N Y T W T S .

(8)508

AQv3d

6,101,597

Sheet 7 of 9

Aug. 8, 2000

U.S. Patent

0

i3
1X3N 0L

118
1X3N OL

lig
1X3N OL

)
IN

N

L18

N

av3y Y1iv(

(1)8¢8

ViVa 2045 30 1935

(61 AJINI)

INITV I8

(1)9£8™

(} A4INI)

(0 A4IN3)

dv3d v1v(

(61928

(61)be8 (61)2¢8

S .‘
2

(61)018

6,101,597

Sheet 8 of 9

Aug. 8, 2000

U.S. Patent

6 DL

alIvA V1iva
01938 0198

LAINVA Z@IvA

Zyiva 1vlva
11NS3d 11NS3

\
HOLVT
ZNIM

11544

206 oy)
010354

6,101,597

Sheet 9 of 9

Aug. 8, 2000

U.S. Patent

v10!

d05ANY

JOVI4IINI

NOLLYOINNWWO?

9101

[

A1 0101

dAVOaAIN

F0IA30
JOVA0LS

6,101,597

1

METHOD AND APPARATUS FOR
MAXIMUM THROUGHPUT SCHEDULING
OF DEPENDENT OPERATIONS IN A
PIPELINED PROCESSOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to pipelined
microprocessors, and more particularly to achieving maxi- 4
mum throughput of dependent operations 1n a pipelined
ProCeSSor.

2. Art Background

Simple microprocessors generally process instructions
one at a time. Each instruction is processed using four 15
sequential stages: instruction fetch, instruction decode,
execute, and result write back to the register file or memory.
Within such microprocessors, different dedicated logic
blocks perform each processing stage. Each logic block
waits until all the previous logic blocks complete operations 20
before beginning its operation.

To 1mprove microprocessor efficiency, microprocessor
designers overlapped the operations of the fetch, decode,
execute, and write back stages such that the microprocessor
operates on several 1nstructions simultaneously. In
operation, the fetch, decode, execute, and write back stages
concurrently process different instructions. At each clock
cycle the results of each processing stage are passed to the
following processing stage. Microprocessors that use the
technique of overlapping the fetch, decode, execute, and
write back stages are known as “pipelined” microprocessors.

25

30

In order for pipelined microprocessors to operate
ciiiciently, an instruction fetch unit at the head of the
pipeline must continually provide the pipeline with a stream
of instructions. However, conditional branch instructions
within an 1nstruction stream prevent an instruction fetch unit
at the head of a pipeline from fetching the correct instruc-
tions until the condition 1s resolved. Since the condition will
not be resolved until further down the pipeline, the mstruc-
tion fetch unit cannot necessarily fetch the proper instruc-
fions.

35

40

To alleviate this problem, some newer pipelined micro-
processors use branch prediction mechanisms that predict
the outcome of branches, and then fetch subsequent mstruc- 4
tions according to the branch prediction. Branch prediction
is achieved using a branch target buffer (BTB) to store the
history of a branch instruction based only upon the instruc-
fion pomter or address of that instruction. Every time a
branch instruction 1s fetched, the BTB predicts the target sg
address of the branch using the branch history. For a more

detailed discussion of branch prediction, please refer to Tse
Yu Yeh and Yale N. Patt, Two-Level Adaptive Branch

Prediction, the 24th ACM/IEEE International Symposium
and Workshop on MicroArchitecture, November 1991, and 55
Tse Yu Yeh and Yale N. Patt, Alternative Implementations of
Iwo-Level Adaptive Branch Prediction, Proceedings of the
Nineteenth International Symposium on Computer

Architecture, May 1992.

In combination with speculative execution, out-of-order 60
dispatch of instructions to the execution units results 1 a
substantial increase 1n instruction throughput. With out-of-
order completion, any number of instructions are allowed to
be 1n execution 1n the execution units, up to the total number
of pipeline stages 1n all the functional units. Instructions may 65
complete out of order because instruction dispatch i1s not
stalled when a functional unit takes more than one cycle to

2

compute a result. Consequently, a functional unit may
complete an 1nstruction after subsequent instructions have
already completed. For a detailed explanation of speculative
out-of-order execution, please refer to M. Johnson, Super-
scalar Microprocessor Design, Prentice Hall, 1991, Chap-

ters 2, 3, 4, and 7.

In a processor using out-of-order completion, mstruction
dispatch 1s stalled when there 1s a conflict for a functional
unit or when an 1ssued 1nstruction depends on a result that
1s not yet computed. In order to prevent or mitigate stalls in
decoding, the prior art provides for a buffer (known as a
reservation station (RS)) between the decode and execute
stages. The processor decodes 1nstructions and places them
into the reservation station as long as there 1s room 1n the
buffer, and at the same time, examines 1nstructions in the
reservation station to find those that can be dispatched to the
execution units (that is, instructions for which all source
operands and the appropriate execution units are available).

Instructions are dispatched from the reservation station
with little regard for their original program order. However,
the capability to 1ssue instructions out-of-order introduces a
constraint on register usage. To understand this problem,
consider the following pseudo-microcode sequence:

1. t -«——— load (memory)
2. cax -e-—— add (eax, t)
3. ebx =*— add (ebx, eax)

4. cax <-—— mov (2)

5. edx = add (eax, 3)

The micro-instructions and registers shown above are
those of the well known Intel microprocessor architecture.
For further information, reference may be made to the
1486™ Microprocessor Programmers Reference Manual,
published by Osborne-McGraw-Hill, 1990, which 1s also
available directly from Intel Corporation of Santa Clara,
Calif.

In an out-of-order machine executing these instructions, it
1s likely that the machine would complete execution of the
fourth 1nstruction before the second 1nstruction, because the
third ADD i1nstruction may require only one clock cycle,
while the load instruction and the immediately following
ADD instruction may require a total of four clock cycles, for
example. However, if the fourth instruction i1s executed
before the second instruction, then the fourth instruction
would probably incorrectly overwrite the first operand of the
second 1nstruction, leading to an incorrect result. Instead of
the second instruction producing a value that the third
instruction would use, the third mstruction produces a value
that would destroy a value that the second one uses.

This type of dependency 1s called a storage conflict,
because the reuse of storage locations (including registers)
causes Instructions to interfere with one another, even
though the conflicting instructions are otherwise 1ndepen-
dent. Such storage conflicts constrain instruction dispatch
and reduce performance.

It 1s known 1n the art that storage conilicts can be avoided
by providing additional registers that are used to reestablish
the correspondence between registers and values. Using
register renaming, these additional “physical” registers are
assoclated with the original “logical” registers and values
needed by the program. To implement register renaming, the
processor typically allocates a new register for every new

6,101,597

3

value produced, 1.e., for every instruction that writes a
register. An instruction identifying the original logical reg-
ister for the purpose of reading its value obtains mnstead the
value 1n the newly allocated register. Thus, the hardware
renames the original register identifier in the instruction to
identify the new register and the correct value. The same
register identifier in several different instructions may access
different hardware registers depending on the locations of

register references with respect to the register assignments.

With renaming, the example instruction sequence
depicted above becomes:

1. t; ==—— load (mem)

2. CaXp --—— add (eaxy, ty)

3. ebx, = add (ebx,, caxy)
4, Xy -—— mov (2)

5. edx, = add (eax,, 3)

In this sequence, each assignment to a register creates a
new 1nstance of the register, denoted by an alphabetic
subscript. The creation of a renamed register for eax 1n the
fourth 1mstruction avoids the resource dependency on the
second and third instructions, and does not interfere with
correctly supplying an operand to the fifth instruction.
Renaming allows the fourth instruction to be dispatched
immediately, whereas, without renaming, the instruction
must be delayed until execution of the second and third
mstructions. When an instruction 1s decoded, its result value
1s assigned a location 1n a functional unit called a reorder
buffer (ROB), and its destination register number 1S assoOcI-
ated with this location. This renames the destination register
to the reorder bufler location. When a subsequent instruction
refers to the renamed destination register, in order to obtain
the value considered to be stored in the register the mstruc-
fion may instead obtain the value stored 1n the reorder butfer
if that value has already been computed.

The use of register renaming in the ROB not only avoids
register resource dependencies to permit out-of-order
execution, but also plays a key role 1n speculative execution.
If the 1nstruction sequence given above 1s considered to be
part of a predicted branch, then one can see that execution
of those 1nstructions using the renamed registers in the ROB
has no effect on the actual registers denoted by instruction.
Thus, 1f 1t 1s determined that the branch was mispredicted,
the results calculated and stored 1n the ROB may be erased
and the pipeline flushed without affecting the actual registers
found in the processor’s register file (RF). If the predicted
branch affected the wvalues 1n the RE, then 1t would be
difficult to recover from branch misprediction because it
would be difficult to determine the values stored in the
registers before the predicted branch was taken without the
use of redundant registers in the ROB.

When a result 1s produced, 1t 1s written to the ROB. The
result may provide an input operand to one or more waiting
instructions buffered 1n the reservation station, indicating
that the source operand 1s ready for dispatch to one or more
execution units along with the instructions using the oper-
and. When dependent instructions are pipelined, the process
of waiting for the result data to be written back from an
execution unit 1n order to determine the availability of a
source operand adds latency to the system, thereby limiting
instruction throughput. Thus, 1t 1s desired to find a means for
increasing the throughput of dependent instructions in a
pipelined processor.

10

15

20

25

30

35

40

45

50

55

60

65

4
SUMMARY OF THE INVENTION

The present mnvention provides a method and apparatus
for maximum throughput scheduling of dependent instruc-
tions 1n a pipelined processor. Each instruction 1s buffered in
a reservation station awaiting dispatch to an execution unit.
Dispatch occurs when all of an mstruction’s source operands
are available and the appropriate execution unit 1s available.
Each 1nstruction entry in the reservation station includes at
least one source data field for storing a source operand of the
instruction and an associated source data valid bit. Maxi-
mum throughput or “back-to-back™ scheduling 1s achieved
by maximizing the efficiency in which the processor deter-
mines the availability of the source operands of a dependent
instruction and 1n which the processor provides those oper-
ands to the execution unit executing the dependent 1nstruc-
tion. These two operations are i1mplemented through a
number of mechanisms.

One mechanism for determining the availability of source
operands, and hence the readiness of a dependent instruction
for dispatch to an available execution unit, relies on the
prospective determination of the availability of a source
operand before the operand 1tself 1s actually computed as a
result of the execution of another instruction. Storage
addresses of the source operands of an instruction are stored
in a content addressable memory (CAM). Before an instruc-
tion 1s executed and 1ts result data written back, the storage
location address of the result 1s provided to the CAM and
associatively compared with the source operand addresses
stored therein. A CAM match and 1ts accompanying match
bit indicate that the result of the instruction to be executed
will provide a source operand to the dependent instruction
waiting 1n the reservation station.

Readiness of a source operand may also be determined
according to the state of the source data valid bit. Upon
allocation of a dependent instruction containing an i1mme-
diate operand to the reservation station, the source data valid
bit associated with the immediate operand 1s set. Also, the
valid bit may be set and used to determine the availability of
an operand if the result has been computed by a previous
mnstruction that has already been executed.

Based upon the match bits and/or the source valid bits, a
ready logic circuit determines whether all source operands
of a dependent 1nstruction are available and thus whether an
instruction 1s ready for dispatch to an available execution
unit.

An execution unit receiving a dispatched instruction
obtains the source operands by a number of mechanisms. If
the operand 1s an 1immediate value, then the execution unit
receives that value from the source data field of the reser-
vation station entry storing the dispatched instruction. If the
operand was already computed through execution of a
previous 1nstruction before allocation of the dispatched
dependent 1nstruction to the reservation station, then the
operand 1s written to a register bufler. The register butler
comprises a reorder bufler storing speculative result data and
a real register file holding retired result data. Upon allocation
of the dependent instruction to the reservation station, the
operand 1s written from the register buifer to the appropriate
source data field of the instruction 1n the reservation station.
If the operand 1s computed after allocation, but before
dispatch of the dependent instruction, then the operand is
written directly to the appropriate source data field of the
reservation station entry storing the instruction. Finally,
using a bypass mechanism of the present invention, if the
operand 1s computed after dispatch of the dependent
instruction, then the source operand 1s provided directly

6,101,597

S

from the execution unit computing the source operand to a
source operand mput of the execution unit executing the
dependent 1nstruction.

Through these mechanisms, the combination of efficiently
determining the readiness of an instruction for dispatch and
ciiciently providing source operands to an execution unit
result In maximum 1nstruction execution throughput.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present inven-
tion will be apparent to one skilled in the art 1n light of the
following detailed description in which:

FIG. 1 1s a block diagram of a processor of the present
invention.

FIG. 2 1llustrates a reservation station of the present
invention.

FIG. 3 illustrates a table 1n a reorder bufifer of the present
invention.

FIG. 4 1illustrates pipeline stages implemented by the
present mvention.

FIG. § 1llustrates an example of the back-to-back sched-
uling achieved by the present invention.

FIG. 6 1llustrates the scheduler-to-ready logic interface of
the present invention.

FIG. 7 1s a timing diagram of the early read operation
performed by the present invention.

FIG. 8 illustrates the memory storage circuitry used to
implement the early read operation.

FIG. 9 illustrates a multiported embodiment of a content
addressable memory of the present mvention.

FIG. 10 1illustrates a computer system incorporating the
processor of the present 1nvention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provides a method and apparatus
for maximum throughput scheduling of dependent instruc-
fions 1 a pipelined processor. To achieve this result, the
present invention prospectively determines the availability
of the source operands of a dependent instruction before the
operands themselves are computed. For purposes of
explanation, specific embodiments are set forth to provide a
thorough understanding of the present invention. However,
it will be apparent to one skilled 1n the art that the invention
may be practiced without these details. In other instances,
well known elements, devices, process steps and the like are
not set forth 1 detail 1n order to avoid unnecessarily
obscuring the present invention.

FIG. 1 1s a block diagram of an embodiment of a
speculative out-of-order processor of the present invention.
The processor comprises an instruction fetch unit (IFU) 102
coupled to a branch target buffer (BTB) 104 and an instruc-
tion decoder (ID) 106. Base upon the instruction pointer (IP)
provided by the BTB 104 to the IFU 102, the IFU 102
fetches the macro instruction found at the address in
memory (not shown) that is indicated by the IP. The instruc-
tion 1s decoded 1nto one or more micro-operations (uops) by
the 1nstruction decoder 106. Such a decoding mechanism 1s
found 1n the Intel and similar microprocessor architectures.
The 1nstruction decoder 106 transters the stream of uops to
a register alias table (RAT) 114 and an allocator (ALLOC)
112. In one embodiment, the 1nstruction decoder 106 1ssues
up to three 1in-order uops during each cycle of the processor.

The allocator 112 assigns each incoming uop to a location
in the reorder buffer (ROB) 108, thereby mapping the logical

10

15

20

25

30

35

40

45

50

55

60

65

6

destination address (LDST) of the uop to a corresponding
physical destination address (PDST) in the ROB. A register
alias table (RAT) 114 maintains this mapping.

The contents of a ROB register are retired to a location 1n
a real register file (RRF) 110. The RAT 114 thus also stores
a real register file valid bit (RRFV) that indicates whether
the value indicated by the logical address 1s to be found at
the physical address in the ROB or in the RRF after
retirement. Based upon this mapping, the RAT 114 also
associates every logical source address to a corresponding,
location in the ROB or the RRF (the source operand of one
instruction generally must have been the destination of a
previous instruction).

Each incoming uop 1s also assigned and written 1nto an
entry 1n the reservation station 118 by the allocator 112. As
shown in FIG. 2, the reservation station (RS) 118 assembles
the micro-operations awaiting execution by an appropriate

execution unit, such as integer execution unit (IEU) 116 or
memory execution unit (MEM EU) 117.

For purposes of 1llustration, entries 2, 3,4, 7 and 11 of the
RS 118 buffer the micro operations (vops) of the following
Instruction sequence:

Macro op uop

LOAD (ebx,mem)
ADD (eax,ebx)
SUB (ecx,eax)
XOR (edx,cax)
AND (t,eax)

ebx<—load (mem)

cax<—add(ecax,ebx)
ecx<—sub(ecx,eax)
edx<—xor(edx,cax)

t<—and(t,eax)

In one embodiment this instruction sequence 1s fetched
from an instruction cache (not shown) by the IFU 102
according to predicted instruction pointers from the BTB
104. As an example, the ADD macro instruction 1s decoded
by the mstruction decoder 106 into the micro operation

cax<—add(eax,ebx) in the Intel microprocessor architecture.

FIG. 3 illustrates a table in the ROB 108 showing the
mapping of the logical registers specified by the instruction
sequence to physical registers in the ROB. In this example,
the first logical source eax register (LSRC1 1n FIG. 2) of the
ADD mstruction, which must contain the result of a prior
instruction, 1s mapped by the RAT 114 to the physical
destination address (PDST) of that prior instruction at ROB
entry PDST=ROB.. Because the logical source register
address (LSRC1) of the ADD instruction is the same as the
logical destination address (LDST) of the prior instruction,
LSRC1 1s mapped to a first physical source register address
(PSRC1) at the same ROB entry PDST=ROB.. Similarly,
the second logical source register ebx (LSRC2), which also
must contain the result of a prior instruction, 1s mapped to
a second physical source register (PSRC2) at ROB entry
PDST=ROB.. The logical destination register address
(LDST) of the ADD instruction, also designated by the
logical register address eax, 1s mapped to a physical desti-
nation register address (PDST) at ROB entry PDST=ROB.,
Similarly, the other instructions have their logical sources
and destinations mapped to physical register identifiers in
the ROB 108 by the RAT 114, and their corresponding uops
are written 1nto the entries of the reservation station 118. For
reasons described below, the physical source register
addresses PSRC1 and PSRC?2 are stored as tags 1n content
addressable memory (CAM) matching circuitry 210 and 212
for the first and second source operands, respectively. Any
number of well known methods and circuits for performing
CAM matching of an array of CAM cells against a data input
may be used to implement the present invention.

6,101,597

7

Note that the ADD 1nstruction depends upon the result of
the load instruction 1n that the second source operand of the
ADD i1nstruction is stored in the same logical register (ebx)
as the result of the load instruction. Similarly, the subtract,
exclusive OR (XOR) and AND instructions are dependent
upon the ADD 1nstruction in that the ADD instruction writes
its results to the eax register, which 1s the second source
operand of those three dependent 1nstructions. For purposes
of this example, the ecx, edx and t (temporary) source
operand registers are assumed to hold valid data as a result
of the execution of previous operations (not shown).

After the logical sources and destinations of a uop have
been mapped to physical sources and destinations, and the
uop stored at an available entry 1n the reservation station 118
by the allocator 112, the micro instruction i1s scheduled for
dispatch and executed according to the pipeline stages
illustrated 1n FIG. 4. In one embodiment, the pipestages are
divided according to processor clock cycles, with the solid
vertical lines representing a rising clock edge and the dashed
vertical lines representing a falling clock edge.

In general, during the READY pipestage, the reservation
station 118 determines whether the source operands for a
micro instruction are available and whether the execution
unit for executing that micro instruction 1s also available. If
ready, then the micro instruction enters the SCHEDULE
pipestage 1n which the reservation station determines
whether multiple vops need to be dispatched for execution
by the same execution unit, and, 1f so, arbitrates among such
uops to determine the order 1 which they are to be dis-
patched. During the DISPATCH pipestage, the scheduled

uop 1s read from its entry in the reservation station and
delivered to the scheduled execution unit. As will be
described 1n more detail below, after the dispatch of a uop,
a POTENTIAL BYPASS pipestage 1s made available 1n
which result data needed by the uop may be bypassed
directly from the execution unit executing a previous
instruction to the execution unit executing the current uop.
This avoids the necessity of writing the result data to the
reservation station 118 or the ROB 108 and then reading the
data out as a source operand of the currently executing uop,
thus increasing instruction throughput.

During the EXECUTION UNIT and WRITE BACK
stages, a uop may then be executed by the scheduled
functional unit, and the result data written back from the
execution unit 1nto its corresponding ROB entry and into
entries of the reservation station 118 that holds uops requir-
ing the result data as a source operand. In addition, as
mentioned above, the result data may be bypassed directly
fo an execution unit requiring the result data. It should be
understood that the reservation station pipeline stages that
are 1llustrated 1n FIG. 4 are but one means of processing an
instruction according to the present invention. The present
invention 1s not limited to a processor 1implementing the
pipestages of FIG. 4, but 1s applicable to any pipelined
MI1CrOprocessor.

As 1llustrated 1n FIG. §, the present invention enables the
pipeline stages of micro instructions to be overlapped “back-
to-back™ 1n such a way as to achieve maximum execution
throughput of the instructions. In processors using the pip-
estages of FIG. 4, such back-to-back scheduling results 1n a
one cycle throughput. In this example, FIG. 5 1llustrates the
back-to-back pipelining of the micro instructions of the
exemplary micro 1nstruction sequence described above.

In FIG. §, the load instruction passes through the READY
and SCHEDULE stages, and then 1s dispatched to the

memory execution unit 117. In this implementation, the

10

15

20

25

30

35

40

45

50

55

60

65

3

execution of a load instruction takes three clock cycles. After
execution, the result data, which 1s to be stored at the logical
source register ebx and the corresponding physical destina-
tion register ROB,, 1s placed on a write back bus 120 so that
it may be written into the appropriate PDST entry of the
ROB. The result of the load instruction also provides a
source operand for the subsequent add micro instruction.

According to one embodiment of the present invention,
the memory execution unit 117 provides the PDST of the
result two cycles before writing back the result data. This
feature 1s used to allow the dependent ADD instruction to be
scheduled for dispatch early enough to allow for the bypass-
ing of the result data. With respect to scheduling, the PDST
from the memory execution unit 117 1s fed through PDST
multiplexer 220 mto two-cycle CAM matching circuitry 230
(CAM?2), which stores the first and second physical source
operand tags PSRC1 and PSRC2. The incoming PDST 1is
assoclatively matched with these source operand tags in the
CAM 2 arrays. In this example, the PDST ROB, results 1n
a match at entry 3 of the second source operand PSRC2
CAM 2 array, indicating that the second source operand of
the ADD instruction will soon become available on the
writeback bus 120 from an execution umit. The resulting
CAM match bit for entry 3 of the second source operand
CAM 2 array 1s fed mto a ready logic circuit 240. As
mentioned above, 1n this example the first source operand
(corresponding to eax and located at ROBy) of the ADD
instruction 1s assumed to be available. In this example, we
assume that the availability of the first source operand i1s
indicated by setting a source valid bit (S1V) for the first
source operand of the ADD istruction in the reservation
station 118. This source valid bit 1s also fed into the ready
logic circuit 240. Using this information, the ready logic
circuit 240 determines that a source operand 1s available for
dispatch to the appropriate execution unit along with the
corresponding instruction when the following logical equa-
tion 1s satisfied:

source ready=|(source valid bit) OR (CAM2 match bit) OR
(CAM1 match bit)]

An entire 1nstruction 1s ready for dispatch when this
equation 1s true for all source operands and an execution unit
capable of executing the instruction (as specified by the
opcode) is available. (The CAMI1 match bit will be
described below.) A scheduler circuit 250 maintains infor-
mation regarding which execution units are available.

In this example, both the first source valid bit and the
second source CAM 2 match bit have been set.
Consequently, the ready logic circuit 240 determines that the
add micro 1nstruction entry will soon have both of 1ts source
operands available so that the mstruction may be dispatched
if the mteger execution unit 116 1s also available. The ready
logic circuit 240 signals the scheduler circuit 250 that entry
3 1s ready. In response to this signal, the scheduler circuit
250 will schedule the ADD i1nstruction for dispatch to the
integer execution unit 116.

During the writing of the PDST by the memory execution
unit 117, the PDST is latched in the CAM circuitry (latch not
shown) and used by 1-cycle CAM matching circuitry
(CAM1) 240 during the POTENTIAL BYPASS stage. The
latched PDST 1s associatively matched with the first and
second source operand tags (PSRC1 and PSRC2) that are
stored 1n the CAM1 240 arrays. The CAMI1 match again
results in a match for the second source operand (PSRC2) of
entry 3. Note that the POTENTIAL BYPASS (BP) stage of
the add micro instruction 1s timed to coincide with the
writing back of data from the load micro instruction. The

6,101,597

9

match bit resulting from the second source CAM1 match 1s
used to control an EU bypass multiplexer 260 1n the integer
execution unit 116. In response to the CAM1 240 match biat,
the EU bypass multiplexer 260 routes the result data directly
from the memory execution umt 117 to a source operand
input of the integer execution unit 116. Thus, upon receiving
the dispatched add micro instruction, the mteger execution

unit 116

has all 1ts source operands immediately available.
As shown 1n FIG. 2, the CAM1 240 match bits are also fed
into write enable inputs of the RS 118 to enable the write
back of result data to the appropriate source data fields in the
reservation station entries for which the PDST of the write
back data resulted 1n a match. The match bit also write
enables the source data valid bit entries (S1V or S2V) to
receive a writeback valid bit. For a number of operations, an
execution unit writes the writeback data valid bit at the same
fime that 1t writes result data into the corresponding source
data field. For example, an execution unit performing a load
operation would write back a data valid bit with the data, and
not at the earlier time of the CAM match, 1n order to ensure
that data 1s not prematurely deemed valid before any poten-
lved. On the other hand, when the

tial cache misses are reso.
result of an 1nstruction, such as an ADD, 1s inherently certain
to be valid, then the valid bit may be preset to valid.
Therefore, the valid bit would be set as soon as the corre-
sponding entry 1s write enabled by the CAM1 240 match bat.

The foregoing discussion 1illustrates how the ADD micro
instruction 1s made ready for dispatch and thereafter dis-
patched with all its source operands valid. The determination
of the readiness of the operations dependent upon the ADD
mstruction will now be discussed. As mentioned above, the
execution unit executing a dispatched instruction provides
the PDST two cycles before writing back the result data. The
PDST is then used to determine the readiness of instructions
that depend upon the data to be written back. Here, the ADD
instruction 1s a single cycle uop, 1.€., the execution/write
back stage occurs 1n a single processor cycle. The ADD 1s
writing back data with a PDST=ROB,, which represents the
logical destination register eax. It 1s desired to achieve
back-to-back scheduling of single cycle uops, such as the
ADD 1nstruction, and their dependent instructions. This
requires that at least one dependent instruction implement its
ready pipestage at the same time that the ADD 1nstruction 1s
being dispatched.

However, this mechanism encounters a potential problem
when the mstruction writing back the data 1s a single cycle
uop. Given our discussion above, the PDST (ROB.) for the
ADD struction 1s returned two cycles before the write
back. But in this case for the ADD instruction (as shown in
FIG. 5), two cycles before write back occurs before the ADD
instruction 1s even dispatched. It 1s impossible for the
execution unit 116 to write back the PDST for the ADD
instruction before the ADD 1nstruction 1s even dispatched.
This 1s the case because 1t 1s the act of dispatch that informs
the execution unit of the PDST (ROB,) 1n the first place.
Therefore, the present invention utilizes an alternate way to
provide the PDST to the CAM?2 and CAM1 matching logic.
This alternate way 1s to read the PDST for the ADD
instruction directly from the RS 118 before the ADD 1nstruc-
tion 1s dispatched. This 1s called the early read operation of
the present invention.

The present invention provides a mechanism for the early
reading of the PDST of a dispatching single cycle instruction
(the early read operation) so that the PDST may be read upon
the assertion of a schedule line associated with the dispatch-
ing 1nstruction and supplied before the instruction is actually
dispatched. The details of this early read operation will be

10

15

20

25

30

35

40

45

50

55

60

65

10

discussed 1n detail further below. The PDST 1s written 1nto
the RS 118 during allocation of the uop to the RS 118. Thus,
in this example, after the ADD instruction has been deter-
mined to be ready, 1t 1s already known that the PDST 1n the
ADD reservation station entry represents the PDST of data
that will be written back after execution of the ADD instruc-
tion. Accordingly, the present invention provides the PDST
bypass multiplexer 220 with the PDST from the ADD uop
reservation station entry, and from the multiplexer 220 this
PDST 1s supplied directly to the CAM?2 230 match circuitry
of the first and second source operands, thereby bypassing
the round trip of the PDST from the third reservation station
entry to the IEU 116 and back again. From the CAM?2 230
circuitry, the PDST 1s latched into the CAMI1 circuitry 240.
It 1s 1mportant to realize that the PDST for the ADD 1s
supplied (according to the present invention) in advance of
the dispatch cycle of the ADD instruction (see further the
discussion with respect to FIG. 7).

To reiterate, the multiplexer 220 provides the PDST
directly from the RS 118, and not from an execution unit,
when a single cycle vop 1s to be dispatched. The multiplex-
ing function of the multiplexer 220 may be controlled
through a number of methods. First, only those execution
units that execute multiple cycle uvops are configured to
transfer a PDST Valid bit (PDSTV) along with the PDST
two cycles before write back. As shown 1n FIG. 2, the
PDSTYV bit acts as the imput selector control of the PDST
bypass multiplexer 220. If the PDSTV bit 1s set
(representing a multicycle uop), then the PDST issued by the
execution unit 1s routed to the CAM?2 230 circuitry. The
PDSTYV bat 1s transferred along with the PDST itself to the
CAM?2 230 1n order to enable and initiate the CAM matching
process. If the PDSTV bit is not set (representing a single

cycle uop), then the PDST from the add vop instruction entry
of the RS 118 is routed by the multiplexer 220 to the CAM?2

230 circuitry, thus bypassing the roundtrip of the PDST
through an execution unit. The multiplexer 220 also routes
a “single cycle bit” from the RS 118. The single cycle bit,
like the PDSTV bit, 1s used to enable and initiate CAM
matching. The single cycle bit 1s provided as part of the uop
opcode during the process of decoding a macro 1nstruction
into single cycle uops. An alternative method (not shown) of
controlling the PDST bypass multiplexer 220 uses the single
cycle bit alone as the multiplexer input selector control.

In this example, the bypassed PDST of the ADD instruc-
tion 1s fed nto the CAM?2 230 circuitry to 1identily dependent
instructions. The CAM?2 match of the PDST=ROB, results
in matches for the second source operand of entries 4, 7 and
11. The match bit at those entries for the second source
operand, along with the already set source 1 valid (S1V) bits
for those entries indicates that the subtract, XOR and AND
operations are ready for dispatch as soon as execution units
are available to execute those functions.

Ideally, if different execution units were provided for each
operation, all three dependent operations could be dis-
patched simultaneously. However, 1n an alternative
embodiment, the subtract function and the logical XOR and
AND functions may only be executed by the same execution
unit, 1.€., the integer execution unit 116. Thus, all three
operations cannot be dispatched to the IEU 116 at the same
time, but rather must be scheduled for dispatch one after the
other. The scheduler 250 selects the order of dispatch
according to a number of algorithms. The three dependent
instructions may, for example, be scheduled randomly,
sequentially, or in a first-in-first-out (FIFO) order, or some
variation thereof. In this example, the scheduler 250 selects
the micro operations to be dispatched in first-in-first-out

6,101,597

11

order as shown 1n FIG. §. Because the subtract function 1s
followed by the exclusive OR and logical AND functions,
respectively, 1n the 1n-order program code, those mnstructions
were 1ssued to the reservation station in that order (from
oldest to youngest). Thus, based on the FIFO algorithm
scheduling, the subtract uop 1s dispatched first. The sched-

uler 250 will be described 1n more detail below.
As betore, the PDST has been latched, and 1s used by the

CAMI circuitry 240 to control the EU bypass multiplexer
260 of the IEU 116 and the write enables of the reservation
station source data entries. The match bit from the second
source operand CAM1 240 implements an internal bypass of

the result data from the execution of the ADD instruction in
the IEU 116 back to the same IEU 116 for use as the second

source operand for execution of the SUBTRACT instruction
in the IEU 116.

In this case, because the PDST of the ADD instruction
also resulted in CAMI1matches for entries 7 and 11, the
result data from the ADD istruction 1s written 1nto the

second source data fields (SRC2 DATA) of the exclusive OR
and logical AND operations, the write enables for those
fields having been asserted by the match bit from second
source operand CAM1 240.

Fortuitously, the CAM 1 match performed during dis-
patch of the subtract operation can be used to determine
again the readiness of instructions for dispatch. This obvi-
ates the need to provide storage for the previously deter-
mined ready state (which is another embodiment of the
invention). The CAM1 match determines that the XOR and
AND operations are ready. However, the CAM1 match bit
for the SUBTRACT i1nstruction 1s not used to determine
again the readiness of that instruction because that would
result 1n multiple dispatches of the SUBTRACT instruction.
Thus, although the subtract operation uses the CAM1 match
bit for controlling the EU bypass multiplexer 260 and the
write enables of the RS 118 entries, the ready logic for the
entry containing the subtract operation 1s disabled by the
scheduler 250 after scheduling that instruction for dispatch.
This operation 1s performed by resetting an entry valid bit
(not shown) in the RS 118, which is fed to the ready logic
240 for each entry. In general, the ready logic for any
instruction entry 1s disabled after it has been scheduled to
prevent multiple dispatches of the same 1nstruction.

After the XOR and AND operations have been found
ready, the scheduler 250 arbitrates between the two 1nstruc-
fions and selects the XOR entry for dispatch according to the

FIFO algorithm used 1n this example. The XOR entry is then
dispatched. Because the result data WRITE BACK stage of

the add vop coincides with the SCHEDULE stage of the
XOR uop, the result data 1s already stored in the XOR SRC2
DATA by the entry at the time the XOR uop 1s dispatched,
thereby providing the source operand data to the IEU 116.
Because the previous result data 1s available from the RS
entry, the EU bypass multiplexer 260 1s disabled by the
reservation station after the result data has been written into
the RS 1n order to prevent bypassing.

Moreover, during the write back of the result data after
execution of the ADD micro instruction, along with the
result data that 1s written 1nto entries of the reservation
station 118, corresponding source valid bits are set 1n those
entries using the writeback data valid bit described above.
During writeback, the data from the IEU 116 1s also written
into the ROB 108 via the writeback bus 120. All subsequent
instructions, e.g., the logical AND micro operation, then use
the source valid bits, which are fed into the ready logic 240,
to determine whether a source operand 1s ready for dispatch.

Refer to FIG. 6 which illustrates in more detail the
scheduler 250 to ready logic 240 interface of the present

10

15

20

25

30

35

40

45

50

55

60

65

12

invention (of FIG. 2). The present invention includes a
separate scheduler (250(a)-250(¢)) for each execution unit
of the present mnvention. As shown in FIG. 1 there 1s an
integer execution 116 and a memory execution 117 and
others within the processor. In one embodiment, the proces-
sor contains five execution units in total (some for perform-
ing integer, floating point and other computations) and each
execution unit has an associated scheduler.

As shown in FIG. 6, a particular entry (e.g., instruction)
of the reservation station 118 may become ready to be
scheduled on any one of the schedulers because a given
Instruction may execute on any given and available execu-
tion unit. Therefore, each entry of the reservation station
transmits a separate ready line to each individual scheduler
(250(a)-250(¢)). The ready line generation for entry O of the
reservation station 1s shown for all five schedule lines
(RDY0-RDY4). Although any given instruction may utilize
any ol the five execution units, specific instructions are
limited to certain execution units. Therefore, the purpose of
the ready lines, for each entry, i1s to inform the schedulers to
what possible execution units a given instruction can be
dispatched. It 1s appreciated that each of the twenty entries
of the reservation station generate five ready signals. It 1s
possible that two or more ready signals, for a given entry,
can be asserted assuming that that entry may execute on two
Or more execution units.

The schedulers decide which of the ready instructions will
execute on which execution unit. The schedulers, for each
entry of the reservation station 118, send five dispatch
signals (D0-D4) back to the ready logic 240 of the reser-
vation station 118. The dispatch lines for entry O are illus-
trated 1n FIG. 6 and 1t 1s appreciated that five equivalent lines
are provided for each other entry 1, 2, . . . 19 of the
reservation station. Each dispatch signal refers to a separate
execution unit that has been selected by the applicable
scheduler. The dispatch signals D0-D4 are individually
generated by schedulers 250(a)-250(¢), respectively. These
dispatch signals are asserted during the schedule stage for a
orven 1nstruction and are often referred to as “schedule
signals” for a given entry of the reservation station. For a
orven entry of the reservation station, only one of the five
dispatch signals will be asserted at any given time. For
instance, 1f entry 0 1s scheduled to execute over execution
unit 0, then the dispatch line (DO0) for entry O will be asserted
and forwarded from the scheduler 250(a) to the reservation
station entry zero. In sum, a given entry of the reservation
station has five associated dispatch (schedule) lines and only
one can be asserted at any given time. These schedule lines
(D0-DS) are used during the early reading of PDSTs from
the reservation station for scheduling instructions that follow
single cycle uops, as will be discussed 1mmediately below.

Refer to FIG. 2. The early read of the RS, as discussed
below, supplies a PDST from the RS to one mput of the
PDST multiplexer 220, while the other input arrives from an
execution unit. Except for the PDST column of the reser-
vation station memory array 118, all memory storage ele-
ments are based on a static memory storage technique that
utilizes a pre-charge line supplied by the system clock.
Therefore, data becomes available (e.g., valid data) from
these columns at the rising edge of the clock signal. This
type of clocked memory 1s utilized by the present invention
reservation station because it 1s generally less complicated
(logically) and consumes less substrate space as compared to
memory storage techniques that are not clock based. As
referred to herein this memory storage technique 1s called a
dynamic read because 1t involves the clock edge. It 1s
appreciated that the early read operation of the present

6,101,597

13

invention 1s utilized for back-to-back scheduling of mstruc-
tions that are data dependent on single cycle instructions 1n
order to achieve maximum processing throughput.

The PDST column of the reservation station of the early
read operation of the present invention 1s implemented 1n
SRAM and 1s not a dynamic read circuit and as such 1s not
clock based. Therefore, the PDST storage arrays may supply
data within a given clock cycle before the rising edge of the
next clock cycle. As referred to herein the memory storage
technique for the PDST column is called the static read. The
details of both the dynamic read memory cells and the static
read memory cells of the present invention will be explained
below.

Refer now to FIG. 7 and FIG. 4. As discussed above with
reference to the pipeline stages of the ADD instruction, the
present invention must perform an early read of the reser-
vation station in order to supply PDSTs (ROB,) 1n time for
the ready determination of the SUB instruction. The cir-
cuitry to perform this early read operation 1s triggered based
on the assertion of the schedule line of the ADD 1nstruction
for the particular execution unit selected for the ADD
instruction. Therefore, the read of the reservation station
array for the ADD’s PDST begins within the schedule stage
of the ADD pipeline. If this read operation were dynamic
(e.g., clock based) then the result of the read operation
would not be supplied until the next rising edge of the clock,
which would be at the start of the dispatch stage of the ADD
instruction (which 1s also the same time as the start of the
ready determination stage of the SUB instruction). But this
read of the ADD’s PDST would be much too late for the
ready determination stage of the SUB instruction because
the SUB 1nstruction needs the PDST information before the
start of 1ts ready determination stage.

It 1s appreciated that other alternative embodiments of the
present invention for providing a non-clocked read function
include a self-timed clock circuit to supply the PDST
information and also a clocked skewed circuit to supply the
PDST information. The above two alternative embodiments
provide output mmformation not in coincidence with transi-
tions of the system clock.

Refer to FIG. 7 which 1llustrates the timing more clearly.
Shown across clock cycles 805(a)-805(d) are the READY,

SCHEDULE, DISPATCH, and potential BYPASS stages for
the ADD instruction. During cycle 805(b), one of the five
schedule lines for the ADD instruction will become valid
during timing duration 810 as a scheduler selects an execu-
tion unit for the ADD 1nstruction. This will cause the present
invention static read circuitry to supply the PDST from the
reservation station associlated with the ADD’s entry. This
occurs at duration 817. During the dispatch of the ADD
instruction at 805(c¢) a dynamic read operation 815 is per-
formed by the present invention of the source data (if valid)
within the reservation station in order to supply the execu-
tion unit with the required data. If the PDST column of the
reservation station were implemented as a dynamic read
memory (€.g., clocked memory) then the PDST would not
be supplied until the start of cycle 805(c), which would be
too late for the SUB’s ready determination stage. Therefore,
by providing a static read implementation, the present inven-
tion is able to supply the ADD’s PDST during cycle 805(b)
in time for the SUB’s ready determination stage. At timing
duration 820, the present invention performs a CAM?2 match
of the ADD’s PDST against the sources of the valid entries
of the reservation station. It 1s here that the ready determi-
nation for the SUB instruction 1s performed.

FIG. 8 illustrates in detail the static (not clocked) and
dynamic (clocked) memory storage implementations of the

10

15

20

25

30

35

40

45

50

55

60

65

14

reservation station 118 of the present invention for a single
bit of the PDST column and for a single bit of another

column, either the SRC1 DATA or SRC2 DATA column or
any other column that contains information that 1s not speed

critical. The circuitry 1llustrated and discussed herein 1is
replicated (1) for each bit of the PDST column, and also (2)

for each of the five schedule lines for each entry of the
reservation station 118. Further, since multiple instructions
may be scheduled at the same time, the entire circuit as
discussed above 1s replicated for each possible PDST sup-
plied from the reservation station that is associated with a
scheduled instruction. Therefore, FIG. 8 1llustrates the logic
for a given PDST read from the reservation station, for a
orven schedule line and for a given bit within the given
PDST.

The clocked memory storage of the reservation station

(c.g., the SRC1 and SRC2 DATA columns) is now
explained. Line 810(0) represents the schedule line (DO) for

a given execution unit (EUOQ) for entry 0 of the reservation
station. Line 810(1) is the schedule line for EUOQ for entry 1

and likewise line 810(19) is the schedule line for EUO for
entry 19. Only one entry of the RS 118 can be scheduled to
execute on a given execution unit at any given time, so only
one line of 810(0)-810(19) is asserted at any given time for
a given execution unit. The circuitry for each entry of the
reservation station 1s analogous to that of entry 1, which will
be described in detail herein. The schedule line 810(1)
becomes asserted during timing 810 (of FIG. 7) and indi-
cates that entry 1 1s scheduled to execute over EUQ. This line
810(1) is fed to NAND gate 832(1) and the output of the
system clock (clk) (of FIG. 7) is fed into the other input of
NAND gate 832(1). The output of the NAND gate 832(1) is
fed to inverter 834(1) and then to dynamic memory bit
836(1) which is composed of two transistors and inverters
844 and 842 configured to retain a memory bit 1n a well
known fashion. The write ports to the memory bits are not
shown and may be implemented 1n a variety of well known
fashions. The bit 836(1) represents a bit within the SRC1 or
SRC2 DATA columns of entry 1 of the RS 118. The memory
bit 1s coupled to output line 815, which is precharged high
by the clock signal applied through transistor 841; as such,
and with respect to the NAND gate 832(1), the output of the
dynamic memory cell 836(1) is in coincidence with the
clock signal. As discussed above, this circuit 1s replicated
across each bit of the source data columns to supply the data
for a dispatched entry (here entry 1). The data associated
with bit 836(1) will be made available over line 815 in
coincidence with the rising edge of the clock at the start of
cycle 805(c) (of FIG. 7) when the instruction in entry 1 is
dispatched, and the data read from these memory cells is
therefore “clocked” with this clock. Line 8135 1s inverted and
the data 1s read out of the 1nverter as part of a weak sustainer
circuit. This 1s the dynamic read implementation of the
present 1nvention. The data output of the dynamic read
operation for the source data columns supplies the execution
units.

It 1s appreciated that the above circuitry 1s replicated for
cach entry of the reservation station 118. The output of the
bit 836(1) is tied to a precharged line 815 which is pre-
charged by transistor 841 and the clock signal 1n a well
known fashion. The bit data i1s supplied over line 815,
ultimately from the reservation station to the EU(when
entry 1 1s dispatched for execution. It 1s appreciated that the
present invention utilizes the dynamic read (clock based)
memory read technmique for all columns of the reservation
station 118 except for the PDST column.

Refer still to FIG. 8. The present invention also includes
a static read cell that 1s not clock based and does not output

6,101,597

15

information 1 coincidence with the system clock. This
non-clock based memory i1s used for storing the PDST
information. The schedule line 810(1) is fed into static
memory call 838(1), which is composed of two inverters 848
and 846 configured to retain a memory bit 1n a well known
fashion. The schedule line 1s fed 1nto one mmput of NAND
cate 849 and the other input of the NAND gate 849 1s from
the memory bit configuration. When the schedule line 810
(1) 1s asserted, the memory bit of storage cell 838(1) is
supplied 1nto one mput of a NOR gate 850. The same 1s true
for all entries of the reservation station. The output of cells
838(0)-838(19) are sent to NOR gate 850 (or alternatively
to a tree of gates that comprise a NOR function). The output
of NOR gate 850 1s mnverted and sent over line 817' and
ultimately sent to the CAM?2 logic used to compute the ready
determination of the next instruction. The outputs 817' of the
NOR gates 850 for each bit of the PDST 1s fed to an input
of MUX 220 (see FIG. 2). The logic shown in 838(1) for
entry 1 1s replicated for each bit required to contain the
PDST information. Further, the logic 1s replicated for each
entry of the reservation station. Finally, because the present
invention may be i1implemented as a superscalar
microprocessor, the total memory circuit is replicated for
cach PDST that needs to be read out from the reservation
station early.

Since the schedule line 810(1) is asserted during cycle
805(b) (of FIG. 7) and since the cell 838(1) does not require
the clock to supply its data, the bit from cell 838(1) may be
supplied 1n advance of the rising edge of the clock at the start
of cycle 805(c) which is in time for the ready determination
of the next 1nstruction. The static read cell does not supply
its information clocked (e.g., in coincidence) with the clock
transitions but rather 1s responsive to the schedule line. The
static read implementation of cell 838(1) 1s used for the
PDST column of the reservation station 118. Cell 838(1)
represents but one bit, and thus the logic of FIG. 8 1is
replicated for each bit of the PDST column for entry 1 and
for the other entries as well. The entire resultant circuit is
also replicated for each PDST that must be read from the
multiple 1nstructions that can be dispatched at once. There-
fore during interval 817 (of FIG. 7) the PDST from the
reservation station of entry 1 1s supplied over line 817' 1n
advance of the next rising edge of the clock.

One alternative to the above early read operation of the
present invention may include the msertion of an extra clock
cycle into the pipeline stage of the SUB instruction (that
would delay the ready determination stage) so that a
dynamic read of the PDST column could be performed in
fime for the ready determination stage of the SUB 1nstruc-
tion. However, this would not yield the maximum through-
put for back-to-back execution of single cycle instructions
and thus 1s not an acceptable solution.

On the other hand, the present invention’s early read of
the PDSTs of the reservation station using non-clocked static
memory allows back-to-back execution of single cycle
instructions that may be data dependent. The PDST from the
ADD 1nstruction 1s supplied to the ready determination state
of the SUB 1nstruction and the data returned by the ADD
instruction will be routed to the mnput of the execution unit
scheduled for the SUB instruction via the MUX 260 (in the
fashion as discussed above). The present invention thus
allows the SUB instruction to fully execute while only
consuming one clock cycle longer than the processing time
of the ADD instruction, even though the SUB 1nstruction is
data dependent on the ADD instruction. This 1s maximum
throughput for back-to-back scheduling of instructions that
arec data dependent on a single cycle instructions.

10

15

20

25

30

35

40

45

50

55

60

65

16

The present 1nvention has been described as a means for
back-to-back scheduling of dependent instructions under the
assumption that all but one source operand 1s available to
cach 1instruction. This condition has been illustrated by
setting the source valid bits corresponding to the available
operands. A source valid bit may be set using a number of
methods, including use of the writeback data valid bit as
described above. In addition, three other mechanisms will be
described for setting the valid bit when source data becomes
available before a dependent instruction i1s written to the
reservation station. First, 1if the available operand 1s an
immediate value, e.g., the second value 1 add (eax,1), then
the RAT 114 causes the RS 118 to set the S2V bit upon 1ssue
of the 1nstruction to the RS 118. Second, if the source
operand 1s the result of an operation that has already been
executed and retired, then the corresponding entry in the
RAT 114 will have its RRFV bit set. This bit 1s also passed
to the RS 118, and will cause the RS 118 to set the source
valid bit. Third, if the source operand is the result of an
operation that has already been executed but has not yet
retired, then the RAT 114 will send the PSRC of the source
operand to the ROB, which reads the result and passes it to
the RS, again setting the source valid bit.

It should be kept in mind that the preferred embodiment
of the present mnvention 1s a superscalar microprocessor, 1.€.,
multiple instructions may execute within the same processor
clock cycle. Thus, 1n the example of FIG. 2, both the first and
second operands may become available at the same time due
to the simultaneous execution of multiple 1nstructions pro-
viding both operands. To accommodate the superscalar case,
cach CAM of FIG. 2 may represent a multi-ported CAM that
recerves a PDST from each micro instruction that will be
writing back its result. FIG. 9 1llustrates a multi-ported
embodiment of a CAM for the first source operand of the
first RS entry. Each incoming PDST (PDST1 and PDST2 in
this example) is input to a corresponding comparator 900 so
that multiple PDSTs are compared to the same source
operand tag 902. Each comparator 900 and its resulting
match bit are thus associated with a particular PDST and its
source (e.g., execution unit). Similarly, each RS entry
includes a number of write enables (WEN 1 and WEN 2),
cach for enabling the receipt of writeback data (RESULT
DATA1 and RESULT DATAZ2, respectively) and a valid bit
(VALID1 and VALID2, respectively), from the associated
source. Consequently the match bits enable the writing of
data and valid bits to the correct source operand of the
correct RS entry from the correct source.

The microprocessor of the present invention may be
added to a general purpose computer system as shown 1n
FIG. 10. Generally the computer system of the present
invention comprises an address/data bus 1000 for commu-
nicating information, a central processor 1002 coupled with
the bus for processing information and executing
instructions, a random access memory 1004 coupled with
the bus 1000 for storing information and instructions for the
central processor 1002, and a read only memory 1006
coupled with the bus 1000 for storing static information and
instructions for the processor 1002. Also available for inter-
face with the computer system of the present invention 1s a
data storage device 1008 such as a magnetic disk or optical
disk drive, which may be communicatively coupled with the
bus 1000, for storing data and instructions.

The display device 1010 utilized with the computer
system of the present invention may be a liquid crystal
device, cathode ray tube, or other display device suitable for
creating graphic i1mages and/or alphanumeric characters
recognizable to the user. The computer system may also

6,101,597

17

contain an alphanumeric mnput device 1012 including alpha-
numeric and function keys coupled to the bus 1000 for
communicating information and command selections to the
central processor 1002, and a cursor control device 1014
coupled to the bus 1000 for communicating user input
information and command selections to the central processor
1002 based on a user’s hand movement. The cursor control
device 1014 allows the network user to dynamically signal
the two-dimensional movement of a visible symbol (pointer)
on a display screen of the display device 1010. Many
implementations of the cursor control device are known 1n
the art, including a track ball, mouse, joystick or special keys
on the alphanumeric mput device 1012, all capable of
signaling movement 1 a given direction or manner of
displacement.

The computer system of FIG. 10 also contains an input/
output device 1016 coupled to the bus 1000 for communi-
cating information to and from the commuter system. The
communication device 1016 may be composed of a serial or
parallel communication port or may be a communication
modem. It 1s appreciated that such a communication device
1016 may provide an interface between the bus 1000 and the
user interface devices (keyboard 1012, cursor 1014, display
1010) of the computer system. In this case, the user interface
devices will reside within a terminal device which 1s coupled
to the communication device 1016 so that the processor
1002, the RAM 1004, the ROM 1006 and storage device
1008 may communicate with the terminal. The components
1002, 1004, 1006 and 1008 may be implemented on a single
board or a computer chassis 1018, which 1s then coupled by
a bus 1000 to the other components of the computer system.

It will be appreciated that various modifications and
alterations might be made by those skilled 1n the art without
departing from the spirit and scope of the present invention.
For example, the use of the Intel architecture by the present
invention 1s but one 1implementation. The present mnvention
applies to other processor designs and instruction sets, as
well. Further, the present invention may be physically
embodied 1in a variety of packages. The present mvention
may be built into one 1mtegrated circuit package or have its
functionality spread over a number of chips, or be 1imple-
mented by an emulator. Moreover, the mmvention may be
constructed on chips of different materials, such as silicon or
gallium arsenide. Finally, although the present invention
allows speculative out-of-order execution and 1s superscalar,
aspects of the present invention operate effectively within
pipelined processors that perform neither speculative
execution, out-of-order execution, nor superscalar opera-
tion. The invention should, therefore, be measured 1n terms
of the claims which follow.

We claim:

1. In a processor having at least one execution unit for
executing a plurality of instructions to thereby generate
execution results, each instruction specifying an opcode and
being associated with at least one source operand location
designator 1indicating a storage location of a source operand
of said each instruction 1n a storage buifer, each instruction
further associated with a destination location designator
indicating a storage location in the storage buffer of the
result of the execution of said each instruction, wherein each
of at least one dependent instruction of the plurality of
instructions 1s dependent upon at least one source instruction
of the plurality of instructions such that at least one source
operand location designator of the at least one dependent
instruction 1s identical to a corresponding destination loca-
tion designator of the at least one source instruction, the at
least one source operand location designator of the at least

10

15

20

25

30

35

40

45

50

55

60

65

138

one dependent mstruction being stored 1n a memory device
of the processor, the memory device including a content
addressable memory for storing the source operand location
designators of the at least one dependent 1nstruction as tags
of the content addressable memory, a method for determin-
ing the availability of a source operand of a dependent
instruction for dispatch of the dependent instruction to an
execution unit, the method comprising the steps of:

receiving a first destination location designator of a first
result, the first result being the result of the execution
of a first source 1nstruction by a first execution unit;

determining a first condition, the first condition being
whether the received first destination location designa-

tor 1s i1dentical to any of the stored source operand
location designators of the at least one dependent

instruction, each dependent instruction that satisfies the
first condition thereby being a dependent instruction
that will have at least one source operand available for
dispatch of the dependent instruction to an execution
unit, wherein said determining step comprises the step
of:
associatively comparing the first destination location
designator with the stored source operand location
designators of the dependent instructions to deter-
mine which of the dependent mnstructions are depen-
dent instructions satisfying the first condition.
2. The method of claim 1, further comprising the steps of:

if the first condition is satisfied, determining a second
condition, the second condition being whether all of the
other source operands of any of the dependent 1nstruc-
tions that satisfy the first condition will be available for
dispatch, each dependent mstruction satistying the first
and second conditions being denoted a ready instruc-
tion;

dispatching a first ready 1nstruction to a second execution
unit for execution of the first ready instruction.

3. The method of claim 2, the step of determining the

second condition including the steps of:

determining whether a source operand of a dependent
mstruction that satisfies the first condition 1s an 1mme-
diate value; and

if the source operand of a dependent instruction that
satisfies the first condition 1s an immediate value,
setting a source valid bit corresponding to the source
operand, thereby indicating that that source operand 1s
available.

4. The method of claim 2, the step of determining the
second condition including the step of determining whether
at least one of the other stored source operand location
designators of any of the dependent instructions that satisty
the first condition 1s 1dentical to a second destination loca-
tion designator of a second destination location designator of
a second result, the second result being the result of the
execution of a second source 1nstruction.

5. The method of claim 4, wherein the first and second
source 1nstructions are executed within a same processor
clock cycle.

6. The method of claim 5, the determining step further
comprising the step of:

assoclatively comparing the second destination location

designator with the stored source operand location
designators of the dependent instructions that satisly
the first condition to determine which of the dependent
instructions have at least one other source operand
available for dispatch.

7. The method of claim 4, wherein the second result 1s
stored 1n the storage buffer after execution of the second

6,101,597

19

source 1nstruction, the step of determining the second con-
dition comprising steps of:
upon allocation of a dependent instruction to a reservation

station, determining whether the second result corre-
sponds to a source operand of the allocated instruction;

if the second result corresponds to a source operand of the
dependent 1nstruction, storing the second result from
the storage buffer mto at least one ready source data
storage location associated with the allocated depen-
dent instruction, each ready storage location corre-
sponding to one of the allocated dependent instruction

source operands that corresponds to the second result;
and

setting at least one source valid bit, each source valid bit
corresponding to the at least one ready source data
storage location.

8. The method of claim 2, further comprising the step of:

providing the first result from a result data output of the
first execution unit to at least one source input of the
second execution unit, the first result being at least one
source operand of the first ready 1nstruction.
9. The method of claim 8, wherein the first and second
execution units are the same execution unit.

10. The method of claim 8, further comprising the step of:

dispatching a second ready instruction to a third execution
unit for execution of the second ready instruction.
11. The method of claim 10, further comprising the step

of:

providing the first result from a result data output of the
first execution unit to at least one source 1nput of the
third execution unit, the first result being at least one
source operand of the second ready instruction.

12. The method of claim 2, further comprising the steps

of:

before dispatching the first ready instruction, determining
that the first ready instruction and a second ready
instruction are to be dispatched to the second execution
unit;

selecting the first ready instruction for dispatch to the
second execution unit;

after dispatching the first ready instruction, dispatching
the second ready instruction to the second execution
unit.

13. The method of claim 12, further comprising the steps
of:

before dispatching the first ready instruction, latching the
first destination location designator in a latch;

during dispatch of the first ready instruction, determining,
whether the second ready instruction satisfies the first
condition 1n response to the latched first destination
location designator, and determining whether the sec-
ond ready instruction satisfies the second condition;
and

selecting the second ready instruction for dispatch if the
second ready instruction satisfies the first and second
conditions.

14. The method of claim 13, further comprising the steps
of: 1f the first and second conditions are satisfied:

storing the first result in at least one ready source data
storage location, each ready storage location corre-
sponding to one of the source operand location desig-
nators that 1s identical to the first destination location

designator.

10

15

20

25

30

35

40

45

50

55

60

65

20

15. The method of claim 1, wherein the receiving step

™

comprises the steps of:

dispatching the first source instruction to the first execu-
tion unit; and

outputting the first destination location designator from
the first execution unit to the memory device before
outputting the first result from the first execution unait.

16. The method of claim 1, wherein a destination desig-
nator storage location stores the first destination location
designator, the destination designator storage location cor-
responding to the first source mstruction, the receiving step
comprising the step of:

reading the first destination location designator from the

first destination designator storage location.

17. In a processor having at least one execution unit for
executing a plurality of instructions to thereby generate
execution results, each instruction specifying an opcode and
being associated with at least one source operand location
designator indicating a storage location of a source operand
of said each instruction 1n a storage builer, each instruction
further associated with a destination location designator
indicating a storage location in the storage buifer of the
result of the execution of said each 1nstruction, wherein each
of at least one dependent instruction of the plurality of
instructions 1s dependent upon at least one source instruction
of the plurality of instructions such that at least one source
operand location designator of the at least one dependent
instruction 1s i1dentical to a corresponding destination loca-
tion designator of the at least one source instruction, the at
least one source operand location designator of the at least
one dependent mstruction being stored 1n a memory device
of the processor, the memory device including a content
addressable memory for storing the source operand location
designators of the at least one dependent 1nstruction as tags
of the content addressable memory, a method for determin-
ing the availability of a source operand of a dependent
instruction for dispatch of the dependent instruction to an
execution unit, the method comprising the steps of:

receiving a first destination location designator of a first
result, the first result being the result of the execution
of a first source 1nstruction by a first execution unit;

determining a {first condition, the first condition being
whether the recerved first destination location designa-
tor 1s 1dentical to any of the stored source operand
location designators of the at least one dependent
instruction, each dependent instruction that satisfies the
first condition thereby being a dependent instruction
that will have at least one source operand available for
dispatch of the dependent instruction to an execution
unit, wherein said determining step comprises the step
of associatively comparing the first destination location
designator with the stored source operand location
designators of the dependent instructions to determine
which of the dependent instructions are dependent
instructions satisfying the first condition;

latching the first destination location designator 1n a latch;

if the first condition 1s satisfied, determining a second
condition, the second condition being whether all of the
other source operands of any of the dependent 1nstruc-
tions that satisfy the first condition will be available for
dispatch, each dependent mstruction satistying the first
and second conditions being denoted a ready instruc-
tion:

determining that the first ready instruction and a second
ready instruction are to be dispatched to the second
execution unit;

6,101,597

21

selecting the first ready instruction for dispatch to the
second execution unit;

dispatching a first ready instruction to a second execution
unit for execution of the first ready instruction, wherein
during dispatch of the first ready instruction, determin-
ing whether the second ready instruction satisfies the
first condition 1n response to the latched first destina-
tion location designator, and determining whether the
second ready instruction satisfies the second condition;

selecting the second ready instruction for dispatch if the
second ready 1nstruction satisfies the first and second
conditions; and

dispatching the second ready instruction to the second
execution unit for execution of the second ready
mnstruction;

storing the first result in at least one ready source data
storage location 1f the first and second conditions are
satisiied, each ready storage location corresponding to
one of the source operand location designators that 1s
1dentical to the first destination location designator; and

alter the storing step, providing the first result to the
second execution unit executing the second ready
instruction, the first result being provided from the at
least one ready source data storage location that cor-
responds to the second ready instruction.

18. The method of claim 17, further comprising the steps
of:

during the storing step, setting at least one source valid
bit, each source valid bit corresponding to one of the
source operand location designators that 1s 1dentical to
the first destination location designator;

before dispatch of the second ready instruction, determin-
ing that the second ready instruction and a third ready
instruction are to be dispatched to the second execution
unit;

during dispatch of the second ready instruction, determin-
ing whether the third ready instruction satisfies the first
condition 1n response to at least one source valid bit
corresponding to at least one source operand of the
third ready instruction, and determining whether the
third ready instruction satisfies the second condition;
and

selecting the third ready instruction for dispatch to the
second execution unit if the third ready instruction
satisiies the first and second conditions.

19. A processor for processing a plurality of instructions,
cach instruction specifying an opcode and being associated
with at least one source operand location designator indi-
cating the storage location of a source operand of said each
instruction in a storage buifer, each mstruction further asso-
ciated with a destination location designator indicating the
storage location i1n the storage buffer of a result of the
execution of said each instruction, wherein each of at least
one dependent instruction of the plurality of instructions is
dependent upon at least one source instruction of the plu-
rality of instructions such that at least one source operand
location designator of the at least one dependent instruction
1s 1dentical to a corresponding destination location designa-
tor of the at least one source instruction, the processor
comprising:

at least one execution unit for executing instructions, each
execution unit having at least one source input, each
source input for receiving a source operand, each
execution unit further having a result data output for
outputting the result of the execution of an instruction,

10

15

20

25

30

35

40

45

50

55

60

65

22

a first execution unit of the at least one execution unit
for outputting a first result of the execution of a first
source 1nstruction, wherein a first destination location
designator indicates the storage location of the {first
result 1n the storage bufler;

a reservation station array having:
at least one row corresponding to an istruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding 1nstruction;

at least one associative array having at least one array line,
cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent instruction of the corresponding row, the at

least one associative array having an input for receiving
the first destination location designator, the associative
array having circuitry for providing at least one match
signal 1n response to a match between the received first
destination location designator and a stored source
operand location designator;

a ready logic circuit for determining that at least one row
1s ready for dispatch to an execution unit as a function
of the at least one match signal; and

an execution bypass multiplexer for providing th ¢ first
result from the result data output of the first execution
unit to the source input of an execution unit to which a
ready row 1s to be dispatched, the first result being
provided when the outputting of the first result from the
first execution unit occurs after the dis patch of the
ready row.

20. The processor of claim 19, the at least one associative
array further having an mnput for receiving a second desti-
nation location designator of a second result of the execution
of a second source 1nstruction by a second execution unit,
the associative array further having circuitry for providing at
least one second match signal in response to a match
between the received second destination location designator
and at least one stored source operand location designator.

21. The processor of claim 20, wherein

the ready logic circuit determines readiness as a function
of the at least one match signal and the at least one
second match signal, and

the execution bypass multiplexer further includes cir-
cuitry for providing the second result from the result
data output of the second execution unit to the source
input of the execution unit to which the ready row 1s to
be dispatched, the second result bemng provided when
the outputting of the second result from the second
execution unit occurs after the dispatch of the ready
TOwW.

22. The processor of claim 19, wherein the ready logic
circuit determines the readiness of the at least one row as a
function of the at least one match signal and at least one
source valid bit, each source valid bit corresponding to a
source operand.

23. The processor of claim 22, further comprising a
register alias table circuit for setting the source valid bat
corresponding to an immediate source operand upon allo-
cation of the at least one row to the reservation station.

24. The processor of claim 22,

the storage bufler for storing a second result of the
execution of a second source instruction, wherein

if the second result corresponds to a source operand of the
allocated instruction, the storage buifer provides the

6,101,597

23

second result to the at least one source data field of the
allocated 1struction, and the source valid b1t associated
with each source data field receiving the second result
1s set.
25. The processor of claim 24, wherein the storage buflfer
COMPrises:

a reorder buffer for storing the second result of the
speculative execution of the second source instruction,;
and

a real register file for storing the second result after

retirement of the second source 1nstruction.

26. The processor of claim 19, wherein the at least one
assoclative array comprises a first and a second associative
array, each array line of the second associative array for
storing the same source operand location designators stored
1n a corresponding array line of the first associative array, the
processor further comprising a latch for latching the first
destination location designator, and for providing the latched
first destination location designator to the input of the
second associative array.

27. The processor of claim 26, each source data field
having a write enable 1nput for enabling the writing of the
first result into the source data field, wherein each match
signal of the second associative array is transmitted to the
write enable mput of each source data field corresponding to
a source operand location designator that matches the
latched first destination location designator.

28. The processor of claim 26, wherein the ready logic
circuit determines that a first ready row and a second ready
row are ready for dispatch to a second execution unit, the
processor further comprising a scheduler circuit, coupled to
the ready logic circuit, for selecting the first ready row for
dispatch to the second execution unit.

29. The processor of claim 28, further comprising a ready
disable logic circuit for disabling the ready logic circuit of
a ready row after the ready row has been selected for
dispatch.

30. The processor of claim 29, wherein, after the ready
logic circuit of the first ready row has been disabled, the
ready logic circuit determines that the second row 1s ready
for dispatch to the second execution unit as a function of the
at least one match signal provided by the second associative
array.

31. A processor for processing a plurality of instructions,
cach instruction specifying an opcode and being associated
with at least one source operand location designator indi-
cating the storage location of a source operand of said each
instruction in a storage buifer, each mstruction further asso-
clated with a destination location designator indicating the
storage location i1n the storage buffer of a result of the
execution of said each instruction, wherein each of at least
one dependent instruction of the plurality of instructions is
dependent upon at least one source instruction of the plu-
rality of instructions such that at least one source operand
location designator of the at least one dependent instruction
1s 1dentical to a corresponding destination location designa-
tor of the at least one source instruction, the processor
comprising:

at least one execution unit that executes 1nstructions, each

execution unit having at least one source input, each
source 1nput for receiving a source operand, each
execution unit further having a result data output for
outputting the result of the execution of an instruction,
a 1irst execution unit of the at least one execution unit
for outputting a first result of the execution of a first
source 1nstruction, wherein a first destination location
designator indicates the storage location of the first
result 1n the storage buffer;

10

15

20

25

30

35

40

45

50

55

60

65

24

a reservation station array having:
at least one row corresponding to an istruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding instruction;

at least one associative array having at least one array line,
cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent instruction of the corresponding row, the at
least one associative array having an mput for receiving,
the first destination location designator, the associative
array having circuitry for providing at least one match
signal 1n response to a match between the received first
destination location designator and a stored source
operand location designator, wherein the at least one
assoclative array comprises a first and a second asso-
clative array, ecach array line of the second associative
array for storing the same source operand location
designators stored 1n a corresponding array line of the
first assoclative array;

a latch that latches the first destination location
designator, and provides the latched first destination
location designator to the mput of the second associa-
five array;

a ready logic circuit that determines that at least one row
1s ready for dispatch to an execution unit as a function
of the at least one match signal, wherein the ready logic
circuit determines that a first ready row and a second
ready row are ready for dispatch to a second execution
unit, wherein, after the ready logic circuit of the first
ready row has been disabled, the ready logic circuit
determines that the second row 1s ready for dispatch to
the second execution unit as a function of the at least
one match signal provided by the second associative
array;

a scheduler circuit, coupled to the ready logic circuit, that
selectes the first ready row for dispatch to the second
execution unit;

a ready disable logic circuit that disables the ready logic
circuit of a ready row after the ready row has been
selected for dispatch;

an execution bypass multiplexer that provides the first
result from the result data output of the first execution
unit to the source input of an execution unit to which a
ready row 1s to be dispatched, the first result being
provided when the outputting of the first result from the
first execution unit occurs after the dispatch of the
ready row; and

means for storing the first result into each source data field
having a write enable mput that has received a match
signal, the first result being provided to the source 1nput
of the second execution unit from the source data field
of the second ready row.

32. A processor for processing a plurality of instructions,
cach 1nstruction specitying an opcode and being associated
with at least one source operand location designator indi-
cating the storage location of a source operand of said each
instruction 1n a storage buifer, each instruction further asso-
ciated with a destination location designator indicating the
storage location 1n the storage buffer of a result of the
execution of said each instruction, wherein each of at least
one dependent instruction of the plurality of instructions is
dependent upon at least one source instruction of the plu-

6,101,597

25

rality of instructions such that at least one source operand
location designator of the at least one dependent 1nstruction
1s 1dentical to a corresponding destination location designa-
tor of the at least one source instruction, the processor
comprising:
at least one execution unit that executes instructions, each
execution unit having at least one source input, each
source 1nput for receiving a source operand, each
execution unit further having a result data output for
outputting the result of the execution of an instruction,
a first execution unit of the at least one execution unit
for outputting a first result of the execution of a first
source 1nstruction, wherein a first destination location
designator indicates the storage location of the first
result 1n the storage builer;

a reservation station array having:
at least one row corresponding to an instruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding instruction;

at least one associative array having at least one array line,
cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent 1nstruction of the corresponding row, the at
least one associative array having an input for receiving
the first destination location designator, the associative
array having circuitry for providing at least one match
signal 1n response to a match between the received first
destination location designator and a stored source
operand location designator, wherein the at least one
assoclative array comprises a first and a second asso-
clative array, ecach array line of the second associative
array for storing the same source operand location
designators stored 1n a corresponding array line of the
first associative array;

a latch that latches the first destination location
designator, and provides the latched first destination
location designator to the mput of the second associa-
five array;

a ready logic circuit that determines that at least one row
1s ready for dispatch to an execution unit as a function
of the at least one match signal, wherein the ready logic
circuit determines that a first ready row and a second
ready row are ready for dispatch to a second execution
unit, wherein, after the ready logic circuit of the first
ready row has been disabled, the ready logic circuit
determines that the second row 1s ready for dispatch to
the second execution unit as a function of the at least
onc match signal provided by the second associative
array, wherein the ready logic circuit determines that
the second ready row and a third ready row are ready
for dispatch to the second execution unit;

a scheduler circuit, coupled to the ready logic circuit, that
selectes the first ready row for dispatch to the second
execution unit, the scheduler circuit selects the second
ready row for dispatch to the second execution unit;

a ready disable logic circuit that disables the ready logic
circuit of a ready row after the ready row has been
selected for dispatch the ready disable logic circuit
thereafter disables the ready logic circuit of the second
ready row, each row further comprising at least one
source valid bit, each source valid bit corresponding to
a source data field;

10

15

20

25

30

35

40

45

50

55

60

65

26

an execution bypass multiplexer that provides the first
result from the result data output of the first execution
unit to th € source input of an execution unit to which
areca dy row 1s to be dispatched, the first result being
provided when the outputting of the first result from the
first execution unit occurs after the dispatch of the
ready row; and

means for setting each source valid bit corresponding to
a write enabled source data field after execution of the
first source 1nstruction, wherein the ready logic deter-
mines that the third ready row 1s ready for dispatch as
a Tunction of the source valid bit of the third ready row.
33. A processor for processing a plurality of instructions,
cach 1nstruction specitying an opcode and being associated
with at least one source operand location designator indi-
cating the storage location of a source operand of said each
instruction 1n a storage buifer, each instruction further asso-
ciated with a destination location designator indicating the
storage location 1n the storage buffer of a result of the
execution of said each 1nstruction, wherein each of at least
one dependent instruction of the plurality of instructions 1s
dependent upon at least one source instruction of the plu-
rality of instructions such that at least one source operand
location designator of the at least one dependent instruction
1s 1dentical to a corresponding destination location designa-
tor of the at least one source instruction, the processor
comprising:

at least one execution unit that executes instructions, each
execution unit having at least one source input, each
source 1nput for receiving a source operand, each
execution unit further having a result data output for
outputting the result of the execution of an instruction,
a first execution unit of the at least one execution unit
for outputting a first result of the execution of a first
source 1nstruction, wherein a first destination location
designator indicates the storage location of the first
result in the storage builer;

a reservation station array having:
at least one row corresponding to an istruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding 1nstruction, each row of the reserva-
tion station array further having a destination loca-
tion designator field for storing the destination loca-
tion designator associated with the instruction
corresponding to the row;

at least one associative array having at least one array line,
cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent 1nstruction of the corresponding row, the at
least one associative array having an mput for receiving,
the first destination location designator, the associative
array having circuitry for providing at least one match
signal 1n response to a match between the received first
destination location designator and a stored source
operand location designator;

a ready logic circuit that determines that at least one row
1s ready for dispatch to an execution unit as a function
of the at least one match signal; and

an execution bypass multiplexer that provides the first
result from the result data output of the first execution
unit to the source mput of an execution unit to which a
ready row 1s to be dispatched, the first result being

6,101,597

27

provided when the outputting of the first result from the
first execution unit occurs after the dispatch of the
ready row; and

a destination bypass multiplexer having a first input for
receiving at least one result data output of at least one
execution unit, the destination bypass multiplexer fur-
ther having a second input for receiving the {irst
destination location designator from the destination

location designator field of the row corresponding to

the first source instruction, the destination bypass mul-

tiplexer further having an output coupled to the input of

the at least one associative array, wherein the destina-

tion bypass multiplexer provides the first destination

location designator from the first input if the first source
instruction requires a first number of processor clock
cycles for execution, the destination bypass multiplexer
provides the first destination location designator from
the second 1nput if the first source instruction requires
a second number of processor clock cycles for
execution, the second number being greater than the
first number.

34. A computer system comprising:

a bus for communicating information;

a memory storage device, coupled to th e bus, for storing
mstructions and data; and

a processor, coupled to the bus, for processing a plurality
of 1nstructions, each instruction specifying an opcode
and being associated with at least one source operand
location designator indicating the storage location of a
source operand, each instruction further associated with
a destination location designator indicating the storage
location of a result of the execution of the instruction,
wherein each of at least one dependent instruction of
the plurality of instructions 1s dependent upon at least
one source 1nstruction of the plurality of instructions
such that at least one source operand location designa-

tor of the at least one dependent mstruction is 1dentical

to a corresponding destination location designator of
the at least one source 1nstruction, the processor com-
prising:

at least one execution unit for executing instructions, each
execution unit having at least one source input, each
source 1nput for receiving a source operand, each
execution unit further having a result data output for
outputting the result of the execution of an instruction,
the at least one execution unit including a first execu-
tion unit for outputting a first result of the execution of
a first source instruction, wherein a first destination
location designator indicates the storage location of the
first result;

a reservation station array having:
at least one row corresponding to an instruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding 1nstruction;

at least one associative array having at least one array line,
cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent instruction of the corresponding row, the at
least one associative array having an input for receiving
the first destination location designator, the associative
array having circuitry for providing at least one match
signal 1n response to a match between the received first

5

10

15

20

25

30

35

40

45

50

55

60

65

23

destination location designator and a stored source
operand location designator;

a ready logic circuit for determining that at least one row
1s ready for dispatch to an execution unit as a function
of the at least one match signal; and

an execution bypass multiplexer for providing the first
result from the result data output of the first execution
unit to the source mnput of an execution unit to which a
ready row 1s to be dispatched, the first result being
provided when the outputting of the first result from the
first execution unit occurs after the dispatch of the
ready row.

35. The computer system of claim 34, wherein the at least
one assoclative array comprises a first and a second asso-
clative array, each array line of the second associative array
for storing the same source operand location designators
stored 1n a corresponding array line of the first associative
array, the processor further comprising a latch for latching
the first destination location designator, and for providing
the latched first destination location designator to the input
of the second associative array.

36. The computer system of claim 35, each source data
field having a write enable mput for enabling the writing of
the first result into the source data field, wherein each match
signal of the second associative array is transmitted to the
write enable mnput of each source data field corresponding to
a source operand location designator that matches the
latched first destination location designator.

37. The computer system of claim 35, wherein the ready
logic circuit determines that a first ready row and a second
ready row are ready for dispatch to a second execution unit,
the processor further comprising a scheduler circuit, coupled
to the ready logic circuit, for selecting the first ready row for
dispatch to the second execution unit.

38. The computer system of claim 37, further comprising
a ready disable logic circuit for disabling the ready logic
circuit of a ready row after the ready row has been selected
for dispatch.

39. The computer system of claim 38, wherein, after the
ready logic circuit of the first ready row has been disabled,
the ready logic circuit determines that the second row 1is
ready for dispatch to the second execution unit as a function
of the at least one match signal provided by the second
assoclative array.

40. A computer system comprising:

a bus for communicating information;

a memory storage device, coupled to the bus, that stores
mstructions and data; and

a processor, coupled to the bus, that processes a plurality
of 1nstructions, each instruction specitying an opcode
and being associated with at least one source operand
location designator indicating the storage location of a
source operand, each instruction further associated with
a destination location designator indicating the storage
location of a result of the execution of the instruction,
wherein each of at least one dependent instruction of
the plurality of instructions i1s dependent upon at least
one source 1nstruction of the plurality of instructions
such that at least one source operand location designa-

tor of the at least one dependent mstruction is 1dentical

to a corresponding destination location designator of
the at least one source instruction, the processor com-
prising:

at least one execution unit that executes instructions, each
execution unit having at least one source input, each
source 1nput for receiving a source operand. each

6,101,597

29

execution unit further having a result data output for
outputting the result of the execution of an instruction,
the at least one execution unit including a first execu-
tion unit for outputting a first result of the execution of
a first source 1nstruction, wherein a first destination
location designator 1indicates the storage location of the
first result;

a reservation station array having;
at least one row corresponding to an instruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding instruction;

at least one associative array having at least one array line,
cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent instruction of the corresponding row, the at
least one associative array having an input for receiving
the first destination location designator, the associative

array having circuitry for providing at least one match
signal 1n response to a match between the received first
destination location designator and a stored source
operand location designator, wherein the at least one
assoclative array comprises a first and a second asso-
clative array, each array line of the second associative
array for storing the same source operand location
designators stored 1n a corresponding array line of the
first associative array;

a latch that latches the first destination location
designator, and provides the latched first destination
location designator to the mput of the second associa-
five array;

a ready logic circuit that determines that at least one row
1s ready for dispatch to an execution unit as a function
of the at least one match signal, wherein the ready logic
circuit determines that a first ready row and a second
ready row are ready for dispatch to a second execution
unit;

a scheduler circuit, coupled to the ready logic circuit, that

selects the first ready row for dispatch to the second
execution unit;

a ready disable logic circuit for disabling the ready logic
circuit of a ready row after the ready row has been
selected for dispatch, wherein, after the ready logic
circuit of the first ready row has been disabled, the
ready logic circuit determines that the second row 1s
ready for dispatch to the second execution unit as a
function of the at least one match signal provided by the
second associative array:

an execution bypass multiplexer that provides the first
result from the result data output of the first execution
unit to the source mput of an execution unit to which a
ready row 1s to be dispatched, the first result being
provided when the outputting of the first result from the
first execution unit occurs after the dispatch of the
ready row; and

means for storing the first result into each source data field
having a write enable mput that has received a match
signal, the first result being provided to the source input
of the second execution unit from the source data field
of the second ready row.

41. A computer system comprising:

a bus for communicating information;

a memory storage device, coupled to the bus, that stores
mstructions and data; and

10

15

20

25

30

35

40

45

50

55

60

65

30

a processor, coupled to the bus, that processes a plurality
ol 1nstructions, each instruction specifying an opcode
and being associated with at least one source operand
location designator indicating the storage location of a
source operand, each instruction further associated with
a destination location designator indicating the storage
location of a result of the execution of the instruction,
wherein each of at least one dependent instruction of
the plurality of instructions i1s dependent upon at least
one source 1nstruction of the plurality of instructions
such that at least one source operand location designa-

tor of the at least one dependent mstruction is 1dentical

to a corresponding destination location designator of
the at least one source instruction, the processor com-

Prising;:

at least one execution unit that executes instructions, each
execution unit having at least one source input, each
source 1nput for receiving a source operand, each
execution unit further having a result data output for
outputting the result of the execution of an instruction,
the at least one execution unit including a first execu-
tion unit for outputting a first result of the execution of
a first source instruction, wherein a first destination
location designator indicates the storage location of the
first result;

a reservation station array having:
at least one row corresponding to an instruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding instruction;

at least one associative array having at least one array line,
cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent 1nstruction of the corresponding row, the at
least one associative array having an mput for receiving,
the first destination location designator, the associative
array having circuitry for providing at least one match
signal 1n response to a match between the received first
destination location designator and a stored source
operand location designator, wherein the at least one
assoclative array comprises a first and a second asso-
clative array, each array line of the second associative
array for storing the same source operand location
designators stored 1n a corresponding array line of the
first assoclative array;

a latch that latches the first destination location
designator, and provides the latched first destination
location designator to the mput of the second associa-
five array;

a ready logic circuit that determines that at least one row
1s ready for dispatch to an execution unit as a function
of the at least one match signal, wherein the ready logic
circuit determines that a first ready row and a second
ready row are ready for dispatch to a second execution
unit, wherein the ready logic circuit determines that the
second ready row and a third ready row are ready for
dispatch to the second execution unit;

a scheduler circuit, coupled to the ready logic circuit, that
selects the first ready row for dispatch to the second
execution unit, wherein the scheduler circuit selects the
second ready row for dispatch to the second execution
unit, the ready disable logic circuit thereafter disables
the ready logic circuit of the second ready row, each

6,101,597

31

row further comprising at least one source valid bit,
cach source valid bit corresponding to a source data

field;

a ready disable logic circuit for disabling the ready logic
circuit of a ready row after the ready row has been
selected for dispatch, wherein, after the ready logic
circuit of the first ready row has been disabled, the
ready logic circuit determines that the second row i1s
ready for dispatch to the second execution unit as a
function of the at least one match signal provided by the
second associative array;

an execution bypass multiplexer that provides the first
result from the result data output of the first execution
unit to the source input of an execution unit to which a
ready row 1s to be dispatched, the first result being
provided when the outputting of the first result from the
first execution unit occurs after the dispatch of the
ready row;

means for setting each source valid bit corresponding to
a write enabled source data field after execution of the
first source 1nstruction, the ready logic circuit deter-
mining that the third ready row 1s ready for dispatch as
a Tunction of the source valid bit of the third ready row.
42. A computer system comprising;:

a bus that communicates information:

a memory storage device, coupled to the bus, that stores
mstructions and data; and

a processor, coupled to the bus, that processes a plurality
of 1nstructions, each instruction specifying an opcode
and being associated with at least one source operand
location designator indicating the storage location of a
source operand, each instruction further associated with
a destination location designator indicating the storage
location of a result of the execution of the instruction,
wherein each of at least one dependent instruction of
the plurality of instructions 1s dependent upon at least
one source 1nstruction of the plurality of instructions
such that at least one source operand location designa-

tor of the at least one dependent mstruction is 1dentical

to a corresponding destination location designator of
the at least one source 1nstruction, the processor com-
prising:

at least one execution unit that executes instructions, each
execution unit having at least one source input, each
source input for receiving a source operand, each
execution unit further having a result data output for
outputting the result of the execution of an instruction,
the at least one execution unit including a first execu-
tion unit for outputting a first result of the execution of
a first source 1nstruction, wherein a first destination
location designator indicates the storage location of the
first result;

10

15

20

25

30

35

40

45

50

32

a reservation station array having:

at least one row corresponding to an instruction, each
row having a plurality of fields including an opcode
field for storing the opcode of the corresponding
instruction, each row further having at least one
source data field for storing a source operand of the
corresponding 1nstruction, each row of the reserva-
tion station array further having a destination loca-
tion designator field for storing the destination loca-
tion designator associated with the instruction
corresponding to the row;

at least one associative array having at least one array line,

cach array line corresponding to a row, each array line
for storing the at least one source operand location
designator of the at least one source operand of a
dependent instruction of the corresponding row, the at
least one associative array having an input for receiving
the first destination location designator, the associative
array having circuitry for providing at least one match
signal 1n response to a match between the received first
destination location designator and a stored source
operand location designator;

a ready logic circuit that determines that at least one row

1s ready for dispatch to an execution unit as a function
of the at least one match signal; and

an execution bypass multiplexer that provides the first

result from the result data output of the first execution
unit to the source mput of an execution unit to which a
ready row 1s to be dispatched, the first result being
provided when the outputting of the first result from the
first execution unit occurs after the dispatch of the
ready row;

a destination bypass multiplexer having a first input for

receiving at least one result data output of at least one
execution unit, the destination bypass multiplexer fur-
ther having a second mput for receiving the first
destination location designator from the destination
location designator field of the row corresponding to
the first source 1nstruction, the destination bypass mul-
tiplexer further having an output coupled to the input of
the at least one associative array, wherein the destina-
tion bypass multiplexer provides the first destination
location designator from the first input if the first source
Instruction requires a first number of processor clock
cycles for execution, the destination bypass multiplexer
provides the first destination location designator from
the second imput if the first independent instruction
requires a second number of processor clock cycles for
execution, the second number being greater than the
first number.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,101,597 Page 1 of 1
DATED . August 8, 2000
INVENTOR(S) : Colwell et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 26,
Line 4, delete “dy” and insert -- ready --.

Signed and Sealed this

Eighth Day of January, 2002

Attest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

