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57 ABSTRACT

A method and apparatus are provided for miss sequence
cache block replacement 1 a cache mcluding a plurality of
cache blocks 1n a computer system. First checking for an
invalid block 1s performed. Responsive to identifying an
imvalid cache block, the 1dentified invalid block 1s selected
for replacement. If an 1nvalid cache block 1s not found, then
checking for a first priority cache block and not equal to
most recently used (MRU) state 1s performed. Responsive to
identifying a first priority cache block and not equal to most
recently used (MRU) state, the identified first priority cache
block 1s selected for replacement. If a first priority cache
block and not equal to most recently used (MRU) state is not
found, then checking for a next priority cache block and not
equal to most recently used (MRU) state is performed.
Responsive to identifying a next priority cache block and not
equal to most recently used (MRU) state, the identified next
priority cache block 1s selected for replacement. In the
absence of 1dentifying an invalid cache block, a first priority
cache block and not equal to most recently used (MRU)
state, or a next priority cache block and not equal to most
recently used (MRU) state, one of the plurality of cache
blocks 1s randomly selected for replacement. A tag field
stores the most recently used (MRU) state information
which 1s used to determine where not to replace a cache
block 1n the cache.

20 Claims, 16 Drawing Sheets
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METHOD AND APPARATUS FOR MISS
SEQUENCE CACHE BLOCK
REPLACEMENT UTILIZING A MOST
RECENTLY USED STATE

FIELD OF THE INVENTION

The present invention generally relates to a computer
architecture, cache memory systems and the data processing
field, and more particularly, relates to, methods and appa-
ratus for determination of which entries 1n a cache are to be
replaced with cache miss sequences.

DESCRIPTION OF THE RELATED ART

Computer have become increasingly faster and one of the
ways 1n which to increase the speed of computers is to
increase the clock speed of the processors. Computer system
performance 1s limited by processor stalls when the proces-
sor must wait for data from memory to continue processing.
In order to reduce data access time, special purpose high-
speed memory spaces of static random access memory
(RAM) called a cache are used to temporarily store data
which are currently 1n use. For example, the cached data can
include a copy of instructions and/or data obtained from
main storage for quick access by a processor. A processor
cache typically i1s positioned near or integral with the
processor. Data stored 1n the cache advantageously may be
accessed by the processor in only one processor cycle
retrieving the data necessary to continue processing; rather
than having to stall and wait for the retrieval of data from a
secondary memory, such as a higher level cache memory or
main memory.

Another cache example 1s the buffer memory included an
input/output (I/O) bridge chip. An I/O bridge chip provides
the connection between two different data buses 1 a com-
puter system. Also an I/O bridge chip can be part of an
input/output processor (IOP). An I/O bridge chip typically
contains a cache, some registers, and the components nec-
essary to connect two different buses together. Data flows to
and from devices connected to one of the buses, through the
bridge chip and 1ts cache and to and from another bus, which
might be connected to a different device or host computer.
An example of such a configuration 1s a host computer with
a host bus connected to a bridge chip, which 1s further
connected to another bus that attaches multiple 1/O proces-
SOrS.

When the processor requests a data item or word from
memory, the cache 1s accessed when the processor processes
a memory access 1nstruction. If the desired word, for
example, data or program instruction, resides 1n the cache,
this 1s called a cache hit and the desired word 1s read from
the cache. If the desired data or program 1instruction is not
found 1n the cache, this 1s a called cache miss. With a cache
miss, secondary memory 1s accessed to read that word, and
a block of words containing that word 1s transferred from the
main memory to the cache and the processor. A cache miss
causes the processor to wait or creates a stall, degrading
system performance.

Various techniques are known for mapping blocks of main
memory into the cache. Known methods of mapping main
memory and cache addressing include a direct mapping
cache conflguration, a set-associative cache configuration,
and a fully associative cache configuration. The physical
locations that make up the cache are called cache blocks or
lines. Each cache block has a tag or a set of address tags
assoclated with it.

In a direct-mapped cache, any program block can be
placed 1n only one location 1n the cache or 1in only one cache
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block. The direct-mapped cache 1s a one-way set associative
cache; each cache entry holds one block and forms a set with
one eclement. In the direct-mapped cache, a program block
can only be placed 1n one cache block so there 1s only one
possible replacement policy.

In a set-associative cache, cache blocks are divided into
sets and a program block may be placed within any of the
cache blocks 1n one set. A fully associative cache with M
entries 1s an M-way set associative cache; it has one set with
M blocks and an entry can reside 1n any block within that set.
The memory address 1s divided into tag, set number and
block offset fields. The block offset field indicates the
address of the desired data within the block; the set number
or index {field identifies the set of cache blocks that may
contain a program block; and the tag field 1s compared with
the tags of all the cache blocks 1n the set to determine if there
1s a cache hit.

With a cache miss, a transferred word replaces a block 1n
the set associative cache according to a replacement policy.
One measure of cache performance 1s a miss ratio defined as
the total number of cache misses relative to the total number
of read and write references. Various replacement policies or
algorithms have been implemented 1n set-associative caches
to determine which cache block 1s to be used to fill data
when a cache miss occurs. Least recently used (LRU) and
random are the two primary algorithms for replacement of

blocks.

In set associative caches using the LRU algorithm, the
data which 1s replaced 1s that data which 1s least recently
used. A counter 1s assigned per block per set and then given
an average over a period of time, the LRU block 1s written
to memory and replaced with fresher, incoming data. The
problem 1s that LRU 1is costly 1n terms of hardware com-
plexity so that the LRU scheme 1s used for two-way or
four-way associative caches. To improve performance, other

algorithms which have been designed to estimate the LRU
blocks.

In the random replacement scheme, there 1s no need for
bit vectors 1n counters which have to updated each time data
in the block 1s used, as required for LRU schemes. In any
cache the blocks 1n a cache have three states: invalid,
exclusive, and modified. If there 1s more than one processor,
the blocks in the cache can have a fourth shared state.

The random algorithm 1s stmpler than the LRU algorithm,
but 1t does not take advantage of the programs referencing
patterns. That 1s, the random algorithm selects cache blocks
regardless of the locality of references. The LRU algorithm,
on the other hand, takes advantage of locality of references
by keeping track of accesses to each block within a set and
by replacing the block not used for the longest time. As a
result, the LRU algorithm outperforms the random
algorithm, but at the expense of additional hardware. While
the hardware cost of the random algorithm 1s independent of
the number of blocks within a set, the overhead of the LRU
algorithm increases as the number of blocks increases within
a sct.

A need exists for an improved cache block replacement
algorithm to provide improved cache performance. It 1s
desirable to provide such improved cache block replacement
algorithm that 1s simple to implement and that takes advan-
tage of state information.

SUMMARY OF THE INVENTION

A principal object of the present invention 1s to provide an
improved cache block replacement method and apparatus in
a set-associative cache. Other objects are to provide such
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method and apparatus that leave most recently used (MRU)
data 1n the cache; to provide such method and apparatus
without increasing the complexity of the hardware or the
software as the number of the blocks 1n a set increase; to
provide such method and apparatus substantially without
negative elfects, and that overcome many of the disadvan-
tages of prior art arrangements.

In brief, a method and apparatus are provided for miss
sequence cache block replacement in a cache including a
plurality of cache blocks in a computer system. First check-
ing for an invalid block 1s performed. Responsive to 1den-
tifying an mnvalid cache block, the 1dentified invalid block 1s
selected for replacement. If an mvalid cache block 1s not
found, then checking for a first priority cache block and not
equal to most recently used (MRU) state is performed.
Responsive to 1dentifying a first priority cache block and not
equal to most recently used (MRU) state, the identified first
priority cache block 1s selected for replacement. If first
priority cache block and not equal to most recently used
(MRU) state is not found, then checking for a next priority
cache block and not equal to most recently used (MRU) state
1s performed. Responsive to identifying a next priority cache
block and not equal to most recently used (MRU) state, the
identified next priority cache block 1s selected for replace-
ment. In the absence of identifying an invalid cache block,
a first priority cache block and not equal to most recently
used (MRU) state, or a next priority cache block and not
equal to most recently used (MRU) state, one of the plurality
of cache blocks 1s randomly selected for replacement.

In accordance with features of the mmvention, a tag field
stores the most recently used (MRU) state information
which 1s used to determine where not to replace a cache
block 1n the cache.

BRIEF DESCRIPTION OF THE DRAWINGS

The present 1invention together with the above and other
objects and advantages may best be understood from the
following detailed description of the preferred embodiments
of the mvention illustrated 1n the drawings, wherein:

FIG. 1A 1s a block diagram representation 1illustrating a
first computer system for implementing a cache block
replacement method and apparatus for cache block replace-
ment 1n accordance with the preferred embodiment;

FIG. 1B 1s block diagram representation illustrating a
second multiprocessor computer system for implementing a
cache block replacement method and apparatus for cache
block replacement 1n accordance with the preferred embodi-
ment,

FIG. 2A 15 a block diagram representation 1llustrating an
address of each cache memory location or cache block 1n the
computer systems of FIGS. 1A and 1B 1n accordance with
the preferred embodiment;

FIG. 2B illustrating a cache directory in the computer
systems of FIGS. 1A and 1B including apparatus for cache
block replacement 1n accordance with the preferred embodi-
ment,

FIG. 3 1s a flow chart 1llustrating the cache miss sequence
cache block replacement method and apparatus 1n accor-
dance with the preferred embodiment;

FIGS. 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 9A, 9B
are charts 1llustrating simulated performance effects of the
cache block replacement method of the preferred embodi-
ment relative to conventional random and random and
invalid cache block replacement methods with 16K and a
64K set-associative write-back caches with percent values
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shown relative to the vertical axis and associativity sizes
shown relative to the horizontal axis; and

FIGS. 10A, 10B, 11A, 11B, 12A, 12B, 13A, 13B, 14A,
14B, 15A, 15B are charts illustrating simulated performance
clfects of the cache block replacement method of the pre-
ferred embodiment together with conventional random and
invalid and least recently used (LRU) cache block replace-
ment methods with 16K and a 64K set-associative write-
back caches with miss ratio values shown relative to the
vertical axis and associativity sizes shown relative to the
horizontal axis.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Having reference now to the drawings, in FIG. 1A, there
1s shown a first computer or data processing system gener-
ally designated by the reference character 100 for imple-
menting a cache block replacement method and apparatus in
accordance with the preferred embodiment. As shown 1n
FIG. 1A, computer system 100 includes a central processor
unit (CPU) 102, a static random access memory or cache
104, a read only memory 106, a secondary random access
memory 108, a display adapter 110 coupled to a display 112.
CPU 102 1s connected to a user interface (UI) adapter 114
connected to a pointer device and keyboard 116. CPU 102
is connected to an input/output (I0) adapter 118 connected
to a direct access storage device (DASD) 120 and a tape unit
122. CPU 102 is connected to a communications adapter 124
providing a communications function. Computer system 100
includes a cache controller 126 arranged together with cache
104 for implementing the cache block replacement method
and apparatus 1n accordance with the preferred embodiment.

In FIG. 1B, there 1s shown a second shared-memory
multiprocessor system generally designated by 130 for
implementing a cache block replacement method and appa-
ratus 1n accordance with the preferred embodiment. As
shown 1in FIG. 1B, system 130 includes a plurality of
processors 102. Each processor 102 1s associated with a
cache 104. As 1n the single processor computer system 100
of FIG. 1A, cache controller 126 1s arranged together with
cache 104 for implementing the cache miss sequence cache
block replacement method and apparatus in accordance with
the preferred embodiment. An arbitrary interconnection net-

work or a shared bus 132 couples the multiple processors
102 to a shared memory 134.

In FIGS. 1A and 1B, computer systems 100 and 130 are
illustrated 1n simplified and diagrammatic form sufficient for
an understanding of the present invention. The utility of the
present invention 1s not restricted to the details of a particu-
lar arrangement of cache 104 and cache controller 126. In
accordance with the preferred embodiment, cache 104 1s a
set-assoclative cache arranged as a store-in or write-back
cache. However, 1t should be understood that the present
invention can be used with a fully associative cache,
arranged as a store-in or write-back cache or a store-through
cache.

FIG. 2A 1llustrates an address 200 of a cache memory
location divided into three fields including a tag 202, a set
number 204, and a block offset 206. The block offset 206 1s
used to access one or more bytes within a block. The tag
field 202 1dentifies a unique cache block. The tag field 202
1s compared with the tags of all the cache blocks 1n the set
to determine 1if there 1s a cache hit. The set number field 204
identifies the set of cache blocks that may contain a program
block. The block offset field 206 indicates the address of the
desired data within the block.
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FIG. 2B 1illustrates a cache directory 210 used in the
computer systems 100 and 130 of FIGS. 1A and 1B includ-

ing cache miss sequence apparatus for cache block replace-
ment 1n accordance with the preferred embodiment. FIG. 2B
shows the cache directory 210 of a set-associative cache

104. The cache directory 210 includes a plurality of sets 212
(0-M). Each set 212 consists of a plurality of tags 202
(0—N). A most recently used (MRU) state field 214 defines
the state of the cache block most recently received or used.
In accordance with features of the invention, the MRU state
214 1s used to ensure that a recently received block 1s not
selected for replacement on a cache miss sequence. Each tag
202 1dentifies a unique cache block and includes a respective
state field 216 for the identified cache block. The state field
216 1s a function of the cache coherence protocol and the
number of transient states, if any. For instance, with a
coherence protocol for cache 104 similar to the modified,
shared, exclusive, invalid (MESI) coherence protocol, the
state field can be 1n any of the following five states:
exclusive, shared, modified, invalid, or shared-modified.

Each cache block can be 1n an mvalid state or not present
in cache 104. Each cache block can be 1n a shared-modified
state where the processor 102 has the only valid copy of the
block and the memory copy 1s stale. The processor had a
shared copy of a cache block before making the transition to
the shared modified state. The shared state indicates that
multiple copies of the block exists and the memory copy 1s
up-to-date. The exclusive state indicates that only one copy
of the block exists and the memory copy 1s up-to-date. The
modified state indicates that the associated processor 102
has the only valid copy of the cache block and the memory
copy 1s stale.

In brief, the cache block replacement method of the
invention provides an 1improvement over the random strat-
cgy which 1s capable of taking into account locality of
references, while keeping the hardware cost independent of
the number of blocks within a set. In particular, the state
information 216 associated with each cache block 1s used in
eon]unetlon with random strategy. On a cache miss, a cache
block 1s selected for replacement base on a plurality o
predefined priorities from high to low, for example, of
imvalid, shared-modified, shared, exclusive and modified. If
two or more blocks within a set 212 have equal priority, one
of the blocks 1s selected randomly. It should be noted that
blocks 1n the shared-modified state tend to have low locality,
and thus, a replaced shared-modified block 1s less likely to
be referenced again in the near future. Additionally, a shared
block or an exclusive block 1s selected over a modified block
to reduce the probability of increasing processor-memory
tratfic due to block replacements. Finally, a shared block 1s
chosen over an exclusive block since a shared block can
potentially exhibit lower locality than an exclusive block.

FIG. 3 1s a flow chart 1llustrating the cache miss sequence
cache block replacement method and apparatus in accor-
dance with the preferred embodiment. Responsive to a cache
miss, first checking for an mnvalid cache block 1s performed
as indicated at a decision block 302. If there 1s a cache block
in the 1nvalid state, then a block 1n the invalid state 1s
selected as mndicated at a block 304. Otherwise, checking for
a cache block 1n the priority 1 state such that the state 1s not
equal to the MRU state 1s performed as indicated at a
decision block 306. If there 1s a block 1n the priority 1 state
such that the state 1s not equal to the MRU state, then a block
in the priority 1 state 1s selected for replacement as indicated
at a block 308. Otherwise, checking for a cache block 1n the
priority 2 state such that the state 1s not equal to the MRU
state 15 performed as indicated at a decision block 310. It
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there 1s a block 1n the priority 2 state such that the state 1s
not equal to the MRU state then a block 1n the priority 2 state
1s selected as mndicated at a block 312. Otherwise, checking
for a cache block 1n the priority 1 state such that the state 1s
not equal to the MRU state 1s performed as indicated at a
decision block 314. If there 1s a block 1n the priority 1 state
such that the state 1s not equal to the MRU state, then a block
in the priority 1 state 1s selected as indicated at a block 316.
In the absence of 1dentifying an invalid cache block at block
302, a first priority cache block and not equal to most
recently used (MRU) state at block 306, or a next priority
cache and not equal to most recently used (MRU) state at
blocks 310 and 314, one of the plurality of cache blocks 1s
randomly selected for replacement as indicated at a block
318. Alternatively, another replacement strategy could be
used, such as the LRU policy for selecting a cache block for
replacement at block 318.

It should be understood that the block replacement
method of the mnvention 1s not limited to assigning a priority
to each state. A combination of states can be used as well for
any priority state. For instance, the exclusive and shared
states can define a first priority 1 state.

Referring now to FIGS. 4-15, simulated performance
cifects of the cache block replacement method of the pre-
ferred embodiment relative to conventional cache block
replacement methods are shown. In FIGS. 4-15, perfor-
mance effects with a 16K cache are shown 1n an upper chart
at the top of the page. The performance effects with a 64K
cache are shown 1n a second lower chart in FIGS. 4-135.
FIGS. 4-9 1llustrate performance percent values of the cache
block replacement method of the preferred embodiment
relative to conventional random and random and invalid
cache block replacement methods. In FIGS. 4-9, perfor-
mance percent values are shown relative to the vertical axis
and multiple associativity sizes (varied from 2 to 4 to 8 to 16
to 32) are shown relative to the horizontal axis. set-
assoclative write-back data cache 104. In FIGS. 49, six
variations of the cache miss sequence cache block replace-
ment method or pseudo random replacement policy of the

invention are shown. The six 1illustrated pseudo random
replacement policies include SEM, SME, MSE, MES, EMS,

and ESM.

The SEM pseudo random replacement policy of the
invention selects a block for replacement based on the
following priorities: 1) Invalid, 2) Shared-Modified, 3)
Shared, 4) Exclusive, 5) Modified.

The SME pseudo random replacement policy of the

invention selects a block for replacement based on the
following priorities: 1) Invalid, 2) Shared-Modified, 3)

Shared, 4) Modified, 5) Exclusive.

The MSE pseudo random replacement policy of the
invention selects a block for replacement based on the
following priorities: 1) Invalid, 2) Shared-Modified, 3)
Modified, 4) Shared, 5) Exclusive.

The MES pseudo random replacement policy of the

invention selects a block for replacement based on the
following priorities: 1) Invalid, 2)Shared-Modified, 3)

Modified, 4) Exclusive, 5) Shared.

The EMS pseudo random replacement policy of the
invention selects a block for replacement based on the
following priorities: 1) Invalid, 2) Shared-Modified, 3)
Exclusive, 4) Modified, 5) Shared.

The ESM pseudo random replacement policy of the

invention selects a block for replacement based on the
following priorities: 1) Invalid, 2) Shared-Modified, 3)

Exclusive, 4) Shared, 5) Modified.
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Referring to FIGS. 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A,
8B, 9A, 9B, percentage of miss ratio improvement or
degradation 1s shown with respect to the conventional ran-
dom and random and invalid replacement policies. Note that
a posifive value indicates improved performance and a
negative value shows worse performance than the conven-
fional random policy. FIGS. 4-9 1illustrate performance
percent values of the cache block replacement method of the
preferred embodiment relative to six different benchmark
applications released to facilitate the study of multiple
processor systems. A SPLASH-2 suite of parallel applica-
fions was released 1n 1995 to facilitate the study of central-
1zed and distributed shared-address-space multiprocessors.
The SPLLASH-2 suite consisting of a mixture of complete
applications and computational kernels including FFT, LU
and RADIX are 1llustrated in FIGS. 4, 5 and 6. NAS-Parallel
Benchmarks (NPB) developed in 1991 at NASA Ames
Research Center to study the performance of parallel super-
computers including BUK, CGM, and MGRID are 1llus-
trated in FIGS. 7, 8 and 9.

Referring to FIGS. 4A, 4B performance percent values of
the cache block replacement method of the preferred
embodiment are shown relative to conventional random and
random and invalid cache block replacement methods for
the FFT application. The FFT kernel 1s a complex 1-D
version of the radix vn six step FFT algorithm which 1s
optimized to minimize interprocessor communication. The
data set consists of the n complex data points to be
transformed, and another n complex data points referred to
as the roots of unity. Both sets of data are organized as
vnxyn matrices partitioned so that every processor 1s
assigned a contiguous set of rows which are allocated 1n 1ts
local memory.

Referring to FIGS. 5A, 5B performance percent values of
the cache block replacement method of the preferred
embodiment are shown relative to conventional random and
random and 1nvalid cache block replacement methods for
the LU application. The LU kernel factors a dense matrix
into the product of a lower triangular and an upper triangular
matrix. The dense nxn matrix A 1s divided 1into an NxN array
of BxB blocks (n=NB) to exploit temporal locality on
submatrix elements. To reduce communication, block own-
ership 1s assigned using a 2-D scatter decomposition with
blocks being updated by the processors that own them. The
block size B should be large enough to keep the cache miss
rate low, and small enough to maintain good load balance.

Referring to FIGS. 6 A, 6B performance percent values of
the cache block replacement method of the preferred
embodiment are shown relative to conventional random and
random and invalid cache block replacement methods for
the RADIX application. The integer radix sort kernel is
iterative, performing one 1iteration for each radix r digit of
the keys. In each iteration, a processor passes over 1ts
assigned keys and generates a local histogram. The local
histograms are then accumulated into a global histogram.
Finally, each processor uses the global histogram to permute
its keys 1into a new array for the next iteration. This permu-
tation step requires all-to-all communication. The permuta-
fion 1s inherently a sender-determined one, so keys are
communicated through writes rather than reads.

Referring to FIGS. 7A, 7B performance percent values of

the cache block replacement method of the preferred
embodiment are shown relative to conventional random and

random and invalid cache block replacement methods for
the BUK application. The Integer Sort (BUK) Benchmark
tests a sorting operation that 1s important 1n particle method
codes. This type of application 1s similar to particle-in-cell
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applications of physics, wherein particles are assigned to
cells and may drift out. The sorting operation 1s used to
reassign particles to the appropriate cells. This benchmark
test both integer computation speed and communication
performance. This problem 1s unique 1n that floating point
arithmetic 1s not mvolved.

Referring to FIGS. 8A, 8B performance percent values of
the cache block replacement method of the preferred
embodiment are shown relative to conventional random and
random and invalid cache block replacement methods for
the CGM application. In the Conjugate Gradient (CGM)
Benchmark, a conjugate gradient method (CGM) is used to
compute an approximation to the smallest eigenvalue of a
large, sparse, symmetric positive definite matrix. This kernel
1s typical of unstructured grid computations 1n that it tests
irregular long-distance communication and employs sparse
matrix vector multiplication.

Referring to FIGS. 9A, 9B performance percent values of
the cache block replacement method of the preferred
embodiment are shown relative to conventional random and
random and invalid cache block replacement methods for
the MGRID application. The multigrid (MGRID) kernel
benchmark 1s a simplified multigrid kernel, which solves a
3-D Poisson PDE. This problem 1s simplified in the sense
that it has constant rather than variable coeflicients as 1n a
more realistic application. This code 1s a good test of both
short and long distance highly structured communication.
The Class B problem uses the same size grid as of Class A
but a greater number of 1nner loop iterations.

From FIGS. 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, YA,
9B the following 1s concluded. With applications, such as
BUK, RADIX, and FFT, different priority assignments have
no significant effect on the performance of the pseudo
random policies of the mvention including SEM, SME,
MSE, EMS, and ESM. Among the different variations of the
pseudo random policies of the invention, the ESM policy
performs reasonably well with all of the six test programs.
That 1s, except for the LU with a 16K cache and the
assoclativity size of 32, the FFT with a 64K cache and
assoclativity sizes of 16 and 32, and MGRID with 16K
cache and associativity sizes of 16 and 32, the ESM per-
forms up to 34 percent better than the conventional random
and the random and invalid policies. Increasing the cache
size from 16K to 64K improves the performance impact of
the ESM policy with respect to the set associativity size. For
instance, with FFT and LU, the ESM performs similar to the
conventional random and random and invalid policies with
an 8 way set associative cache and a 16K cache. With a 64K
cache and an 8 way set associative cache, on the other hand,
the ESM miss ratio 1s improved by about 2 percent for FFT
and for LU 1t shows about 28 percent improvement.

FIGS. 10A, 10B, 11A, 11B, 12A, 12B, 13A, 13B, 14A,
14B, 15A, 15B 1llustrate simulated performance effects of
the cache block replacement method of the preferred
embodiment relative to conventional random and 1nvalid

and least recently used (LRU) cache block replacement
methods. In FIGS. 10A, 10B, 11A, 11B, 12A, 12B, 13A,

13B, 14A, 14B, 15A, 15B, miss ratio values are shown
relative to the vertical axis and associativity sizes shown
relative to the horizontal axis.

FIGS. 10 through 15 1llustrate the ESM policy as repre-
sentative of the pseudo random replacement policy the

invention and support in general the following conclusions.

For RADIX, CGM, BUK, and LU (except for the associa-
tivity size of 32 with a 16K cache), the ESM policy
outperforms the random and ivalid policy by up to 34
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percent. Compared to the LRU policy, the ESM muss ratio 1s
within —15 and +48 percent of the LRU miss ratio. For FFT
and MGRID the ESM muss ratio 1s approximately within +5
and -6 percent of the miss ratio generated by the Random &
Invalid policy. Note that the 6 percent increase 1n the ESM
m1ss ratio occurs with a set associativity size greater than 16.
Based on this study, 1t may be understood that with the
appropriate priority assignment and a set associativity size
of 16 or less, the pseudo random policy of the imnvention can
potentially outperform the random and random invalid poli-
cies and 1n some cases outperform the LRU policy as well.

While the present invention has been described with
reference to the details of the embodiments of the invention
shown 1n the drawing, these details are not intended to limit

the scope of the invention as claimed i1n the appended
claims.

What 1s claimed 1s:

1. A cache block replacement method used with a cache
including a plurality of cache blocks 1n a computer system
responsive to a cache miss comprising the steps of:

checking for an invalid block;

responsive to identifying an invalid cache block, selecting,
said 1dentified invalid block for replacement;

checking for a first priority cache block and not equal to
most recently used (MRU) state;

responsive to 1identifying a first priority cache block and
not equal to most recently used (MRU) state, selecting
said 1dentified first priority cache block not equal to
most recently used (MRU) state for replacement;

checking for a next priority cache block and not equal to
most recently used (MRU) state;

responsive to 1dentifying a next priority cache block and
not equal to most recently used (MRU) state, selecting
said 1dentified next priority cache block not equal to
most recently used (MRU) state for replacement; and

in the absence of identifying an mnvalid cache block, a first
priority cache block and not equal to most recently used
(MRU) state, or a next priority cache block and not
equal to most recently used (MRU) state, randomly
selecting one of the plurality of cache blocks for
replacement.
2. A cache block replacement method as recited 1n claim
1 further includes the step of storing said most recently used
state information 1n a cache block address tag field 1n a cache
directory.
3. A cache block replacement method as recited in claim
1 wherein the step of checking for said invalid block
includes the step of checking a cache block state field in a
cache directory.
4. A cache block replacement method as recited 1n claim
1 wherein the step of checking for said first priority cache
block and not equal to most recently used (MRU) state
includes the step of checking both a block state field and an
address tag field of most recently used state information in
a cache directory.
5. A cache block replacement method as recited 1n claim
1 wherein the step of checking for said first priority cache
block and not equal to most recently used (MRU) state
includes the step of checking for a shared-modified cache
block state and not equal to most recently used (MRU) state.
6. A cache block replacement method as recited 1n claim
1 wherein the step of checking for said next priority cache
block and not equal to most recently used (MRU) state
includes the step of checking for a shared cache block state
and not equal to most recently used (MRU) state.
7. A cache block replacement method as recited 1n claim
1 wherein the step of checking for said next priority cache
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block and not equal to most recently used (MRU) state
includes the step of checking for an exclusive cache block
state and not equal to most recently used (MRU) state.

8. A cache block replacement method as recited in claim
1 wherein the step of checking for said next priority cache
block and not equal to most recently used (MRU) state
includes the step of checking for a modified cache block
state and not equal to most recently used (MRU) state.

9. A cache block replacement method as recited 1n claim
1 wherein the step of checking for said first priority cache
block and not equal to most recently used (MRU) state
includes the step of checking for a shared-modified cache
block state and not equal to most recently used (MRU) state
and a shared cache block state and not equal to most recently
used (MRU) state.

10. Apparatus for cache block replacement responsive to
a cache miss 1n a cache including a plurality of cache blocks

In a computer system comprising;:

a cache directory for storing cache block address tags and
a most recently used (MRU) state field, each of said
cache block address tags including a cache block state

field,

means for checking said cache directory for an invalid
block;

means responsive to 1dentifying an invalid cache block,
for selecting said identified ivalid block for replace-
ment,

means for checking said cache directory for a first priority
cache block and not equal to most recently used (MRU)
state,

means responsive to i1dentifying a first priority cache
block and not equal to most recently used (MRU) state,
for selecting said identified first priority cache block
not equal to most recently used (MRU) state for
replacement;

means for checking said cache directory for a next priority
cache block and not equal to most recently used (MRU)
state,

means responsive to identifying a next priority cache
block and not equal to most recently used (MRU) state,
for selecting said identified next priority cache block
not equal to most recently used (MRU) state for
replacement; and

means responsive to the absence of 1dentifying an invalid
cache block, a first priority cache block and not equal
to most recently used (MRU) state, or a next priority
cache block and not equal to most recently used (MRU)
state, for randomly selecting one of the plurality of
cache blocks for replacement.
11. Apparatus for cache block replacement responsive to
a cache miss as recited in claim 10 wherein the cache 1s a
set-assoclative cache and one said most recently used
(MRU) state field is stored with each set, whereby said most
recently used (MRU) state field is independent of the
number of cache blocks within each set.
12. Apparatus for cache block replacement responsive to
a cache miss as recited 1n claim 10 wherein the computer
system 1s a multiple processor shared memory system and
whereln one of five states 1s stored 1n said cache block state
field for each cache block, said five states including invalid,
shared-modified, shared, exclusive and modified.
13. Apparatus for cache block replacement responsive to
a cache miss as recited 1n claim 12 wherein said means for
checking said cache directory for said first priority cache
block and not equal to most recently used (MRU) state
include means for checking said cache block state field for
a shared-modified state.
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14. Apparatus for cache block replacement responsive to
a cache miss as recited 1n claim 12 wherein said means for
checking said cache directory for said next priority cache
block and not equal to most recently used (MRU) state
include means for checking said cache block state field for
at least one of a shared state, an exclusive state or a modified
state and not equal to most recently used (MRU) state.

15. A computer system comprising:
a Processor;

a cache coupled to said processor, said cache imncluding a
plurality of cache blocks;

a plurality of input/output devices;

a bus connecting said processor and said plurality of
input/output devices;

a cache directory for storing cache block address tags and
a most recently used (MRU) state field, said cache
block address tags including a cache block state field,

means, responsive to a cache miss, for checking said
cache directory for an mvalid block;

means responsive to 1dentifying an invalid cache block,
for selecting said 1dentified invalid block for replace-
ment;

means for checking said cache directory for a first priority
cache block and not equal to most recently used (MRU)
state;

means responsive to identifying a first priority cache
block and not equal to most recently used (MRU) state,
for selecting said identified first priority cache block
not equal to most recently used (MRU) state for
replacement;

means for checking said cache directory for a next priority
cache block and not equal to most recently used (MRU)
state;

means responsive to 1dentifying a next priority cache
block and not equal to most recently used (MRU) state,
for selecting said identified next priority cache block
not equal to most recently used (MRU) state for
replacement; and

means responsive to the absence of identifying an invalid
cache block, a first priority cache block and not equal
to most recently used (MRU) state, or a next priority
cache block and not equal to most recently used (MRU)
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state, for randomly selecting one of the plurality of
cache blocks for replacement.

16. A computer system as recited 1n claim 15 wherein the
computer system 1s a cache coherent multiple processor
system and wherein one of five states 1s stored 1n said cache
block state field for each cache block, said five states
including invalid, shared-modified, shared, exclusive and
modified.

17. A computer system as recited 1n claim 16 wherein both
said first priority cache block and said next priority cache
block are at least one of said five states.

18. A computer system as recited in claim 16 wherein said
means for checking said cache directory for said first priority
cache block and not equal to most recently used (MRU) state
include means for checking said cache block state field for
a shared-modified state.

19. Apparatus for cache block replacement 1n a computer
system comprising;

a cache imncluding a plurality of cache blocks;

a cache controller for implementing a cache block

replacement method responsive to a cache miss; said
cache controller including;

a cache directory storing cache block address tags and a
most recently used (MRU) state field, each of said
cache block address tags including a cache block state
field, each said cache block state field storing one cache
block state, one of five states being stored 1n said cache
block state field for each cache block, said five states
including invalid, shared-modified, shared, exclusive

and modified

sald cache controller utilizing said most recently used
(MRU) state field and said stored cache block state for
selecting a cache block for replacement; and

wherein priorities are assigned to said five states for
selecting a cache block for replacement and wherein an
invalid state 1s assigned a highest priority.

20. Apparatus for cache block replacement as recited in
claim 19 wherein said cache 1s a set-associative cache and
one said most recently used (MRU) state field is stored with
cach set, whereby said most recently used (MRU) state field
1s independent of the number of cache blocks within each
set.
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