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SUBSETTABLE TOP LEVEL CACHE

A continuation of Ser. No. 67/270,680 filed Nov. 14,
1988. A continuation of Ser. No. 07/762,634 filed Sep. 18,
1991. This application 1s a continuation of Ser. No. 07/989/
980, filed Dec. 11, 1992. This application 1s a continuation
of Ser. No. 08/551,230 Filed: Oct. 31, 1995.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates 1n general to computers, and in
particular to top level cache design.

2. Prior Art

The survey article| 1] covers cache prefetching and many
other aspects of cache memory design.

References 2, 3, and 4 describe prior work leading up to
the present invention.

A conventional cache operates without the benefit of the
information available to a compiler.

Thrashing occurs when the use of two or more blocks
contend for the single available block 1n a direct mapped
cache. Restated, thrashing occurs when needed information
in a block 1s deleted to to make room for needed imnformation
in another block, later, the original block must be reloaded.

The objects of the present invention are to reduce the
frequency of memory accesses by grouping the memory
accesses 1nto fewer accesses but with more words per
access, reduce thrashing by using cache subsetting to sepa-
rate cache uses, reduce cache access time by using cache
addresses to access the cache, provide cache like behavior
within the subsets, and provide an efficient method to
timeshare the processor.
| 1] Veljko Milutinovic, David Fura, Walter Helbig, Joseph

Linn, “Architecture/Compiler Synergism 1n GaAs Com-

puter Systems” Computer May 87/, pp 84-90.

2] Stanley Lass “Wide Channel Computers” Computer

Architectue News June 1987
| 3] Stanley Lass “Multiple Instructions/Operands per Access

to Cache Memory” Computer Architectue News March

1988
| 4] Stanley Lass “Shared Cache Multiprocessing with Pack

Computers” Computer Architectue News June 1988

SUMMARY OF THE INVENTION

As computers execute faster relative to memory and also
require more memory bandwidth, memory bandwidth can be
improved by averaging more than one word per memory
request. Improved memory operation results from having
the compiler group memory requests 1nto one or more
contiguous words called packs,

The basic working premise of the subsettable pack cache
1s to load a pack into a subset of the cache, make the pack
accessable to the processor indirectly through pointers, and
not to load anything else into the subset until the processor
1s finished with the pack.

Instructions and data are packaged into packs much like
vector elements are packaged into a vector for a vector
processor. A pack has a starting memory address and a
length.

Thread switching capability permits two program threads
to be executed alternately. The thread switch enables are
coded within the executing instructions. The enables would
be timed to overlap much the pack access time, 1.€. while
accessing a pack, the computer can be usefully busy on
another program thread.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a top level subsettable cache.

FIG. 2 shows a direct mapped top level subsettable cache.
DETAILED DESCRIPTION

Packs are contiguous groups of words that are likely to be
used together. A pack has a starting memory address and a
length measured 1n words. The compiler defines the packs
based on 1t’s examination of the program. Packs can contain
sequences of instructions, one or more variables, parameter
(s), vectors, or records.

A subsettable top level cache and a suitable instruction set
permits the compiler to plan cache memory usage and
express that planned usage 1n instructions. The packs con-
taining data and/or instructions likely to be needed close 1n
execution time would be allocated to different subsets of the
cache. This subsetting of the cache avoids thrashing except
when the compiler uses the same subset for two uses. Apack
that has been loaded will remain 1n 1t’s subset until another
command 1s executed that loads mto the same subset. This
predictability permits cache addresses to be used to access
the cache.

Belfore accessing a pack cache for the words 1n a pack, a
pack load command loads the needed blocks containing the
pack into command specified block(s) in the cache. If one or
more of the blocks containing the pack are already present
in the cache, those block(s) are not reloaded. In conjunction
with this process, the pack’s starting address within the
cache 1s saved 1n a pointer. The processor-accesses the pack
contents by using the pointer. Note that the starts of packs
may shift within a block, e.g. packs read from a stack in
memory can start at any position within a block. The pointer
can be redirected relative to the pack begin, thereby provid-
ing random access to the words within a pack.

The compiler determines which cache blocks comprise
the subsets of a subsettable pack cache. For each time that
a pack 1s cache resident, the compiler allocates a pack
number. At code generation time, the pack number and the
number of the first block of the subset are encoded into the
commands. The processor specifies the pack number when
it reads or writes a cache resident pack. The subsets may
change over time.

In the following, memory will be used to mean memory
or a second level cache, access will be used to mean read or
write, and opcode will be used to mean instruction or
command operation code.

The following describes some aspects of a top level
subsettable pack cache.

The pack cache has 16 blocks of 4 words each.

The write flag associated with each word 1s set when the
processor writes to the word.

The presence flag associated with each block indicates
whether the cache block 1s waiting for a block from memory.

The block address word associated with each block holds
the block’s memory address.

There are eight sets of pack registers for cache packs.
Each set has a pack pointer, a pack begin pointer, an end
pack flag, and a wraparound flag. A pack number refers to
one of the eight sets.

During any given clock, the processor can read/write a
word or the cache controller can load/store a block from/to
memory. Blocks are not shifted as they are transferred
between the cache blocks and memory blocks.

Commands are a subset of the instructions, commands
include load, store, clear, save, and cancel operations on
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packs. The cache controller executes the commands and
controls the block transfers between cache and memory.

When a command which load packs or store packs 1s
executed, the pack’s begin point in the cache 1s set into the
specified pack pointer and pack begin pointer.

The processor accesses a cache resident pack indirectly
through the pack’s pomnter. The pack pointer 1s an auto-
increment pointer, similar to the Motorola 68000 auto-
increment 1ndirect addressing mode. For packs which f{it
within the subset’s blocks, the pack pointer can be redirected
relative to the pack begin pointer. The redirect provides
random access to the pack. The wraparound flag controls
whether redirecting wrapsaround.

Each cache resident pack’s end pack flag 1s true whenever
the pack pointer points to the pack’s last word plus one,
otherwise it 1s false. Each of the eight end pack flags is
available to the processor for testing.

For commands which load packs, as the cache controller
loads the block(s) containing a pack, it checks if each needed
block 1s already loaded. If the block 1s already loaded, the
redundant block load 1s aborted.

Performing the above check consists of comparing the
block address associated with the cache destination block to
the memory address of the block to be loaded.

If the block 1s not already loaded, the block presence flag
1s reset, then 1s later set as the block 1s loaded 1nto the cache.
When accessing the cache, the processor stalls 1f a presence
flag 1s reset, but resumes execution when the presence flag
1s set. This prevents the processor from proceeding with
invalid information.

The load pack and store pack commands move the first
block to/from the specified cache start block. The second
block, if any, goes to/from the next higher numbered cache
block, etc. The load and store pack commands reset the
wraparound flag such that the pack pointer will increment
without wraparound over the blocks containing the specified
pack. Also, redirects are without wraparound.

The store pack command performs the setup for an
eventual store of the pack. The setup consists of resetting the
write flags of all the words 1n the cache resident pack and
calculating the pack’s block addresses, then placing them 1n
the corresponding block address words. After the processor
has written none, some, or all of the words 1n the pack, a save
pack command stores the written to words 1n the pack to
memory.

The update pack command combines a load pack com-
mand and a store pack command, after the pack 1s loaded,
the processor may write words to the pack, and then a
separate save pack command stores the pack’s written to
words to memory. A reset presence flag will prevent a write
to a cache block before the block has arrived from memory.

Sequential load/store pack commands are used for the
sequential reading and writing of long packs.

The sequential load/store pack commands and the mapped
load/store commands utilize direct mapping of blocks to the
subset. The block number 1n a command specifies the first of
two direct mapped blocks.

The execution of one of the above direct mapped com-
mands sets the wraparound flag for the specified pack such
that as the processor accesses the last word 1n the second
block, the pack pointer automatically wraps around to the

beginning of the first block.

For the sequential load pack command, while one block
1s being read within the processor, the other block acts as a
buffer for the block move from memory. The cache control-
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4

ler loads the next needed block whenever a cache block 1s
empty, the pack’s command prioirity 1s highest, and the
memory 1s available.

For the sequential store pack command, while one block
1s being written within the processor, the other block acts as
a builer for the block moves to memory. The cache control-
ler writes the next block whenever a cache block 1s full, the
pack’s command prioirity 1s highest, and the memory 1s
available.

A save pack command executed after a sequential store
pack command or a store pack command stores away any
remaining written to words 1n the pack and makes the actual
pack length count available to the processor such that
subsequent commands can read the pack with an accurate
count.

The mapped load/store pack commands are useful for
table lookups, array accesses, and stack accesses where
successive accesses are to nearby elements. These com-
mands are used with short packs The short packs must
always fit within two blocks. Redirects wraparound for these
commands.

Using the mapped load pack command with short packs
provides the equivalent of a direct mapped subcache with
two blocks. It behaves like a two block mini-cache, 1.e. each
time a block 1s loaded into the direct mapped two block
subset of the cache, 1t remains such that 1f a pack 1n the same
block 1s loaded again, the redundant block load will be
detected and discarded.

Using the mapped store pack command with short packs
provides the equivalent of a direct mapped subcache with
two blocks. A clear pack command clears the write flags in
the two block subset, then after a succession of mapped store

packs, a save pack command stores away any remaining
written to words 1n the two block subset.

During the above succession of mapped store packs, a
mapped store pack to a memory block that i1s already cache
resident results 1n that the cache resident block will accu-
mulate the current pack’s written to words for this block as
well as any prior written to words for the block. The written
to words 1n a displaced block are written to memory.

When a multiple block load pack command needs to be
aborted before i1t’s finished executing, a pack cancel com-
mand cancels any remaining block loads for the specified
pack.

When main memory has been updated by new data from
the 1put/output system or another computer sharing the
memory, the detection and discarding of redundant block
loads could lead to a stale data problem 1n the pack cache.
To provide for this case, alternate opcode versions of the
load pack commands force a new load of the blocks which
contain the pack.

For a cache context save and restores a save context
commands saves all cache information including block
addresses, pack pointers, etc. The load context command
restores all of the saved information. A more refined version
of these commands would provide partial save and restore of
the cache mformation.

Even though the command execution as described i1s
sequential and without interruption, 1n practice, several
commands may be 1n progress at once, ¢.g. the loop for
adding two vectors would have two load pack commands
and a write pack command active at the same time. A priority
scheme based on nearness to underflow for sequential load
packs and nearness to overflow for sequential store packs
could be used. Also, the short pack commands would be
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orven an Intermediate priority and a command which 1s
currently causing a processor stall would be given highest
priority.

In addition to executing the program commands, the
cache controller could execute commands which perform
input/output operations.

Also, the cache controller transters blocks in/out of the
cache whenever the cache 1s not being accessed by the

processor and the need exists.
A number of advantages will be described next.

The sequential access provided by the auto-incrementing,
pack pointer works well for 1nstructions, vectors, and some-
times for records and variables. Redirecting of the pack
pointer permits the repetitive use of the words 1n a pack, e.g.
as the source of instructions for a loop.

By using cache addresses mstead of memory addresses,
faster cache access 1s obtained. Further, other than calculat-
ing pack addresses, much of the time needed for calculating
individual addresses 1s saved.

By using two blocks as a subset of the cache for the
sequential loading of a long pack (or vector), the thrashing
of a conventional cache’s contents 1s avoided, 1.e. the
reading of a long vector only disturbs the two blocks, not the
whole cache. Further, since the blocks after the first block
accessed when the block buffer becomes empty and the
hardware 1s available, much, 1f not all, of the access time will
be overlapped by computation.

The small size of the cache makes context switching by a
complete save and reload of the cache reasonable.

The detection and discarding of redundant block loads
and stores further reduces the number of accesses to
memory.

Fewer array range checks are needed due to accessing of
vectors with packs.

Since protection checks are applied to pack accesses,
fewer are needed.

Since the memory requests are grouped 1nto pack
requests, a memory system 1s operated more efficiently and
can support a faster execution rate, either within a single
processor or 1n multiple processors.

The auto-increment approach has the potential advantage
of permitting the pointed to word 1n each pack to be accessed
ahead of time and held for possible use, thereby reducing the
access delay, 1.e. always keep the next pack word preac-
cessed such that the processor only needs to select the one
of eight preaccessed words. If each access 1s for more than
a smgle word, the bandwidth 1s potentially increased.

Since the processor makes many fewer memory requests
per 1nstruction executed, the processor and it’s memory
system are less closely coupled, hence the design of each can
be more optimum.

Some commentary and alternatives follow.

An alternative to waiting for the cache controller to write
a waited for block 1s to pass the requested word directly to
the processor.

If hardware caches are used lower i1n the memory
hierarchy, they would need to support pack requests.

Note that while the subsettable top level cache has a 4
word block size, the next level down 1n the memory hier-
archy will likely have a larger block size. The cache con-
troller could reasonably move a few blocks, if needed, per
access to the next level down 1n the memory hierarchy.

An alternative to the mapped commands with two direct
mapped blocks would be to also provide 4, 8, and/or 16
block buffered commands.
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An alternative to specifying both the pack number and
start block number 1n each pack command 1s to provide a
command which when executed attaches the start block of a
subset to the pack’s set. Later commands only need to
specily the pack number 1n order to pick up the start block
of the subset.

The thread switching discussion follows.

The motivation for thread switching 1s to overlap the pack
reads with computation on the other thread, and vice versa.
Another motivation 1s to switch threads quickly. Most thread
switch enables would be either in the command to load the
last pack needed for the following computation or 1n a
branch, usually within a loop.

Thread switching 1s enabled by alternate opcode versions
of the load pack commands, alternate opcode versions of the
unconditional branch instructions, and a thread switch
enable instruction. The alternate opcodes are expected to
provide most of the desired thread switch enables.
Consequently, there should be only a modest reduction 1n
code density due to thread switch enabling. The use of
alternate opcodes gives the processor time to setup the
thread switch while 1t also executes the mstruction with the
alternate opcode.

Each thread would have it’s own cache(s) and register set.
Then, as switch threads, also switch to the new thread’s set
of registers and cache(s). Some registers could be shared to
facilitate communication between threads.

Many modifications and variations of the present mnven-
fion are possible in light of the above teachings. It is
therefore to be understood that within the scope of the
appended claims, the invention may be practised otherwise
than specifically described.

[ claim:

1. A subsettable top level cache comprising:

a cache memory,

means to specily subsets of the cache memory via execut-
Ing instructions,

means to provide cache like behavior within the subsets,
and

means to specily via executing instructions which subset
to access for data,

thereby enabling a compiler to allocate data and instruc-
tions likely to be needed close 1n execution time to
different subsets of the said subsettable top level cache,
which then avoids thrashing between those data and/or
instructions allocated to different subsets of the cache.
2. A subsettable top level cache comprising:

a cache memory that 1s partitionable 1nto various

subsets wherein the subsets are defined and utilized under
the control of a program executing on a processor,

a plurality of cache blocks, a contiguous group of two
cache blocks making up a subset, with said subset
behaving like a direct mapped mini-cache,

said subset can contain a pack of data, a pack of data being,
a contiguous group of words,

a plurality of pack registers, each pack register containing,
a pack pointer, each pack register identifying a subset
in the cache memory,

means for accepting a pack number, a pack begin memory
address and pack length from the processor, the pack
number 1dentifying one of the plurality of pack
registers,

means for accepting a pack number and a cache begin
address from the processor, the pack number 1dentify-
ing one of the plurality of pack registers,
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and the cache begin address 1dentifying the first block of
a cache subset,

means for loading the not already loaded blocks contain-
ing a pack of data from a main memory into the
1dentified subset of the cache,

means for storing the pack begin cache address into the
pack pointer 1dentified by the pack number,

thereby providing the processor the information 1t needs
to access a pack within the cache using cache
addresses.
3. The subsettable top level cache of claim 2 further
including means for auto-incrementing the pack pointer.
4. The subsecttable top level cache of claim 2 further
including direct mapped subsets of sizes 4, 8 and 16.

10

3

5. The subsettable top level cache of claim 2 further
including a pack begin pointer within each said pack register
and means for storing the pack begin cache address into the
pack begin pointer identified by the pack number.

6. The subsecttable top level cache of claim § further
including means for redirecting the pack pointer, relative to
the pack begin pointer, including means to wrap within
subsets like a direct mapped cache wraps, thereby providing
random accesses within each pack, and with the use of said

pack numbers, providing random access to each of a plu-
rality of packs, according to the needs of the executing

program.
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