US006085188A
Patent Number: 6,085,188
Jul. 4, 2000

Date of Patent:

United States Patent

Bachmann et al.

[19] [11]

[45]

[54] METHOD OF HIERARCHICAL LDAP FOREIGN PATENT DOCUMENTS
SEARCHING WIITH RELATIONAL 1ABLES 802491 4/1996 European Pat. Off. GO6F 17/30
|75] Inventors: David W. Bachmann, Leander; ;gégi ;ﬁggg .ZPZE """""""""""""""" gggg ;gg
Cynthia F]eming COI']]? Austin; Larry 002704 8/994 W[;PO COCE 7/30
George Fichtner, Austin; Rodolfo
Augusto Mancisidor, Austin; OTHER PUBLICAITONS
Shaw-Ben Shi, Austin, all of Tex. IBM Technical Disclosure Bulletin, “Tree Traversal Tech-
(73] Assignee: International Business Machines niques to Implement Enhanced Searches 1n Tree View,” vol.
Corporation, Armonk, N.Y. 38, No. 02, Feb. 1995. | |
IBM Technical Disclosure Bulletin, “Relational Access
_ Method Supporting Nested Data View,” vol. 27, No. 6, Nov.
[21] Appl. No.: 09/050,503 1084,
[22] Filed: Mar. 30, 1998 Herrin, E.H. II et al., “Schema and tuple treess: an intuitive
o . structure for representing relational data,” Computing Sys-
EEU I 11 A € K —— GOOK 17/30° tems, vol. 9, No. 2, pp. 92-118, Spring 1996.
:52: U..S. Cl. 707/3, 707/101 Kitakami, H et &1., “Bllﬂdiﬂg ElI]d S@&I'Ch SYSt@II] fOI' q
58] Field of Search ... 707/1-3, 100, large—scale DNA database,” IEE Colloquium on ‘Molecular
707/101, 200, 205 Bjoinformatics’, Digest No. 1994/029, pp. 6/1-6/9, 1994.
[56] References Cited (List continued on next page.)
U.S. PATENT DOCUMENTS Primary Examiner—Maria N. Von Buhr
1045475 7/1990 Bruffey et al 207/1 Attorney, Agent, or Firm—Jeflrey S. LaBaw; David H.
5,291,583 3/1994 Bapat ..oocoeeeveoreeereeereerereeeneenne. 395/705 Judson
5?295:,261 3/1994 SIMONEEL oovveeeeeneeeeeeeeerenennanens 70772 [57] ABSTRACT
5,379,419 1/1995 Heflernan et al.oovvvveeennenne... 707/4
5,386,559 1/}995 E%senberg et al. e 707/201 A method of hierarchical LDAP searching in an LDAP
grjggﬂ%i g/ ggg iﬂbertslql?ket Al e, 302017(4 :1)’ directory service having a relational database management
S 467 471 11§Zh995 Baél::e HIR rememeneencmncmmenenennenns 767 n system (DBMS) as a backing store. According to the
5" 50 4?8’79 4 /:h996 Eisenbe}ggt”;i """""""""""""" ;07 100 Invention, entries 1n a naming hierarchy are mapped 1nto first
5511186 4/1996 Carhart ct al. vvoovvorsssoooonnnnnn. 707/2 and second relational tables: a parent table, and a descendant
5,530,957 6/1996 KOENMIE w.vvevverrereeeereeeresreeenee. 707/100 table. These tables are used to “filter” lists of entries returned
5,581,756 12/1996 Nakabayashiccc.ococcorvvivinnnn.ns 707/2 from a search to ensure that only entries within a given
5,592,661 1/1997 FEisenberg et al. 707/104 search scope are retained for evaluation. Thus, for example,
5,594,899 1/1997 K'lllldsell et al. v, 707/2 the parent table 1s used during an LDAP one level search,
5,600,832 2/}997 E{senl?erg et al. e, 707/203 and the descendant table is used during an LDAP subtree
gﬁgigﬂggg lg/ gg; ﬁucm 1'1' """" l """""""""""""" %‘g/ 383 scarch. In either case, use of the parent or descendant table
5 08 806 1?:“ 908 D:I}i;ee efta‘il P 707? 04 obviates recursive queries through the naming directory.
5:724:577 3/1998 Exley et al. ...coovvevevnieninnnenn 707/100
5,943,668 8/1999 Malloy et al.ccoveevveeveeeeeernnnn 707/3 27 Claims, 5 Drawing Sheets
20

MAP DN 10 EID | 22

GET ANCESTOR 54

PEIDs FROM
Idap_desc TABLE

o6
FOR NO
EACH PEID 58
COMPLETE? REMOVE PEID AND

EID PAIR FROM
ldap_desc TABLE

REMOVE EID

| ENTRY FROM THE
ldap_entry TABLE

60

FINISH

6,085,183
Page 2

OTHER PUBLICAITTONS

Waugh, T.C., et al., “The GEOVIEW design: a relational
database approach to geographical data handling,” Proceed-

ings of the Second International Symposium on Spatial Data
Handling, pp. 193-212, 1986.

Severance, C., “Could LDAP be the next killer DAP?”
Computer, vol. 30, No. 8, pp. 8889, Aug. 1997.

Gathn, A. et al., “Intranets,” Network World, vol. 4, No. 12,
pp. 2628, 30, 32, Feb. 1997.

Blum, D.J., “LDAP: helping directories get along,” Business
Communications Review, vol. 26, No. 12, pp. 37-40, Dec.
1996.

Jose, R.J.P. et al., “Providing multiple external views on
directory user interfaces,” Computer Networks and ISDN

Systems, vol. 28, No. 4, pp. 543-550, Feb. 1996.

U.S. Patent Jul. 4, 2000 Sheet 1 of 5 6,085,188

FIG. 1
(PRIOR ART)

11

DIRECTORY SERVER

29~{ LDAP RUNTIME

DIRECTORY

29

LDAP RUNTIME

DIRECTORY
ROOT
RDN
RON
FIG. 2 RON 29
(PRIOR ART) y~
ENTRY (ATTRIBUTES)
-
2]

40 INITIALIZE
LDAP SESSION
42~ OPEN CONNECTION
Y4 auTHENTICATION 24

46 DIRECTORY
SERVER OPERATION
48] RETURN RESULTS
b S S
LDAP CLIENT 38
50 CLOSE SESSION =200
LDAP SERVER

FIG. 8
(PRIOR ART) rlG. 44

U.S. Patent Jul. 4, 2000 Sheet 2 of 5 6,085,188

—
I
II |
]

1§

[s)

§ S Y

E S 343 iﬁi

I
| NETWORK
: DISPATCHER
I
AN
| - LDAP CLIENTS
- -
DB/2 CLIENT +
05/2 SERVER e snes FIG. 4B

B

faﬂ?ﬁ_fﬁgﬁ 1 i

§ St s

1
1
3#@”%3%&

NI-_TWORK
DISPATCHER

LDAP CLIENTS

DB/2 CLIENT +
DB/2 SERVERS LDAP SERVER riG. 4C

U.S. Patent Jul. 4, 2000 Sheet 3 of 5 6,085,188

ROOT (

/\ ot

C =GB (2)

C= US
i e ~)
/ \

= |BM AUSTIN (= |BM ROCHESTER (7)

PN /

CN = JOHN FOO(B)CN = MARY BUR (9) CN = PETER WANG (10)

AEID DEID
I
I -
o 4
%, PN s
I
PEID FID v 1 8
ot 9
I N S TR
S S N N
— 4+ | & 3] 6
I R M T S -
6 | 9 BT S -
1 b —
F1G. 64
4 | 8
4 | 9
4 L 10
6 | 8
6 [9
7 | 10

FIG. 6B

U.S. Patent Jul. 4, 2000 Sheet 4 of 5 6,085,188

02

GET A UNIQUE ID | -64
FOR THE ENTRY (EID)

66
ol
YEs
MAP DN T0 EID | 24
NO
GET ANCESTOR 54 GET PARENT /0
PEIDs FROM FID (PEID)

Idap_desc TABLE

20
FOR
EACH PEID

COMPLETE? REMOVE PEID AND

EID PAIR FROM
/dap_desc TABLE

ADD AN ENTRY INTO 79
Idap_entry TABLE

WITH EID AND PEID

GET ANCESTORS EIDs /4
FROM Idap_desc TABLE

/6

FOR

FACH ANCESTOR
FID (AFID)

REMOVE EID COMPLETE?

ENTRY FROM THE 50
Idap_entry TABLE

FNIA ADD AN ENTRY INTO
THE DESCENDANT TABLE
FIG. 7 WITH EID AND AEID | 78

FIG. 8 g

U.S. Patent

o0

RETRIEVE ENTRY EIDs
WHICH MATCH THE 82

FILTER CRITERIA FROM
THE ATTRIBUTE TABLES

OUTPUT =
FID SET SET 1
MAP BASE | -84

DN TO ENTRY EID

OQUTPUT BASE DH EID =
BASE EID

RETRIEVE THE
DESCENDANTS EIDs 86

FROM Idap_desc TABLE
USING THE BASE EID

OUTPUT =
EID SET SET 2

88 ENp
OF SET? g

FOR

EACH EID IN
SET 1

SEND BACK
END OF SEARCH
COMMAND

@
90 98

RETRIEVE ENTRY DATA
FROM Idap_entry TABLE |92

SEND BACK
THE RESULTS 94

riG. 9

Jul. 4, 2000

Sheet 5 of 5

sTART)~ 100

RETRIEVE ENTRY EIDs
WHICH MATCH THE 102

FILTER CRITERIA FROM
THE ATTRIBUTE TABLES

OUTPUT =
EID SET SET 1
MAP BASE 104

DN TO ENTRY EID

OQUTPUT BASE DH EID =
BASE EID

RETRIEVE THE

CHILDREN EIDs FROM
Idop_entry TABLE

USING THE BASE EID

OUTPUT =
EID SET SET 2

108 cnp
OF SET? 116

106

FOR
EACH EID IN
SET 1

s

110

RETRIEVE ENTRY DATA
FROM Idap_entry TABLE|™112

SEND BACK
THE RESULTS 114

FIG. 10

SEND BACK
END OF SEARCH
COMMAND

118

6,085,188

6,055,188

1

METHOD OF HIERARCHICAL LDAP
SEARCHING WITH RELATIONAL TABLES

BACKGROUND OF THE INVENTION

1. Technical Field

This mvention relates generally to providing directory
services 1n a distributed computing environment.

2. Description of the Related Art

A directory service 1s the central point where network
services, security services and applications can inform other
entities 1n the network about their services, thus forming an
integrated distributed computing environment. The current
use of directory services may be classified into several
categories. A “naming service” (e.g., DNS and DCE Cell
Directory Service (CDS)) uses a directory as a source to
locate an Internet host address or the location of a given
server. A “user registry” (e.g., Novell NDS) stores informa-
fion of all users 1n a system composed of a number of
interconnected machines. The central repository of user
information enables a system administrator to administer the
distributed system as a single system 1mage. Still another
directory service 1s a “yellow pages” lookup provided by
some ¢-mail clients (e.g., Netscape Communicator, Lotus

Notes, Endora and the like).

With more and more applications and system services
demanding a cenftral information repository, the next gen-
eration directory service will need to provide system admin-
istrators with a data repository that can significantly ease
administrative burdens. In addition, the future directory
service must also provide end users with a rich information
data warehouse that allows them to access department or
company employee data, as well as resource information,
such as name and location of printers, copy machines, and
other environment resources. In the Internet/intranet
environment, it will be required to provide user access to
such information in a secure manner.

To this end, the Lightweight Directory Access Protocol
(LDAP) has emerged as an Internet Engineering Task Force
(IETF) open standard to provide directory services to appli-
cations ranging from e-mail systems to distributed system
management tools. LDAP 1s an evolving protocol that is
based on a client-server model 1n which a client makes a
TCP/IP connection to an LDAP server, sends requests, and
receives responses. The LDAP information model, 1n
particular, 1s based on an “entry”, which contains informa-
fion about some object. Entries are typically organized 1n a
specified tree structure, and each entry 1s composed of
attributes.

LDAP provides the capability for directory information to
be queried or updated. It offers a rich set of searching
capabilities with which users can put together complex
queries to get desired mnformation from a backing store. As
originally implemented (at the University of Michigan),
LDAP used several freely available b-tree packages, such as
the GNU dbm and Berkeley db44 packages. This reference
implementation, however, does not provide a reliable and
scaleable enterprise directory, 1n part, because of the use of
a btree-based backing store.

One problem 1s that different vendors provide different
mechanisms for the tree structure. For example, DB/2 pro-
vides the WITH clause 1n a Structured Query Language
(SQL) SELECT statement to provide subtree transversal
with arbitrary depth. Oracle, however, used CONNECT BY
PRIOR and START WITH clauses 1n the SELECT statement

to provide partial support for reachability and path enumera-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion. Other database management systems used different
SQL semantics. In any case, all such mechanisms end up
using recursive queries to handle hierarchical structures such
LDAP entries. Recursive queries do not scale up well as the
number of records 1n a relation table increases. Indeed, 1n a
simple example involving 1000 LDAP entries, using DB/2
recursive queries, a simple SELECT takes more than several
minutes to complete.

Thus, there 1s a need to provide a faster and more efficient
method to support LDAP searches with relational tables
without the overhead of recursive queries. This invention
addresses and solves this problem.

BRIEF SUMMARY OF THE INVENTION

A primary object of this invention 1s to represent a
directory service naming hierarchy with relational tables to
facilitate fast and efficient directory service search capabil-
ity.

Another primary object of this invention 1s to support
hierarchical directory service searching with relational

tables 1n a manner that obviates recursive queries, especially
during one level and subtree traversal.

A further, more specific object of this invention 1s to
provide hierarchical LDAP searches using relational tables
in an LDAP directory service having a relational database
management system (DBMS) as a backing store.

A more general object of this invention 1s to provide a
reliable and scaleable enterprise directory solution.

These and other objects of the invention are provided by
mapping entries 1n a naming hierarchy into first and second
relational tables: a parent table, and a descendant table. The
naming hierarchy has a plurality of entries each represented
by a unique identifier (EID). A preferred implementation 1s

LDAP using a DB/2 backing store.

In one preferred embodiment, the parent table 1s generated
as follows. For each entry that 1s a parent of a child entry 1n
the naming directory, the unique 1dentifier of the parent entry
1s assoclated with the unmique 1dentifier of each entry that is
a child of that parent entry. The parent table then comprises
two (2) columns, a first column listing the parent entries’
unique identifiers (in order), and a second column listing the
assoclated child entries’ unique identifiers. Thus, a given
row ol the parent table includes a parent entry and its
assoclated child entry. The parent table summarizes parent-
child relationships in the hierarchy.

The descendant table 1s preferably generated as follows.
For each entry that 1s an ancestor of one or more descendent
entries 1n the naming hierarchy, the unique 1dentifier of the
ancestor entry 1s associated with the unique identifier of each
entry that 1s a descendent of that ancestor entry. The descen-
dant table then comprises two (2) columns: a first column
listing the ancestor entries unique identifiers (in order), and
a second column listing the associated descendant entries’
unique 1dentifiers. Thus, a given row of the descendant table
includes an ancestor entry and one of 1ts associated descen-
dant entries. The descendant table summarizes ancestor-
descendant relationships 1n the hierarchy.

These tables are used to “filter” lists of entries returned
from a search to ensure that only entries within a given
search scope are retained for evaluation. Thus, for example,
the parent table 1s used during an LDAP one level search,
and the descendant table 1s used during an LDAP subtree
scarch. In either case, use of the parent or descendant table
obviates recursive queries through the naming directory.

The foregoing has outlined some of the more pertinent
objects and features of the present invention. These objects

6,055,188

3

should be construed to be merely 1llustrative of some of the
more prominent features and applications of the invention.
Many other beneficial results can be attained by applying the
disclosed invention 1n a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detalled Description of the Pre-
ferred Embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
fion and the advantages thereot, reference should be made to
the following Detalled Description taken in connection with
the accompanying drawings 1n which:

FIG. 1 1s a representative LDAP directory service imple-
mentation;

FIG. 2 1s a simplified LDAP directory;

FIG. 3 1s a flowchart of an LDAP directory session;

FIGS. 4A—-4C show representative LDAP directory ser-

vice 1mplementations having relational database backing
store,

FIG. 5 1s a representative LDAP naming hierarchy for
illustrative purposes;

FIG. 6A 1s a parent table generated from the LDAP
naming hierarchy of FIG. 5;

FIG. 6B 1s a descendant table generated from the LDAP
naming hierarchy of FIG. 5;

FIG. 7 1s a flowchart illustrating a routine for deleting,
entries;

FIG. 8 1s a flowchart illustrating a routine for adding
entries;

FIG. 9 1s a flowchart 1llustrating a subtree LDAP search
according to the mvention; and

FIG. 10 1s a flowchart illustrating a one level LDAP
scarch according to the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A block diagram of a representative LDAP directory
service 1n which the present invention may be implemented
1s shown 1 FIG. 1. As 1s well-known, LDAP 1s the light-
welght directory access protocol, and this protocol has been
implemented 1n the prior art, €.g., as either a front end to the
X.500 directory service, or as a standalone directory service.
According to the protocol, a client machine 10 makes a
TCP/IP connection to an LDAP server 12 through network
11, sends requests and receives responses. LDAP server 12
supports a directory 21 as illustrated 1n a stmplified form in
FIG. 2. Each of the client and server machines further
include a directory “runtime” component 25 for implement-
ing the directory service operations as will be described
below. The directory 21 1s based on the concept of an “entry”
27, which contains information about some object (e.g., a
person). Entries are composed of attributes 29, which have
a type and one or more values. Each attribute 29 has a
particular syntax that determines what kinds of values are
allowed 1n the attribute (e.g., ASCII text, binary characters,
and the like) and how these values are constrained during a
particular directory operation.

The directory tree 1s organized in a predetermined
manner, with each entry uniquely named relative to its
sibling entries by a “relative distinguished name” (RDN).
An RDN comprises at least one distinguished attribute value
from the entry and, at most, one value from each attribute 1s

10

15

20

25

30

35

40

45

50

55

60

65

4

used 1 the RDN. According to the protocol, a globally
unique name for an entry, referred to as a “distinguished
name” (DN), comprises a concatenation of the RDN
sequence from a given entry to the tree root.

LDAP includes an application programming interface
(API), as described in “The C LDAP Application Program
Interface”, IETF Task Force Working Draft, Jul. 29, 1997,
which 1s incorporated herein by reference. An application on
a given client machine uses the LDAP API to effect a
directory service “session” according to the flowchart of
FIG. 3. At step 40, an LDAP session with a default LDAP
server 1s initialized. At step 42, an API function Idap_ init()
returns a handle to the client, and this handle allows multiple
connections to be open at one time. At step 44, the client
authenticates to the LDAP server using, for example, an API
Idap_bind() function. At step 46, one or more LDAP
operations are performed. For example, the API function
Idap_search() may be used to perform a given directory
scarch. At step 48, the LDAP server returns the results. The
session is then closed at step 50 with the API Idap_ unbind()
function then being used to close the connection.

It may be desirable to store LDAP directory data 1n a
backing store. FIGS. 4A—4C 1llustrates several representa-
tive LDAP directory service implementations that use a
relational database management system (RDBMS) for this
purpose. These systems merely illustrate possible LDAP
directory services in which the present invention may be
implemented. One of ordinary skill should appreciate,
however, that the invention 1s not limited to an LDAP
directory service provided with a DB/2 backing store. The
principles of the present invention may be practiced 1n other
types of directory services (e.g., X.500) and using other
relational database management systems (e.g., Oracle,
Sybase, Informix, and the like) as the backing store.

In FIG. 4A, an LDAP client 34 can connect to a number
of networked databases 38a—38n through an LDAP server
36. The databases 38a—38x contain the directory informa-
tion. However, from the user’s perspective, the LDAP server
36 actually stores all the information without knowing the
database 38 1n which the data 1s actually located. With this
configuration, the LDAP server 36 1s freed from managing
the physical data storage and 1s able to retrieve information
from multiple database servers 38 which work together to
form a huge data storage.

FIG. 4B illustrates a multiple client/multiple server
LDAP/DB?2 enterprise solution. In this environment, a DB/2
client preferably runs on each LDAP server 36. Each such
DB/2 client can connect to any database server 38 contain-
ing directory information. The collection of database servers
384a—-38n form a single directory system 1mage, and one or
more of the LDAP servers 36 can access such information.
Because all the LDAP servers 36 see the same directory
image, a network dispatcher 37 may be deployed to route
requests among the LDAP servers 36.

FIG. 4C illustrates a multiple client/parallel super server
conflguration. In certain environments, where users need to
store large amounts of information into the directory, this
conilguration automatically partitions the database 1nto dif-
ferent machines 38. In addition, database queries are divided
into smaller, 1independent tasks that can execute
concurrently, which increases end user query response time.
This configuration enables users to store up to terabytes of
data mto the database.

FIG. 5 represents an 1llustrative LDAP directory service
naming hierarchy 41. It 1s an object of the present mnvention
to provide a scheme for mapping the naming hierarchy 41

6,055,188

S

into preferably a pair of so-called relational tables 43 and 45,
as 1llustrated in FIGS. 6A-6B, respectively. For
convenience, table 43 illustrated in FIG. 6A 1s a “parent-
child” or so-called “parent” table for short, and table 45
illustrated 1n FIG. 6B 1s an “ancestor-descendant” or
so-called “descendant” table for short. Mapping the naming
hierarchy 41 into the first and second tables 43 and 45
provides the significant advantage of obwviating recursive
queries during the performance of certain LDAP searches.

The following discussion of the naming hierarchy in FIG.
5 and 1ts associated relational tables in FIGS. 6 A—6B 1s
merely 1llustrative. As seen in FIG. §, the LDAP naming
hierarchy includes a number of entries or nodes, with each
entry or node represented by a unique entry identifier (EID).
Thus, for example, the root node has an EID=1. Root has
two (2) children, entry GB (“Great Britain”) having an
EID=2, and entry US (“United States”) having an EID=3.
Child node US itself has two (2) children, O=IBM (with
EID=4) and O=Netscape (with EID=5). The remainder of
the naming directory includes several additional entries at
further sublevels.

A particular entry thus may be a “parent” of one or more
child entries. An entry 1s considered a “parent” 1f 1t 1s located
in a next higher level 1n the hierarchy. Likewise, a particular
entry may be an ancestor of one or more descendant entries
across many different levels of the hierarchy. A parent-child
entry pair will thus also represent an ancestor-descendant
pair.

According to the invention, the parent table is created as
follows. For each entry that 1s a parent of a child entry in the
naming directory, the unique identifier of the parent entry
(PEID) is associated with the unique identifier of each entry
that 1s a child of that parent entry. For the naming directory

of FIG. 5, this association creates the parent table 1llustrated
in FIG. 6A. Thus, PEID 1 i1s associated with EID 2 and EID

3, PEID 3 1s associated with EID 4 and EID 5, and so on.
Each row of the parent table includes a PEID:EID parr.

The descendant table 1s created as follows. For each entry
that 1s an ancestor of one or more descendent entries 1n the
hierarchy, associating the unique identifier of the ancestor
entry (AEID) with the unique identifier of each entry that is
a descendent (DEID) of that ancestor entry. The AEID field
1s the unique 1dentifier of an ancestor LDAP entry in the
LDAP naming hierarchy. The DEID ficld i1s the unique
identifier of the descendent LDAP entry. Thus, in the naming
directory 41, AEID 1 has DEIDs 2-10, because cach of
entries 2—10 are also descendants of the root node. AEID 3
has DEIDs 4-10, AEID 4 has DEIDs 610, and so on. Each
row 1n the descendant table thus includes AEID:DEID pair.

The invention thus implements two relations or tables in
order to support LDAP search: parent/child and ancestor/
descendants. In the parent table, the EID field 1s the unique
identifier of an entry 1 the LDAP naming hierarchy. The
PEID field 1s the unique identifier of the parent entry in the
naming hierarchy. In the descendant table, the AEID field 1s
the unique 1dentifier of an ancestor LDAP entry in the LDAP
naming hierarchy. The DEID field 1s the unique identifier of
the descendent LDAP entry.

LDAP provides a number of known functions including
query (search and compare), update, authentication and
others. The search and compare operations are used to
retrieve 1nformation from the database. For the search
function, the criteria of the search is specified in a search
filter. The search filter typically 1s a Boolean expression that
consists of attribute name, attribute value and Boolean

operations like AND, OR and NOT. Users can use the filter

10

15

20

25

30

35

40

45

50

55

60

65

6

to perform complex search operations. The filter syntax 1is
defined in RFC 1960 (RFC stands for Request For
Comments, See http://www.cis.ohiostate.edu/hypertext/
information/rfc.html).

In addition to the search filter, users can also specily
where 1n the directory tree structure the search 1s to start. The
starting point 1s called the base DN. The search can be
applied to a single entry (a base level search), an entry’s
children (a one level search), or an entire subtree (a subtree
search). Thus, the “scope” supported by an LDAP search
are: base, one level and subtree. LDAP does not support
scarch for arbitrary tree levels and path enumeration.

According to the 1nvention, the relation tables model the
relationship between the LDAP entries to facilitate one level
and subtree searches without recursive queries. In both
cases, the search begins by going into the database and using
the LDAP filter criteria to retrieve a list of entries matching
the filter criteria. If the search 1s a one level search, the
parent table 1s then used to filter out EIDs that are outside the
search scope (based on the starting point or base DN).
Likewise, 1f the search 1s a subtree search, the descendant
table 1s then used to filter out EIDs that are outside the search
scope (again, based on the base DN). Generally, the tables
are not required to be used 1n a base level search.

In a preferred embodiment, each LDAP attribute that can
be searched by the user 1s mapped to an attribute relation that
consists of two columns: EID and normalized attribute
value. As described above, each LDAP entry 1s assigned a
unique identifier (EID). Based on the attribute syntax, the
attributes are converted (or normalized) so that the invention
can apply Structured Query Language (SQL) queries to the
attribute values. For example, 1f the attribute syntax 1s case
insensitive (CIS), the attribute value will be converted to all
upper case and stored 1n an attribute table. The attribute table
1s used mainly for search operations to find the entries that
match the filter criteria. The actual entry data 1s preferably
stored 1n an Idap__entry table, as will be described. Thus, the
cgenerated SQL queries use the attribute table to locate the
entry EIDs that match the filter expression. Then, the EIDs
are used to retrieve the entry data from the ldap__entry table.

Various routines are provided for manipulating entries and
for searching using the relational tables described above. As
described below, the ldap_ entry table includes the parent
table, and the descendant table 1s the 1dap__desc table. These
routines are now described generally.

FIG. 7 is a flowchart illustrating an ldap_delete (or
delete) routine that removes entries from the database. It
begins at step 50. At step 52, the routine maps the distin-
guished name (DN) to the entry identifier (EID). The routine
then continues at step 54 by obtaining the ancestor (PEID’s)
from the ldap_ desc table. For each PEID retrieved, the
routine then performs a processing loop at step 56. In
particular, the routine removes the PEID and EID pair from
the descendant table (Idap__desc table), at step 58, and then
cycles. When step 56 is complete (i.e. all PEIDs have been
processed), the routine branches to step 60 to remove the
EID entry from the ldap_ entry table. This completes the
processing.

FIG. 8 1s a flowchart for a routine called Idap_ add for
adding entries to the database. Because the directory struc-
ture will be changed when entries are added into the
database, the parent table (or ldap_ entry) and the descen-
dant table (Idap__desc) are updated to reflect the change. In
other words, after all tables get created, the ldap__add
routine 1s used to populate the tables with correct informa-
tion.

6,055,188

7

The routine begins at step 62. At step 64, the routine
retrieves the EID for the entry. A test 1s then performed at
step 66 to determine whether the entry exists. If so, the
routine branches to step 68 and exits. If, however, the output
of the test at step 66 indicates that the entry does not exist,
the routine continues at step 70 to obtain the parent identifier
(PEID). At step 72, the routine adds an entry into the
ldap__entry table, using the EID and its associated PEID.
Then, the routine continues at step 74 to the ancestor EIDs
(AEIDs) from the ldap_desc table. For each ancestor EID
(AEID), the routine then performs a processing loop begin-
ning at step 76. In particular, at step 78, the routine adds a
row 1n the descendant table with the EID and 1ts associated
AEID. The routine then cycles back to step 76 until all
AEIDs are processed, at which point the routine 1s finished.

FIG. 9 1s a flowchart illustrating a subtree search.

As described above, this search preferably uses the
descendant table to obviate recursive queries through a list
of entries returned from an initial search query. The routine
begins at step 80. At step 82, the routine retrieves entry EIDs
which match the filter criteria from the attribute tables. Step
82 thus outputs a first set of EIDs that appear to match the
scarch criteria. This set 1s then filtered using the descendant
table as will be seen. In particular, at step 84, the routine
maps the base DN to the entry EID. Step 84 outputs a base
DN EID:base EID. The routine then continues at step 86 to
retrieve the descendants EIDs from the descendant table
(Idap__desc) using the base EID. The output of step 86 1s a
second set of EIDs. The routine then enters the processing
loop 88 until all EIDs in the first set have been tested. In
particular, the routine performs a test at step 90 to determine
whether the EID under test 1s in the second set. If not, the
routine cycles back to step 88 to get the next EID. If the
outcome of the test at step 90 1s positive, however, the
routine retrieves the entry data from the ldap__entry table at
step 92, and then sends back the results at step 94. The
routine then cycles back to step 88 until complete. When all
EIDs 1n the first set have been tested, the routine branches
to step 96 to send back the end of search command. The
routine then terminates at step 98.

FIG. 10 1s a flowchart for a one level search. As described
above, this search uses the parent table to obviate recursive
queries through a list of entries returned from an 1nitial
scarch query. The routine begins at step 100. At step 102, the
routine retrieves entry EIDs that match the filter criteria
from the attribute tables. Step 102 outputs a first set of EIDs.
At step 104, the routine maps the base DN to the entry EID.
At step 106, the routine retrieves the children EIDs from the
ldap__entry table using the base EID. This outputs a second
set of EIDs. The routine then enters the processing loop 108
until all EIDs 1n the first set have been tested. In particular,

the routine performs a test at step 110 to determine whether
the EID under test 1s 1n the second set. If not, the routine
cycles back to step 108 to get the next EID. If the outcome
of the test at step 110 1s positive, however, the routine
retrieves the entry data from the ldap_ entry table at step
112, and then sends back the results at step 114. The routine
then cycles back to step 108 until complete. When all EIDs
in the first set have been tested, the routine branches to step
116 to send back the end of search command. The routine
then terminates at step 118.

It should be appreciated that the flowcharts described
above are 1llustrative 1n nature and that the particular opera-
tions described above are normally effected using a single
standard SQL query.

With the Idap_entry table (which includes the parent
table) and the descendant table, the following SQL queries
for LDAP scarch functions may then be generalized as
follows:

10

15

20

25

30

35

40

45

50

55

60

65

3

Scenario 1: Base Search

Map the distinguished name to an unique id (UID);

SELECT EntryData
FROM 1dap__entry
WHERE EID=<UID>

where <UID> 1s a constant for the select statement

Scenerio 2: One Level Search

Map the distinguished name to an unique id (UID); the
following query 1s independent of number of classes
mvolved.

Scenario 2: One Level Search
Map the distinguished name to an unique i1d (UID); the
following query i1s independent of number of classes
involved.
SELECT EntryData
FROM 1dap__entry
WHERE FEID IN (
select distinct EID FROM ldap__entry
WHERE PEID=<UID>

);

Scenario 3: Sub-tree Search

The following query 1s independent of the number of
classes 1nvolved.

Single attribute (cn) case: 1dap filter (cn=sshi)
Map the subtree root DN to an unique ID {(<UID>);
SELECT entry.EntryData,
FROM 1dap__entry as entry
WHERE entry.EID 1n
(SELECT distinct 1dap__entry.FID
FROM 1dap__entry,1dap_ desc
WHERE (1dap__entry.EID=1dap__desc.DEID
1dap_ desc. AEID=<UID>)
AND 1dap__entry.EID
IN (SELECT EID FROM SN WHERE SN = “sshi”))

AND

The present mvention provides significant advantages 1n
an LDAP directory service having a relational database
management system (DBMS) as a backing store. According
to the 1nvention, entries 1n a naming hierarchy are mapped
into first and second relational tables: a parent table, and a
descendant table. These tables are used to “filter” lists of
entries returned from a search to ensure that only entries
within a given search scope are retained for evaluation.
Thus, for example, the parent table 1s used during an LDAP
one level search, and the descendant table 1s used during an
LDAP subtree search. In either case, use of the parent or
descendant table obviates recursive queries through the
naming directory.

Thus, with the parent and descendant tables, an LDAP/
DB2 directory solution can handle all LDAP search func-

tions. The 1nventive technique of mapping the naming
hierarchy to the pair of relational tables has proven quite
ciiicient when compared with other LDAP server implemen-
tations. The following are some measurement results for a 1
million entry database (in seconds): Simple select:

6,055,188

[nvention Prior Art
sn = John 0.490 0.730
Wildcard select
sn = Zeno® 0.400 0.500
sn = Co*chio 1.420 4,720
Complex queries
|(cn = Band) (sn = Chat) 1.140 4.040

The performance results are achieved by avoiding the
overhead of recursive queries through the naming hierarchy
during one level and subtree LDAP searching. These results
show that the solution works very well, especially consid-
ering 1ts simplicity.

As noted above, the invention may be implemented 1n any
hierarchical directory service in which a relational database
management system (RDBMS) 1s used to provide a backing
store function. The invention may also be 1mplemented
within a relational database management system being used
as an add-on to a directory service.

One of the preferred embodiments of the control routines
of this invention is as a set of instructions (computer
program code) in a code module resident in the random
access memory of a computer.

One of the main functions of LDAP/DB2 1s to translate
the LDAP filter expression into SQLs. The filter translator
(rdbm__ xlIfilter.c) is used to generate the equivalent SQL
expression corresponding to an LDAP filter that can be used
in the WHERE clause of an SQL SELECT statement. The
following specification describes in more detail (than that
provided above) those relevant portions of the translation
that are performed to generate the SQL expressions useful 1n
the present invention. The LDAP filter translator also gen-

erates the list of SQL tables needed for the FROM clause.
The SQL SELECT statements used by LDAP/DB2 secarch

routines are 1n the following format:
Base Level Search:

SELECT entry.EntryData,

creator,
modifier,
create__timestamp,
modify__timestamp,
Entry.EntryBlob,
Entry.Entrysize
from 1dap__entry as entry
where entry.EID in (
select distinct 1dap__entry.EID
from <table list>
where (1dap__entry.EID=<root dn id>)
<sql where expressions:)

One Level Search:
SELECT entry.EntryData,
creator,
modifier,
create__timestamp,
modify__timestamp,
Entry.EntryBlob,
Entry.Entrysize
from 1dap__entry as entry
where entry.EID in (
select distinct 1dap__entry.EID
from 1dap__entry, <table list>

5

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued
ldap__entry as pchild, <list of
tables>
where 1dap__entry. EID=pchild.EID
AND pchild.PIED=<root dn 1d> <sql
where expressions:)
Subtree Search:
SELECT entry.EntryData,
creafor,
modifier,
create__timestamp,
modify__timestamp,
Entry.EntryBlob,
Entry.Entrysize
from 1dap__entry as entry
where entry.EID in (
select distinct 1dap__entry.EID
from 1dap_entry, Ildap__desc, <table
list>
where
(LDAP__ENTRY.EID=1dap__desc.DEID
AND

1dap__desc. AEID=<root dn id>)
ldap__entry as pchild, <table list>
where 1dap__entry.EID=1dap__desc.EID

AND1dap_ desc. AEID=%d<where

exXpressions:),

The <table list> and <where-expression> are the two null
terminated strings returned by the filter translator. The <root
dn 1d> 1s the unique i1denfifier of the root dn. The where
clause should only be generated 1if <where-expression> 1s

not the empty string and no errors where detected 1n the

parsing the LDAP filter. Both Nested_ Select and Nested_

Join provide solutions for all LDAP filter expressions and

performance results are comparable. Currently Nested__

Select 1s the default.

The following 1s the detail explanation of the tables that
are defined in LDAP/DB2. To make the table information
more compact, the parent table 1s preferably combined with
the ldap_ entry table which contains the mmformation about
entries.

Entry Table
This table holds the information about a LDAP entry. This

table 1s used for obtaining the EID of the entry and sup-

porting LDAP__SCOPE_ONELEVEL and LDAP__

SCOPE__BASE scarch Scope. The parent table 1s preferably

included 1n the Entry table since all the other attributes are

dependent on EID.

EID—The unique identifier of the LDAP entry. This field 1s
indexed.

PEID—The unique identifier of the parent LDAP entry in
the naming hierarchy. For example, the LDAP entry with
the name “ou=Information Division, ou=People,
o=Umversity of Michigan, c=US” 1s the parent of “cn=
Barbara Jensen, ou=Information Division, ou=People,
o=Umversity of Michigan, c=US".

DN—The distinguished name of the entry.

DN TRUC—Truncate DN to 250 characters so that one can
build mdexes on this field.

EntryData—Entries are stored using a simple text format of
the form “attribute:value” as in the U.M. reference imple-
mentation. Non-ASCII values or values that are too long,
to fit on a reasonable sized line are represented using a
base 64 encoding. Giving an ID, the corresponding entry
can be returned with a single SELECT statement.

11

6,055,188

EntrySize—The size of the entry. If the entry size if larger

than 32k, entry data is stored 1n EntryBlob instead.

EntryBlob—Entry data 1s stored in this column 1f the entry

size 1f larger than 32Kk.

Creator—The DN of the entry creator.
Modifier—The DN of the entry modifier.

modily_ timestamp—Record the time when the entry was

last modified.

create__timestamp—NRecord the time when the entry was

created.

The following i1s the SQL command to create the entry table

and the index.

CREATE TABLE 1dap__entry (
EID integer NOT NULL,
PEID integer,

DN__TRUNC varchar (250),
DN long varchar,

CREATOR long varchar,
MODIFIER long varcar,
modify__timestamp timestamp,
create__timestamp timestamp,

EntryData long varchar

ENTRYBLOB BLOB,
ENTRYSIZE integer

);
EID: unique index (primary key)
DN__TRUNC: index

PEID: index
Functional dependency:
EID->PEID, DN_TRUNC, DN, CREATOR,
MODIFIER,
Modify_ timestamp
EID->create__timestamp
EID->EntryData, EntrySize, EntryBlob
DN->DN_TRUCN
Descendant table
The purpose of this table i1s to support the subtree search
feature of LDAP. For each LDAP entry with an unique ID
(AEID), this table contains the descendant entries unique
identifiers (DEID). The columns in this table are:
AEID - The unique 1dentifier of the ancestor LDAP entry.
This entry 1s indexed.
DEID - The unique identifier of the descend LDAP entry.
This entry 1s indexed.
The following 1s the SQL. cominand to create the descendant
table and the index.
CREATE TABLE 1dap__desc (
DEID integer,
AEID integer
);
AEID, DEID: index
Functional dependency:
DEID -> AFEID

Attribute table:

One table per searchable attribute. Each LDAP entry 1s
assigned an unique identifier (EID) by the backing store.
The columns for this table are:
¢ EID
¢ Attribute value
¢ Truncated attribute value. If the length of the
column 1s longer than 250 bytes, a trucated
column 1s created for indexing. In DB2, the

maximum length for a indexed column 1s 255 bytes.

The SQL type of the attribute depends in the LDAP data
type. Indexes can be created for attributes whose size are
less than 255 bytes.
For example, for a surname attribute 1n the person class,
the following 1s the SQL to create the sn table:
CREATE TABLE sn (

EID integer NOT NULL

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

Attribute table:

sn varchar (100) NOT NULL);
EID: index
attribute or attribute t: index

Functional dependency:
EID->attribute

Having thus described our invention, what we claim as
new and desire to secure by letters patent 1s set forth 1n the
following claims.

What 1s claimed 1s:

1. A method of searching a directory organized as a
naming hierarchy having a plurality of entries each repre-
sented by a unique 1dentifier, comprising the steps of:

generating a relational table associating unique identifier
pairs in the naming hierarchy having a given hierar-
chical relationship;

in response to a search query having a given filter criteria
and search scope, returning a list of entries that satisfy
the given filter criteria; and

using the relational table to filter out entries 1n the list
according to the given search scope.

2. The method as described in claim 1 wherein the

relational table summarizes parent-child relationships 1n the

naming hierarchy.
3. The method as described in claim 2 wherein the
relational table 1s generated by:

for each entry that 1s a parent of a child entry in the

naming hierarchy, associating the unique identifier of
the parent entry with the unique 1dentifier of each entry
that 1s a child of that parent entry; and

indexing each respective parent entry unique identifier
together with “its respective” child entries unique 1den-
tifiers 1n an ordered list.

4. The method as described 1n claim 3 wherein the search
query 1s a one level search.

5. The method as described 1n claim 1 wherein the
relational table summarizes ancestor-descendant relation-
ships between the unique identifier pairs.

6. The method as described mm claim § wherein the
relational table 1s generated by:

for each entry that 1s an ancestor of one or more descen-
dent enftries 1n the hierarchy, associating the unique
identifier of the ancestor entry with the unique 1dentifier
of each entry that 1s a descendent of that ancestor entry;
and

indexing the ancestor entries’ unique 1dentifiers together
with their associated descendent entry unique 1dentifi-
ers 1n an ordered list.

7. The method as described 1n claim 6 wherein the search
query 1s a subtree search.

8. The method as described in claim 1 wherein the
directory 1s a client/server directory service having a back-
Ing store.

9. The method as described mm claim 8 wherein the
backing store includes a relational database management
system.

10. A method of searching a directory organized as a
naming hierarchy having a plurality of entries each repre-
sented by a unique 1dentifier, comprising the steps of:

generating first and second relational tables associating,
unique 1dentifier pairs 1n the naming hierarchy having
first and second given relationships;

6,055,188

13

1In response to a search query having a given filter criteria
and search scope, returning a list of entries that satisty
the given filter criteria; and

using at least one of the first and second relational tables

to filter out entries in the list according to the given
search scope to avoid recursive queries through the list
of entries.

11. The method as described 1n claim 10 wherein the first
relational table summarizes parent-child relationships 1n the
naming hierarchy.

12. The method as described in claim 11 wherein the first
relational table 1s generated by:

for each entry that 1s a parent of a child entry in the
naming hierarchy, associating the unique identifier of
the parent entry with the unique 1dentifier of each entry

that 1s a child of that parent entry; and

indexing each respective parent entry unique identifier
together with 1ts respective child entries unique 1den-
tifiers 1n an ordered list.

13. The method as described 1n claim 12 wherein the
search query 1s a one level search.

14. The method as described 1n claim 10 wherein the
second relational table summarizes ancestor-descendant

relationships in the naming hierarchy.
15. The method as described 1in claim 14 wherein the

second relational table 1s generated by:

for each entry that 1s an ancestor of one or more descen-
dent entries 1n the hierarchy, associating the unique
identifier of the ancestor entry with the unique 1dentifier
of each entry that 1s a descendent of that ancestor entry;
and

indexing the ancestor entries’ unique 1dentifiers together
with their associated descendent entry unique 1dentifi-
ers 1n an ordered list.

16. The method as described m claim 15 wherein the
scarch query 1s a subtree search.

17. The method as described 1 claim 10 wherein the
directory 1s a client/server directory service having a back-
Ing store.

18. The method as described 1n claim 17 wherein the
backing store includes a relational database management
system.

19. A computer program product 1n a computer-readable
media for use 1n a computer to search a directory organized
as a naming hierarchy having a plurality of entries each
represented by a unique identifier, the computer program
product comprising:

means for generating first and second relational tables

assoclating unique identifier pairs 1in the naming hier-
archy having first and second given relationships;

means responsive to a search query having a given filter
criteria and search scope for returning a list of entries
that satisly the given filter criteria; and

means for using at least one of the first and second
relational tables to filter out entries 1n the list according
to the given search scope to avoid recursive queries
through the list of entries.

20. The computer program product as described 1n claim
19 wherein the first relational table 1s a parent table gener-
ated by associating the unique 1dentifier of each parent entry
with the unique 1dentifier of each entry that is a child of that
parent entry.

5

10

15

20

25

30

35

40

45

50

55

60

14

21. The computer program product as described 1n claim
19 wherein the second relational table 1s a descendant table
ogenerated by associating the unique 1dentifier of each ances-
tor entry with the unique identifier of each entry that 1s a
descendant of that ancestor entry.

22. A directory service system, comprising;:

a directory organized as a naming hierarchy having a

plurality of entries each represented by a unique iden-
tifier;

a relational database management system having a back-
ing store for storing directory data;

means for searching the directory, comprising;:

means for generating first and second relational tables
assoclating unique 1dentifier pairs in the naming
hierarchy having first and second given relation-
ships;

means responsive to a search query having a given filter
criteria and search scope for returning a list of entries
that satisfy the given filter criteria; and

means for using at least one of the first and second
relational tables to filter out entries in the list accord-
ing to the given search scope to avoid recursive
queries through the list of entries.

23. The directory service system as described 1n claim 22
wherein the first relational table 1s a parent table generated
by associating the unique 1dentifier of each parent entry with
the unique identifier of each entry that 1s a child of that
parent entry.

24. The directory service system as described in claim 22
wherein the second relational table 1s a descendant table
ogenerated by associating the unique 1dentifier of each ances-
tor entry with the unique identifier of each entry that 1s a
descendant of that ancestor entry.

25. The method as described 1n claim 22 wherein the
directory 1s a client/server directory service.

26. The directory service system as described in claim 22
wherein the relational database management system 1s
DB/2.

27. In a directory service having a directory organized as
a naming hierarchy, the hierarchy including a plurality of
entries each represented by a unique 1dentifier, the 1mprove-
ment comprising;:

a relational database management system having a back-
ing store for storing directory data;

means for searching the directory, comprising;:

means for generating first and second relational tables
assoclating unique identifier pairs in the naming
hierarchy having first and second given relation-
ships;

means responsive to a search query having a given filter
criteria and search scope for returning a list of entries
that satisfy the given filter criteria; and

means for using at least one of the first and second
relational tables to filter out entries 1n the list accord-

ing to the given search scope to avoid recursive
queries through the list of entries.

	Front Page
	Drawings
	Specification
	Claims

