US006081872A
United States Patent 119] 111] Patent Number: 6,081,872
Matick et al. (451 Date of Patent: Jun. 27, 2000
b
[54] CACHE RELOADING PERFORMANCE 5,796,671 8/1998 Wahlstromccccvuevnnennnee. 365/230.03
IMPROVEMENT THROUGH THE USE OF 5,801,996 9/1998 Seyyedy et al. 365/189.05
EARLY SELECT TECHNIQUES WITH AND 5,832,276 11/1998 Feiste et al.oovvvvvvvinvinnennenn. 395/728
WITHOUT PIPELINING FOREIGN PATENT DOCUMENTS
[75] Inventors: Richard Edward Matick, 1354 827 5/1972 United Kingdom .
Croton-on-Hudson; Stanley Everett 2235554 3/1991 United Kingdom .

Schuster, Granite Springs, both of N.Y. Primary Examiner—John W. Cabeca

Assistant Examiner—David Langjhar
Attorney, Agent, or Firm—Whitham, Curtis & Whitham;
Wayne L. Ellenbogen

| 73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

121] Appl. No.: 08/888,730 [57] ABSTRACT
[22] Filed: Jul. 7, 1997 A DRAM for L2 cache 1s used mm a computer memory
hierarchy without compromising overall system perfor-
51 Int. (:l.?r .. GO6FK 12/00 mance. By proper Organization and design? the DRAM 12
52] US.Cl 711/122; 711/140; 711/133; cache 1s many times larger than a SRAM 1implementation 1n
711/126; 711/118 the same technology, but without compromising overall
[58] Field of Searchccoooeveinnn. 711/113, 126, system performance. The larger DRAM capacity compared

711/122, 100, 118, 133, 140; 395/728 to a SRAM gives a substantially better HIT ratio which

compensates for any small degradation due to access time.
[56] Retferences Cited To achieve this, it 1s essential to minimize the total DRAM

US PATENT DOCUMENTS access time as miuch‘ as possible by the use of early select
techniques and pipelining.

5,701,503 12/1997 Singh et al.coueveevrevneeennnnnee. 711/126
5,732,400 3/1908 NI cvvvirevieiiieinieeeeeeeieenreveeeennn, 711/113 28 Claims, 11 Drawing Sheets
(L2 SET-ASSOCIATIVE,
SEQUENTIAL ACCESS)
10 ~_ y , .
ARRAY
(SI:T-ASSOCIAT[VE, sz
|ATE—-SELECT L1) 11 IF L2 DIR. HIT,
THEN
L1 DIRECTORY ACCESS 12 ARRAY
. T1 WITH TRANSLATED
ADDRESS
i F L1 MISS
SIMULTANEOUS THEN
ACCESS TO ACCESS ACCESS 2 DIR.
11 DIR. /ARRAY
EVERY CYCLE 13
L2
DIRECTORY

13

TRANSLATED
|2 ARRAY _

ADDRESS

6,081,872

Sheet 1 of 11

Jun. 27, 2000

U.S. Patent

AVIY

594400V
JLVISNVEL HLIM
AV ¢1 SSA00V
N3HL

1H "¥I0 27 m_

1

14

(SS300V TWIININD3S
JNIVID0SSY-13S 71)

SS3HAQV
I 3K
J3LVISNVYL
Gl
A0LOIA
A
ol J10A0 A4S
AVSYY/ M 1T
| 0L SS3N0V
410 21 SSIVIV SSIOV SNOINYIINIIS
NIHL
SSIN L7 4 Eq%
; L

AJ0LI3dId |1

L (17 1937135-3IV1
‘JALYID0SSY-135)
AVHNY
¢l 1 N 0l

6,081,872

Sheet 2 of 11

Jun. 27, 2000

U.S. Patent

AVHYY

14

SREL 1)
JALVISNVEL HLIM
AVIAY €1 5SSV

NJHL
1H "¥Ia 2
R SSIN LT I

1

(SS309v WLUNIND3IS
“INLVID0SSY-13S 1)

¢ Il

5S440QV
S '
(A1VISNVYL

Gl

AJ0LOl(

¢ 108 AN

£l Ya T
AVEY/ M1 1T

0L SSIOV

SNOINVLINMIS

LVIS

0|

AJ0LO3dl0 |

L (17 103713S-3IV7
“JNLYI0SSY-13S)

AVHYY
¢l N N

6,081,872

Sheet 3 of 11

Jun. 27, 2000

U.S. Patent

¢l

¢l
d |

STYNIIS T0MINOD/10313S
¥0078 ANV ‘STUVAN0D ‘ONINNG INdLNO AVMYY

SdAA
SUINIQ ¥ 1Nd1N0

SAHOLVT 551400V
NOLLI 1S SS380dY ¢

SO JdVdNOD
SSY10 FJONANYINOD

1€1

AJOLI3I0 ¢1 3L 1dNOD

d |

INIL SSI00v 41 |
AVHYY AMOLOFYHIO 2T

HOLV1—3SN3S

ONINRIT %
“ONI0003G

NOILOFT3S
AUIN

U.S. Patent Jun. 27, 2000 Sheet 4 of 11 6,081,872

10'\

L1 12
ARRAY

11
L1 DIRECTORY
EACH CYCLE

START "
SIMULTANEOUS
ACCESS TO 2
DIRECTORY
L1 DIR./ARRAY ENABLE WORD DRVER
12 DIRECTORY AND COMPLETE DRAM ACCESS

ONLY IF

(SELF—ASSOCIATIVE,
[ATE-SELECT L1)

(SET-ASSOCIATIVE,
FARLY SELECT L2)

15
TRANSLATED 11 MISS & L2 DIR. HIT,
N s
ADDRESS ABORT ARRAY ACCESS
2 ARRAY EARLY SELECT 14

WORD DECODER

WORD \
DECODER \ L2 DRAM
; 42 | ARRAY
WORD
DRIVER
143 SENSING
BT /BLOCK . i
Fl DECODING
G.4 DRIVER
DRAM ACCESS TIME

6,081,872

Sheet 5 of 11

Jun. 27, 2000

U.S. Patent

JAIL SS9V WL0L

_b .. | INL T10A 1]
40 "40SS3004d |

TOYINOD % ONINLL TVE0 _

HIVd 1N0-VLV(Q UAGEENEN vl 4300930-0d0M
JOUVHI 4dd

JI4VHI)3dd JdVHI3dd

YIANC INI1023d
1N0-VLYa %0078/ 118
® HOIV GGl

144! 4IANA m Ay
QUOM ><
x4 430003G
QHOM
_ 13534-SS390V¥
o0 17 40 YINUA-CHOM T18YN3 oY
4OSSIN0Nd | ¥3LdY 1¥08Y ¥0 I18YN3 LOITIS-ATHY3 ”

[yl SSIOIV AVHdvY 1408V JSIMEIHLO

gbl ¥INHQ GHOM J1dVN3
NFHL “LH 810 ¢1 % SSIN 11 4

6,081,872

Sheet 6 of 11

Jun. 27, 2000

U.S. Patent

JAIL SSF00V V104

ﬁ .. RENETTRETTR :
40 Y0SSIN0Nd |

JO4INOD #® ONINLL V801V

HIVd 3SN3S 14
JIVHI Jdd

HlYd 1N0-V1V(
JI8VHI g

4300930-0d0M
JIdVHI Jdd

YINY(9NI0023@
1N0-Y1YQ %0074/ 11d
R HOLYT GSl
o INISNIS
DZ¥ |
" e |E
GHOM
oeyi - | % 430003 5@%
JOVIS ANC VIS [S]
_ 13S34-SS300V
100 17 %0 YINNO-CHOM/¥300030 T19VN3 ORY
40SSTD0Nd | HILY 1MOBY ¥O T1GVNI 103TIS-ATHY3 ”

[¥] SSIOIV AVdy 1408V I5IMAARI0

Ol ¥INYO QMOM/¥300030 F18YN3
NIHL ‘LH "dI0 21 ® SSIN 11 4

U.S. Patent Jun. 27, 2000 Sheet 7 of 11 6,081,872

FACH CYCLE 120

START A ARRAY
SIMULTANEOUS X 110
ACCESS T0 DIRECTORY
L1 DIR./ARRAY - 134 INSTRUCTION CACHE
12 DIRECTORY DIRECTORY L1 /EARLY-SELECT L2
12 ARRAY

WORD DECODER 12 ARRAY ADDRESS 15a

START A ARRAY
SIMULTANEOUS X 11b
ACCESS TO DIRECTORY

DATA CACHE

L1 DIR./ARRAY > 134
12 DIRECTORY DIRECTORY L1 /EARLY-SELECT L2

|2 ARRAY

WORD DECODER 12 ARRAY ADDRESS 15b

6,081,872

Sheet 8 of 11

Jun. 27, 2000

U.S. Patent

3 Il

4300010 Q€OM

AV ¢T3 NOLOIQ3¥d “I9VSN A8 QININY3LAC

ALIMON DINYNAQ “X31dW02 (°)

(0 30438 | 'b9)
YIQH0 ALIMOIMA a3XI4 ‘T1dnIS ()

HOIHM JHOYD 17 FHL HLM AVHHY/ANOLO3MI 27 14VIS

14!

Gl SSUAQY AVHEY 2 '1SIN03Y SSIDOV NV IAVH IHOVO-Q QNV | H108 4
140193 AVHNY/ANOL03YIA JHOVO-Q 17 HLIM AYHYY/AOLOFMIC
| Y =0 AINO 4
‘| 7 S0 7] 21 19VIS ‘1SINDIY SSINIY SYH FHOVI-Q A
91 AVYHY/AN0LOFNIA FHOVO-1 1] HLIM AvYdY/AYOLO3YIC

1 LYVIS “1SINDFY SSIIIY SYH FHOWO-I AINO A

SSFV €1 19135-ATdV3
SNOINVLINKIS 404 AlldOidd

ALRIOIId X31dW0D &0
ALIIOIId F1dIS

-J10A0 N4AID ANV NO

AJ01934I0—|
1]

AVHUV| ‘

]

ql| A40191d10-(

RV
VIVD 11 | Avdav—(
]

1

JHIVI
NOLLONALSNI
L]

A

azl

6,081,872

Sheet 9 of 11

Jun. 27, 2000

U.S. Patent

JNIL SSFOAV (1 WIOL

v | T0MINOD ® 9NINLL ¥8019

0L %0018 _
1N0LSYD "
HIVd 1N0-VLVC HLVd ISN3S at

J94VHIYd JOUVHOFNd m

i

_

934 1N0LSYD m

WINNG ONIQ003C “

1N0-Y1YQ xogm\:m m

{

934 HOL3 P\ |

_ _

ol * Gyl INISNS m

/ _
, vl T mm“
‘ oM A=

SIHOLY] LNO-VLVC ,, A oyl
103135~ A TV
_ A7l
ndd/11 01 4

MOVE MO0T8 Qv0 134

AL T10A)
|1 40 Ndd |

4300010—-040M
JOUVHI g

300030
JAOM 1353 %
5SSOV
1408V

\

JINHG-CYOM 1408V 3513
YINYO-QHOM F18VN3 NIHL

IH AYOLOIA ¢1 % SSIN 1] k|

U.S. Patent Jun. 27, 2000 Sheet 10 of 11 6,081,872

DATA-OUT BUFFER

LATCHES
o RELOAD BLOCK BACK

1aa~ |B/F {70 L1/CPU

' Fetch
| | Req.

FARLY-SELECT r
L2 ARRAY l

|

|

|

143

DATA-0UT
DRIVER

15

FROM

CASTOUT UNIT
BLOCK TO L3 TRANSLATION
i SELECT ~ SELECT
Fetch CastOut
| ATE BUFFER-TEST PIPELINE LOGIC Req. Req.
_w__J
F1G.9A "
DATA OUT
DRIVER
FREE-
B/F m==)
i
174 Y,
W i
|
172 ;
:
FlgAddrReg llll I.-. 8
FlgReg Fetch Reg i
i A
|
l
— | J
| f'?—'—@}B/F -
IDENTICAL LOGIC B
FOR CTTTTTTTT T EGStOUt
CastOut Reg. S - Req.
\149

U.S. Patent Jun. 27, 2000 Sheet 11 of 11 6,081,872

FACH CO Reg __EACH Fetch Reg
TRANSFER CYCLE, " TRANSFER CYCLE
DECREMENT DECREMENT #* f
(-1) (-1) ,’! 15

175 /

CastOut Reg Fetch Reg ,f FROM
COUNTER COUNIER f;’ TRANSLATION UNIT

SELECT SELECT

177 ,f’ Req Reg.
N ARRAY /
MUX

181 /
}l
A B / DATA-OUT
/ DRIVER
O
+1

COMPARE —173
e

179 FlgAddrReg [172

' —
TTT

F < OR = 0, Fetch Reg

START ARRAY ACCESS

__T_—T—--r-—-l CastOut

T\
1611

6,031,872

1

CACHE RELOADING PERFORMANCE
IMPROVEMENT THROUGH THE USE OF
EARLY SELECT TECHNIQUES WITH AND

WITHOUT PIPELINING

DESCRIPTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to computer
memory systems and, more particularly, to a memory hier-
archy which comprises a level one (LL1) cache with access/
cycle time equal to or faster than the processor cycle time
and an .2 cache consisting of a directory and data array in
which the L2 directory 1s accessed upon a miss to the L1
cache, the L2 cache requesting a block reload from the L3
cache of the hierarchy 1f a miss to the .2 cache occurs. The
[.2 cache 1s a DRAM, which can be many times larger than
a SRAM implementation in the same technology, built in a
manner that does not compromise overall system perfor-
mance.

2. Background Description

An L1 cache is typically implemented 1n static random
access memory (SRAM) technology for speed. [.2 caches
are typically also implemented in SRAM technology for
speed, but the high cost limits the L2 capacity. A larger
capacity could be obtained by using dynamic random access
memory (DRAM) technology, but the compromise in speed
1s usually not acceptable for high performance systems.

An L2 cache must interface to a higher-level L1 cache to
supply blocks (lines) for reloading any L1 misses, and
simultaneously interface to a lower level, L3 cache when
misses occur within the L2 cache. (In a multi-processor
configuration, there are other interfaces as well.) These
interfaces can all take place on one bus, or on 1ndependent
buses, with the latter giving substantially better perfor-
mance. While this disclosure 1s applicable to any such cases
above, for simplicity, 1t will be embodied m a uniprocessor
system with independent bus interfaces to the L1 and L3
levels of the memory hierarchy.

An L2 cache which mterfaces to a high-performance
processor L1 cache for the required L1 reloads, and to an L3
or main memory for the L2 accesses/reloads, has special
requirements 1 terms of both speed and organization.
Typically, all levels of a memory hierarchy below the L1
cache (L1 1s considered the highest level, closest to the
processor), will access the data arrays mainly on a block
boundary. A miss 1n the L1 cache will request a reload of a
full L1 cache line (block) which can be 64 to 256 bytes, with
128 being a typical, current value. Similarly, misses in 1.2
cache will request the reload of a block (line) from L3 cache
or main memory and so on. In cases where a store-through
policy 1s used, individual word, double word, or other
logical unit smaller than a block or line, 1s stored 1n L2 cache
whenever a store 1s performed 1n L1 cache, but this 1s seldom
used, nor does 1t change the need for a block access on a
miss/reload. In order to maintain high hit ratios and high
performance (short reload start time), such an L2 cache
would desirably be organized as a four-way, set-associative,
late-select cache. But such an organization presents several
fundamental problems. A typical late-select, set-associative
cache accesses the congruence class of the directory simul-
taneously with the congruence class of the array. This means
that four entries, 1.e., four virtual addresses with other
appropriate bits, are accessed out of the directory array, the
virtual address compares are done on the periphery of the

10

15

20

25

30

35

40

45

50

55

60

65

2

array for a match, and a late-select signal 1s generated,
corresponding to the match.

Simultaneously with the directory access, the data array 1s
accessed for four blocks (lines) which correspond to the
same four entries accessed from the directory. These four
blocks (lines) are latched in data-buffers at the edge of the
data array. The late select signal then selects the line which
corresponds to the matched virtual address. The access time
requirements are that the directory access, compares, and
late-select signal must be completed before or at the same
time that the four lines are latched at the edge of the data
array. Since the data array will be much larger than the
directory, 1t will be much slower, so the late select signals
from the directory are usually ready by the time the data
array has latched the four blocks from the congruence class.

The above organizations apply equally to SRAM and
DRAM L2 designs. However, the wide data paths needed
are actually easier to obtain with DRAM than with SRAM
arrays. For instance, DRAMSs already have many more sense
amplifiers on-chip than do typical SRAMs. (DRAMSs being
destructive read-out require one sense amplifier per each bit
line on any word line. Each bit along a word line 1s read and
must be sensed and regenerated.) On SRAM chips, the sense
amplifiers are typically much larger, to provide speed, and
require a larger “pitch” spacing (encompass more bit line
pitches) as well as considerably more power. Thus, DRAM
designs have at least this inherent advantage, although speed
1s compromised. However, even though DRAM chips have
this inherent large data path width, this data path size 1s still
a key 1ssue 1n the overall chip design and layout.

One difficulty 1s that accessing a full congruence class of
four lines from the data array requires a very large data path
out of the array. For instance, a 128 byte L2 block (line) in
a four-way, set-associative, late-select organization would
require accessing a 128x8x4=4K bit data path out of the
DRAM array. While doable, the resulting structure 1s some-
what large, and presents a number of difficulties in terms of
array/island organization, length of word lines, bit lines,
power, on chip busing, to name a few. A 256K byte line
would obviously require twice this or an 8K bit data path out
of the DRAM array which further compounds the difficul-
ties. The problem 1s even worse for SRAM designs, so
set-associative, late-select organizations are rarely used for
SRAM L2 caches. Rather, Direct-mapped SRAM L2 cache
organizations are typically used which compromises the
performance and 1s to be avoided if possible.

The fundamental design issue 1s to provide an L2 cache
design and organization which will not compromise speed
but still allow a simple chip design using DRAM for the data
array.

SUMMARY OF THE INVENTION

It 1s therefore an object of the 1nvention to use a DRAM
for L2 cache without compromising overall system perfor-
mance.

According to the mvention, by proper organization and
design, a DRAM L2 cache 1s built which can be many times
larger than a SRAM implementation in the same technology,
but without compromising overall system performance. By
proper system organization and some DRAM design
innovations, it 1s possible to achieve a DRAM L2 cache with
better performance than an SRAM L2 cache. The larger
DRAM capacity compared to a SRAM gives a substantially
better HIT ratio which compensates for any small degrada-
tion due to access time. To achieve this, 1t 1s essential to
minimize the total DRAM access time as much as possible,

6,031,872

3

and this 1s a key consideration 1n the present invention.
While all the mnnovative concepts of the present mnvention
described 1n more detail below could be applied to a SRAM
design as well, the preferred embodiment of the invention
takes advantage of the greater capacity of a DRAM 1n the L2
cache of a memory hierarchy.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 1s a block diagram 1illustrating the L2 cache
directory and array organized 1n a sequential-access mode 1n
which the L2 directory translates a virtual address after the
L1 cache indicates a miss and the .2 cache 1s accessed it
there 1s a hit 1in the L2 directory;

FIG. 2 1s a block diagram 1illustrating the L2 cache
directory and array organized 1n a sequential-access mode 1n
which the L2 directory translates a virtual address starting at
T0 and then accesses the array starting at time T1;

FIG. 3 1s block diagram of the pipeline organization of the
[.2 directory for a one Tp cycle time, two Tp access time;

FIG. 4 1s a block diagram of an early-select, set-
assoclative L2 cache using an L2 array having an external
word-driver enable mput and access abort capability in

which the .2 cache 1s started each cycle simultaneously with
the L1 cache;

FIG. 5 1s a block diagram of a DRAM access timing path
showing a modification for early-select or abort;

FIG. 6 1s a block diagram for a DRAM access timing path
showing modification for early-select or abort with two
stage word decoder;

FIG. 7 1s a block diagram showing a split L1 instruction
and data cache, each with its own private early-select 1.2
cache;

FIG. 8 1s a block diagram of a split L1 instruction and data
cache using one shared 1.2 early-select cache with simple or
complex priority for determining which L1 cache access 1s
overlapped with early-select L2 access;

FIG. 9 1s a block diagram showing an L2 cache array with
two separate data-out latches, fetch register and cast out
register, and FIG. 9A 1s an enlarged portion of FIG. 9 used
to describe a busy/free signal associated with the fetch and
cast out registers;

FIG. 10 1s a block and logic diagram illustrating addi-
fional functions integrated on a RAM chip to provide “Late
Buffer—Test” pipelining on the output buffers; and

FIG. 11 1s a block and logic diagram 1llustrating additional
functions integrated on a RAM chip to provide “Early
Buffer—Test” pipelining on the output buifers.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS OF THE INVENTION

A basic requirement for any L1 cache 1s that 1t should be
capable of being accessed on every processor cycle, if
necessary. Typical multiple-issue, high performance proces-
sors are capable of executing four to six instructions per
cycle, and thus one cache access per cycle, for long periods.
Hence, the total cache 1mage seen by the processor for HI'Ts
must be capable of at least one access per processor cycle.
A fundamental limit of DRAM arrays 1s that their access/
cycle time 1s generally much longer than the cycle time of
high-speed processors. Thus, without any special features, 1t

10

15

20

25

30

35

40

45

50

55

60

65

4

1s not possible to start a DRAM access every processor
cycle. This 1s the assumption made here, namely that the
DRAM cycle time 1s longer than the processor cycle time.

There are a number of potential organization which can be
used to improve the performance of an L2 cache system.
Several of these will be 1llustrated below, with one being the
preferred embodiment.

CASE 1

Set-Associative, Sequential Access .2 Cache Using DRAM
Data Array With Set-Associative, Late-Select L1 Cache

The first possible organization shown 1 FIG. 1 uses a
standard L1 cache 10 organization which 1s assumed to be
a one-cycle cache, achieved by use of a set-associative,
late-select organization in which the L1 directory 11 and L1
data array 12 are started on the same cycle as previously
described. The 1.2 directory 13 and L2 data array 14 are both
sequentially organized such that if a MISS occurs in the L1
cache 10, the L2 directory 13 1s accessed on the next cycle,
while the 1.2 data array 14 waits for the translated L2 array
address 15 as shown m FIG. 1. The L2 directory 13 can be
a SRAM array and thus can complete its translation 1n one
processor cycle. The L2 DRAM data array 14, since it
cannot start a new access every cycle, 1s started only when
the L2 directory 13 completes and indicates which block 1s
to be accessed, 1f any. The 1.2 data array 14 can be set-
assoclatively organized as the directory 13; this minimizes
the number of data-array address bits which have to be
stored 1n the directory. If the mapping of the L2 array 14
addresses 1s not set-associative, but rather 1s fully associa-
tive (a virtual block can reside in any physical address), then
the full L2 physical address must be stored and obtained
from the directory 13 for each hit. Either method can be
used, or some method 1 between, even though the descrip-
fions are given 1n terms of a set-associative organization.

As shown 1n FIG. 1, the L1 cache 10 1s accessed at time
T0 and 1s completed at time T1 which can be a total time of
one cycle. If a MISS occurs, the 1.2 directory 13 1s accessed
starting at time 11 and completes at time T2. This total
clapsed time can be one processor cycle, or more. If the 1.2
directory indicates a HIT, then the L2 data array 14 1is
accessed starting at time T2 and requires a total elapsed time
of TD cycles. These values will include any boundary
crossing and bus delays. Thus, i1f T0=0, then the total time
to get the data to the processor for an L1 MISS and L2 HIT

1S

T1+T2+TD=Tmiss(I), (1)

where T1 1s the L1 access/cycle time, T2 1s the 1.2 directory
translate/access time, and TD 1s the full L2 array access time
including any boundary crossings as well as the effective
time to return the data to L1 cache 10.

CASE II

[.2 Organization Similar to CASE I but L2 Directory Started
on Each Cycle with L1 Cache

As 1ndicated 1n FIG. 2, the L1 directory 11 and array 12
as well as the L2 directory 13 are always started at the same
fime, each processor cycle. Such an organization requires an
[.2 directory 13 which either has the same access/cycle time
as the L1 cache 10 or, 1if longer, can be pipelined so a new
cycle can be started on each L1 cycle. For instance, suppose
the L1 cache 10 requires one processor cycle time, Tp, for
access/cycle and suppose the L2 directory 13 1s also one Tp
for 1ts access/cycle. Then for each L1 cache access, the 1.2
directory 13 1s accessed 1n parallel, starting at time T0=0. If

6,031,872

S

a MISS occurs 1n the L1 cache 10, then the translated 1.2
address 1s immediately available at 15, and the 1.2 data array

14 access can start immediately, at time T1. In this case, the
total time to get the data for an L1 MISS and L2 HIT 1s

Tmiss(IN=T1+TD. (2)

[t can be seen that the delay in Equation (2) is one cycle
shorter than that of CASE I given by Equation (1). This one
cycle saving can be quite significant. For instance, an L2
cache design using a Merged-Logic-DRAM technology
could give a DRAM access time TD of six Tp or less, so a
one cycle saving 1s a significant percentage improvement for
such as case.

If the .2 directory 13 full access time 1s longer than one
Tp, for mstance two Tp, the above organization 1s still valid
provided the .2 directory 13 can be pipelined so that a new
access can be started each cycle. This could be done 1n
several ways. In a technology m which fast logic 1s inte-
orated directly on the L2 SRAM directory chip, there are
several choices.

In FIG. 3, 1t 1s assumed the directory array access time
requires one ITp cycle up through the first stage of sense-
latching. At this time, a second directory access can begin
while the data-out drivers drive the congruence class com-
pare circuits 131 and latch the final physical address for the
[.2 cache data array 14 (FIG. 2). Typically, the compare
circuits 131 will be large and slow, since four separate, large
virtual addresses must be compared (30 to 50 bits or more
in some cases, and continually increasing). Thus, a new
access can be started to the 1.2 cache directory 13 (FIG. 2)
cach Tp cycle, and the result would be available on the
subsequent cycle. This will add one cycle to the total Tmiss
given by Equation (2) but still saves one cycle by starting the
L2 directory 13 early, with the L1 cache directory and array.

CASE III
Set-Associative, Late-Select, One-Cycle L1 Cache, Set-
Associative One-Cycle L2 Directory, Set-Associative
EARLY-Select L2 Data Array

This organization incorporates an early-select, set-
associative L2 directory and array, using a DRAM L2 data
array which includes an external Word-Driver enable and
abort signal (which can be same or two different signals).
The overall organization of L1 and 1.2 1s shown in FIG. 4.
The L1 cache 10 can be a typical set-associative, late-select
organization. At the start of each cache access cycle, the
congruence class of typically four entries (for four-way
set-associativity) is accessed from the L1 directory 11 simul-
taneously with the accessing of the congruence class of four
logical words (e.g., four double-words) from the L1 cache
array 12.

In this Case III, the L2 directory 13 and L2 array 14 are
also started at the same time. The congruence class of four
entries (for four-way set-associativity) is accessed from the
[.2 directory 13. However, the L2 array 14 1s accessed
completely differently than any other arrays. To understand
the operation, 1t 1s necessary to consider the internal opera-
tion of a DRAM chip. FIG. § shows an L2 DRAM chip with
the various steps normally required to perform a DRAM
access. In a standard, ordinary DRAM, all the logic and
control functions, with few exceptions, are controlled by
some on-chip Global Timing and Control circuits 141 simi-
lar to that shown in FIG. §. In standard DRAM designs, first
the word line address is received (sometimes latched, but an
option) and decoded. The decoder 142 grounds all word
lines except that one to be driven. Then the Word Driver 143

10

15

20

25

30

35

40

45

50

55

60

65

6

1s 1nternally started which accesses all bit lines along that
physical word line. Then the sensing circuits 144 come 1nto

play, followed by the data latching and data-out drivers 145.
The DRAM chip used 1n the organization of FIG. 4 has two

additions, as indicated in FIG. §. The timing and control of
the chip 1s augmented by the addition of signals from two
special circuits, one an ENABLE Word-Driver 146, and the
other, ABORT Access-Retry 147. These work as follows.
In FIG. 4, the 1.2 data array 14 access 1s started at the same
time as the L2 directory 13, but the access only proceeds

internally up to the Word Driver 143. The word line, or
oroup of word lines or decoders on several 1slands of the
chip will, together, access the congruence class of L2 blocks
for the same congruence class of the L2 directory. At this
point, the L2 DRAM data array 14 waits for an external
signal to specily the next course of action. If there 1s a MISS
in the L1 cache 10, a HIT 1n the L2 directory 13, and if the
L2 directory access equals the L1 access, then the address
for the correct one block of the L2 congruence class is
immediately available. Thus, all remaining data array
decoding, including any final word decoding if necessary,
and the bit line decoding for this block can be started at this
time. The DRAM completes 1ts full access from this point
on. However, if there 1s an L1 cache HIT, this will be known
at the end of the DRAM Word decoding period. Then the
remainder of the access 1s aborted and the DRAM 1s reset to
begin a new word decoding on the very next cycle. All this
1s possible because none of the sense circuits nor output
circuits have been disturbed which typically are the major
factors 1n limiting cycle time. For a DRAM 1mplemented in
a high-speed logic technology, the Word Decoder circuits
142 can be made to be as fast as the L2 cache access by any
number of techniques.

In FIG. 5, if the chips are implemented such that a full
congruence class of blocks (e.g., four blocks for four-way,
set-associative organization) are accessed with any word
line, then the decoding of the bit lines for the correct block
can start at the same time the word line 1s driven by the
Enable-Word-Driver signal 146 (this decoding could be
done, for example, in block 155). This will allow the array
14 to have only one full block width for its data-output path
rather than a full congruence class as would be required for
a true late-select organization.

In a different chip organization, one could conceivably
have a congruence class distributed over several word lines.
For instance, for a four-way set associative organization, one
could have the four blocks of each congruence class dis-
tributed over two or four word lines. The one required block
of the congruence class 1s not known at the start of the
directory/data-array access. In such a case, it may be desir-
able to do the word decoding 1n two stages as shown 1n FIG.
6. The first stage 142a does the major decoding (e.g., to the
congruence class which could be two or four word line)
while the second stage 143a does a final simple decode (e.g.,
one of four blocks) and word driving to complete the access.
Again, as previously, this organization allows the DRAM
arrays to have to access only one block, 1.e., the data-out
path 1s one-block wide.

The above CASE III describes a very general Early-Select
Abort/Continue L2 design which can be applied to many

other cases. Several speciiic applications to other such cases
are mcluded below:

CASE III.2
Multiple L1 caches, Each With Private, Early-Select L2
Cache
In the previous CASE III, the L1 Directory/Array and 1.2

Directory/Array are started at the same time. This configu-

6,031,872

7

ration and organization can be advantageous iIn systems
which use a single .1 cache (combined Instruction and Data
cache) with an attached L2 cache as indicated. Even in cases
which have the L1 cache split into a separate L1 Instruction
cache (I-cache) and L1 Data cache (D-cache), if a separate,
private 1.2 cache 1s used for each of these, then the configu-
ration of FIG. 4 1s workable and desirable. The L1 I-cache
can have 1ts own private L2 early-select I-cache, and
similarly, the L1 D-cache will have 1ts own separate, private
L2 early-select D-cache as indicated schematically 1in FIG.
7, wherein the suffixes “a” and “b” on the reference numerals
indicated I-cache and D-cache, respectively. The two private
[.2 caches can be accessed separately and in parallel, thus
orving twice the bandwidth of a single L2 cache.

CASE III.3
Multiple L1 caches, all sharing one early-select L2 cache

For cases which use, for instance, a split I and D cache and
have one shared 1.2 cache, then the configuration of FIG. 4
must be modified. In such a case, the shared .2 cache can
still be an early-select organization with a number of pos-
sible choices for when the L2 Directory/Array access can
start, as follows. If there 1s only an I-cache access and no
D-cache access, the 1.2 early-select access would be started
with the I-cache, as indicated mn FIG. 8. In an analogous
manner, 1f there 1s no I-cache access on a given cycle, but
only a D-cache access request, then the L2 cache 1s over-
lapped with the D-cache access.

In a more typical application, both the L1 I and D-caches
can have an access on any given cycle. Since either L1 can
MISS at random, we do not know which one will want to
access the L2 cache. In the most simple and least desirable
case, the early-select L2 Directory/Array access can start
after a MISS occurs 1n either the L1 I-cache or L1 D-cache,
since we then have the correct address and destination of the
block to fetch from the L.2. By so doing, the L2 cache lies
idle during the L1 access which 1s wasted time. We can “take
a chance”, so to speak, by making some assumptions or
oguess about which L1 cache might MISS, and start a
simultaneous access in L2 cache for that guess. For instance,
suppose that when both caches are accessed and a MISS
occurs 1n both, the design specifies via the priority circuit 16
that the L1 I-cache will always have priority over a simul-
taneous D-cache MISS. For such a design/priority
specification, when both caches are simultanecously
accessed, we would start the 1.2 access overlapped with each
L1 I-cache access as shown 1n FIG. 8. If the L1 I-cache has
a MISS, we are one cycle ahead i the L2 access. A
simultaneous D-cache MISS would wait 1n any case. If the
[.1 I-cache HITS but the D-cache MISSes, we are no worse
off since the L1 I-Cache HI'T will Early-Abort the L2 access
after the HIT 1s known. The L2 access for the D-cache MISS
will start at the same time for this overlapped case as it
would for the case of no overlap between L1 and L2 cache
accesses. Of course, the priority on L2 cache access could be
D-cache MISS before I-Cache, 1n which case, the .2 access
would always be overlapped (started) with the D-cache
access, 1f there was one.

The above, simple, fixed priority of I-over-D-cache (or
D-over-I-cache) access can be a dynamically varying
selection, such as to change priority every other access, or
every so many accesses, or a prediction scheme, etc., as
indicated 1n FIG. 8. In any case, the early-select can be used
with or without overlapped L1 accesses and has a distinct
advantage for all cases.

10

15

20

25

30

35

40

45

50

55

60

65

3

CASE 1V

Pipelined Output Buffers With or Without Early-Select 1.2
Array

Memory hierarchies typically use output buifers on the 1.2
(or L3, L4) data array to latch the requested block, and
provide a multi-cycle transfer for reload back to L1 cache
and similarly for a cast out to L3 cache or main memory. For
instance, an .2 data array can be organized as shown in FIG.
Y 1n which a fetch register 148 1s used to hold a block fetch
for reloading an L1 cache MISS, and a separate cast out
register 149 (or Store Back Buffer, SBB) for holding a block
which must be cast out to L3 due to an L2 cache MISS
(assuming a store-in [.2 cache). The transfer of these buffers
to their respective targets can require many processor cycles
and can still be busy when a new L2 access 1s needed.
Typical memory array designs are such that once an access
1s started, 1t goes to completion. If we need to fill the fetch
register for a new access and it 1s still busy, we typically
wait. The question 1s, at what time, and with what TEST, do
we decide to start the array access? If we wait until the fetch
register 1s totally free, we waste cycles. For instance, if the
array access 1s, say, four processor cycles, and at any given
moment, three cycles or less are needed to complete the
transfer of the fetch register, then we can start the array
immediately, overlapped with the fetch register transfers,
and the latter will be free by the time the array Data-Out
driver 145 (1nput to the fetch register) is asserted for the new
block. Thus, we can overlap the array access with the fetch
register transfer. A similar situation occurs with the cast out
register buffer 149. A problem in attempting this type of
pipelining 1s that we do not know until the translation 1s
completed whether the fetch register 148 or cast out register
149, or neither, will be needed. Thus, the .2 cache will have
to be organized as either a sequential or early-select
Directory/Array. Since a sequential organization would
already lose one cycle on translation, it 1s not attractive. An
carly-select array will have the special ABORT/CONTINUE
feature on the word driver, and can ecasily have another
addition to further improve the pipelining capability for a
faster effective L2 cache. This can be achieved with a

pipelined 1.2 cache array design as follows.

[Late Buffer-Test

An array access starts without testing availability of either
the fetch register 148 or cast out register 149. At the end of
the array access, just before needing either the fetch register
148 or cast out register 149 (the one needed will be known
at end of translate), a busy/free signal, BF, associated with
the needed register will control the subsequent action. This
1s 1llustrated 1n FIG. 10 and works as follows. If the fetch
register 148 1s needed and 1ts BF signal 1s Busy, the array
Data-Out driver 145 (a static circuit if necessary) maintains
its asserted outputs until the BF signal accepts them into the
fetch register 148 and enables a reset on the data-out buifers
and array 1nput; similarly, with the cast out register 149. In
this manner, the pipeline 1s kept as full as possible, given the
multiple cycle access of the array and transfer of the fetch
register 148 and cast out register 149.

The Busy/Free signal, BF, and associated logic can be
very simple, as shown 1 FIG. 10. Both the fetch register 148
and cast out register 149 have separate flag registers, FlgReg
171, which have one bit for each Logical Unit, LU, of data
transterred out of the respective register 148 or 149. In
addition, each FlgReg 171 has a simple address register,
FlgAddrReg 172, and a simple “ADD 17 address incre-
menter 173 which works as follows. Whenever the respec-
tive register, fetch or cast out register, 1s 1nitially loaded, the

6,031,872

9

flag bits in FlgReg 171 are all set to one and the FlgAddrReg
172 1s loaded with the address of the logical word or Logical
Unit which caused the MISS. Thus, the FlgAddrReg 172
points to both the first Logical Unit to be transferred from
the fetch register 148 to the central processing unit/IL1 cache

(CPU/L1), and the respective flag bit. When this Logical
Unit, LU, 1s transferred, the flag bit pointed to by the flag

address 1s reset to zero and the FlgAddrReg 172 1s incre-
mented by plus one. It thus points to the next LU to be
transferred and the next flag to be reset to zero. The
Busy/Free signal 1s obtained from NOR gate 174 connected
to the outputs of all the flag register bits. Thus, when all flag
bits go to zero, the output of the NOR gate 174 goes to one
which represents the “free” state of the fetch register 148
(arbitrary logic—states could be reversed, if desired). As
illustrated, the FREE signal will be zero while any flag bit
is one (indicating a transfer still in progress). This prevents
the output of the data-out driver 145 from setting the fetch
register, as well as holds the Drivers 1n the asserted state.
When all flags go to zero (transfer completed), the FREE
signal goes to one, enabling the new input state into the fetch
register 148 and resetting the drivers as well as all necessary
input ports to the array (reset and other controls not shown,
these being standard state of the art). The “select” signal
which specifies whether the fetch register or cast out register
1s to be set, will be obtained from the translation unit 15 as

indicated. A Reload-fetch HIT will enable the fetch register
while a MISS with cast out will enable the cast out register

149.

The cast out register 149 works 1n a completely analogous
manner with i1ts own flag register, address register and
address incrementer as indicated at the bottom of FIG. 10.
Typically, the cast out block does not require Load-Through
so the transfer always starts at the same Logical Unit
boundary (the first one). However, since some type of
address register 1s needed to decode to the individual LU for
transter, the cast out logic would be essentially identical to
that used for the fetch register. Hence, transfers could start
at any LU boundary, just as for the fetch register, if desirable.
This type of pipelining on the array Data-Output buifer
registers 1s referred to as “Late Buller—Test.”

Early Buffer—Test

Rather than implementing the “Late Buffer—Test” pipe-
lining as above, an alternative, shown 1n FIG. 11, 1s possible
as follows. We can use some additional external logic to
keep count of the number of cycles left for the fetch register
and Cast out register to become empty, and knowing the 1.2
array access time, 1t 1s possible to calculate the exact best
cycle to start L2 array access for perfect pipelining. Thus,
the test on the availability of the needed bufler 1s done early,
and the array started at exactly the right time based on this
test. This 1s called “Early Butfer—Test” pipelining. Regard-
less of what organization 1s used for the Directory/Array,
1.€., sequential, early-select, or whatever, the following must
be done after the translation has been completed and speci-
fies which buffer 1s needed. This 1s assumed to be the case.

The fetch register 148 and cast out register 149 each need
a separate counter 175 and 176, respectively, which keeps
track of the remaining number of cycles required to transfer
the respective register to 1ts target. This counter 1s 1nitialized
to some fixed value (total number of transfer cycles
required) whenever the respective register is filled. Each

10

15

20

25

30

35

40

45

50

55

60

65

10

subsequent cycle of transfer decrements the respective
counter as illustrated at the top of FIG. 11. As previously
described for the “Late Buller—Test” case, the fetch register
148 will still require the simple address register, FlgAdReg
172, and a simple “ADD 1 address incrementer 173 which
works as previously described. These are needed to allow
Load-Through to start on any logical unit boundary and
wrap (the flag register is not needed). The cast out register
149, since 1t does not need to support Load-Through, does
not need the incrementer nor the address register; 1t can use
its counter 176 as an address register.

A separate, additional register 177 in needed which holds
the count of the number of cycles required for array access
(fixed value, but must be initialized at Initial Program Load,
IPL, time). Whenever an array access 1s needed for, say, the
fetch register, the remaining count value of counter 175 for
the fetch register 148 1s subtracted from the array count
value by arithmetic logic unit (ALU) 178. When this value
is less than or equal to zero (as determined by compare
circuit 179), the array access is enabled. Otherwise, it is
delayed; similarly for the cast out register 149. If the
translation unit 15 indicates the cast out register 149 1is
needed, the remaining cast out count value obtained from the
cast out counter 176 via the multiplexer (MUX) 181 is
subtracted from array count value the as illustrated. The
result 1s compared to zero, and causes the array access to
start, or be delayed as above.

Early Buffer test NOW (for Full Availability)

It should be obvious to one skilled 1n the art that the two
cases of pipelining the “Late Bulfer—Test” and the “Early
Bufler—Test” can have a simplified, degenerated implemen-
tation as follows. In the “Early Bufler—Test” case, logic
circuits and counters keep track of whether the fetch register
or Store Back Buffer (SBB), whichever 1s needed, will be
available at the time the array data out would become
asserted. A simpler implementation would be to eliminate
the extra circuits and just test 1f the needed bufler 1s available
“NOW?”, before the array 1s started. When used with an early
select array structure, this would work as follows. The L2
directory and word decoder are started at the same time as
the L1 cache. At the end of the L1/L.2 translation/I.2 word
decoder cycle, if an L1 MISS occurs, the result of the 1.2
directory 1s then used as follows:

If an L.2 directory HIT occurs and the L2 fetch register 1s

free “NOW?”, then the array access 1s continued for the
L1 reload. If fetch register 1s not available “NOW?”,
abort array access and repeat the request (retry).

If an L2 MISS occurs and there 1s no cast out required, the
array access 1s aborted and a reload request 1s sent to L3
cache or main memory immediately.

If a MISS occurs and a cast out 1s needed, then the array
is started (for the cast out) only if the Store Back Buffer
(SBB) (or cast out register) is free “NOW?”; otherwise,
abort array and repeat the request.

If this implementation 1s used, there will obviously be

cases which will be aborted because the fetch register or
SBB was not available “NOW?” but would have been suc-
cesstul if the “Early Buffer—Test” implementation, above,
had been used. However, this 1s a much simpler case to
implement, requiring a simpler array/logic design.

6,031,872

11

This Early-Select 1.2 with additional pipelining (“Late
Buffer—Test”, “Early Buffer—Test”) on L2 cache output
buffers can be used 1n any of the previous organizations,
with or without L1 overlapping. In addition, the pipelining
feature of the L2 cache array chip can be used with or
without an early-Select RAM design. However, 1f a custom
chip design 1s undertaken to achieve the pipelining feature,
this would facilitate the addition of the early-select feature
and would be desirable. In any case, this 1s a design option.

CASE V
A Memory Hierarchy which includes an .3 LEVEL using an
EARLY-SELECT organization similar to L2

It 1s well known that at all levels of a memory, the inherent
access delay for any block reload causes a degradation of the
overall system performance. Thus, further performance
improvements can be obtained by decreasing the first access
delay Tmiss(IV) at any and all levels of the hierarchy. In the
case of a hierarchy having L1, L2, and L3 caches, both the
[.2 and L3 caches can have the early-select organization
shown 1in FIGS. 4, 7 or 8 and/or the pipeline structure of FIG.
10 or 11. In a merged-logic technology, all the directories for
L1, L2 and L3 caches can be placed on the processor chip
and started at the same time. For a MISS mn L1 and L2
caches, the L3 data array can be started on the second cycle,
which 1s a substantial improvement over current organiza-
tions. This can provide a significant performance benefit 1s
SOME Cases.

While the invention has been described 1n terms of
preferred embodiments, those skilled 1n the art will recog-
nize that the invention can be practiced with modification
within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent 1s as follows:
1. A computer memory system having a hierarchy com-

prising:

a level one (LL1) cache with access/cycle time equal to or
faster than a processor cycle time which can deliver at
least a logical word or words needed by the processor
on each cycle for an L1 HIT; and

an L.2 cache including a directory and data array in which
the 1.2 directory 1s accessed for a MISS to the L1 cache,
the .2 data array having a mapping from the L2
directory to the data array such that at least one block
needs to be accessed from the data array, the L2
directory performing required address translation and,
upon a HIT, enables the L2 array for a specific block
required for reloading into the L1 cache, and upon a
MISS, the L2 cache requests a block reload from a next
level of the hierarchy, wherein the L2 cache directory
has an access time greater than one processor cycle and
a cycle time equal to one processor cycle, the directory
and associated logic of the L2 cache bemng a pipelined
design to allow a new access to start each cycle by
starting the L2 cache data array and the L2 cache
directory at the same time as an L1 cache access, the 1.2
data array implementing an early-select structure and
organization to allow the array to start an access on
cach L1 cache cycle, to abort data array access at an end
of one cycle 1f a HIT in L1 cache or MISS 1n L2 cache
directory with no cast out, and to continue and com-
plete a block access for a MISS 1n L1 cache and a HIT
in [.2 cache directories, thereby saving at least one
cycle or more of data array access for a block reload
access.

10

15

20

25

30

35

40

45

50

55

60

65

12

2. The computer memory system of claim 1 in which a
MISS 1n the L1 cache coupled to a MISS 1n the L2 cache
with an L2 cast out results 1n a continued array access for a
cast out block.

3. The computer memory system of claim 1 in which the

[.2 data array 1s a DRAM array.

4. The computer memory system of claim 3 1n which the
DRAM array has an early-select capability consisting of a
word decoder/driver enable signal causing completion of a
data array access and an abort-cycle signal aborting the
access, resetting circuits and allowing a new access on a
very next processor cycle.

5. The computer memory system of claim 4 wherein the
DRAM word decoder/driver enable signal enables a Word-
Driver of a previously decoded word line to complete the
access, giving a single block of data as output.

6. The computer memory system of claim 4 wherein the
DRAM word decoder/driver enable signal enables a second
stage word decoder and word driver to complete the access
to a single block data-out path.

7. The computer memory system of claim 6 wherein word
decoding 1s accomplished 1n two stages by first and second
decoders, the first decoder decoding down to a congruence
class by selecting Nc out of all word lines and the second
decoder selecting one out of Nc¢ where Nc 1s the number of
blocks 1n the congruence class.

8. A computer memory system having a hierarchy com-
prising:

a split level one (LL1) cache composed of an instruction

cache (I-cache) and a data cache (D-cache) with access/
cycle time equal to or faster than a processor cycle time

which can deliver the logical word or words needed by
the processor on each cycle for an L1 HIT; and

private L2 caches for each of the I-cache and D-cache,
cach of said private .2 caches including a directory and
a DRAM data array in which the L2 directory i1s
accessed upon a MISS to the L1 cache, the 1.2 data
array having a mapping from the L2 directory to the
data array such that one block needs to be accessed
from the data array, the L2 directory performing
required address translation and, upon a HIT, starts
access to the L2 array for a specific block required for
reloading into the L1 cache, and upon a MISS, the 1.2
cache requests a block reload from a next level of the
hierarchy, an .2 cache directory access starting on each
and every cycle that 1ts corresponding L1 cache access
starts, with the .2 cache directory having capability to
perform a translation on each cycle, as required, the 1.2
cache data array as well as the 1.2 cache directory being
started at the same time as an L1 cache access, the 1.2
data array implementing and early-select structure and
organization to allow the array to start an access on
cach L1 cache cycle, abort data array access at an end
of one cycle 1if a HIT 1n L1 cache or MISS 1n L2 cache
directory with no cast out, and to continue and com-
plete a block access for a MISS 1n L1 cache and a HIT

in L2 cache.
9. The computer memory system of claim 8 in which the

DRAM arrays of the private L2 caches have an early-select
capability comprising a word decoder/driver enable signal
causing completion of a data array access and an abort-cycle
signal aborting the access, resetting circuits and allowing a
new access on a very next processor cycle. Word-Driver of
a previously decoded word line to complete the access,
oving a single block data-out.

6,031,872

13

10. The computer memory system of claim 9 wherem the
DRAM word decoder/driver enable signal enables a Word-
Driver of a previously decoded word line to complete the
access, giving a single block of data as output.

11. The computer memory system of claim 9 wheremn the
DRAM word decoder/driver enable signal enables a second
stage word decoder and word driver to complete the access
to a single block data-out path.

12. The computer memory system of claim 11 wherein
word decoding 1s accomplished 1n two stages by first and
second decoders, the first decoder decoding down to a
congruence class by selecting Nc out of all word lines and
the second decoder selecting one out of Nc where Nc 1s the
number of blocks 1n the congruence class.

13. A computer memory system having a hierarchy com-
prising:

a split level one (LL1) cache composed of an instruction

cache (I-cache) and a data cache (D-cache) with access/
cycle time equal to or faster than a processor cycle time

which can deliver the logical word or words needed by
the processor on each cycle for an L1 HIT, and

a shared 1.2 cache for the I-cache and D-cache, said
shared L2 cache including a directory and a DRAM
data array in which the L2 directory 1s accessed upon
a MISS to the L1 cache, the .2 data array having a
mapping from the L2 directory to the data array such

that one block needs to be accessed from the data array,

the 1.2 directory performing required address transla-
tion and, upon a HIT, starts access to the L2 array for

a specific block required for reloading into the L1

cache, and upon a MISS, the L2 cache requests a block

reload from a next level of the hierarchy, an L2 cache
directory access starting on each and every cycle that
its corresponding .1 cache access starts, with the L2
cache directory having capability to perform a transla-
tion on each cycle, as required, the L2 cache data array
as well as the L2 cache directory being started at the
same time as an L1 cache access, the L2 data array
implementing an early-select structure and organiza-
tion to allow the array to start an access on each L1

cache cycle, abort data array access at an end of one
cycle if a HIT 1mn L1 cache or MISS 1n L2 cache
directory with no cast out, and to continue and com-

plete a block access for a MISS 1n L1 cache and a HIT
in L2 cache.

14. The computer memory system of claim 13 in which
the DRAM array of the shared L2 cache has an early-select
capability comprising a word decoder/driver enable signal
causing completion of a data array access and an abort-cycle
signal aborting the access, resetting circuits and allowing a
NEwW access on a very next processor cycle.

15. The computer memory system of claim 14 wherein the
DRAM word decoder/driver enable signal enables a Word-
Driver of a previously decoded word line to complete the
access, giving a single block of data as output.

16. The computer memory system of claim 14 wherein the
DRAM word decoder/driver enable signal enables a second
stage word decoder and word driver to complete the access
to a single block data-out path.

17. The computer memory system of claim 16 wherein
word decoding 1s accomplished 1n two stages by first and
second decoders, the first decoder decoding down to a
congruence class by selecting Nc out of all word lines and
the second decoder selecting one out of Nc where Nc 15 the
number of blocks in the congruence class.

10

15

20

25

30

35

40

45

50

55

60

65

14

18. The computer memory system of claim 17 wherein if
both L1 I-cache and D-cache have a simultaneous access
and an L2 early-select commences with the D-cache access.

19. The computer memory system of claim 17 wherein if
both L1 I-cache and D-cache have a simultaneous access
and an L2 early-select commences the L1 I-cache or
D-cache access according to a variable priority.

20. The computer memory system of claim 19 wherein the

variable priority 1s selected from the group consisting of

reverse priority every predetermined number of accesses and
a prediction based on a last predetermined number of
MISSes.

21. An L1/1.2 computer memory system having a hierar-
chy comprising:

a level one (1) cache with access/cycle time equal to a
central processing unit (CPU) cycle time which can

deliver logical words or words needed by the CPU on
cach cycle for an L1 HIT, and

an .2 cache mncluding a directory and a DRAM data array
requiring multiple CPU cycles to complete a full
access, said L2 cache including a fetch register output
buffer on an output side to hold a block for a multi-
cycle reload back to L1 cache on an L1 MISS and L2
HIT, the fetch register being pipelined such that an
array access can start independent of whether the fetch
register 1s available.

22. The L1/L.2 computer memory system of claim 21

wherein the availability of the fetch register 1s tested accord-
ing to a “Late Buffer—Test” on a last CPU cycle of a
multi-cycle access, and output drivers of the 1.2 array are

enabled and reset if the fetch register 1s FREE using a

BUSY/FREE signal, otherwise if BUSY, the output drivers
being stalled until the fetch register 1s FREE.

23. The L1/L.2 computer memory system of claim 22
wherein the L2 cache further includes a cast out register for
implementing a store-in L2 policy, wherein the cast out
register 1s pipelined using a BUSY/FREE signal to enable or
stall the array output drivers, a choice of the BUSY/FREE
signal for the fetch register or cast out register coming from

an 1.2 translation unit.

24. The L1/L.2 computer memory system of claim 23
wherein the 1.2 cache further mcludes BUSY/FREE logic

for each of the fetch register and the cast out register
comprising:

first and second flag registers, one flag register for each of
said fetch register and cast out register, said flag reg-
isters storing a logical one bit for each logical unit of
data to be transferred out of a respective one of the
fetch register and the cast out register;

first and second flag address registers respectively for the
first and second tlag registers, the first and second tlag
address registers being loaded with an address of the
logical unit which caused an L1 MISS;

first and second address incrementers respectively for the
first and second flag address registers, said first and
second address incrementers incrementing respective
addresses 1n the first and second address registers when
a logical unit 1s transferred; and

15

6,031,872

first and second NOR gates respectively connected to said
first and second flag registers for generating a FREE
signal when all bits of a respective flag register are set

to logical zero.

25. The L1/L2 computer memory system of claim 21
wherein pipelining of the fetch register 1s determined by an

“Early Bufler—Test”.

26. The L1/L.2 computer memory system of claim 235
wherein the 1.2 cache further includes a cast out register for

implementing a store-in .2 policy, wherein pipelining of the
cast out register 1s determined by an “Early Buffer—Test”.

27. The L1/L.2 computer memory system of c.
wherein the L2 cache further includes control logic :

aim 26

‘or each

of the fetch register and the cast out register comprising:

first and second address registers respectively for the fetch

register and the cast out register, the first and

second

address registers being loaded with an address of the

logical unit which caused an L1 MISS;

16

first and second address incrementers respectively for the
first and second flag address registers, said first and
second address incrementers incrementing respective
addresses 1n the first and second address registers when

5 a logical unit 1s transferred;

first and second counters respectively for the fetch register
and the cast out register for keeping track of a remain-
ing number of cycles required to transfer a respective
register to 1ts target; and

1np differencing and compare logic for determining whether a
count 1n a respective one of the first and second
counters 15 less than or equal to a predetermined
number of cycles required for L2 array access.

28. The L1/L.2 computer memory system of claim 27

15 wherein functions of the incrementer and address register
associated with the cast out register are performed by the
cast out counter.

	Front Page
	Drawings
	Specification
	Claims

