US006078956A
United States Patent .9 111] Patent Number: 6,078,956
Bryant et al. 451 Date of Patent: Jun. 20, 2000
[54] WORLD WIDE WEB END USER RESPONSE 5,838,920 11/1998 Rosboroughcouuueuueeenee... 709/224
TIME MONITOR 5,872,976 2/1999 Yee et al. wovveveeveeeeeereeeeeen. 395/704
|75] Inventors: Raymond Morris Bryant; Richard OTHER PUBLICATIONS
Dale Hoffman, both of Austin, Tex.; Sullivan, Eamonn; “HTTP eases access to Internet info.”;
Samuel Kahn, Mountain View, Calif. PC Week, Ziff—-Davis Publishing Company; v11, n4, p71(2),
Jan. 1994,
73] Assignee: International Business Machines McLachlan, Gordon; “A look at SGML”; HP Professional,
Corporation, Armonk, N.Y. Cardinal Business Media Inc.; v9, n6, p48(2), Jun. 1995.
Giacone, Glynn B.; “Seek and fine—tune: Getting the most
21] Appl. No.: 08/924,986 from client—server transactions”; Data Based Advisor, Data
o _ Based Solutions Inc.; v14, n9, p76(7), Sep. 1996.
22] Filed: Sep. 8, 1997
o . Primary Examiner—Mark H. Rinehart
:51: Int. CL." ..o, GO6F 13/38; GOoF 17/30 Assistant Examiner—Marc D Thompson
52 US.Cl o, 709/224, 709/227; 709/203 Aﬁorngy} Agenf} OF F_irm_Jef?rey S. LaBaw; David H.
58] Field of Search 709/224, 200, Judson
709/203, 202, 212, 217, 219, 218, 227,
707/500, 513 [57] ABSTRACT
_ A method of logging information 1n a computer network
[56] Reterences Cited having a Web client connectable to a Web server. In response
US PATENT DOCUMENTS to the HT'TP request (and as a result of receiving a response
to that request), a response time associated with that first
5?4405719 8/}995 HalleS et al. 395/500 HTTP request iS Calculated‘ Thereafter? the response time
?2;?%2 iéﬁ ggg Elddson o ;ggﬁ:ﬁ calculated is passed from the Web client on a subsequent
,675, 1 odges et al. ...couuenurnieneeens * S
5,764,912 6/1998 ROSHOTOUZH wovvveeveeerrere 709/224 FTTEIF‘?T? 1o th‘?it Web ?eweé’ Wlée“?’. the ?fﬁrma“m 15
5.787.254 7/1998 Maddalozzo, Jr. et al. 709/228 OgCC TOT 1dICt USC. 1 a prefelted CIBOUIMEL, e TeSponsc
5,790,425 8/1998 WALIE wrovvveererreeeeerereeereeeeren 700,218~ tme associated with the first HI'TP request is passed in a
5790977 8/1998 Ezekiel ..ovovoveeeeeeeeeerereererern.. 709/218 cookie of the second HT'TP request.
5,796,952 8/1998 Davis et al. .oeevvineierineennnnen. 709/224
5,805,815 9/1998 Hill .eovvvvvvneireiiineeeee e, 709/218 18 Claims, 3 Drawing Sheets

S0

REQUEST
|SSUED?

HTTP

o4 CALCULATE END USER
RESPONSE TIME

96~ SAVE CALCULATED
RESPONSE TIME

58

NEW HTTP
REQUEST FOR
SERVER?

RETRIEVE RESPONSE TIME
59—1 OF A PRIOR REQUEST

60 4 FORMULATE COOKIE l

57| PASS COOKIE TO SERVER|

U.S. Patent Jun. 20, 2000 Sheet 1 of 3 6,078,956

SERVER PLATFORM

rlG. 1

10
\1 GRAPHICAL 24
USER INTERFACE
CLIENT MACHINE 14
o E-MAIL Pt SERVER APPLICATIONS
* BROWSER |
e FILE TRANSFER Ved APPLICATION
12 93 PROGRAMMING 27
INTERFACE
30 AUTHORIZE FIG., 2

TRANSACTION

52~ NAME TRANSACTION SERVICE 38

34 PATH CHECK ADD LOG 40

ERROR 47

36 OBJECT TYPE

HTTP REQUEST

TRANSMISSION TIME
/—A_—'\

e — riG. 3

SERVER_PROCESSING_TIME

r=x+y+1z2

SERVER RESPONSE
TRANSMISSION TIME

U.S. Patent Jun. 20, 2000 Sheet 2 of 3 6,078,956

FIG. 4
>0

32
HTTP
REQUEST
ISSUED?
YES
ol CALCULATE END USER
RESPONSE TIME
ob SAVE CALCULATED
RESPONSE TIME
REQUEST FOR

SERVER?
ole YES

RETRIEVE RESPONSE TIME
29 OF A PRIOR REQUESI

60 FORMULATE COOKIE

67 PASS COOKIE TO SERVER

U.S. Patent Jun. 20, 2000 Sheet 3 of 3 6,078,956

riG. 5

CLIENT

70 EXAMINE
COOKIE CACHE

12

SERVER

/4
CONTRUCT NEW
RSP COOKIE

76 INSERT COOKIE REQUEST
INTO HEADER OF

RSP COOKIE
FOUND?

THE HTTP REQUEST

78 RECORD SENDING
TIME /STORE TRANSMIT 80
EXAMINE
LASTRSPTIME FIELD

02

;
I
|
I
: YES
|

|

RESPONSE

RECEIVED?

0 END

LOG LASTRSPTIME 84
AND LASTURL

30

YES
CALCULATE
90 RESPONSE TIME

INSERT NEW RESPONSE
97 TIME COOKIE INTO

COOKIE CACHE

6,073,956

1

WORLD WIDE WEB END USER RESPONSE
TIME MONITOR

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to computer net-
works and more particularly to a method and system for
monitoring and collecting data 1n a client-server computer
network such as the Internet.

2. Description of the Related Art

The World Wide Web 1s the Internet’s multimedia infor-
mation retrieval system. In the Web environment, client
machines effect transactions to Web servers using the Hyper-
text Transfer Protocol (HT'TP), which is a known application
protocol providing users access to files (e.g., text, graphics,
images, sound, video, etc.) using a standard page description
language known as Hypertext Markup Language (HTML).
HTML provides basic document formatting and allows the
developer to specity “links” to other servers and files. In the
Internet paradigm, a network path to a server 1s identified by
a so-called Uniform Resource Locator (URL) having a
special syntax for defining a network connection. Use of an
HTML-compatible browser (e.g., Netscape Navigator or
Microsoft Internet Explorer) at a client machine involves
specification of a link via the URL. In response, the client
makes a request to the server identified in the link and
receives 1n return a document formatted according to
HTML.

The time period between the 1ssuing of an HT'TP request
from the browser and the return of the requested document
(or some component thereof) is known as the end user
“response time.” The response time 1s a function of the time
spent servicing the HT'TP request at the Web server together
with the network transmission time to and from the server.
The network transmission time 1s sometimes referred to

herein as the “Internet delay.”

Response times could be measured in environments
where the clocks of the client and server machines are
synchronized or where an external time reference 1s avail-
able to both the client and the server. Given the diverse
nature of the Internet environment, however, such solutions
are impractical because these criteria could not be met for all
of the clients of a large web server. One possible alternative
would be to place a special client (a so-called “transaction
monitor”) on the Internet and have the transaction monitor
periodically 1ssue a request to the server of interest. The
transaction monitor would have to be built with response
fime 1nstrumentation applied. Measured response times for
this client would then be presumed to be indicative of
response times that actual clients encountered. Such an
approach also has significant drawbacks. The transaction
monitor would presumably hook 1nto the Internet at a fixed
site or ISP (or at most a small number of sites). The response
fimes measured by the transaction monitor would thus
represent only a small fraction of the total paths that may be
used to connect to a large server. In addition, such a
transaction monitor would be useless for resolving questions
about the response times for requests issued by way of an
ISP that the transaction monitor 1s not currently using.
Further, the transaction monitor would have to be con-
structed to use test transactions against the server. Test
fransactions are suspect 1n that they may omit entire classes
of operations, and they can be difficult to create if the
mission of the Web server 1s considered critical or secure
(¢.g., financial transactions).

There remains a need to provide an end user response time
monitor that overcomes these and other problems associated
with the known prior art.

5

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

It 1s thus a primary object of the present invention to
measure response times as seen by an end user for requests
submitted from a Web browser to a Web server on the World

Wide Web.

It 1s another primary object of this invention to measure
end user response times at the Web browser and to submit
such data to a Web server for collection.

It 1s another 1important object of this invention to 1mple-
ment end user response time monitoring capability without
resort to synchronized clocks at the client and server
machines, to use of an external time reference, or to 1mple-
mentation of a dedicated transaction monitor.

Another important object of this invention 1s to measure
the response time characteristics of the network, in general,
and a griven URL, 1n particular to enable Web site operators
to evaluate quality of service.

It 1s still another important object of this mvention to
facilitate the collection of response time data and statistics
for use by Web site operators.

These and other objects of the invention are achieved by
calculating a response time associated with a first HT'TP
request and then passing that response time information
from the Web client to the Web server 1n a second, subse-
quent HT'TP request. Preferably, the response time 1nforma-
tion 1s passed to the Web server 1n a special cookie called a
response time protocol (RSP) cookie.

Thus, 1n one preferred embodiment of this 1nvention, a
method of logging information in a computer network
having a Web client connectable to a Web server comprises
several steps. The method begins at the Web client in
response to a first HI'TP request. In response to the HT'TP
request (and as a result of receiving a response to that
request), a response time associated with that first HTTP
request 1s calculated. Thereafter, the response time calcu-
lated 1s passed from the Web client on a subsequent HT'TP
request to that Web server, where the information 1s logged
for later use (e.g., URL statistical analysis and the like). In
a preferred embodiment, the response time associated with

the first HT'TP request 1s passed m a cookie of the second
HTTP request.

The response time associated with the first HI'TP request
1s calculated without synchronized client and server machine
clocks or use of an external timebase. Rather, the end user
response time 1s calculated using just a clock in the Web
client. In particular, this calculation begins by recording a
first clock time on the clock, the first time associated with the
transmission of the first HT'TP request from the Web client
to the Web server. Upon receipt at the Web client of a
specified event 1 a response to the first HI'TP request, a
second clock time on the clock 1s recorded. The response
time 1s then generated by subtracting the first clock time
from the second clock time. The specified event 1n the
response to the first HT'TP request may be any event 1n the
response, such as first packet return, last HIML byte, last
g1f byte, receipt of some 1ntermediate byte or page element,
or the like (provided this is done consistently from request
to request). Because the “timebase” for the response time
calculation is all “local” (i.e. within the Web client itself),
any given event may be used as the trigger for the calcula-
tion. The calculated response time 1s saved and then sent to
the Web server upon a next HI'TP request to that server.

Preferably, the present invention 1s implemented with a
client “piece” and a server “piece.” The client software may
be a computer program product implemented in a computer-

6,073,956

3

readable medium or otherwise downloaded to the Web client
over the computer network. This software includes first
program code means, responsive to a first HTTP request
from the Web client to the Web server, for calculating the
response time associlated with the first HT'TP request, and
second program code means, responsive to the calculating
means and a second HTTP request, for placing the response
fime 1n a cookie associated with the second HTTP request.
The second HT'TP request 1s then sent to the Web server to
pass the response time information as previously described.

The server “piece” of the ivention 1s also preferably
implemented 1n software associated with a Web server
program running on a Web site that supports the invention.
Such a Web site 1s sometimes referred to herein as an
“instrumented” server. The server “piece” includes a first
program code means, responsive to receipt of a current
HTTP request from the Web client, for retrieving a cookie
from the HTTP request. The cookie includes information
identifying a response time associated with a prior HTTP
request from the Web client to the Web server program. The
server piece also includes second program code means
responsive to the retrieving means for logging the response
fime.

The foregoing has outlined some of the more pertinent
objects and features of the present mnvention. These objects
should be construed to be merely 1llustrative of some of the
more prominent features and applications of the mvention.
Many other beneficial results can be attained by applying the
disclosed 1nvention 1n a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detalled Description of the Pre-
ferred Embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detalled Description taken in connection with
the accompanying drawings 1n which:

FIG. 1 1s a representative system 1n which the present
invention 1s implemented;

FIG. 2 1s a flowchart illustrating the conventional pro-
cessing assoclated with an HTTP request from the Web
client to the Web server shown 1n FIG. 1;

FIG. 3 1s a simplified timing diagram illustrating how end
user response time 1s calculated;

FIG. 4 1s a flowchart 1llustrating the basic operation of the
present mvention; and

FIG. 5 1s a flowchart 1llustrating the various operations of

the Web client and the Web server in response to a user
HTTP request.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A representative system 1n which the present invention 1s
implemented 1s illustrated in FIG. 1. A client machine 10 1s
connected to a Web server platform 12 via a communication
channel 14. For illustrative purposes, channel 14 1s the
Internet, an Intranet or other known network connection.
Web server platform 12 1s one of a plurality of servers which
are accessible by clients, one of which 1s illustrated by
machine 10. A representative client machine includes a
browser 16, which 1s a known software tool used to access
the servers of the network. Representative browsers include,
among others, Netscape Navigator (Version 2.0 and higher),

10

15

20

25

30

35

40

45

50

55

60

65

4

Microsoft Internet Explorer (Version 3.0 and higher) or the
like, each of which are “off-the-shelf” or downloadable
software programs. The Web server platform (sometimes
referred to as a “Web” site) supports files in the form of
hypertext documents and objects. In the Internet paradigm,
a network path to a server 1s identified by a so-called

Uniform Resource Locator (URL). The World Wide Web 1is
the Internet’s multimedia information retrieval system. In
particular, 1t 1s a collection of servers of the Internet that use
the Hypertext Transfer Protocol (HTTP), which provides
users access to files using Hypertext Markup Language
(HTML).

A representative Web Server platform 12 comprises an
IBM RISC System/6000 computer 18 (a reduced instruction
set of so-called RISC-based workstation) running the AIX
(Advanced Interactive Executive Version 4.1 and above)
Operating System 20 and a Web server program 22, such as
Netscape Enterprise Server Version 2.0, that supports inter-
face extensions. The platform 12 also includes a graphical
user interface (GUI) 24 for management and administration.
The various models of the RISC-based computers are

described 1n many publications of the IBM Corporation, for
example, RISC System/6000, 7013 and 7016 POWERSstation

and POWERserver Hardware Technical Reference, Order
No. SA23-2644-00. AIX OS 1s described 1n AIX Operating
System Technical Reference, published by IBM Corporation,
First Edition (November 1985), and other publications.
While the above platform i1s useful, any other suitable

hardware/operating system/Web server combinations may
be used.

The Web Server accepts a client request and returns a
response. The operation of the server program 22 1s gov-
erned by a number of server application functions (SAFs),
cach of which 1s configured to execute 1n a certain step of a
sequence. This sequence, illustrated in FIG. 2, begins with
authorization translation (AuthTrans) 30, during which the
server translates any authorization information sent by the
client into a user and a group. If necessary, the AuthTrans
step may decode a message to get the actual client request.
At step 32, called name translation (NameTrans), the URL
assoclated with the request may be kept intact or it can be
translated 1nto a system-dependent file name, a redirection
URL or a mirror site URL. At step 34, called path checks
(PathCheck), the server performs various tests on the result-
ing path to ensure that the given client may retrieve the
document. At step 36, sometimes referred to as object types
(ObjectType), MIME (Multipurpose Internet Mail
Extension) type information (e.g., text/html, image/gif, etc.)
for the given document i1s identified. At step 38, called
Service (Service), the Web server routine selects an internal
server function to send the result back to the client. This
function can run the normal server service routine (to return
a file), some other server function (such as a program to
return a custom document) or a CGI program. At step 40,
called Add Log (AddLog), information about the transaction
1s recorded. At step 42, called Error, the server responds to
the client when 1t encounters an error. Further details of
these operations may be found 1n the Netscape Web Server
Programmer’s Guide, Chapter 5, which 1s incorporated
herein by reference. The time spent carrying out the various
functions of FIG. 2 (namely, the time spent by the Web

server serving the HTTP request) is referred to below as the
SERVER__PROCESSING__TIME.

Thus, the Web server 18 includes a known set of server
application functions (SAFs). These functions take the cli-
ent’s request and other configuration data of the server as
input and return a response to the server as output. Referring

6,073,956

S

back to FIG. 1, the Web server 18 also includes an Appli-
cation Programming Interface (API) 26 that provides exten-
sions to enable application developers to extend and/or
customize the core functionality thereof (namely, the SAFs)
through software programs commonly referred to as “plug-
ns.”

FIG. 3 illustrates the various components that comprise
the “response time” of a given HTTP request. A first time
“x” represents the time to transfer the HTTP request (usually
a GET or POST request) from the Web client to the Web

server. A second time “y” represents the server processing

time (SERVER__PROCESSING_TIME), which was
described above with respect to the flowchart of FIG. 2. A
third time “z” then represents the time to transfer a specified
event 1n the response to the HI'TP request back to the Web
client. The specified event may be first packet return, last
HTML byte, last .gif byte, or some intermediate event within
the transfer. Thus, the response time “r” equals “x+y+z.” The
“Internet delay,” which 1s that portion of the response time
assoclated with the actual transmission over the Internet
itself (as opposed to the time spent within the server for
processing), is then the value “x+z”. The present invention
provides a technique for calculating response time associ-
ated with a given HTTP request and then recording or
logging that response time at the Web server for subsequent
analysis and use.

A preferred embodiment of the inventive method 1s 1llus-
frated in the simplified flowchart of FIG. 4. The method
begins at step 50. At step 52, a test 1s run repeatedly to
determine whether a given HTTP request (e.g., a GET or
POST) has been issued from the client to a given server. If
the outcome of the test at step 52 1s positive, the routine
continues at step 54 to calculate the response time “xX+y+z.”
A preferred technique for performing this calculation 1s
described below. At step 56, the calculated response time 1s
saved at the client. A test 1s then run at step 38 to determine
if a new HTTP request for the given server. If the result of
the test at step 58 1s negative, the routine cycles and
repeatedly tests for this condition. If, however, the result of
the test at step 58 1s positive, the routine continues at step 59
to retrieve the end user response time calculated at step 54
(which will usually be the response time associated with the
most-recent visit to the server), and formulates a response
time protocol (RSP) cookie at step 60. At step 62, the cookie
1s then passed to the Web server, preferably within the new
HTTP request itself. This completes the basic processing.

Thus, 1n accordance with the preferred embodiment, a
response time associated with a first HI'TP request 1s cal-
culated as the HTTP request 1s being processed but not
passed to the Web server until a subsequent HT'TP request
(typically, a next request). Preferably, the response time
information 1s passed to the Web server 1n a special cookie
associated with the subsequent HTTP request. A more
detailed description of this process 1s now provided.

In a preferred embodiment, a special “response time
cookie” (herein referred to as the “RSP cookie™) is associ-
ated with the Web client browser and processed by the Web
server. The RSP cookie comprises the following two fields
of data (and possibly others, as will be described):

LASTRSPTIME the response time of the last request; and

LASTURL the URL of the last request
The particular format of LASTRSPTIME 1s not significant;
however, for this example, 1t 1s assumed to be an integer
representing the number of milliseconds required for the
response. Web servers are divided into two classes: 1nstru-
mented and non-instrumented. Instrumented servers are

10

15

20

25

30

35

40

45

50

55

60

65

6

servers that implement the RSP cookie protocol. It 1s pre-
sumed that there 1s some mechanism used to inform the
browser as to whether or not a particular server 1s an
instrumented server. The default 1s for a Web server to be
non-instrumented. Web client browsers that support the RSP
cookie protocol are called instrumented browsers. For the
rest of this discussion, it 1s assumed that the HT'TP request
originates from an imstrumented browser.

The protocol then operates as follows. Whenever an
mstrumented server 1s contacted, the browser examines the
cookie cache looking for a RSP cookie for that server. This
1s step 70. A test 1s then made at step 72 to determine 1f an
RSP cookie 1s found. If no RSP cookie 1s found, the routine
continues at step 74 with the browser constructing a new

RSP cookie for that server by initializing LASTRSPTIME to
—1 and LASTURL to null. If an RSP cookie is found (i.e. the

output of the test at step 72 is positive), or after step 74, the
browser 1ncludes the current contents of the RSP cookie for

that server by inserting a “Cookie:” request into the header
of the HTTP request and filling in the values for LASTR-

SPTIME and LASTURL from the cookie cache. This is step
76. At step 78, the browser records the time when the request
1s sent according to the time clock on the client system
where the browser 1s running and stores this value in storage
local to the browser (or in some other way accessible to the
browser).

The routine then continues with the server processing. In
particular, when the cookie (associated with the HTTP
request) 1s received, the routine continues at step 80 and
examines the LASTRSPTIME field. A test 1s then made at
step 82 to determine 1if this field 1s negative. If so, the server
processing ends, as indicated by step 84. If the outcome of
the test at step 82 1indicates that the LASTRSPTIME field 1s
non-negative, the routine continues at step 86 with the server
logging the LASTRSPTIME field and the LASTURL and
any other information from the request the server might find
appropriate (e.g. the domain name of the requester). To
minimize the total amount of data collected, the server may
choose to randomly sample the recorded response times and
log only a subset of the times. Postmortem analysis tools
would then examine the response time log and produce
response time statistics per URL.

Processing then continues back at the client. In particular,
at step 88, at test 1s made to determine whether a response
has been received from an instrumented server. If the
outcome of the test at step 88 1s negative, the step cycles and
confinues to test. If, however, the outcome of the test at step
88 indicates that a response to the HT'TP request 1s received
from an instrumented server, the routine continues at step
90. In this step, the browser subtracts from the current client
clock time the time that the request was sent. This time, as
well as the “referring URL,” are recorded 1n the RSP cookie
for that server at step 92. This completes the processing.

It should be noted that when the cookie cache 1s searched
for a RSP cookie, the normal path matching of the Netscape
cookie protocol 1s disabled. Equivalently, all RSP cookies
are preferably stored with a path of “/”. The eflect of this 1s
that the RSP cookie 1s sent as part of every request to an
instrumented server. There 1s potentially a separate RSP
cookie for each instrumented server that the Web browser
has contacted, subject to the limits of storage on the client
machine. Well known methods, such as expiration dates, can
be used to discard RSP cookies when they are likely to no
longer be useful. A discarded RSP cookie means that a
response time observation has been lost. Since RSP time
statistics are likely to be sampled by the Web server 1n any
case, however, the loss of a response time observation due
to this event 1s not considered harmful.

6,073,956

7

This method does not return the response time of the last
interaction the browser has with a server during a particular
session since the response time of the previous interaction 1s
always sent out with the next request. However, 1f suflicient
space 1s available on the browser system, and if the RSP
cookie 1s not discarded before the next time that the browser
visits the mstrumented server, the response time of the last
request of the previous session may be presented to the

server as part of the first request of the new session.
Naming conventions for the RSP Cookie fields LASTR-

SPTIME and LASTURL may vary depending on the con-
ventions observed by the Web server. For example, to
communicate these values to a server-side JavaScript pro-
oram running on a Netscape Enterprise server, these fields

could be named (respectively):
NETSCAPE_ LIVEWIRE.LASTRSPTIME

NETSCAPE LIVEWIRE.LASTURL

As also noted above, the present invention uses a special
“cookie.” Those of ordinary skill in the art will appreciate
that this RSP cookie 1s a variant of the persistent client state
HTTP cookie normally used to facilitate authentication of a
user connecting to an enabled web site. Cookies are a known
Internet mechanism which server-side connections (such as
CGI scripts) can use to both store and retrieve information
on the client side of the connection. A server, when returning
an HTTP object to a client, may also send a piece of state
information which the client will store. Typically, the state

object, called a “cookie,” may include a description of the
range of URLs for which that state 1s valid. According to the
Persistent Client State HITP Cookies Preliminary
Specification, which 1s hereby incorporated by reference and
may be viewed at netscape.com at the path “/newrel/std/
cookie_ spec_ html,” a cookie 1s 1ntroduced to the client by
including a Set-Cookie header as part of an HT'TP response,
usually through a CGI script.

It should be appreciated that the “response time” 1s not
necessarilly the time between the initiation of the HTTP
request at the client and the first or last packet return
assoclated with the target document. This 1nvention could
also be used to record and collect intermediate response
fimes such as: response time of first data arrival, response
time HTML delivery complete, response time of all gift’s
delivered, or some other mtermediate response time. If the
domain name of the requester 1s logged as part of the server
log record, one could also use this tool to determine whether
poor response times are due to a particular ISP or other route
into the server.

This 1nvention solves the problem of measuring response
fimes as seen by the end user for requests submitted from a
Web browser to a Web server on the World Wide Web. The
invention 1s suitable for use 1n a production environment
where users submit requests over the Internet either by direct
connection or by connection through an Internet Service
Provider over dial up lines. Response times are measured by
the Web browser and submitted to the Web server for
collection.

According to the mvention, it may be desirable to imple-
ment the end user response time monitor using client and
server side JavaScript. Familiarity with basic JavaScript
programming conventions 1s assumed 1n the following dis-
Cuss1on.

As discussed above, one aspect of the present invention
involves making a local timestamp when a request 1s made
to the Web server. This operation may be performed using a
simple “javascript” URL. For example, consider the follow-
ing conventional anchor and link:

click here, big
spender.

5

10

15

20

25

30

35

40

45

50

55

60

65

3

The above statement 1s modified as follows:

<A HREF=“javascript:rspmon(‘http://www.bigbank.url’)
”>click here, big spender,
where the function rspmon 1s a client-side JavaScript func-
tion defined as follows:

function rspmon(url) {
document.cookie = “NETSCAPE_ LIVEWIRE.curr_ time="

+{new Date()).getTime()+*;”;
window.location = url;

h

The first line of this function records the current clock
time 1n the cookie so that this value will be available as part
of the “client” object 1n the server side JavaScript. The
second line of the function causes the link to be followed.
This function 1s then included on every page that includes a
javascript:rspmon() URL. To properly measure the response
time for accessing URL foo, all URL’s referencing foo are
changed to javascript:rspmon(foo)”.

In this example, when the user clicks on the “click here,
big spender” link, the rspmon() function is invoked. The
function records the current client system clock time and
causes the link to be followed. When the request 1s sent up
to the server, the cookie values are sent along with the
request so the server now has the client submission time
given in milliseconds since Jan. 1, 1970 (which 1s the date
that getTime() returns) according to the client system’s clock
value.

To calculate the response time necessary to serve up
“www.bigbank.url”, the following code 1s included 1n the

server-side JavaScript for that URL:

<servers
client.rsp_ time_ set = “RSP_ TIME__NOT SET”;

client.rsp_ time_ trace 1d = ifs_ trace_ id() + trans__count();
if (client.curr__time > 0) {
write (“<SCRIPT>");

write (“if (document.cookie.indexOf(\“RSP__ TIME__NOT __
SETV") 1=-1) {");
write (“document.cookie =
\VY*NETSCAPE__1LIVEWIRE.last _rsp_ time=\"+

(new Date()).getTime() —“+client.curr__time+*;");
write (“document.cookie=\"“'NET'SCAPE__LIVE-
WIRE.rsp__time__set=

RSP__TIME__SET\V;
write (“document.cookie = *“NETSCAPE__LIVE-
WIRE.curr__time=-1,");
write (“}7);
write (“</SCRIPT>");

h

</server>

The above code 1s included so that the client-side JavaScript
it emits 1s included in the “onload” event handler action for
the page. The first statement sets a tflag 1n the cookie to make
sure that last_rsp_ time 1s updated on the client only on the
first time that the onload action for the page 1s executed.
(The onload action is executed each time the page is
reloaded or resized). The second statement sets a value in the
cookie (here set by some pseudocode) that includes trace
information to allow correlation of this response time with

other log records related to this request. The 1f_ trace_ 1d
variable 1s mtended to return the current IFS trace 1d; the

trans count 1s mtended to return a count of transactions

during the session.
It NETSCAPE LIVEWIRE.curr time on the client was

set to 987666532, then the rest of the statements in the

6,073,956

9

<server> code above cause the following client-side Java-
Script to be submitted to the client as part of the page.

<SCRIPT>
if (document.cookie.indexOf(“RSP__ TIME NOT_SET”) != -1) {
document.cookie = “NETSCAPE__LIVEWIRE.last__rsp_ time+(new
Date()).getTime()

-987666532;
document.cookie = “NETSCAPE__ LIVEWIRE.rsp__time__set=
RSP_TIME__SET}”;
document.cookie = “NETSCAPE_ LIVEWIRE.curr.time=-1;

h

</SCRIPT =

The 1f statement ensures that last__rsp_ time 1s updated only
the first time that the “onload” action 1s invoked. The
last__rsp time contains the time 1n milliseconds required to
service this request and deliver the page to the client.

To collect response time data, code 1s added on the server
that 1nspects the client object properties last_ rsp time and

rsp__time__set. [f rsp__time__set has the value RSP_ TIME__
SET, then client.last_ rsp_ time and client.rsp_ time__

trace_ 1d are logged. Client.rsp_ time_ set 1s then set to
RSP_TIME_NOT _SET (on the server). The latter opera-
fion 1s done to avoid logging the same response time more
than once and to deal with mixtures of instrumented and
non-instrumented pages.

Thus, 1 this approach, each URL specilying the target
page is a JavaScript URL of the form javascript:rspmon(),
and each client page includes the rspmon() function as
described above. Target page instrumentation includes the
server-side JavaScript that outputs the onload action to
record the last_ rsp_ time and update resp_ time_ set 1n the
cookie.

A more complete Javascript implementation 1s set forth
below:

<html>
<head>
<title>Response Monitor Client Test Page</title>
</head>
<SCRIPT LANGUAGE="JavaScript”>
/f
// this 1s PSEUDO code
// there 1s no GLOBAL cookie 1n current JavaScript
// what 1s needed 1s to insert a cookie into the cookie cache
// with “path=/". At present, cookies are inserted with
// “path=current__url” via way of the document.cookie attribute
/f
// the GLOBAL attribute 1s needed to make sure the cookie is
// sent to the server regardless of the target url
/f
function rspmon (url) {
var now = new Date ();

/f

// use the GLOBAL cookie (assumed js extension) see above
/f

GLOBAL.cookie =
“NETSCAPE__LIVEWIRE.currtime="“+now.getTime()+;”;

GLOBAL.cookie = “NETSCAPE__LIVEWIRE.currurl =“+url+;";
window.location = url;

y
/f

// It 1s assumed the default action of the server 1s to return

// all global cookies back to the client on the next request so
// that no action 1s required on the server side for this request
/f

</SCRIPT>

<center>

| End User Response Time Monitor Sample Client Page |

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued
</center>

| Home Page |

<A

HREF="javascript:rspmon
(‘http://www.webserver.example.com/rspmontarget’) “>Test
</body>

</html>

</html>

<head>

<title>Test response time monitor target page</title>

</head>

<body>

<center>

| This page is a response time monitor target page]

<SCRIPT>

//

// this 1s PSEUDO code

// there 1s no GLOBAL cookie 1n current JavaScript

// what 1s needed 1s to insert a cookie into the cookie cache
// with “path=/". At present, cookies are inserted with

// “path=current__url” via way of the document.cookie attribute
//

// the GLOBAL attribute 1s needed to make sure the cookie 1s
// sent to the server regardless of the target url

//
//

// code based on sample code in Netscape JavaScript Reference

//
function getCookie(Name) {

var search = “NETSCAPE LIVEWIRE.”+Name+“="";
var RetStr = “7;
var offset = 0;
var end = 0;
if (GLOBAL.cookie.length > 0) {
offset = GLOBAIL.cookie.indexOf (search);
if (offset !=-1) {
offset += search.length;
end = GLOBAL.cookie.indexOf(“;” offset);
if (end == -1) end = document.cookie.length;
/f
// Note well: It is assumed here that there are
no
// special characters in the value!
/f
RetStr = GLOBAL.cookie.substring{offset,end);
h
h
// document.write(“<P>At return. . .RetStr="+RetStr+“\n");
return(RetStr);
h
//

// code based on sample code in Netscape JavaScript Reference

//

function setCookie(Name, Value) {
/f
// Note well: no special characters are allowed 1n the
value!
/f
GLOBAL.cookie = “NETSCAPE__ LIVEWIRE.”+Name+“="
+Value+%;™;

a2

h

function expireCookie(Name) {
/f

// make this name disappear from the cookie
/f
var now = new Date ();
// choose an expiration date 10 seconds 1n the past
now.setTime(now.getTime() - 10000);
GLOBAL.cookie = “NETSCAPE_LIVEWIRE.”+Name+
“=EXPIRED;
expires=""+
now.toGMTString();

;
/f

// calculate the response time of the last request based on the

6,073,956

11

-continued

// cookie values sent up the the server at that time
/f
function updateRspTime() {
currtime = getCookie(“currtime”);
/f
// did we get a currtime sent to us in the cookie from the
SEerver

/f

if (currtime != “”) {

/f
// we do this to keep the cookie from getting cluttered

/f

expireCookie (“lastrsptime™);

expireCookie (“lasturl”);

var now = new Date();

setCookie (“lastrsptime”,now.getTime() —currtime);

/f

// get the url of the last request -- it was put 1n

// the cookie as currurl when the last request was sent

/f

setCookie (“lasturl”,getCookie (“currurl™));

)
//

// we clear currtime here so that we won’t recalculate the
lastrsptime
// 1t the page gets reloaded before a new request 1s made of
the server
/f
expireCookie (“currtime”);
expireCookie (“currurl™);
;
/f

// It 1s assumed the default action of the server 1s to return
// all global cookies back to the client on the next request so
// that no action 1s required on the server side for this request
/f

</SCRIPT>

</SCRIPT>

/f

// since this 1s response time monitor target page,

// the cookie contains the currtime and cururl from

// the last request. we can use these to calculate

// the response time of the last request.

/f
// go do that now

/f

updateRspTime();

</SCRIPT>

| Home Page |

<A
HREF=“http://www.webserver.example.com/rspmonfinal™
>Final Page

</body>

</html>

</html>

<head>

<titlex>Response Time Monitor Final Page</title>
</head>

<body>

<center>

| This page includes the code required to log a response time]

<SERVER>

logfile = new

File (“/usr/ns-home/LiveWire/samples/testjst/rsptime.log™);
now = new Date();

logfile.writeln(“now="+now+"“. . .”+client.lastrsptime+"
url:”+client.lasturl);

logfile.close();

</SERVER>

</body>

</html>

One of the preferred implementations of the scheme of the
invention 1s as a set of instructions (program code) in a code
module resident 1n the random access memory of the com-
puter. Until required by the computer, the set of instructions

10

15

20

25

30

35

40

45

50

55

60

65

12

may be stored 1n another computer memory, for example, 1n
a hard disk drive, or 1n a removable memory such as an
optical disk (for eventual use in a CD ROM) or floppy disk
(for eventual use in a floppy disk drive), or downloaded via
the Internet or other computer network. In addition, although
the various methods described are conveniently imple-
mented 1n a general purpose computer selectively activated
or reconfigured by software, one of ordinary skill 1n the art
would also recognize that such methods may be carried out
in hardware, 1 firmware, or 1n more specialized apparatus
constructed to perform the required method steps.

As used herein, “Internet client” should be broadly con-
strued to mean any computer or component thereof directly
or 1ndirectly connected or connectable in any known or
later-developed manner to a computer network, such as the
Internet. The term “Internet server” should also be broadly
construed to mean a computer, computer platform, an
adjunct to a computer or platform, or any component
thereof. Of course, a “client” should be broadly construed to
mean one who requests or gets the file, and “server” 1s the
entity which downloads the file.

The 1nventive concept of using a second, subsequent
HTTP request (and preferably a cookie associated therewith)
as the “vehicle” for transporting information about a first,
prior HT'TP request may be used for other purposes as well
as response time monitoring. Thus, 1t may be desirable to
record information about other client activities (for example,
relative to the first HT'TP request, or some other client or
browser action) and then use another HTTP request as the
means by which that information 1s then delivered back to
the server. Thus, the present invention should be broadly
construed as covering any method of logging information 1n
a computer network having a Web client connectable to a
Web server wherein a cookie (in a current interaction) 1s
used to transmit information about a previous client-server
interaction.

One of ordinary skill will also recognize that the inventive
features of the present invention may be applied to other
Internet services as well as to an HI'TP-compliant browser.
Thus, the 1invention may be useful 1n monitoring response
time associated with the sending or retrieval of e-mail (via
the simple mail transfer protocol, or SMTP), associated with
a file transfer (via the file transfer protocol, or FTP), asso-
ciated with the posting to a bulletin board (via the network
news transfer protocol, or NNTP), or associated with remote
terminal access (Telnet).

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent 1s set forth in the

following claims.

We claim:

1. A method of logging information 1n a computer net-
work having a Web client connectable to a Web server,
comprising the steps of:

calculating a response time associated with a first HT'TP
request from the Web client to the Web server; and

passing the response time associated with the first HT'TP
request using a second HTTP request from the Web
client to the Web server;

wheremn the second HTTP request includes a response
time protocol cookie in which the response time asso-
ciated with the first HI'TP request 1s passed.

2. The method as described 1n claim 1 further mncluding
the step of recording the response time associated with the
first HTTP request.

3. The method as described in claim 1 wherein the second
HTTP request 1s subsequent to the first HI'TP request.

4. The method as described in claim 1 wherein the
response time assoclated with the first HT'TP request is
calculated using a clock 1n the Web client.

6,073,956

13

5. The method as described 1n claim 4 wherein the
response time calculation includes the steps of:

recording a first clock time on the clock, the first time
assoclated with the transmission of the first HTTP
request from the Web client to the Web server;

determining a second clock time on the clock, the second
time assoclated with receipt at the Web client of a
specified event 1n a response to the first HT'TP request;
and

subtracting the first clock time from the second clock time

to generate the response time.

6. The method as described mm claim § wherein the
specified event 1s selected from the group of specified events
associlated with processing of the response, the group of
speciflied events consisting of: first packet return, last HTML
byte, last .gif byte and intermediate response events.

7. A method of logging information in a computer net-
work having a Web client connectable to a Web server,
comprising the steps of:

at the Web client, calculating a response time associated
with a first HTTP request from the Web client to the
Web server;

passing the response time associlated with the first HI'TP
request 1n a response time protocol cookie of a second
HTTP request from the Web client to the Web server;

and

at the Web server, recording the response time associated

with the first HT'TP request.

8. The method as described 1n claim 7 wherein the second
HTTP request 1s subsequent to the first HI'TP request.

9. The method as described 1n claim 7 wherein the
response time assoclated with the first HTTP request is
calculated using a clock 1n the Web client.

10. The method as described 1n claim 9 wherein the
response time calculation includes the steps of:

recording a first clock time on the clock, the first time
assoclated with the transmission of the first HTTP
request from the Web client to the Web server;

determining a second clock time on the clock, the second
time assoclated with receipt at the Web client of a
specified event 1n a response to the first HT'TP request;
and

subtracting the first clock time from the second clock time

to generate the response time.

11. The method as described in claim 10 wherein the
specified event 1s selected from the group of specified events
consisting of: first packet return, last HIML byte and last
.g1f byte.

12. A computer program product 1n a computer-readable
medium for monitoring response time m a Web client
connectable to a Web server 1in a computer network, com-
prising:

first program code means, responsive to a first HTTP

request from the Web client to the Web server, for

calculating a response time associated with the first
HTTP request; and

second program code means, responsive to the calculating
means and a second HTTP request, for placing the

5

10

15

20

25

30

35

40

45

50

55

14

response time 1n a response time protocol cookie asso-
ciated with the second HT'TP request.
13. The computer program product as described 1n claim
12 wherein the Web client includes a clock and the calcu-
lating means comprises:

means for recording a first clock time on the clock, the
first time associated with the transmission of the first
HTTP request from the Web client to the Web server;

means for determining a second clock time on the clock,
the second time associated with receipt at the Web
client of a specified event 1n a response to the first

HTTP request; and

means for subtracting the first clock time from the second

clock time to generate the response time.

14. A computer for use as a server in a computer network
having a Web client connectable to the computer, compris-
ng:

a Processor;

an operating system;

a Web server program;

first program code means responsive to receipt of a
current HI'TP request from the Web client for retriev-
ing from the HTTP request a response time protocol
cookie, the response time protocol cookie including
information identifying a response time associated with
a prior HI'TP request from the Web client to the Web
server program; and

second program code means for logging the response
time.
15. A method of logging information in a computer
network having a Web client connectable to a Web server,
comprising the steps of:

calculating information associated with a first HT'TP
request from the Web client to the Web server; and

passing the calculated information in a response time
protocol cookie of a second HTTP request from the
Web client to the Web server.
16. The method as described 1n claim 15 wherein the
information 1s a response time of the first HI'TP request.
17. A method of logging information in a computer
network having a client connectable to a server, comprising
the steps of:

calculating a response time assoclated with a first transfer
protocol request from the client to the server; and

passing the response time associated with the first transfer
protocol request using a second transfer protocol
request from the client to the server;

wherein the second transfer protocol request includes a
response time protocol cookie 1n which the response
time associated with the first transfer protocol request
1s passed.

18. The method as described 1n claim 17 wherein the
transfer protocol 1s selected from the group of transfer
protocols consisting of HITTP, SMTP, FIP, NMTP and
Telnet.

	Front Page
	Drawings
	Specification
	Claims

