United States Patent i
Wolczko et al.

US006078744A
(11] Patent Number:

6,078,744

(451 Date of Patent: Jun. 20, 2000

[154] METHOD AND APPARATUS FOR
IMPROVING COMPILER PERFORMANCE
DURING SUBSEQUENT COMPILATIONS OF
A SOURCE PROGRAM

|75] Inventors: Mario 1. Wolczko; David M. Ungar,
both of Palo Alto, Calif.

| 73] Assignee: Sun Microsystems, Palo Alto, Calif.

21] Appl. No.: 08/905,294

22] Filed: Aug. 1, 1997
51] Int. CL7 e GO6F 9/45
52] US.CL o, 395/705; 395/704; 395/709;
364/148.01
58] Field of Search 395/702, 703,
3957705, 707, 709, 704; 364/757, 726.2,
721.1, 148.01; 702/80; 708/507

[56] References Cited

U.S. PATENT DOCUMENTS

5,179,702 1/1993 Spix et al. ccoovevvireirienreeveeeennn 395/672
5,430,850 7/1995 Papadopoulos et al. 395/683
5,471,593 11/1995 Braniginccccccevveeveeveeveeneees 395/582
5,794,005 §/1998 Steinmanccccceeeveeeeeneenennnns 395/500

OTHER PUBLICAITONS

Aho, AV, et al., “Introduction to Compiling,” (Chapter 1)
and “Code Generation,” (Chapter 9) in Compilers: Prin-
ciples, Techniques, and 1ools, Addison—Wesley Publishing
Co., Reading, MA (1988).

Booch, G., “Elements of the Object Model,” 1n Object

Oriented Design (with Applications), The Benjamin/Cum-
mings Publishing Co., Inc., Redwood City, CA (1991).

Dean, J., and Chambers, C., “Towards Better Inlining Deci-
sions Using Inlining Trials,” 1994 ACM Conference on
LISP and Functional Programming, Orlando, FL (Jun.
1994).

Holzle, U., “Adaptive Optimization for Self: Reconciling
High Performance with Exploratory Programming,” a dis-
sertation submitted to the Stanford University Dept. of

Computer Science 1n partial fulfillment of the requirements
for the degree of Doctor of Philosophy (1995).

Subhlok et al., “Optimal latency throughput tradeoils for
data parallel pipelines”, SPAA, ACM, pp. 62-71, Jun. 1996.
Lain et al., “Compler support for hybrid 1rregular accesses
on multicomputers”, ICS ACM, pp. 1-9, Jul. 1996.

Mowry et al., “Design and evaluation of a compiler algo-
rithm for prefetching”, ASPLOS V, ACM, pp.62-73, Oct.

1992,

Carr et al., “Compiler optimization for improving data
locality”, ASPLOS VI, ACM, pp. 252-262, Oct. 1994.
Holzle and Ungar, “Optimizing dyanamically dispatched
calls with run time feedback”, SIGPLAN, ACM, Jun. 1994,
pp. 326-336.

Holzle and Ungar, Reconciling responsiveness with perfor-
mance 1n pure object oriented languages:, ACM Trans. on
Prog. Lang. & Syst. vol. 18, No. 4, Jul. 1996, pp. 355-400.
Chambers et al., “A framework for selective recompilation
in the presence of complex intermodule dependencies”,
ICSE’95 ACM, pp. 221-230, Jan. 1995.

Chambers and Ungar, “Making pure object oriented lan-
cguages practical”, OOPSLA’91, ACM, pp. 1-15, May 1991.
Dean et al., “Selective specialization for object oriented
languages™, SIGPLAN’95, ACM, pp. 93-102, Feb. 1995.
Dean and Chambers, “Towards better inlining decisions
using 1nlining trials”, LISP’94, ACM pp. 273-282, Mar.
1994,

Burke and Torczon, Interprocedural optimization: eliminat-
ing unnecessary recompilation:, ACM Trans. Prog. Lang. &

Syst. vol. 15, No. 3, pp. 367-399, Jul. 1993,

Primary Fxaminer—Tariq R. Hafiz
Assistant Examiner—Anil Khatri
Attorney, Ageni, or Firm—Park & Vaughan

57] ABSTRACT

Apparatus, methods, and computer program products are
disclosed for improving the performance of subsequent
compilations of a source program. The 1nitial compilation of
the source program journals computationally expensive
intermediate compilation data. Subsequent compilations,
instead of recomputing this data, uses the intermediate
compilation data from the journal. Thus the compiler has
improved performance during subsequent compilations of
the source program. One aspect of the invention applies to
dynamic compilers to reduce the startup delay caused by
compiling the source program when the program is invoked.

8 Claims, 8 Drawing Sheets

START —_
405

OPEN JOURMAL
407

INVOKE A BEELEVANT > 441
COMPILATION FHASE
404

—

CLOSE FERFORM INITIAL
JOURNAL PHASE COMPILATION
411 413

I""/-] 41
e A

OFEN JOURNAL
417

{.

INVOKE A RELEVANT
l GOMPILATION PHASE > 403

419

CLOSE FERFORM
JOURNAL SUBSEGQUENT PHASE
421 COMPRLATION
423

400

U.S. Patent Jun. 20, 2000 Sheet 1 of 8 6,078,744

103
Front End @ 109

113

Code Optimizer

Control Flow
Analysis

115
Data Flow 147
119

105

Analysis

Global
Transformations

101
\'/ 121

Code Generator 107
Local 123
Transformations
Peephole 12§ \
Optimization 100
Register 107
Allocation
Instruction
Scheduling 9 111

129

Figure 1a
(Prior Art)

U.S. Patent Jun. 20, 2000 Sheet 2 of 8 6,078,744

141 @

JIT Conversion
From Interpreted
Code to Machine
Code

Optimized
143 Compilation
147 @

143

140

Figure 1b
(Prior Art)

U.S. Patent Jun. 20, 2000 Sheet 3 of 8 6,078,744

S
201 = /O
MEMORY | 427 13
205

/"

200

U.S. Patent Jun. 20, 2000 Sheet 4 of 8 6,078,744

COMPILATION UNIT
IDENTIFIER
300
301

INFORMATION TYPE

303

INFORMATION
LENGTH

305

INFORMATION
307

U.S. Patent Jun. 20, 2000 Sheet 5 of 8 6,078,744

OOP METHOD
IDENTIFIER
361
357
JOURNAL RECORD
INDEX TO DATA 260
363 °
A5 JOURNAL RECORD .
OOP METHOD
IDENTIFIER JOURN%I}TECORD
365 7
359
INDEX TO DATA
367 JOURNAL RECORD
_ 373
JOURNAL RECORD
355
JOURNAL RECORD
350
JOURNAL RECORD
375

U.S. Patent Jun. 20, 2000 Sheet 6 of 8 6,078,744

START
405
OPEN JOURNAL
407

INVOKE A RELEVANT 401

COMPILATION PHASE
409

CLOSE

PERFORM INITIAL
PHASE COMPILATION

413

JOURNAL
411

415

OPEN JOURNAL
417

INVOKE A RELEVANT
COMPILATION PHASE
419 403

CLOSE PERFORM
JOURNAL SUBSEQUENT PHASE
421 COMPILATION

423

400

FIG. 4

U.S. Patent

500

Jun. 20, 2000 Sheet 7 of 8

START
001

INVOKE COMPILATION ON A
COMPILATION UNIT
505

GENERATE INTERMEDIATE
COMPILATION DATA (ICD)
511

JOURNAL
INFORMATION?

913

WRITE TO ICD JOURNAL
517

FIG. 5

COMPILE UNIT

USING ICD
515

6,078,744

U.S. Patent Jun. 20, 2000 Sheet 8 of 8 6,078,744

START
601

INVOKE
COMPILATION ON A
COMPILATION UNIT

605

END
609

EQUIVALENT
UNIT IN JOURNAL?
611

NO

GENERATE INTERMEDIATE READ ICD FROM
COMPILATION DATA (ICD) JOURNAL
613 615

COMPILE UNIT

USING ICD
617

600

FIG. 6

6,073,744

1

METHOD AND APPARATUS FOR
IMPROVING COMPILER PERFORMANCE
DURING SUBSEQUENT COMPILATIONS OF
A SOURCE PROGRAM

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of computer program-
ming languages. Specifically, this invention includes a
method, apparatus, and computer program product for
increasing a compiler’s performance on subsequent compi-
lations of a source program.

2. Background

Compilers are programs that execute in a computer to
fransform a source program represented 1n one language
(often in a human readable form) to an equivalent program
in a target language. The target language 1s directed to an
Application Binary Interface (ABI). The ABI is generally
defined by the computer hardware and operating system.
The computer uses the target language to perform the
operations specified by the source program. Sometimes the
ABI 1s defined for an abstract environment called a virtual
machine. An implementation of a virtual machine 1s a
program, that executes on the hosting computer, that 1imple-
ments an ABI other than the hosting computer’s ABI.

Many compilers provide an optimization capability that
evaluates the structure of the source program to improve the
execution speed of the compiled program when the com-
puter executes the target language. The compiler’s optimi-
zation operations are often compute intensive. Thus,
enabling the compiler’s optimization features generally
increases the time required to compile the source program.
This increased compilation time increases the time required
for a developer to change and compile the source program,
and test the program resulting from the target language—
thus lengthening the program’s development cycle.

During most of the program development process, only a
small portion of the source program changes between sub-
sequent compilations. However, prior art program develop-
ment systems often recompile unchanged portions of a
source program during subsequent compilations. Although
many program development systems detect when a given
source module needs to be compiled, a change 1n only one
compilable unit 1n the source module still causes the entire
module to be recompiled. A “compilation unit” 1s a portion
of the source program that is compiled as a unit (for
example, but without limitation, a function, method or
procedure, or even a statement).

Many traditional static compilers generate the target lan-
cuage 1n the form of multiple object modules. The object
modules are linked together to create an executable file that
can be loaded mto the computer’s memory and executed
without invoking the compiler. However, dynamic compil-
ers compile the source program every time the program 1is
executed. Thus as the program executes, uncompiled com-
pilation units are compiled just prior to their first execution.
This characteristic means that programming environments
that use dynamic compilers have a longer program startup
delay than do traditional programming environments using
static compilers. This startup delay i1s a function of the
performance of the compiler. To reduce the startup delay,
most dynamic compilers do little 1f any optimizations during
the program’s startup period.

In addition, adaptive compilers (those dynamic compilers
that optimize portions of the executing program depending

10

15

20

25

30

35

40

45

50

55

60

65

2

on performance characteristics determined from run-time
usage information) still need to perform the optimization
function as rapidly as possible. Otherwise, the time required
to optimize the compilation unit will be greater than the time
saved by executing the optimized code.

Furthermore, 1t 1s difficult to debug a program that uses
adaptive compilation because often the optimization deci-
sions are not completely reproducible between separate
executions of the program. Thus, mistakes in the compiler
optimization code are very difficult to debug.

One prior art approach to improving the startup delay for
a dynamically compiled program 1s to save a copy of the
compiled program to disk—a core dump (for example as
was done in the SELF programming environment). This
allows the state of the executing program to be saved.
Subsequent executions of the program, starting from the
saved state, can be mvoked by loading the core dump into
the computer’s memory and resuming execution of the
program. The problem with this approach is that subsequent
executions of the program may not have the same perfor-
mance characteristics as the saved program. Therefor, the
previous optimization decisions may no longer be valid. Yet
another problem 1s that a core dump 1s executed on an
identically configured computer/operating system combina-
tion. Thus, the core dump 1mage may not be useable when
the operating system 1s updated or if the core dump 1mage
1s transferred from one computer to another.

To summarize, one problem with the prior art 1s that static
compilers need improved performance to shorten the devel-
opment cycle. Another problem 1s that dynamic compilers
need high performance to reduce the startup delay for a
dynamically compiled application. Another problem 1s that
it 1s very difficult to recreate the state of a program executing
with an adaptive compiler because the exact sequence of
optimizations (which depends on run-time feedback) is
difficult to recreate. Further, the prior art techniques used to
improve the startup delay of a program compiled by an
adaptive compiler (such as the core dump approach) are
system dependent and not portable to other systems.

SUMMARY OF THE INVENTION

The present mnvention provides an apparatus, method, and
computer program product for improving performance of a
compiler during subsequent compilations of a source pro-
oram. The 1mnvention operates by journaling computationally
expensive Intermediate compilation data that either deter-
mines or 1s a result of compilation decisions made by the
compiler. The journaled information i1s then used during
subsequent compilations instead of recomputing the com-
putationally expensive intermediate compilation data.

One aspect of the invention 1s a computer controlled
method for improving performance of a compiler. The
method includes the steps of recompiling a source program,
during a subsequent compilation and of using a first jour-
naled datum 1n lieu of recreating an 1ntermediate compila-
tion datum associated with a specific compilation phase
during the subsequent compilation.

Another aspect of the invention 1s an apparatus, including
a central processing unit coupled to a memory, for compiling
a source program by a compiler. The apparatus includes,
within the compiler a recompilation mechanism configured
to recompile the source program during a subsequent com-
pilation. The apparatus also includes a journal utilization
mechanism that uses a first journaled datum in lieu of
recreating an intermediate compilation datum during the
subsequent compilation.

6,073,744

3

Yet a further aspect of the invention 1s a computer
program product embedded on a computer usable medium
for causing a computer to compile a source program by a
compiler. When executed on a computer, the computer
readable code causes a computer to effect a recompilation
mechanism and a journal utilization mechanism. Each of
these mechanisms having the same functions as the corre-
sponding mechanisms for the previously described appara-
tus.

The foregoing and many other aspects of the present
invention will no doubt become obvious to those of ordinary
skill in the art after having read the following detailed
description of the preferred embodiments that are 1llustrated
in the various drawing figures.

DESCRIPTTION OF THE DRAWINGS

FIG. 1a & 1b 1llustrate the structure of a prior art static
compiler (1a) and the operation of a dynamic compiler (1b);

FIG. 2 illustrates a computer system capable of using the
invention 1n accordance with a preferred embodiment;

FIG. 3a & 3b illustrate the structure of journal record (3a)
and the structure of a journal file produced by a dynamic
OOP compiler (3b) in accordance with a preferred embodi-
ment,

FIG. 4 1llustrates the compiler processes used to perform
subsequent compilations 1n accordance with a preferred
embodiment;

FIG. 5 1llustrates the 1nitial phase compilation process that
creates the journal 1n accordance with a preferred embodi-
ment; and

FIG. 6 1illustrates the subsequent phase compilation pro-
cess that uses the journal 1n accordance with a preferred
embodiment.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS
Notations and Nomenclature

The following ‘notations and nomenclature” are provided
to assist in the understanding of the present invention and the
preferred embodiments thereof.

Adaptive compilation—Adaptive compilation extends
dynamic compilation and JIT compilers by determining
which compilation units of an executing program should be
optimized (from usage data gathered while the program
executes) and then optimizing those compilation units.

Compilation unit—A compilation unit 1s a portion of the
source program that can be separately compiled. A compi-
lation unit 1s dependent on the underlying design of the
compiler processing the source program. Generally, a
function, programmed-procedure, OOP method or statement
are compilation units. The use of compilation unit for the
invention indicates a portion of the source program that
ogenerates a journalable ICD. Thus, the compilation unit
definition depends on the compiler phase and the source
language.

Dynamic compilers—Dynamic compilers compile the
source program while the program is executing. Some
dynamic compilers have an optimization mode and a non-
optimization mode. Static compilers (such as FORTRAN,
Pascal, C, C++and other traditional computer language
compilers) compile the source into a deterministic target
language independent of the execution sequence and subject
to user specified compilation preferences. A general discus-
sion of static compilers can be found in Compilers:
Principles, lechniques and 1ools by Alfred V. Aho, Ravi
Seth1 and Jeffrey D. Ullman, Addison-Wesley Publishing

10

15

20

25

30

35

40

45

50

55

60

65

4

Co. © 1988, ISBN 0-201-10088-6. A brief overview of
dynamic compilers can be found at page 9 of Adaprive
Optimization for Self: Reconciling High Performance with

Exploratory Programming, by Urs Holzle, Sun Microsys-
tems Laboratories, SMLI TR-95-35, © 1995.

Interpreter—An interpreter 1s a program that implements
a virtual machine that effectuates the ABI for the interpreted
language. Any computer that 1s able to execute the virtual
machine 1s able to execute a program compiled for the
virtual machine’s ABI.

Intermediate compilation data (ICD)—The intermediate
compilation data (ICD) is transitory information that is
developed by a compiler so that the compiler can make
decisions (such as an optimization decision) based on the
ICD. One example of an ICD 1s the data structure that
represents an interference graph for determining variable
usage. Another example of an ICD 1s the register assign-
ments for the target computer that results from a compilation
unit’s processing of the variable interference graph. These
examples show that the ICD can be used as imput to a
compiler decision. This approach could be used where the
ogeneration of the ICD 1s computationally expensive, but the
decision based on the ICD 1s not. Another use for an ICD 1s
to represent the results of a compiler decision—such as
specific register assignments for a target ABI. Notice that the
interference graph ICD 1s independent of the ABI whereas
the specific register assignments are ABI dependent. Thus,
the ICD may be ABI independent or ABI dependent. An ABI
independent ICD does not change depending on the under-
lying ABI architecture. An ABI dependent ICD depends on
the ABI architecture.

Intermediate representation—The 1ntermediate represen-
tation 1s the representation of a source program that results
after the source program has been processed by the com-
piler’s front-end. The intermediate representation represents
the structure and operations described 1n the source program
but in a form that i1s efficiently processed 1n subsequent
phases of the compiler.

Just-in-time compiler (JIT)—A JIT compiler converts a
target language that 1s interpreted by a virtual machine, mnto
a target language directed toward the ABI of the host
computer. The JIT compiler compiles a method, a portion of
a method, a statement or other source grouping just before
the source grouping 1s first executed. Subsequent calls to the
source grouping re-execute the compiled target language for
the host computer’s ABI.

Object oriented programming (OOP)—Object oriented
programming 1S a methodology for building computer soft-
ware. Objects contain data and OOP methods. OOP methods
are procedures that generally access the object’s data. The
programmer using the object does not need to be concerned
with the type of data in the object; rather, the programmer
need only be concerned with creating the correct sequence
of OOP method invocations and using the correct OOP
method. Smalltalk, Java and C++are examples of OOP
languages. Smalltalk was developed 1n the Learning
Research Group at Xerox’s Palo Alto Research Center
(PARC) 1 the early 1970s. C++was developed by Bjarne
Stroustrup at the AT&T Bell Laboratories m 1983 as an
extension of C. Java 1s an OOP language with elements from
C and C++and 1includes highly tuned libraries for the internet
environment. Java was developed at SUN Microsystems and
released 1 1995. Further information about OOP concepts
may be found 1n Object Oriented Design with Applications
by Grady Booch, the Benjamin/Cummings Publishing Co.,
Inc., Redwood City, Calif., (1991), ISBN 0-8053-0091-0.

Procedure—A self-consistent sequence of steps leading to
a desired result. These steps are those requiring physical

6,073,744

S

manipulation of physical quantities. Usually these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. These signals are referred to as bits,
values, elements, symbols, characters, terms, numbers, or
the like. It will be understood by those skilled 1n the art that
all of these and similar terms are associated with the
appropriate physical quantities and are merely convenient

labels applied to these quanftities.
Source program—A source program 1s the data that 1s

compiled by a compiler. Generally the source program 1is
human-readable text. However, the Java compiler generates

“bytecodes” that are a binary representation of the Java
source. The “bytecodes” 1n turn can serve as a source

program to a JI'T compiler.

Static compiler—see “Dynamic Compiler.”
Overview

The manipulations performed by a computer 1n executing
opcodes are often referred to in terms, such as adding or
comparing, that are commonly associated with mental
operations performed by a human operator. In the present
invention no such capability of a human operator 1s neces-
sary 1n any ol the operations described herein. The opera-
fions are machine operations. Useful machines for perform-
ing the operations of the invention include programmed
general purpose digital computers or similar devices. In all
cases the method of computation is distinguished from the
method of operation 1n operating a computer. The present
invention relates to method steps for operating a computer 1n
processing electrical or other (e.g., mechanical, chemical)
physical signals to generate other desired physical signals.

The 1nvention also relates to apparatus for performing
these operations. This apparatus may be specially con-
structed for the required purposes or i1t may comprise a
ogeneral purpose computer as selectively activated or recon-
figured by a computer program stored 1n the memory of a
computer. The procedures presented herein are not inher-
ently related to a particular computer or other apparatus. In
particular, various general purpose machines may be used
with programs written in accordance with the teachings
herein, or it may prove more convenient to construct more
specilalized apparatus to perform the required method steps.
The required structure for a variety of these machines will
appear from the following description. Also, the invention
may be embodied 1n a computer readable storage medium
encoded with a program that causes a computer to perform
the programmed logic.

One skilled 1n the art will understand that, although the
figures and 1llustrations use a particular bit ordering within
the computer memory word, the actual bit ordering 1is
irrelevant to the invention. Further, one skilled 1n the art will
understand that illustrations of data structures 1n memory
start at the lower addressed memory at the top of the
structure and extend to higher addressed memory.

FIG. 1a 1llustrates a static compiler environment, indi-
cated by general reference character 100, that includes a
compiler 101. The compiler 101 includes a front-end 103, a
code-optimizer 105, and a code-generator 107. The compiler
101 processes a source program 109 to generate a target
language 111. The front-end 103 of the compiler 101 1ni-
tfially processes the source program 109 and performs
lexical, syntactical and semantical analysis of the source
program 109. The front-end 103 generates a first interme-
diate code representation 113 of the source program 109. It
the compiler 101 1s an optimizing compiler that 1s currently
conditioned to optimize the compiled code, the first inter-
mediate code representation 113 1s further processed by the
code-optimizer 105.

10

15

20

25

30

35

40

45

50

55

60

65

6

The code-optimizer 105 includes a number of optimiza-
tion phases such as a ‘control flow analysis’ phase 115, a
‘data flow analysis’ phase 117, and a global transformation
phase 119. These phases 115, 117, 119 perform well-
understood optimizations on the first intermediate code
representation 113. The output from the code-optimizer 105
1s an optimized intermediate code representation 121 that
reflects the above optimizations. The optimized intermediate
code representation 121 1s provided to the code-generator
107. The code-generator 107 also includes a number of
optimization phases that operate on the optimized interme-
diate code representation 121. These optimizations often
include a ‘local code transformation’ phase 123, a ‘peephole
optimization’ phase 125, a ‘register allocation” phase 127,
and an ‘instruction scheduling” phase 129. The code-
generator 107 generates code that 1s executable by the ABI
supported by the compiler 101. Many of the phases in the
code-generator 107 are dependent on the architecture of the
target ABI. In a static compiler, the target language 1s often
output as an object {ile that will be linked with other object
files and object libraries to create an executable 1image file.
Dynamic compilers will replace interpreted code with the
newly compiled code to optimize the performance of the
executing program. One skilled in the art will understand
that some compilers do not include all of the phases
described above and that other compilers may have more
phases. Additionally, one skilled in the art will understand
that the operational constraints on a dynamic compiler are
much different from the constraints for a static compiler. In
particular, the dynamic compiler must be able to very
quickly perform an initial compilation on the source pro-
oram to minimize the program’s startup delay.

FIG. 1b 1llustrates a dynamic compilation process, indi-
cated by general reference character 140, that initiates at a
‘start’ terminal 141 and continues to a ‘just-in-time’ (JIT)
compilation 143. The JIT compilation 143 converts code
(such as a Smalltalk or Java “bytecode”) into computer
instructions (machine code) suitable for direct execution by
the computer—that 1s, instructions compliant with the com-
puter’s ABI. Thus, 1n some dynamic compilation
environments, the program initially executes by being inter-
preted by the virtual machine. Later, the JIT compiler
compiles the interpreted code imto unoptimized machine
code that can be directly executed by the host computer.
Other dynamic compilation environments require the JIT
compilation 143 step prior to executing the program. In
these environments the code 1s not interpreted. Although
performance of the program 1s greatly improved when the
mterpreted code 1s converted to machine code, additional
performance 1mprovements can be made if the procedures
that are repetitively executed are optimized. Thus, an opti-
mized compilation process 145 recompiles portions of the
source program (here the interpreted code) and generates
optimized machine code versions of the heavily used por-
tions. The dynamic compilation process 140 completes
through an ‘end’ terminal 147.

The previous description 1illustrates the prior art. The
instant invention improves the performance of compilers by
journaling intermediate compiler data (ICD), generated dur-
ing an 1nitial compilation of the source program, for later
reuse by a subsequent compilation of the source program.
Operating Environment

Some of the elements of a computer, as indicated by
ogeneral reference character 200, configured to support the
invention are shown 1 FIG. 2 wherein a processor 201 1s
shown, having a central processor unit (CPU) 203, a
memory section 205 and an input/output (I/O) section 207.

6,073,744

7

The I/O section 207 1s connected to a keyboard 209, a
display umt 211, a disk storage unit 213 and a CD-ROM
drive unit 215. The CD-ROM drive unit 215 can read a
CD-ROM medium 217 that typically contains a program and
data 219. The CD-ROM drive umt 215, along with the
CD-ROM medium 217, and the disk storage unit 213
comprise a filestorage mechanism. One skilled in the art will
understand that the CD-ROM drive unit 215 can be replace
by any device that can read a removable media that contains
the program and data 219. These devices include, but are not
limited by, tloppy disk drives, removable cartridge drives,
and magnetic tape drives. Such a computer system 1s capable
of executing applications that embody the invention.

As previously mentioned, the invention saves to a journal
the ICDs generated during an initial compilation of the
source program. The journaled immformation can be kept on
the computer’s filesystem. Each journal record 1dentifies the
compilation unit related to the record. The record also
distinguishes when the compilation unit has changed
between the 1nitial and subsequent compilations. One skilled
in the art will understand that many techniques exist for
determining equivalence of the compilation unit. These
techniques 1included, without limitation, comparing the
source program of the initial and subsequent compilation
unit, calculating a checkword on the source, or relying on the
nature of the programming environment (for example know-
ing that the source will not change while a dynamically
compiled program executes). One skilled in the art will also
understand that the journaled data 1s of multiple types
dependent on which phase of the compiler generated the
ICD. Some of the ICDs are dependent on the architecture of
the computer that will execute the target language. Other
ICDs only depend on the structure of the source program.
Further, for dynamic compilers, run-time based ICDs may
be journaled. The run-time based ICDs are used to reproduce
the state of a previously run, dynamically compiled pro-
gram.

FIG. 3a illustrates a journal record, indicated by general
reference character 300, created by a preferred embodiment.
The journal record 300 includes a ‘compilation unit 1denti-
fication’ field 301, an ‘mformation type’ field 303, an
‘information length’ field 305, and an ‘information’ field
307. The ‘compilation unit identification’ field 301 contains
a value that i1dentifies the compilation unit for the journal
record 300. This value also identifies which compiler phase
generated the journaled data contained 1n the ‘information’
field 307. Additionally, this value contains verification infor-
mation used to verify that the compilation unit has not
changed between an initial compilation and a subsequent
compilation. One skilled 1n the art will understand that the
verification information can be the source code of compi-
lation unit, the checksum of the source code of the compi-
lation unit or similar information. The ‘information type’
field 303 contains a value that identifies the type of the
information stored 1n the ‘information’ field 307. The ‘1nfor-
mation length’ field 305 contains a value that represents the
size of the ‘information’ field 307. The ‘information’ field
307 contains the actual journaled data. The actual journaled
data 1s of the type specilied by the value stored i the
‘information type’ field 303. The journaled data represents
computationally expensive information to recreate. In some
circumstances, the data consists of data structures used as
input to a compilation phase decision procedure. In other
cases the data 1s the result reached by the compilation phase
decision procedure. In yet another case the data 1s implied
optimization data, that results from an optimization decision
by an adaptive compiler, that indicates that 1f one compila-

10

15

20

25

30

35

40

45

50

55

60

65

3

tion unit 1s optimized that a second compilation unit should
also be optimized. Those skilled 1n the art will understand
that there are other types of data that can be usefully
journaled.

A static compiler sequentially writes and reads each of the
journal records because the static compiler sequentially and
deterministically compiles the source program. However,
dynamic compilers compile the source program dependent
on the execution path of the program. Thus, a dynamic
compiler uses an indexed journal file (or equivalent) to
organize the journal indexed to the compilation unit. This
approach 1s used with dynamically compiled object-oriented
programming languages.

FIG. 3b illustrates a journal file, indicated by general

reference character 350, that contains a plurality of index
records 351, a first OOP method journal 353, and a second

OOP method journal 355. The plurality of index records 351
includes a first mdex record 357 and a second 1ndex record
359. The first index record 357 includes a “first OOP method
identification’ field 361 and a ‘first OOP method journal
index’ field 363. The ‘first OOP method 1dentification’ field
361 contains information that identifies the OOP method that
has journaled information stored in the first OOP method
journal 353. The ‘first OOP method journal index’ field 363
contains an index into the journal file 350 that specifies the
start of the first OOP method journal 353. The second index
record 359 includes a ‘second OOP method 1dentification’
field 365 and a ‘second OOP method journal index’ field 367
having the same purpose as the ‘first OOP method 1dentifi-
cation’ field 361 and the ‘first OOP method journal index’
field 363 previously described -but containing different
values. The first OOP method journal 353, indexed to by the
contents of the ‘first OOP method journal index’ field 363,
includes a ‘first journal’ record 369 and a ‘last journal’
record 371. Both the ‘first journal® record 369 and the ‘last
journal’ record 371 have the same structure as the journal
record 300 previously described. Those skilled 1n the art will
understand that the first OOP method journal 353 may
contain zero, one or more journal records. The ‘second OOP
method journal index’ field 367 contains a value that 1ndi-
cates the location of a ‘first journal” record 373 1n the second
OOP method journal 355. The second OOP method journal
355 1s completed by a ‘last journal’ record 375. Thus, the
second 1ndex record 359 identifies the journal for a second
compilation unit.

FIG. 4 1llustrates a compilation process, indicated by
ogeneral reference character 400, that includes an ‘initial
compilation’ process 401 and a ‘subsequent compilation’
process 403. The compilation process 400 1nitiates at a “start’
terminal 405 and continues to an ‘open journal’ procedure
407. The ‘open journal” procedure 407 opens a journal file
allowing write access to the ‘initial compilation’ process
401. Next, an ‘invoke a relevant compilation phase’ proce-
dure 409 mvokes a compilation phase on the source pro-
gram. One example of a compilation phase (there are many
more) is the compiler phase that determines the boundaries
of basic blocks and the variables that enter, exit and propa-
cgate through these boundaries. Once the relevant compila-
tion phases have operated on the source program, the ‘1nitial
compilation’ process 401 continues to a ‘close journal’
procedure 411 that closes the journal file. During the ‘1invoke
a relevant compilation phase’ procedure 409 a compilation
unit 1s compiled by a ‘perform 1nitial compilation” procedure
413 that saves the ICD for the compiled compilation units
within the source program. The ‘perform initial compilation’
procedure 413 1s subsequently described with regard to FIG.

S.

6,073,744

9

The completion of the ‘close journal’ procedure 411
completes the ‘initial compilation” process 401. Sometime
later, as 1indicated by a delay 415, the ‘subsequent compi-
lation’ process 403 1nitiates at an ‘open journal’ procedure
417. The ‘open journal’ procedure 417 opens the journal file
allowing read access to the journal file. Then, an ‘invoke a
relevant compilation phase’ procedure 419 again processes
the source program. Once the compilation phase has pro-
cessed the source program, the ‘subsequent compilation’
process 403 closes the journal file at a ‘close journal’
procedure 421. During the ‘invoke a relevant compilation
phase’ procedure 419, the ‘subsequent compilation’ process
403 compiles the source program at a ‘perform subsequent
compilation” procedure 423 using the journaled ICD. The
‘perform subsequent compilation’ procedure 423 1s
described with regard to FIG. 6. Once the journal file 1s
closed, the compilation process 400 completes through an
‘end’ terminal 425. One skilled in the art will understand that
the subsequent compilation generates its own journal for use
by compilations subsequent to the ‘subsequent compilation’
process 403.

For static compilers, the compilation performed by the
‘perform 1nitial compilation’ procedure 413 often includes
an optimization phase. The journaled ICD includes ICDs
relevant to these optimization steps as well as other compute
intensive compiler decisions. The ‘subsequent compilation’
process 403 uses the journaled ICD, where appropriate, to
bypass the compute intensive operations made during the
‘initial compilation” process 401. Because computation
intensive operations are not duplicated, but instead remem-
bered from the ‘initial compilation” process 401, the pertfor-
mance ol the compiler 1s improved during the ‘subsequent
compilation’ process 403.

For dynamic compilers, the compilation performed by the
‘initial compilation’ process 401 generally does not include
optimizations or other optional compute intensive opera-
fions so as to minimize the initial startup delay due to the
compilation. However, a preferred embodiment journals
ICDs related to computation intensive decisions made dur-
ing the ‘mnitial compilation’ process 401. Later, during the
‘subsequent compilation” process 403, the journaled ICDs
can be retrieved and used instead of recreating the related
computationally expensive information. Because computa-
tion 1ntensive decisions are not recreated, but instead
remembered from the ‘initial compilation” process 401 the
compiler performance improved during the ‘subsequent
compilation’ process 403. One skilled 1n the art will under-
stand that the journal can be used by the dynamic compiler
during a subsequent invocation of the program or during an
optimization pass on the program. Further, one skilled in the
art will understand that the verification information in the
‘information’ field 307 need not be used if the dynamic
compiler can determine that the source has not changed
between the 1nitial and subsequent compilations.

One skilled 1n the art will understand that 1n the environ-
ment of an adaptive compiler the source program 1s retained
while 1t executes. Thus, the adaptive compiler 1s assured
(subject to simultaneous development and debugging) that
the source program initially compiled 1s the same as the
source program that 1s optimized.

FIG. 5 1llustrates an ‘initial phase compilation’ process,
indicated by general reference character 500, that initiates at
a ‘start’ terminal 501 after being invoked by the ‘1nvoke a
relevant compilation phase’ procedure 409 of FIG. 4. The
‘initial phase compilation’ process 500 continues to an
‘invoke compilation of a compilation unit’® procedure 503
that processes each compilation unit of the source program.

10

15

20

25

30

35

40

45

50

55

60

65

10

Once each compilation unit 1s processed, the ‘initial phase
compilation” process 500 completes through an ‘end’ termi-
nal 509. As each compilation unit 1s processed, a ‘generate
intermediate compilation data’ procedure 511 computes
intermediate compilation data that 1s used either as 1nput to
a compilation decision or 1s a result of a compilation
decision. Next, a ‘journal ICD’ decision procedure 513
determines whether the ICD 1s to be journaled. If the ICD 1s
not to be journaled, the ‘initial phase compilation’ process
500 continues to a ‘compile compilation unit” procedure 515
that uses the ICD to compile the compilation unit. However,
if the ICD 1s to be journaled, the ‘initial phase compilation’
process 500 confinues to a ‘“write ICD to journal” procedure
517 that generates the values stored 1n the ‘compilation unit
identification’ field 301, the ‘1information type’ field 303, the
‘information length’ field 305 and the ‘information’ field 307
of the journal record 300 and writes these values to the
journal. Next, the ‘initial phase compilation’ process 500
confinues to the ‘compile compilation unit’ procedure 5135
that compiles the compilation unit. Once the compilation
unit 1s compiled, the ‘inmitial phase compilation’ process 500
processes the next compilation unit. One skilled in the art
will understand that for dynamic compilers (or other com-
pilers that have an non-deterministic compilation order) the
‘write ICD to journal” procedure 517 includes the capability
of adding an imdex record to the journal.

The ‘journal ICD’ decision procedure 513 determines
which computationally expensive compiler operations gen-
erate ICDs to be journaled. The ‘journal ICD’ decision
procedure 513 1s programmed using heuristics to determine
which ICDs should be journaled.

FIG. 6 1illustrates a ‘subsequent phase compilation’
process, ndicated by general reference character 600, that
initiates at a ‘start’ terminal 601 from the ‘perform subse-
quent compilation’ procedure 423 of FIG. 4. The ‘subse-
quent phase compilation’ process 600 continues to an
‘invoke compilation of a compilation unit” 605 process that
sequentially processes each compilation unit of the source
program. After all compilation units have been processed,
the ‘subsequent phase compilation” process 600 completes
through an ‘end’ terminal 609. As each compilation unit 1s
processed an ‘equivalent unit in journal’ decision procedure
611 determines whether the compilation unit 1n the source
program, currently being compiled, 1s equivalent to the
compilation unit processed by the ‘1nitial phase compilation’
process 500 (by using the verification data stored in the
‘information’ field 307) and whether any ICD is journaled
for the compilation unit. If the ‘equivalent unit in journal’
decision procedure 611 determines that the compilation units
are not equivalent or that no information for the compilation
unit has been journaled, the ‘subsequent phase compilation’
process 600 continues to a ‘generate intermediate compila-
tion data’ procedure 613. The ‘genecrate intermediate com-
pilation data’ procedure 613 generates the ICD for the
compiler phase operating on the compilation unit. As pre-
viously mentioned, the ICDs can depend upon the ABI. The
‘equivalent unit 1n journal’ decision procedure 611 also
determines whether the ABI for the ICD matches the target
ABI.

However, 1f the ‘equivalent unit in journal’ decision
procedure 611 determines that the completion units are
cequivalent and the journal contains an ICD for the compi-
lation unit, the ‘subsequent phase compilation’ process 600
continues to a ‘read ICD data from journal’ procedure 615
that reads the ICD from the journal instead of computing the
ICD. This avoids computationally expensive operations.
Regardless of the decision made by the ‘equivalent unit in

6,073,744

11

journal’ decision procedure 611, the ICD (created by the
‘oenerate 1ntermediate compilation data” procedure 613 or
read from by journal by the ‘read ICD data from journal’
procedure 615) is used by a ‘compile compilation unit’
procedure 617. Once the compilation unit 1s processed by
the compilation phase, the next compilation unit 1s pro-
cessed at the ‘invoke compilation of a compilation unit’ 6035.

Those skilled 1n the art will understand that the determi-
nations made by the ‘journal ICD’ decision procedure 513
and the ‘equivalent unit in journal” decision procedure 611
are dependent on the processing speed, journaled data access
speed, and other aspects of the computer executing the
compiler. Those skilled 1n the art will also understand that
these decisions can be heuristically programmed based on
measured parameters. These measurements are made by
instrumenting a compiler to gather mmformation about the
decisions made during each compilation phase and then
compiling a sufficient number of representative programs.
These measurements are then used to program the ‘journal
ICD’ decision procedure 513 and the ‘equivalent unit in
journal’ decision procedure 611 for a specific computer
programming language and computing system environment.
One skilled 1n the art will understand that the invention, as
previously described, teaches a method, apparatus and pro-
cramming product that improves the compilation speed of a
subsequent compilation of a source program that was pre-
viously compiled.

Although the present mvention has been described 1n
terms of the presently preferred embodiments, one skilled 1n
the art will understand that various modifications and alter-
ations may be made without departing from the scope of the
invention. Accordingly, the scope of the invention 1s not to
be limited to the particular invention embodiments discussed
herein, but should be defined only by the appended claims
and equivalents thereof.

What 1s claimed 1s:

1. A computer controlled method for improving perfor-
mance of a compiler, said method comprising the steps of:

(a) performing an initial compilation of said source pro-
gTam;

(b) creating said intermediate compilation datum associ-
ated with said specific compilation phase performed
during said initial compilation;

(¢) saving said intermediate compilation datum as said
first journaled datum;

(d) recompiling a source program during a subsequent
compilation; and

(e) using a first journaled datum in lieu of recreating an
intermediate compilation datum associated with a spe-

cific compilation phase during said subsequent compi-
lation;

wherein said source program 1s an object-oriented pro-
gram;

wherein said intermediate compilation datum represents
an optimization decision datum;

wherein said optimization decision datum comprises a
target application-binary-interface dependent informa-
tion.

2. A computer controlled method for improving perfor-
mance of a compiler, said method comprising the steps of:

(a) performing an initial compilation of said source pro-
gram;

(b) creating said intermediate compilation datum associ-
ated with said specific compilation phase performed
during said initial compilation;

10

15

20

25

30

35

40

45

50

55

60

65

12

(c) saving said intermediate compilation datum as said
first yjournaled datum;

(d) recompiling a source program during a subsequent
compilation; and

(¢) using a first journaled datum in lieu of recreating an
intermediate compilation datum associated with a spe-
cific compilation phase during said subsequent compi-
lation;

wherein said compiler 1s a dynamic compiler having a
non-optimization mode and an optimization mode, said
non-optimization mode being active during said 1nitial

compilation, said optimization mode being active dur-
ing said subsequent compilation;

wherein said dynamic compiler 1s an adaptive compiler,
said source program includes a first portion and a
second portion, and said first journaled datum 1s an
implied optimization datum specifying that said second
portion 1s to be optimized dependent on whether said
first portion 1s optimized.

3. A computer controlled method for improving perfor-
mance of a compiler, said method comprising the steps of:

(a) performing an initial compilation of said source pro-
oram;

(b) creating said intermediate compilation datum associ-
ated with said specific compilation phase performed
during said initial compilation;

(c) saving said intermediate compilation datum as said
first yjournaled datum;

(d) recompiling a source program during a subsequent
compilation; and

(¢) using a first journaled datum in lieu of recreating an
intermediate compilation datum associated with a spe-
ciiic compilation phase during said subsequent compi-
lation;

wherein said compiler 1s a dynamic compiler compiling
said source program for an executable program while
said executable program executes, said executable pro-
ogram having a state, and said method further comprises
steps of,

(bl) creating a different intermediate compilation
datum during said initial compilation, said interme-
diate compilation datum and said different interme-
diate compilation datum defining said state, and
(cl) saving said different intermediate compilation

datum as a second journaled datum saved subsequent

to said first journaled datum;

wherein step (e) comprises using said first journaled
datum and said second journaled datum in lieu of
recreating said intermediate compilation datum and
said different intermediate compilation datum during
said subsequent compilation to recreate said state.
4. An apparatus having a central processing unit (CPU)
and a memory coupled to said CPU for compiling a source
program by a compiler, wherein said apparatus comprises:

a first compilation mechanism, within said compiler,
configured to perform an initial compilation of said
SOUrce program;

a first data generation mechanism configured to create
said intermediate compilation datum associated with
said specific compilation phase performed during said
initial compilation;

a first journal storage mechanism configured to save said
intermediate compilation datum as said first journaled
datum;

a recompilation mechanism, within said compiler, con-
ficured to recompile said source program during a
subsequent compilation; and

6,073,744

13

a journal utilization mechanism configured to use a first
journaled datum 1n lieu of recreating an intermediate
compilation datum associated with a speciiic compila-
tion phase during said subsequent compilation;

wherein said intermediate compilation datum represents
an optimization decision datum;

wherein said optimization decision datum comprises a
target application-binary-interface dependent informa-
tion.

5. An apparatus having a central processing unit (CPU)

and a memory coupled to said CPU for compiling a source
program by a compiler, wherein said apparatus comprises:

a first compilation mechanism, within said compiler,
configured to perform an initial compilation of said
SOUrce program;

a first data generation mechanism configured to create
said intermediate compilation datum associated with
said specific compilation phase performed during said
initial compilation;

a first journal storage mechanism configured to save said
intermediate compilation datum as said first journaled
datum;

a recompilation mechanism, within said compiler, con-
figured to recompile said source program during a
subsequent compilation; and

a journal utilization mechanism configured to use a first
journaled datum 1n lieu of recreating an intermediate
compilation datum associated with a specific compila-
tion phase during said subsequent compilation;

wherein said compiler 1s a dynamic compiler having a
non-optimization mode and an optimization mode, said
non-optimization mode being active during said initial
compilation, said optimization mode being active dur-
ing said subsequent compilation;

wherein said dynamic compiler 1s an adaptive compiler,
said source program includes a first portion and a
second portion, and said first journaled datum 1s an
implied optimization datum specitying that said second
portion 1s to be optimized dependent on whether said

first portion 1s optimized.
6. An apparatus having a central processing unit (CPU)
and a memory coupled to said CPU for compiling a source
program by a compiler, wherein said apparatus comprises:

a first compilation mechanism, within said compiler,
configured to perform an initial compilation of said
SOUrce program;

a first data generation mechanism configured to create
said intermediate compilation datum associated with
said specific compilation phase performed during said
initial compilation;

a first journal storage mechanism configured to save said
intermediate compilation datum as said first journaled
datum;

a recompilation mechanism, within said compiler, con-

figured to recompile said source program during a
subsequent compilation; and

a journal utilization mechanism configured to use a first
journaled datum 1n lieu of recreating an intermediate
compilation datum associated with a specific compila-
tion phase during said subsequent compilation;

wherein said compiler 1s a dynamic compiler compiling
said source program for an executable program while
said executable program executes, said executable pro-
oram having a state, and wherein said apparatus further
COmprises,

10

15

20

25

30

35

40

45

50

55

60

65

14

a second compilation mechanism configured to create a
different intermediate compilation datum related to
sald source program during said initial compilation,
sald intermediate compilation datum and said differ-
ent mtermediate compilation datum defining said
state, and

a second journal storage mechanism configured to save
said different intermediate compilation datum as a
second journaled datum saved subsequent to said

first journaled datum;

wherein said journal utilization mechanism comprises a
recreate state mechanism configured to recreate said
state by sequentially using said first journaled datum
and said second journaled datum 1n lieu of recreating
said intermediate compilation datum and said different
intermediate compilation datum during said subsequent
compilation.

7. A computer program product comprising;:

a computer usable storage medium having computer
readable code embodied therein for causing a computer
to compile a source program using a compiler, and said
computer readable code comprising;:
computer readable program code devices configured to
cause said computer to effect a first compilation
mechanism, within said compiler, configured to per-
form an 1nitial compilation of said source program;

computer readable program code devices configured to
cause said computer to effect a first data generation
mechanism configured to create said intermediate
compilation datum associated with said speciiic
compilation phase performed during said initial
compilation; and

computer readable program code devices configured to
cause said computer to effect a first journal storage
mechanism configured to save said intermediate
compilation datum as said first journaled datum;

computer readable program code devices configured to
cause said computer to effect a recompilation
mechanism, within said compiler, configured to
recomplle a source program during a subsequent
compilation; and

computer readable program code devices configured to
cause said computer to effect a journal utilization
mechanism configured to use a first journaled datum
in lieu of recreating an intermediate compilation
datum associated with a specific compilation phase
during said subsequent compilation;

wherein said intermediate compilation datum repre-
sents an optimization decision datum,;

wherein said optimization decision datum comprises a
target application-binary-interface dependent infor-
mation.

8. A computer program product comprising;:

a computer usable storage medium having computer
readable code embodied therein for causing a computer
to compile a source program using a compiler, and said
computer readable code comprising;:
computer readable program code devices configured to
cause said computer to effect a first compilation
mechanism, within said compiler, configured to per-
form an 1nitial compilation of said source program;

computer readable program code devices configured to
cause said computer to effect a first data generation
mechanism configured to create said intermediate
compilation datum associated with said specific
compilation phase performed during said 1nitial
compilation; and

6,073,744

15

computer readable program code devices configured to
cause said computer to effect a first journal storage
mechanism configured to save said intermediate
compilation datum as said first journaled datum;

computer readable program code devices configured to
cause said computer to effect a recompilation
mechanism, within said compiler, configured to
recompile a source program during a subsequent
compilation; and

computer readable program code devices configured to
cause said computer to effect a journal utilization
mechanism configured to use a first journaled datum
in lieu of recreating an intermediate compilation
datum associated with a specific compilation phase
during said subsequent compilation;

wherein said compiler 1s a dynamic compiler compiling
said source program for an executable program while
sald executable program executes, said executable
program having a state, and wherein said product
further comprises,

computer readable program code devices configured to

cause said computer to effect a second compilation

10

15

20

16

mechanism configured to create a different intermedi-
ate compilation datum related to said source program
during said initial compilation, said intermediate com-
pilation datum and said different intermediate compi-
lation datum defining said state; and

computer readable program code devices configured to

cause said computer to effect a second journal storage
mechanism configured to save said different interme-
diate compilation datum as a second journaled datum
saved subsequent to said first journaled datum;

wheremn said journal utilization mechanism comprises

computer readable program code devices configured to
cause said computer to effect a recreate state mecha-
nism coniigured to recreate said state by sequentially
using said first journaled datum and said second jour-
naled datum 1n lieu of recreating said intermediate
compilation datum and said different intermediate com-
pilation datum during said subsequent compilation.

	Front Page
	Drawings
	Specification
	Claims

