United States Patent
Little et al.

[19]

US006075470A
(11] Patent Number: 6,075,470
451 Date of Patent: Jun. 13, 2000

[54] BLOCK-WISE ADAPTIVE STATISTICAL
DATA COMPRESSOR
|75] Inventors: Herb A. Little, Waterloo; Hugh R.
Hind, Georgetown, both of Canada
| 73] Assignee: Research In Motion Limited,
Waterloo, Canada
[21] Appl. No.: 09/031,418
22] Filed: Feb. 26, 1998
51] Int. CL7 e HO3M 7/00
52] US.CL o, 3417107 341/106
58] Field of Search 341/106, 107
[56] References Cited
U.S. PATENT DOCUMENTS

3.675211 7/1972 Raviv .

3,675,212 7/1972 Raviv et al. .

3,694,813 9/1972 Loh et al. .

3,701,108 10/1972 Loh et al. .

3,717,851 2/1973 Cocke et al. .

4,121,259 10/1978 Preuss et al. .

4,386,416 5/1983 Giltner et al. .

4,506,325 3/1985 Bennett et al. .

4,516,246 5/1985 Kenemuth .

4,558,302 12/1985 Welch .

4,560,976 12/1985 Finn .

4.597.057 6/1986 Snow .

4,626,829 12/1986 Hauck .

4,701,745 10/1987 Waterworth .

4,706,264 11/1987 Cung .

(List continued on next page.)
FOREIGN PATENT DOCUMENTS
0369689 5/1990 European Pat. Off. .

OTHER PUBLICAITTONS

“A Block—sorting Lossless Data Compression Algorithm”,

Burrows, M. and Wheeler, D.J., SRC Research Report of
Digital Systems Research Center, dated May 10, 1994.

“Data Compression with the Burrows—Wheeler Transform”,
Nelson, Mark, Dr. Dobb’s Journal, Sep., 1996.

MNP Update No. 8, Mar. 30, 1987.

“Block Sorting Text Compression”, Fenwick, Peter, Depart-
ment of Computer Science, The University of Auckland.
“Experiments with a Block Sorting Text Compression Algo-
rithm”, Fenwick, Peter, Technical Report 111, ISSN
1173-3500, Department of Computer Science, The Univer-
sity of Auckland, May 17, 1995.

(List continued on next page.)

Primary Examiner—Brian Young
Assistant Examiner—Jason L W Kost

Attorney, Agent, or Firm—Jones, Day, Reavis & Pogue;
Charles B. Meyer, Esq.

57] ABSTRACT

A block-wise adaptive statistical data compressor 1s dis-
closed that operates by replacing characters 1n a data block
with super-character codewords comprising a variable
length prefix and a fixed length index. The codewords are
determined by treating a plurality of groups of characters as
super-character groups and then adapting the codewords, for
cach data block, based upon the actual frequency of occur-
rence of the characters in each group. The super-character
prefix value identifies the group to which a particular
character belongs, and the index value identifies the indi-
vidual character of the group. By grouping and indexing the
characters into these super-character groups, the present
invention models a particular data block using a fraction of
the mmformation generally required by a fixed statistical
compressor. Also disclosed are multi-stage lossless block
data compressors that include the block-wise adaptive sta-
tistical compressor and also include a clustering stage and a
reordering stage. The clustering stage clusters like charac-
ters mto similar locations within the data block, and the
reordering stage reorders the data to generate an expected
skew 1n the frequency distribution of characters in the data
block so that the block can be more efficiently compressed
by the block-wise adaptive statistical compressor.

29 Claims, 8 Drawing Sheets

/

Uncomprassed

Crata File

f""u‘lﬂ

l

I E Fartition Fila Intg !
| - Blocks of N Bytes | |

b e 20

Last Block :
H:EI k. 4

22

~ 24

{Output EQF Byte

|
12 o~ |
|
|

i | BWT Clustering
Stags

(End Process)ﬂ.Zﬁ

14 ..-"1.....-|

MTF Reorgering |
Staga ‘

I
¥

18—

. Block-Wise
: Adaptive Statistical
: Stagea

32

r/

. | Output 1b Header
.| and Comprassad
| Blgck

"

—TYES—= CBlack

*\;@

NO
]

28
o

¥
Cutput 1b Heagar, |
2b Length, and M= 20
| | Qriginal Block

6,075,470
Page 2

U.S. PATENT DOCUMENTS

4,862,167 8/1989 Copeland, III .

4,881,075 11/1989 Weng .

4,955,066 9/1990 Notenboom .

4,988,998 1/1991 O’Brien .

5,016,009 5/1991 Whiting et al. .

5,049,881 9/1991 Gibson et al. .

5,051,745 9/1991 Katz .

5,109,433 4/1992 Notenboom .

5,140,321 §/1992 Jung .

5,684,478 11/1997 PanaoussiS ...cc.ceveveeeeveveeneennnnnnn. 341/51
5,717,393 2/1998 Nakano et al.covvvvrvvvnnnnnnn.e. 341/50
5,886,655 3/1999 RUSE .vevveieeiiiiiieeviieeerreeeeeenenee 341/107

OTHER PUBLICAITTONS

“Improvements to the Block Sorting Text Compression
Algorithm”, Fenwick, Peter, Technical Report 120, ISSN
1173-3500, Department of Computer Science, The Univer-
sity of Auckland, Aug. 3, 1995.

“An Adaptive System For Data Compression”, Faller, New-
ton, Proc. 7th Asilomar Conf. On Circuits, Systems &
Computers (1973).

“Information Compression By Facotirising Common
Strings”, Mayne, A. and James, E.B.; The Computer Journal,
vol. 18, No. 2 (Aug. 1973) (pp. 157-160).

“Automatic File Compression”, McCarthy, J.P.; A. Gilinther
et al (eds.), International Computing Symposium 1973(pp.

511-516).

“Text Compression Using A 4 Bit Coding Scheme”, Pike .,
The Computer Journal, vol. 24, No. 4, 1981 (pp. 324-330).

“Data Compression For a Source With Markov Character-
istics”, Llewellyn, J.A.; The Computer Journal, vol. 30, No.
2, 1987 (pp. 149-156).

“Data Compression”, Lelewer, Debra A. and Hirschberg,
Daniel S.; ACM Computing Surveys, vol. 19, No. 3, Sep.
1967 (pp. 261-296).

“Fast Pattern Matching In Strings”, Knuth, Donald E.,
Morris, Jr., James H., and Pratt, Vaughan R.; Siam J.

Comput., vol. 6, No. 2, Jun. 1977 (pp. 323-350).

“Dynamic Huffman Coding”, Knuth, Donald E.; Journal of
Algorithms 6 (1985) (pp. 163—180).

“Is Text Compression By Prefixes and Suffixes Practical?”,
Fraenkel, A.S., Mor, M. and Perl, Y.; Acta Informatica 20
(1983) (pp. 371-389).

“Text Compression Using Variable— To Fixed—Length
Encodings”, Cooper, David and Lynch, Michael F.; Journal

of The American Society For Information Science (Jan.
1982) (pp. 18-31).

“A Locally Adaptive Data Compression Scheme”, Bentley,
Jon Louis, Sleator, Daniel D., Tarjan, Robert E., and Wei,

Victor K.; Communications of the ACM, Apr. 1986, vol/ 29,
No. 4 (pp. 320-330).

6,075,470

Sheet 1 of 8

Jun. 13, 2000

U.S. Patent

I Ol

s$300|g eleQ
passaldwion

¢

81

abejg |eonsiels
aAdepy

9SIM-300|g

abelq
buuapioay 41N

abe)Q
Buusisn|D 18

9|4 Ejeq

4

9l

14

¢l

passaidwosu

4

0l

U.S. Patent Jun. 13, 2000 Sheet 2 of 8 6,075,470

Uncompressed
Data File ~~ 10

—— Y

Partition File into | 20
Blocks of N Bytes | i

| ast Block
Processed?

YES—s i Output EOF Byte ~ 24

——l—l—————_—.——.ﬂ_i

— End Process ~. 26

BWT Clustering
12 ~ Stage (FIG. 3)

L y —— Tre—ee——

—_— Y

MTF Reordering

14 A~ | “Stage (FIG. 4)

Block-Wise
16 -~ | |Adaptive Statistical
Stage (FIG. 5)

'_l_"""_""""'_-—'P""_""'_—

‘ {-/ 28
Output 1b Header
and Compressed | «—YES

Block

CBlock < Original?

NO

N |

. | Output 1b Header,
— | 2b Length, and ~ 30

Qriginal Block

FIG. 2

U.S. Patent Jun. 13, 2000 Sheet 3 of 8 6,075,470

Uncompressed
N-Byte Data 50
Block

_— Yy
| |Copy N-Byte data block and append to form 52

a block of iength = 2N | j

—,—m— Y
Index characters in block by 0,1,2,...,2N-1 54

. N

Form N Strings of characters beginning at | |
positions 0,1,2,...,N-1, where N Strings are 96
the N cyclic shifts of the original data block

Sort N Strings Lexicographically o8

—_— Y

Record Resuits of Sort by creating an N
element integer array: index{n] = position in | | 60
the original data block of the first character |

in the cyclic shift occuring in the n-th
position after sorting

I S

Reduce Index{] by one (replacing -1 by N-
1), then Index|n] = position in the original

| data block of the last characterinthe cyclic | | 62
shift occurring in the n-th position after
sorting
Find the index value (1) for which Inda_x{l]=0; 64
output this value (l) as the primary index

Output the array index 66

68

FIG. 3

U.S. Patent

— k= k+1

Jun. 13, 2000 Sheet 4 of 8

Original Data Block =
Data(], and BWT
indices = index(]

Copy initial ordering to the array =
CurrentOrder]

Setk=0

86

80

82

6,075,470

88

YES——» End MTF Process J

NO

Obtain current character C=Data[Index{k]]

N S

Let m be the index of character C in |
CurrentOrder{] where m is the value of the
index for which CurrentOrderim] = C

_— e

—“1%1_
QOutput value m ;
‘-—h—_.—'—___ﬁ_

Forj=12,...m(set CurrentOrderij] =
CurrentOrder]j-1]; set CurrentOrder{0] = C)
A I

m!.ﬂ_‘_

-—h'___—'_——-—-—_—ﬁ_._d

FIG. 4

90

92

94

98

U.S. Patent Jun. 13, 2000 Sheet 5 of 8 6,075,470

MTFDatal];

SymbolCount[0,1,...11}=0; ~ 110

—— Y
Count Number of Symbols from
MTFData[] in each Super-
Character Group and increment

each eiement of SymbolCount(]

P e

Set NV=32; Set j=1 ~—~~ 114

'

— 112

YES

118

124 ~ ;—-NO

Normalize SymbolCountj] using NV

D

Set SymbolCount{0] = 32

If SymboIC ' T Gererate Hoffma T
y . bﬂl:gt[ll > :‘5=- t1h5§" Set 128 Generate Huffman
Y":' olCount(j] . Codewords (SuperCode{])
o - for the Supercharacters 0. 120
1 | 1,2....,11 using the 7
*—'—‘) frequencies in
j=j+1 J — 128 SymbolCountij
P 122

FIG. SA

U.S. Patent Jun. 13, 2000 Sheet 6 of 8 6,075,470

122 -
\ SymbolCount(};SuperCodel[] 140
SymbolStart{}; MTFData|) —

Qutput Header Byte to ID the use of]

the BWT Algorithm and BWT 7 142
| pnmary index

—_—
For j=1,2,3,...10;

Output 4-bit vaiue < 144

SymbolCountjj]

k=0 : =146
148
YES —————
___Y“_ | /
Let m be the vaiue of the SuperCharacter
containing current character C = MTFDatalK] Output the code for EOB
—_— Yy O O 1587

J/
Output Prefix SuperCode{m] — 166
End of Process

—— -y
Output index C - SymbolStart{m)] o~ 158

160

FIG. 5B

6,075,470

abejg
Bunaisn|n

1MHY

10sS9201d3ald
SSZ1

9|4 eleQ

9 Ol
o
T
—
™~
2
—_—
¢ p
abe)s abe)g
= syo0|g ejeq leanshels abejs BuliepIoay
S passalidwo) aAljdepy/ Iy J1W
- asIM-#00ig
L pd
E o 2 N ~
Ol . OV 14’

U.S. Patent

4

¢l

g II

14>

passaidwodun

(
1]l

U.S. Patent Jun. 13, 2000 Sheet 8 of 8 6,075,470

Uncompressed
Data File

-—

Partition File into
Blocks of N Bytes

Last Block

Processed? YES—» | Output EOF Byte | | 7 24

o - 7
I S — End Process
34 __ 2SS

38 i Preprocessor

)

Output 1b Header,
——— | 2bBiock Length | «—YES
and LZSS Block

12 =o BWT Clustering
Stage (FIG. 3)

—-

———— Y

14 MTF Reordering
- Stage (FIG. 4)

e ¥ .
40 o0 | RLE Stage
Block-Wise

Adaptive Statistical |
Stage (FIG. 5)

16—~

R
32 |

/

' OQutput 1b Header
+—— | and Compressed | |e-YES
Block

28

CBlock < Original?

NO

_— Y
Output 1b Header,

— 2b Length, and - 30

| Original Block

FIG. 7

6,075,470

1

BLOCK-WISE ADAPTIVE STATISTICAL
DATA COMPRESSOR

BACKGROUND OF THE INVENTION

The present mvention 1s directed toward the field of data
compression. In particular, a block-wise adaptive statistical
data compressor 1s disclosed that adapts 1ts data model on a
block by block basis. The data model generated by the
adaptive statistical data compressor consists of a plurality of
super-character codewords that correspond to a plurality of
super-character groups, wherein each super-character group
contains data regarding the frequency of occurrence of one
or more 1ndividual characters in an applicable character data
set. The use of these super-character codewords and groups
to model the data 1n a particular block minimizes the amount
of model data that must be included with the compressed
data block to enable decompression.

Also disclosed in this application 1s a preferred multi-
stage data compressor that includes the block-wise adaptive
statistical data compressor, as one stage, and also includes a
clustering stage and a reordering stage, which, together,
reformat the data in the data block so that the frequency
distribution of characters in the data block has an expected
skew. This skew can then be exploited by selecting certain
super-character groupings that optimize the compression
rat1o achievable by the block-wise adaptive statistical stage.
In an alternative embodiment, additional stages are added to
the clustering, reordering and adaptive statistical stages to
improve data compression efficiency.

The present invention finds particular use 1n data com-
munication devices 1n which 1t i1s desirable to reduce the
quantity of data transmitted while maintaining the integrity
of the data stream. Although the disclosed data compressor
(in its various embodiments) can be used for general data
compression on a personal computer or workstation to
compress, for example, data files for easier transport or
electronic transmission, the preferred application of the data
compressor 1s for use with mobile data communication
devices that transmit packets (or blocks) of data, such as
E-mail messages, via a wireless packet network. The data
compressor 1s preferably implemented as a sequence of
computer program instructions that are programmed into the
mobile data communication device, but could, alternatively
be implemented 1n hardware or as a sequence of 1nstructions
that are stored on a disk as an article of manufacture.

Data compression (or compression) refers to the process
of transforming a data file or stream of data characters so
that the number of bits needed to represent the transtormed
data 1s smaller than the number of bits needed to represent
the original data. The reason that data files can be com-
pressed 1s because of redundancy. The more redundant a
particular file 1s, the more likely 1t 1s to be effectively
compressed.

There are two general types of compression schemes,
lossless and lossy. Lossless compression refers to a process
in which the original data can be recovered (decompressed)
exactly from the compressed data. Lossy compression refers
to schemes where the decompressed data 1s not exactly the
same as the original data. Lossless schemes are generally
used for data files or messages where the content of the file
must be accurately maintained, such as an E-mail message,
word processing document, or other type of text file. Lossy
schemes are generally used for data files that already 1include
a certain degree of noise, such as photographs, music, or
other analog signals that have been put into a digital format
and therefore the addition of a bit more noise 1s acceptable.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

The present invention 1s a lossless data compression
scheme. In the field of lossless data compression there are
two general types of compressors: (1) dictionary based (or
sliding-window); and (2) statistical coders. Dictionary based
compressors examine the input data stream and look for
ogroups of symbols or characters that appear 1n a dictionary
that 1s built using data that has already been compressed. It
a match 1s found, the compressor outputs a single pointer or
index 1nto the dictionary instead of the group of characters.

In this way, a group of characters can be replaced by a
smaller index value. The main difference between the
numerous dictionary based schemes i1s how the dictionary 1s
built and maintained, and how matches are found. Well-
known dictionary based schemes include LZ77 (where the
dictionary 1s a fixed-length sliding window that corresponds
to the previous N-bytes of data that have been compressed);
[LZ78 (where the dictionary is an unlimited-sized tree of
phrases that are built as the data is being compressed); and
various improvements on LZ77 and LZ78, including LZSS,
LZW, and numerous other schemes that employ a “hash”
function to find the position of a particular token 1n the
dictionary.

Statistical coders are typically either Huffman coders or
arithmetic coders. Statistical coders build a model of the data
stream or block and then replace individual characters 1n the
data block with a variable-length code that corresponds to
the frequency of occurrence of the particular character 1n the
data block. Huffman coding assigns variable-length codes to
characters based on their frequency of occurrence. For
example, in the English language the letters “E”, “T7, “A”,
“I”, etc., appear much more frequently than the letters “X”,
“Q7, “Z7, etc., and Hullman coding takes advantage of this

fact by assigning (for a fixed Huffman coder) a lower
number of bits to letters that occur more frequently and a

higher number of bits to characters that occur less fre-
quently.

There are two basic types of Huiffman coders, a fixed
Huffman coder and a purely adaptive Huffman coder. The
fixed coder builds a tree of codes based on statistics con-
cerning all the symbols (or characters) actually contained in
the data file. This “Huffman tree” must be passed to the
decompression device 1n order to properly decompress the
file, which adds to the overhead and thus reduces the
clfective compression ratio. For example, a fixed Huffman
coder for 7-bit characters would normally require 128 bytes
of data to model the character set, while for 8-bit characters,
256 bytes are normally required. Thus for small data blocks,
on the order of several KB, the overhead of the fixed
Huffman coder 1s undesirable.

The adaptive Huffman coder assumes an 1nitial distribu-
tion of characters 1n the block, and then changes the coding
of individual symbols 1n the tree based on the actual content
of the symbols 1n the data file as they are being processed.
The advantage of the adaptive coder is that the tree 1s not
passed to the decompression device, but the decompression
device must assume the 1nitial distribution of symbols 1n the
tree. The main problem with the adaptive stage is that 1t
takes a certain amount of data to be processed before the
model becomes efficient, and therefore 1t 1s also undesirable
for small blocks of data.

Presently known dictionary based and statistical compres-
sors sulfer from several disadvantages that are addressed by
the present invention. First, neither of these types of com-
pressors are optimized for relatively small data blocks. In
fact, some of these schemes exhibit poor performance for
small blocks of data, as are commonly transmitted over
wireless packet data networks.

™

6,075,470

3

The presently known dictionary based schemes can pro-
vide good compression ratios, but generally require a large
amount of memory to operate 1n order to store the dictionary.
This 1s particularly true of the LZ78 variants where the
dictionary 1s not limited to any particular size. This 1s a
problem for small mobile computers that have a limited
memory capacity. In addition, these schemes require a
scarch and replace function that can be computationally
intensive and time consuming depending on the size of the
dictionary, the data structure used to store the data in the
dictionary, and the method employed to find a matching
string. This 1s an additional problem for mobile computers
that generally have limited processing power.

The presently known statistical compressors suffer from
several disadvantages: (1) they generally do not provide
enough compression; (2) the fixed type of coder requires the
additional overhead of passing a code for each character 1n
the alphabet to the decompressing device, thus reducing the
overall compression ratio, particularly where a relatively
small block of data is being compressed; (3) the purely
adaptive type of coder requires a great deal of processing
power on the compression side to constantly update the
statistical model of the data stream, and therefore 1s not well
suited for small, mobile data communication devices that
have limited processing power; and (4) also with respect to
the purely adaptive type of coder, this type of coder only
becomes efficient after a particular amount of data has been
compressed, and therefore 1t 1s very inefficient for small data

blocks, where the compressor may require more data to
become efficient than 1s contained in the block.

Therefore, there remains a general need 1n the art of data
compression for a data compressor that 1s optimized to
compress relatively small blocks of data.

There remains a more particular need for a data compres-
sor that 1s optimized for use with mobile data communica-
fion devices that have limited memory and processing
capabilities.

There remains still a more general need for a data com-
pressor that adapts i1ts data model to each data block that 1s

being compressed, but at the same time minimizes the
amount of model data that must be transmitted to the

decompression device to decompress the block.

There remains a more particular need for such a data
compressor that, while adapting to each block of data,
minimizes the processing power required of the device

operating the compressor and 1s efficient for relatively small
data blocks.

There remains yet another need for a multi-stage data
compressor that includes, as one stage, a block-wise adap-
five statistical data compressor that satisfies the above-noted
needs.

There remains an additional need for such a multi-stage
data compressor that includes a clustering stage and a
reordering stage for transforming each data block such that

there tends to be an expected skew 1n the frequency distri-
bution of characters 1n the data block.

There remains an additional need for such a multi-stage
data compressor that includes additional compression
stages, such as dictionary based or statistical coder stages, 1n
order to increase the overall compression efficiency of the
data compressor.

There remains an additional need for such a multi-stage

data compressor 1n which the clustering stage utilizes the
Burrows-Wheeler Transform (“BWT”) and the reordering
stage utilizes a move-to-the-front (“MTF”) scheme.

SUMMARY OF THE INVENTION

The present invention overcomes the problems noted
above and satisfies the needs 1n this field for an efficient data

™

10

15

20

25

30

35

40

45

50

55

60

65

4

block compressor. In particular, the present invention intro-
duces the concept of a block-wise adaptive statistical data
compressor that 1s presently unknown 1n the field of data
compression. The block-wise adaptive statistical compressor
provides the advantages of the fixed and purely adaptive
types of statistical compressors, while avoiding the disad-
vantages of both.

A block-wise adaptive statistical data compressor oper-
ates by replacing characters 1n a block of data with super-
character codewords comprising a variable length prefix and
a fixed length index. The prefix 1s determined by treating a
plurality of groups of characters as super-character groups.
The prefix and index codes for each super-character group
are adapted for each data block that 1s processed by the
compressor. The super-character prefix value identifies the
oroup to which a particular character belongs, and the index
value 1dentifies the individual character of the group. These
codes are determined and assigned to each super-character
ogroup based upon the actual frequency of occurrence of the
characters 1n each group.

By grouping and indexing the characters into these super-
character groupings, the present invention models a particu-
lar data block using a fraction of the information generally
required by a fixed statistical compressor. This results 1n
improved compression ratios over the fixed type of scheme,
particularly for smaller data blocks. This technique also
results 1n 1improved compression ratios over a purely adap-
five scheme for small data blocks, since the adaptive
schemes are generally inefficient for relatively small data
blocks.

Also disclosed 1n the following Detailed Description are
two types of multi-stage lossless data block compressors that
include the block-wise adaptive statistical compressor. The
preferred multi-stage compressor includes a clustering stage
and a reordering stage. The purpose of the clustering stage,
which preferably operates the Burrows-Wheeler Transform,
1s to cluster like characters into similar locations within the
data block. The purpose of the reordering stage, which 1is
preferably an MTF reordering stage, 1s to transform the
character data into numerical values that tend to exhibit a
skewed frequency distribution. For the preferred MTF stage,
this skewed frequency distribution generally results 1in a
frequency distribution that 1s monotonically decreasing as
the numerical value increases. Knowledge of this skewed
frequency distribution can be used by the block-wise adap-
five statistical stage to achieve higher compression ratios.

The alternative multi-stage compressor includes two addi-
tional stages, a dictionary based preprocessing stage and a
run-length encoder stage. The purpose of these stages 1s to
increase the overall compression ratio of the compressor,
and to deal with certain types of data blocks that may be
difficult for the clustering stage to process.

The present mvention provides many advantages over
presently known data compression methods, particular when
used with small data blocks as are generally used 1n wireless
packet data networks, such as: (1) like a purely adaptive
stage, the present invention modifies the codes to conform to
the actual frequency of occurrence of the individual char-
acters 1n a data block, but unlike a purely adaptive stage, the
present invention avoids the inefliciencies of this type of
stage because 1t does not require that a particular amount of
data is processed before the model becomes efficient; (2) like
a fixed stage, the present invention processes the characters
in the block using their actual frequencies of occurrence, but
unlike a fixed stage, the present invention avoids the need to
pass a large amount of model data to describe the character

6,075,470

S

frequencies; (3) the present invention utilizes several pre-
compression stages to reformat the data 1n the data block so
that 1t 1s optimally compressible by the block-wise adaptive
statistical stage; (4) the present invention deals with certain
types of data blocks that may not be efficiently processed by
the pre-compression stages noted in (3); (5) the present
invention provides good compression ratios, at a relatively
high speed, and with little memory overhead; and (6) the
present invention 1s optimized for compressing relatively
small data blocks, as are commonly used 1n wireless packet
networks.

These are just a few of the many advantages of the present
mmvention, as described 1n more detail below. As will be
appreciated, the imvention 1s capable of other and different
embodiments, and its several details are capable of modifi-
cations 1n various respects, all without departing from the
spirit of the 1nvention. Accordingly, the drawings and
description of the preferred embodiments set forth below are
to be regarded as 1llustrative 1n nature and not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention satisfies the needs noted above as
will become apparent from the following description when
read 1n conjunction with the accompanying drawings
wherein:

FIG. 1 1s a block diagram of a preferred multi-stage
lossless data compressor including a BW'T clustering stage,
an MTF reordering stage, and a block-wise adaptive statis-
fical stage;

FIG. 2 1s a flow chart showing the method of compressing,

data using the preferred multi-stage lossless data compressor
of FIG. 1;

FIG. 3 1s a flow chart showing the operation of the BWT
clustering stage;

FIG. 4 1s a flow chart showing the operation of the MTF
reordering stage;

FIGS. 5A and 5B are flow charts showing the operation of
the block-wise adaptive statistical compression stage.

FIG. 6 1s a block diagram of an alternative multi-stage
lossless data compressor having the same stages as the
preferred compressor of FIG. 1, and also including a sliding-
window compression stage and a run-length encoder com-
pression stage; and

FIG. 7 1s a tlow chart showing the method of compressing,
data using the alternative multi-stage lossless data compres-

sor of FIG. 6

DETAILED DESCRIPTION OF THE DRAWINGS

Referring now to the drawings, FIG. 1 1s a block diagram
of a preferred multi-stage lossless data compressor including
a Burrows-Wheeler Transform (“BWT”) clustering stage 12,
a Move-To-Front (“MTF”) reordering stage 14, and a block-

wise adaptive statistical stage 16.

Although not shown explicitly in FIG. 1, an uncom-
pressed data file 10 1s first broken into blocks of some
particular size, preferably from 512 to 4096 bytes, but could,
alternatively, be partitioned into any other size block. Each
block 1s then transformed by the clustering stage 12 and the
reordering stage 14 prior to being compressed by the block-
wise adaptive statistical stage 16, resulting 1n a sequence of
compressed data blocks 18.

As will be described in more detail below, the clustering
stage 12 provides the function of grouping or clustering
similar characters 1n adjacent locations within the data

10

15

20

25

30

35

40

45

50

55

60

65

6

block. The clustering stage 12 does not segregate all of a
particular character in a particular location within the block,
but, instead, segregates particular characters in several sub-
blocks within the data block. For example, a typical
sequence of characters 1n the clustered data block could be

“ttIwWitttww ' TWww.”

The preferred clustering stage employs the Burrows-
Wheeler Transtform, described in more detail below with
respect to FIG. 3. The BWT algorithm 1s specifically
described 1n “A Block Sorting Lossless Data Compression
Algorithm,” SRC Research Report, May 1994, by M. Bur-
rows and D. J. Wheeler, and also 1n “Data Compression with
the Burrows-Wheeler Transform,” Dr. Dobb’s Journal,
September, 1996, by Mark Nelson, both of which are
incorporated herein by reference. The BW'T algorithm pro-
vides the desired function of transforming the data block so
that similar characters are clustered together i1n certain
locations of the block. Although the BWT algorithm 1s the
preferred method of clustering characters in the data blocks,
other techniques could be used that provide the desired
function noted above.

Once the data has been rearranged by the clustering stage
12, 1t 1s passed to the reordering stage 14, which replaces the
character data 1n the data block with a set of numerical
values that tend to have a skewed frequency distribution. As
described in more detail below with respect to FIG. 4, these
numerical values correspond to the current position of a
character being processed 1n a queue of all the characters in
the associated character lexicon. The position of any char-
acter 1n the queue changes based upon the frequency of
occurrence of that character, with frequently occurring char-
acters appearing at the top of the queue where the mdex
value 1s a small number The net result of the reordering stage
14 1s that the rearranged data block of characters output by
the BTW clustering stage 12 1s replaced by a reordered block
of numbers that are characterized by an expected frequency
distribution that 1s skewed such that low numbers are
significantly more likely to appear in the data block than
higch numbers. In the preferred MTF stage, the expected
frequency distribution skew 1s a monotonically decreasing
function, such that, ideally, there may be 50% zeros, 15%
ones, 5% twos, 2% threes, 0.5% fours, . . . , 0.01%
sixty-fours, etc. Although these first two stages 12, 14 are
not required to practice the present invention, they are
particularly useful in essenftially pre-formatting the data mto
a block tending to have a particular skewed frequency
distribution, which enables the block-wise adaptive statisti-
cal compressor 16 to more efficiently compress data.

After the data block has been clustered and reordered it 1s
ready for compression. The block-wise adaptive statistical
stage 16 of the present invention provides for an optimal
level of compression while at the same time minimizing
processing time and memory requirements. The block-wise
adaptive statistical stage 16, described 1n more detail below
in FIGS. 5A and 5B, replaces the characters output by the
reordering stage 14 with a super-character codeword com-
prising a variable length Huffman prefix, followed by a fixed
length index. The Huffman prefix 1s determined by treating
a plurality of groups of characters as super-character groups.
The prefix and index codes for each super-character group
are adapted for each data block that 1s processed by the
compressor. The super-character prefix value identifies the
oroup to which a particular character belongs, and the index
identifies the individual character of the group. These codes
are determined and assigned to each super-character group
based upon the actual frequency of occurrence of the char-
acters 1n each group.

6,075,470

7

By forming these super-character groups and then calcu-
lating the super-character codewords, the present invention
1s capable of modeling a data block using a fraction of the
amount of data required for a fixed Hullman compressor.
This 1s a significant advantage for block data compressors
where the data block 1s relatively small, such as a few KB.
Although the preferred statistical compressor 16 uses the
Huffman methodology, this stage could, alternatively, use
other types of statistical coding techniques.

Using this super-character technique, and by adapting the
cgroupings for each block of data, the present ivention
combines the advantages of a purely adaptive statistical
compressor, €.g., the ability to modity the codes to conform
to the actual frequency of occurrence of characters in the
data file, with the advantages a fixed statistical compressor,
¢.g., the ability to process the characters using their actual
frequency of occurrence. At the same time, the block-wise
adaptive statistical compressor 16 avoids the disadvantages
of the adaptive statistical compressor, €.g., metficiency due
to less than optimal initialization of the coding model, and
the disadvantages of the fixed compressor, €.g., the need to
pass a large table of frequencies of occurrence.

Although the present invention could be used with any
type of data file and with any type of computer system, the
preferred implementation of the block-wise adaptive statis-
fical compressor 16, and the multi-stage compressor that
also 1ncludes the clustering 12 and reordering stages 14, 1s
for compressing E-mail messages to/from a mobile data
communication device that communicates via a wireless
packet network, such as a two-way paging computer, a
wirelessly-enabled palmtop computer, a laptop having a
wireless data modem, or any other type of portable device
that communicates via a wireless packet data network.

The various stages noted above, and described 1n more
detail 1n the numerous flowcharts below, are preferably
carried out by software instructions programmed into the
computer that 1s performing the data compression functions.
The code-level detail of these software 1nstructions, whether
implemented as subroutines, modules, classes, hierarchies or
functions, could be programmed by one of ordinary skill in
the art having the teaching, description and diagrams of the
present application.

These computer software instructions are preferably
loaded onto a computer or other programmable apparatus
(such as a mobile data communication device as described
above) to create a machine, so that the instructions that
execute on the computer create means for implementing the
functions specified in the block diagrams or flowcharts
included with this application. Alternatively, the instructions
may be stored in a computer-readable memory that can
direct a computer or other programmable apparatus to
function 1n a particular manner, such that the instructions
stored 1n the computer-readable memory produce an article
of manufacture mcluding instruction means that implement
the function specified in the block diagrams or flowcharts.
The computer software instructions may also be loaded onto
a computer or other programmable apparatus to cause a
series ol operational steps to be performed on the computer
to produce a computer-implemented process such that the
instructions that execute on the computer provide steps for
implementing the functions specified in the block diagrams
or flowcharts.

Referring now to FIG. 2, a flow chart showing the
computer-implemented method of compressing data using
the preferred multi-stage lossless data block compressor of
FIG. 1 1s set forth. Three stages are included 1n this figure,

10

15

20

25

30

35

40

45

50

55

60

65

3

the BW'T clustering stage 12, the MTF reordering stage 14,
and the block-wise adaptive statistical stage 16.

The compression method begins with an uncompressed
data file 10. At step 20, this data file 10 1s partitioned into
data blocks of N bytes each. In the preferred embodiment, N
1s 4096 bytes, but could, alternatively be another block size.
The choice of block size depends on the desired compres-
sion ratio (i.e., the size of the file and associated decom-
pression information divided by the size of the original file),
the memory capabilities of the device that 1s executing the
computer-implemented method steps, and the size of the
packets associated with the packet network, if the method 1s
being used on a device that 1s communicating via such a
network.

At step 22, the algorithm determines whether the last data
block 1n the file has been processed, and if so, outputs an
EOF (end-of-file) byte and the method ends. If the last block
has not been processed, then control passes to step 12, where
the BWT clustering stage transforms the data block as
described above, and as discussed more fully below in
connection with FIG. 3. Following the BWT clustering
transformation, control passes to step 14, where the MTF
reordering stage reorders the clustered data block as
described above, and as discussed more fully below 1n
connection with FIG. 4. The net effect of the clustering 12
and reordering steps 14 1s that the transtformed and reordered
data block 1s characterized by an expected skew in the
frequency distribution of characters 1n the data block. This
cifect, although not required to practice the present
invention, allows optimization of the super-character group-
ings and codewords generated by the block-wise adaptive
statistical compressor, thus resulting 1n better compression
ratios.

After the block has been compressed by the block-wise
adaptive statistical stage 16, as described above, and dis-
cussed more fully below 1n connection with FIGS. 5A and
SB, control passes to step 28, where the algorithm deter-
mines whether the compressed block (“CBlock™) is smaller
than the original block. There are certain data files that are
not compressible, and 1n this case control passes to step 30,
in which the method outputs a 1-byte header, a 2-byte block
length, and then outputs the original data block. If, at step
28, 1t 1s determined that the compressed block 1s smaller than
the original, then at step 32 a 1-byte header 1s output along
with the compressed block. From steps 30 or 32, control then
passes back to step 22, which determines whether additional
data blocks remain to be processed.

FIG. 3 1s a flow chart showing the computer-implemented
steps carried out by the clustering stage 12, which, 1n the
preferred multi-stage data compressor, 1s a stage that utilizes
the Burrows-Wheeler Transtorm. The BWT clustering stage
12 transforms the characters in the data block so that like
characters are grouped or clustered together 1n certain sub-
blocks within the data block. In other words, a single
character will tend to occur with a high probability 1n a small
number of locations 1n the transformed data block and will
occur with a low probability in the other locations.

Before describing the computer-implemented method
steps of the BWT clustering stage 12, it 1s 1important to
understand the terms “lexicographic order”, “cyclic shift”,
and “primary index.” The term “lexicographic order” refers
to the ordering used in creating a dictionary. In the BWT
clustering stage 12, the data 1n the data block 1s viewed as
a plurality of strings of characters, and the strings are each
assigned a numeric value. To lexicographically order two

strings 1n the data block, the first characters 1n each string are

6,075,470

9

compared. If the characters are 1dentical, then compare the
second characters 1n each string, and continue if the second
characters are 1dentical to compare the third, fourth, .. ., and
Nth characters until two non-identical characters are
encountered. When this occurs, the string with the character
having the smaller value 1s placed first 1n the lexicographic
ordering.

For example, using ASCII values for the characters in the
strings, if the strings “B78Q64” and “B78MT3” are
compared, the determination of lexicographic order 1s based

on the fourth characters, “Q” and “M”. This 1s because each
string contains the initial three characters “B78.” Since “M”
has an ASCII value that i1s less than “Q”, the string

“B78MT3” would be placed before string “B780Q64” 1n the
lexicographic order.

The term “cyclic shift”, when referring to a string of
characters contained 1n the data block, refers to a string of
the same length as the original 1n which each character 1n the
string of characters 1s moved a fixed number of positions to
the left or right. Characters that are shifted beyond the ends
of the string are wrapped around to the other side, as 1n a
circular buffer. For it; example, given the string of characters

“ABCDEFG”, a cyclic shift to the left by five positions
results 1n the string “FGABCDE”.

In the preferred implementation of the clustering algo-
rithm described below, this cyclic shifting step can be
carried out by first copying a string of length N onto 1itself,
thus creating a string of length 2N. So that, for example, the

string “ABCDEFG” would become “ABCDEFGABC-
DEFG”. A cyclic shift to the left by “k” positions of the
original string 1s then simply a substring of the concatenated
string, and therefore a rotation of the original string i1s not
required, which reduces the processing time of the algo-
rithm.

The term “primary index” 1s an integer value that 1s output
along with the clustered data block. The primary index
provides the location 1n the clustered data block of the last
character of the original (unclustered) block. The decom-
pression device uses this location information to reverse the
clustering transformation. For more information on the
declustering operation, refer to the previously mentioned
SRC Research Report by Burrows and Wheeler, as well as
the article in Dr. Dobbs journal by Mark Nelson.

Turning now to the BWT clustering method shown in
FIG. 3, at step 50 the uncompressed N-byte data block 1is
provided to the computer-implemented algorithm. At step 52
the N-byte data block 1s copied and appended to 1itself,
resulting 1n a data block of length 2N. Control then passes
to step 54 which 1ndexes the characters 1n the data block
using the numerical values 0, 1, . . ., 2N-1 Following the
indexing step 54, control passes to step 56, which forms N
strings of characters beginning at the index positions O,
1,...,N-1, 1 which the N strings represent N cyclic shifts
of the original data block. Control passes to step 58 which
performs the above-described lexicographical sort of the N
strings. At step 60, the results of the lexicographical sort
carried out 1n step 58 are stored in an N-clement integer
array labeled Index|], where each entry in the array repre-
sents the position in the original data block of the first
character 1n the cyclic shift occurring 1n the N-th position
after sorting. Following the reordering step, control passes to
step 62, in which the values in Index| | are reduced by one
(with -1 being replaced by N-1), which results in the values
stored in Index|n] representing the position in the original

10

15

20

25

30

35

40

45

50

55

60

65

10

data block of the last character in the n-th position after
sorting. Control then passes to step 64, where the index
value (I) for which Index|I]=0 1s then found and output as
the primary index. At step 66 the array Index 1s output and

the process ends at step 68.

The following example data demonstrates the effect of the
clustering stage (this example will be continued when

describing the reordering and compression stages 1n FIGS.
4, SA, and 5G.) Set forth 1s an original text message (A), the
input to the BWT clustering stage (shown as HEX ASCII
values over the corresponding text) (B), and the clustering
stage output (listing the primary index (C), and the array
Index data (D), along with the corresponding output viewed
as HEX ASCII values (E) and as characters (F)).

(A) Original message:

This message contains roughly two hundred characters and
1s designed to 1llustrate the performance of the RIM com-
pression algorithm. Since the message 1s very short the
compression ratio 1s not representative.

(B) Input to BWT algorithm:

54 68 69 73 20 6D 65 73 73 61 67 65 20 63 6F 6E 74 61
69 6E 73 20 72 6F 75 67 6C

This message contains rougl

79207477 6F 20 68 75 6E 64 72 65 64 20 63 68 61 72 61
63 74 65 72 73 20 61 6E

y two hundred characters an

64 20 69 73 20 64 65 73 69 67 6E 65 64 20 74 6F 0D 0A
69 6C 6C 75737472 61 74

d 1s designed to 1illustrat

65 20 74 68 65 20 70 65 72 66 6F 72 6D 61 6E 63 65 20
6F 66 20 74 68 65 20 52 49

¢ the performance of the RI

4D 20 63 6F 6D 70 72 65 73 73 69 6F 6E 20 61 6C 67 6F
72 69 74 68 6D 2E 20 53 69

M compression algorithm. S1

6E 63 65 20 74 68 65 0D 0A 6D 65 73 73 61 67 65 20 69
732076 65 7279 20 73 68

nce the message 1s very sh

oF 72 74 20 74 68 65 20 63 6F 6D 70 72 65 73 73 69 6F
6E 20 72 61 74 69 6F 20 69

ort the compression ratio I

7320 6E 6F 74 2072 657072 65 73 65 6E 74 61 74 69 76
65 2E

s not representative.

(C) Primary index: 97

(D) Data (these values are hexadecimal indices into the

message array):

46 SE 45 8D 68 83 78 32 27 6C A8 0B 39 1F 36 BA 96

03BD 61 55 B4 C1 14 9E 89 64 A4 51 42 1B 99 82 DO 6A

6B 69 84 D1 2C 08 931079 5D 33 2A 4E B6 CB 5F 87 28

6D A9 0C 2D 26 35 41 3A 23 8C 67 A7 0A 95 60 54 88 50

CF 2540 C8 C3 57 2F 9B C6 3B 05 90 72 AE 63 59 09 94

18 3E 7B 29 8B 66 A6 53 00 80 A0 20 3D 47 85 11 B8 75

B1 3701 BB 97 7E CD 7A 48 49 19 81 5C 04 8F 6F AB

77 B3 5E 86 34 22 3F BE 12 OE C9 44 1E B9 62 6E AA 76

B2 0D 7C 5A A1 BF 16 56 C4 70 AC 2B 4D B5 24 C2 C5

71AD 58 7D 5B 1530A29C 313802 BC 13980792 C7

OF 3C 74 B0 06 91 73 AF 4B CO A3 OF CA 4F 2E 8A 65

A5 52 7F B7 CC 43 4C 1C 17 21 4A CE 9A 1D 9D 1A

(E) Output viewed as hexadecimal ASCII values:

0D 0D 6F 65 65 2E 6E 73 64 4D 65 65 73 6F 64 6F 65 73

7365 65 6E 74 73779 65 66 74 65 6479 73 6D 65 52 49 20

20 2E 72 73 73 74 20 6D 20 68 72 72 74 6E 6E 20 20 20

20 61 65 6E 65 20 6E 68 68 68 67 67 63 68 63747672 6E

7372707476 72 64 6D 6D 72 72 6F 72 61 61 75 69 6C

6374747474 5477473 20 73 0A 53 61 74 773 73 20 68 20

2072 74 61 69 6C 67 68 72 20 OA 6F 6F 6F 6F 61 69 61

6,075,470

11 12

75 67 20 69 6F 65 7477 69 20 63 63 69 69 63 67 66 68 6E cach position 1n the array having a numeric index value from
72 20 65 6D 6D 61 74 20 64 20 70 70 70 65 6F 6F 20 65 0 to A-1, where A 1s the total number of characters in the
6F 65 72 69 69 69 6E 69 73 73 65 20 6573773 65 65 65 65 alphabet. The preferred pre-ordering of the queue that 1s
75 6F 72 6E 6E 61 63 20 20 20 20 69 61 61 20 73 20 6F 68 optimized for small text messages in the English language 1s

6C 69 20 74 72 6C as follows:

) ;, ‘E!;, ‘t;, ‘Il;, ‘GI, 131;, \i;, ‘I‘;, tS;, ‘1;, 1(1;, 1(3;,) ;, OXOE], ‘h;, ‘11;,

‘m’, g,)WL YL YT Y, T, MY, NS O K, A

P, DR, T CE, W K, L Y, YT, B, Y, N L THY,

N U (O SN SN S TR R ORI © SRRt R A i

'K, 2, e, LY VLY N L YL R R, &S,

Vo<, = e QL X L VLT Y L L LY, A, et
(F) Output viewed as characters: As described 1 more detail below, the MTF reordering

.. oee.nsdMeesodoesseentsyeftedysmeRI .rsst m »g stage 14 operates by converting the characters in the clus-

hrrinnaenenhhhggchctvrnsrptvrdmmrroraauilctttt Tts s.Satss tered data block into numerical values based on the current

position of the particular character in the queue of charac-
ters. For each character, the MTF reordering stage finds its
current position 1n the queue. This value 1s output 1n place

25 of the character and the particular character 1s then moved to
position O of the queue. So, if the next character 1s the same
as the one just processed, the output of the reordering stage
will be a zero.

h rtailghr .0oooalaug 10etwi1 ccuicgthnr emmat d pppe
00 €0Er1nisse esseeeecuornnac 1aa s ohli tri

An examination of the example output characters (F)
compared to the input characters (A) demonstrates the
clustering effect of the BW'T transtorm. As can be seen 1n
(F), similar characters have been clustered together in cer-
tain locations within the block.

Using the BWT clustering stage is particularly advanta- ,, Consider the following example queue (which has not

geous for mobile data communication devices that are been pre-ordered), “abedefg . . . 7. In this queue, the letter
communicating via a wireless packet data network due to the “a” 1s 1n position 0, the letter “b” 1s 1n position “17, etc. If
asymmetry of operation of this algorithm, and the realities of the first character in the clustered data block is a letter “c”,
data traffic to and from the mobile device. The clustering then the MTF reordering algorithm outputs a “3”, the current
algorithm discussed above 1s relatively processor-intensive .. position of the letter “c” in the queue, and then moves the
as compared to the corresponding de-clustering side, which letter “c” to the front of the queue, which now looks like this:
operates very fast. This asymmetry occurs because the “cabdefg . . . 7. If the second character processed 1s a “b”,
clustering algorithm must conduct the lexicographical sort- then the MIF reordering stage outputs another “3”, since “b”
ing operation whereas the de-clustering side does not con- is now in position “3” of the queue, and “b” is moved to the

duct this step. This asymmetrical operation matches well
with mobile data communication devices that are generally
receiving (and thus decompressing) relatively large data

files, and are generally transmitting (and thus compressing) A _
relatively small data files. So, the burden of the lexico- fion 1s an output stream that includes a large number of very

graphical sort is largely borne by workstations that have . low numbers, such as zero, one, two, and a few larger

much more processing capability than the typical mobile numbers. This expected skew 1n the frequency distribution
device. of data 1n the data block can be exploited by the block-wise

adaptive statistical compressor to more efficiently compress

front of the queue.

Because the BWT clustering stage 12 clumps like char-
acters together, the net result of the MTF reordering opera-

Referring now to FIG. 4, a flow chart showing the
computer-implemented steps carried out by the MTF reor- the data block.

dering stage 14 1s set forth. The MTF reordering stage 14 55 Beginning at step 80 1 FIG. 4, the original data block of
converts the output from the BWT clustering stage 12 into N characters, Datal |, and the indices produced by the BWT

a format 1n which characters with low numeric value occur clustering stage 12, Index[], are provided to the MTF
significantly more often than characters with high numeric reordering algorithm. The initial ordering of the characters
value. This 1s accomplished by exploiting the ettect of in the queue are then input to an A-element array labeled
clustering similar characters in similar locations that 18 s5 CurrentOrder]] at step 82, where A represents the total
provided by the BWT clustering stage 12. number of characters in the applicable alphabet. As previ-

The MTF reordering stage operates by first creating a ously discussed, the 1nitial ordering could be preset so that
queue of characters that are included in the alphabet of characters that are likely to occur more frequently in, for
characters (or lexicon) being used by the device operating example, a text message, are 1nitialized to positions in the
the data compression method. For example, in English 60 queue near the front. In addition, different types of alphabets
speaking countries the queue would consist of the normal could be used depending on the location of the device that
ASCII character set. If the device 1s used 1n other countries 1s executing the computer-implemented instructions. So, for
or with different languages, other queues of characters could example, a mobile data communication device that 1s 1n the

be used. In addition, by pre-ordering the characters in the United States may use the ASCII alphabet with a particular
queue based on an to 1nitial expected frequency of 65 pre-sort based on the frequency of occurrence of certain
occurrence, the compression ratio 1s improved. The queue 1s characters 1n the English language, wherecas a device in
thus an array of characters 1n the alphabet being used, with Germany or Japan could use an alternative alphabet with

6,075,470

13

another pre-sort based on the specifics of the language being
used. Of course, 1n this situation, the receiving device that 1s
performing the corresponding decompression steps would
need to know this presort information in order to properly
decode the compressed data blocks.

At step 84 the index variable k 1s set equal to zero. Step
86 determines whether the value of k 1s equal to N, and 1f so,
the MTF reordering process ends at step 88. If k 1s not equal
to N, than at step 90, the method obtains the current
character from the input data block, which 1s equal to
Data|Index[k]]. Control then passes to step 92, where the
process determines the position of to the current character in
the array CurrentOrder|], which is labeled “m”. This value
1s output at step 94. Control then passes to step 96, which
reorders the queue CurrentOrder[| by moving the current
character to the front of the queue and shifting the characters
previously 1n front of the current character by one position
towards the position previously occupied by the current
character. At step 98 the index value k 1s incremented, and
control then passes back to step 86, which determines 1if
there are additional characters to process. If so, the process
repeats until each of the N characters 1s replaced by the
numerical index values based on the current position of the

character 1 the queue.

Continuing the example from FIG. 3, set forth below 1s
the output data block from the clustering stage (G), which is
input to the reordering stage, and the reordered output (H).
These values are shown as HEX numbers to demonstrate the
clfect of the reordering stage. A quick examination of these

two data sets demonstrates that the MTF reordering stage
replaces the relatively hich HEX ASCII values from the

clustering stage with numbers that are mostly zeros, ones,
twos or other relatively low numbers, with the number of
zeros being substantially greater than the numbers of ones,
which are substantially greater than the numbers of twos,
ctc., revealing the monotonically decreasing effect of the
clustering and reordering stages that 1s desired.

(G) Input to reordering stage viewed as hexadecimal ASCII
values:

0D 0D 6F 65 65 2E 6E 73 64 4D 65 65 73 6F 64 6F 65 73
736565 6E 747379 65 6674 65 64 7973 6D 65 52 49 20
20 2E 7273 7374 20 6D 20 68 72 72 74 6E 6E 20 20 20
20 61 65 6E 65 20 6E 68 68 68 67 67 63 68 6374776 72 6E
73727074776 72 64 6D 6D 7272 6F 72 61 61 75 69 6C
637474747454 747320730A5361747373 2068 20
207274 61 69 6C 67 68 72 20 0A 6F 6F 6F 6F 61 69 61
75 67 20 69 6F 65 74 77 69 20 63 63 69 69 63 67 66 68 6E
72 20 65 6D 6D 61 74 20 64 20 70 70 70 65 6F 6F 20 65
6F 65 72 69 69 69 6E 69 73 73 65 20 6573 73 65 65 65 65
75 6F 72 6E 6E 61 63 20 20 20 20 69 61 61 2073 20 6F 68
6C 69 20 74 72 6C

(H) Actual output from Move-to-the-front scheme (these
values are hexadecimal from 0 to FF):

6C 00 05 03 00 17 06 OA0OC 1C 05 00 03 06 04 01 03 03
00010005090318041804020704051504 24 1B OE
00 OD 11 07 00 0OA 04 08 01 16 05 00 04 0D 00 04 00 00
00110B030103020600001800150201071B09 06
OB 02 170505 03 11 0D 00 02 00 13 01 OE 00 19 17 18

Super-

Character 0 1

Width 1 1
Character 0 1

10

15

20

25

30

35

40

45

50

55

14

0D 0OA 00 00 00 2501 0D 11 01 1A 1F OA 05 04 00 05 12
01 00 OC 04 05 OB OB 13 07 06 07 OA OE 00 00 00 08 08

01 OE 08 06 04 05 14 OB 1D 04 05 10 00 02 00 01 07 1A
0D 16 OE 07 0A 13 00 OE 0C 04 14 01 16 00 00 06 OF 00
03 02 02 01 08 OE 00 00 0A 01 13 00 04 06 01 02 00 01 00
00 00 11 07 07 07 00 0B 10 08 00 00 00 09 03 00 02 09 01
07 OE 13 06 04 OE OA 04

FIGS. SA and 5B are flow charts showing the computer-
implemented steps of the block-wise adaptive statistical
compressor 16 of the present invention. FIG. 5A sets forth
the steps to generate the super-character codewords that
adaptively model the characters 1in each data block, and FIG.
5B sets forth the steps to compress the data block using the
super-character codewords generated 1n FIG. 5A.

The block-wise adaptive statistical compression stage 16
1s adaptive 1n that for each data block a new set of super-
character groupings and codewords are generated. The tech-
nique for generating super-character codewords and then
using these codewords to compress the data, block by block,
enables the present invention to avoid the disadvantages of
both fixed and purely adaptive statistical compressors, while
at the same time having the advantages of both.

By adapting the super-character groups and codewords 1n
a block-wise fashion, the present invention provides the
main advantage of a purely adaptive statistical stage (the
ability to modity the code to fit the actual frequency of
occurrence of characters in a data set), without the process-
ing overhead imvolved with continually updating the data
model. It also avoids the main disadvantage of a purely
adaptive stage, particularly for smaller data blocks, which 1s
that 1t takes a certain number of characters to be processed
before the purely adaptive stage becomes an efficient com-
pressor. By forming the super-character groups and
codewords, the present invention provides the advantage of
a fixed compressor (actual correspondence between the
frequency of occupance of characters 1n the data set and the
data model), while at the same time maximizing compres-
sion ratio, particularly for smaller data blocks, by transmiut-
ting a fraction of the amount of data required to accurately
model the data for a typical fixed compressor. Although the
preferred coding technique disclosed 1s a Huffman coder,
other types of compression coding techniques could be
utilized with the method and compressor of the present
invention.

The block-wise adaptive statistical compression stage 16
replaces each character output from the reordering stage 14
with a super-character codeword consisting of a variable
length Huffman prefix, followed by a fixed length index
value. The super-character prefix i1dentifies the super-
character group to which the character belongs, and the
index 1dentifies the individual character in the group. In the
preferred embodiment of the invention there are eleven (11)
super-character groups, although, alternatively, there could
be less than or more than this number, with a maximum of
A where A 1s the size of the alphabet (set of characters), in
which case the entire scheme reverts to a fixed Huflman
compressor. Set forth below 1s a table that describes the
preferred eleven super-character groups for 8-bit ASCII
characters.

2 3 4 5 6 7 8 9 10
2 2 4 4 3 8 16 32 178
4-5 69 10-13 1421 22-29 3045 4677 78255

6,075,470

-continued
Super-
Character 0 1 2 3 4 5 6 7
[ndex Bits 0 0 1 1 2 2 3 3
Symbol 0 1 2 4 6 10 14 22
Start

The first row of the table contains the label for the
super-character groups, which are O through 10. The second
row contains the number of characters that are grouped
together to form the super-character. The third row contains
the actual values of the characters that make up the super-
character, and the fourth row lists the number of index bits
that are required to 1dentify a character in the particular
ogroup. As noted above, although this 1s the preferred group-
ing of characters, the present invention is not limited to any
particular number of super-character groups, number of
characters 1n a group, or number of index bits.

Super-character “0” preferably contains only the single
character “0”. Because of the expected skew in the fre-
quency distribution of characters in the data block created by
the clustering and reordering stages, it 1s probable that there
are at least twice the number of zeros as ones. So, 1n order
to minimize the amount of data transfer to model a particular
data block, the symbol count in super-character group zero
1s set to a particular value, and the rest of the groups are

normalized to this value. The preferred normalization value
(NV) is 32, which makes it likely that the remaining groups
1-10 can be described with 4 or fewer bits (since it 1s
probable that the normalized values 1n these groups will be
less than 16). In addition, by picking a normalization value
for the first group, model data regarding this group does not
need to be transmitted to the decompressor, since 1t would be
programmed to know that the count in group zero is the
normalization value, thereby further minimizing the amount
of model data.

FIG. SA demonstrates the generation of the block-wise
super-character groups. The purpose of generating these
super-characters 1s so that the present invention can mini-
mize the amount of data needed to be transmitted to the
decompression device to model the data block. In a typical
fixed Hulfman coder for 8-bit characters, 256 bytes would be
transmitted to the decompression device to model the data.
For a data block that includes only several KB, this results
in a major loss of compression efficiency. The method
described 1in FIG. 5A 1s capable of modelling the data 1n the
data block using only a few bytes.

Beginning at step 110, the data block from the MTF
reordering stage 14, represented as an N-clement array
MTFData| |, is provided to the block-wise adaptive stage 16.
In addition, at step 110, an array of eleven bins or groups
which correspond to the eleven super-characters in the table
above 1s initialized to zero, labelled SymbolCount|]. Con-
trol imitiates at step 112, where the algorithm counts the
number of characters from MTFDatal | in each group and
for each character belonging to group 1, the value stored 1n
SymbolCount[j] is incremented by one. This step accumu-
lates statistics on the number of characters 1n each super-
character group.

Control then passes to step 114, which begins the nor-
malization process by setting the normalization value (NV)
to 32 and setting the value of an index j to 1. As long as ;
1s not equal to 11, steps 116-124—-126—128 are repeated,
which normalize the super-character groups based on the
normalization value set 1n step 114. Note that although 32

10

15

20

25

30

35

40

45

50

55

60

65

16

8 9 10
4 5 8
46 78

has been chosen as the preferred normalization value, other
values could also be used. Assuming j 1s not 11, control
passes to steps 124 and 126, which, as noted 1n the figure,
normalize the data in a particular group using the set
normalizing value. The 1index j 1s incremented at step 128,
and control passes back to step 116. If there are more
super-character groups to normalize, the process continues.
Once 7 1s set to 11, the normalization process 1s over, and the
first super-character group, SymbolCount| 0] 1s set equal to
32, the normalization value. As indicated above, this nor-
malization process, while not required to practice the present
mvention, further minimizes model data overhead.

Finally at step 120 the super-character codewords are
generated, including the variable length Huffman prefix and
the index values. These super-character codewords are gen-
erated for each of the preferred eleven super-character
cgroups set forth in the table above, using the frequencies
calculated in the array SymbolCount| |. Once the super-
character codewords have been adaptively generated for the

data block, control passes to FIG. 5B, via connector A 122.

FIG. 5B 1s a flow chart setting forth the remainder of the
computer-implemented steps carried out by the block-wise
adaptive statistical compression stage 16 to actually com-
press the data block. The algorithm described 1n FIG. SA
oenerated normalized frequencies of occurrence for the
eleven super-character groups in the array SymbolCount| |,
and also generated the super-character codewords for the
super-character groups, which are stored in the eleven
clement array SuperCode| |. Also provided to the compres-
sor 1s the clustered and reordered data block from the MTF
stage 14, labelled MTFDatal], and an eleven element array
SymbolStart] |, which contains the value of the first char-
acter 1included 1n the corresponding super-character. These
items are provided to the algorithm at step 140.

At step 142 the compressor outputs an initial header byte
to 1dentity that 1t 1s using the clustering BW'T algorithm 12,
with the block size specified by the upper nibble, and 1t also
outputs the primary index from the BW'T stage. At step 144,
the normalized frequencies of occurrence for the super-
character groups contained in SymbolCount| | are output.
This 1nitial data 1s required by the decompression algorithm
to decompress the data block. Although not shown specifi-
cally for any of the stages i1n the preferred multi-stage
compressor, the corresponding decompression routines
would be easily understood by one of ordinary skill in the art
of computer software and data compression by understand-
ing the compression algorithms set forth.

At step 146, an 1ndex value k 1s set to zero. Then, for each
character 1n the clustered and reordered data block
MTFData| |, the steps 154-156-158-160 are repeated until
cach character 1s replaced by its corresponding super-
character prefix and index value. Assuming k 1s not equal to
N, control passes to step 154 which sets the variable “C”
equal to MTFDatalk], and sets the variable “m” equal to the
super-character codeword in SuperCode| | that the current
character MTFDatal k] belongs to. At step 156 the Huffman
variable length prefix for SuperCode[m] is output, and then
at step 158 the 1ndex for the specific character

6,075,470

17

(C-SymbolStartf m]) is output. Control passes to step 160,
which increments k to point to the next character in
MTFDatalk], and control returns to step 148, which deter-
mines 1f there are additional characters to compress. If so,
steps 154—-160 repeat until k=N, at which point the entire
data block has been replaced by the corresponding super-
character prefix and character index. Control then passes to
step 150 where an end-of-block (EOB) code is output, and
the compression stage ends at 152.

Continuing the example started 1n FIGS. 3 and 4, set forth
below is the input data block MTFData| | output from the
MTF reordering stage 14 (I), and the output from the
block-wise adaptive statistical compression stage 16, con-
sisting of the BW'T clustering algorithm identifier (J), the
primary index from the BWT stage (K), the normalized
frequencies of occurrence of the Huffman codes (L), the
actual compressed data (M), and the end of block identifier
(N).

(1) Output from Move-to-the-front scheme (these values are

hexadecimal from O to FF):

6C 00 05 03 00 17 06 OA OC 1C 05 00 03 06 04 01 03 03
00010005090318041804020704051504241B 0OE
00 OD 11 07 00 OA 04 08 01 16 05 00 04 OD 00 04 00 00
00110B030103020600001800150201071B09 06
OB 02 17050503 11 0D 0002 0013 01 OE 00 19 17 18
0D 0OA 00 0000 25010D 11 01 1A1F OA 05 04 00 05 12
01 00 0C 04 05 0B 0B 13 07 06 07 OA OE 00 00 00 08 08
01 OE 08 06 04 05 14 OB 1D 04 05 10 00 02 00 01 07 1A
0D 16 OE 07 OA 13 00 OE 0C 04 14 01 16 00 00 06 OF 00
03 02 02 01 08 OE 00 00 0A 01 13 00 04 06 01 02 00 01 00
00 00 11 07 07 07 00 OB 10 08 00 00 00 09 03 00 02 09 01
07 OE 13 06 04 OE OA 04

(J) BWT algorithm identifier: CA

(K) Primary index as a 16 byte integer: 00 61

(L) 5 bytes containing the Huffman code frequencies of
occurrence

FC FF FF 2C 10

(M) Actual compressed data as bytes

F2 3D 1E DF 20 63 BF 8E DO 17 6E DD 18 F7 ES BE 8B
0246 B9 7JADF A8 4F 4C 33 08 5D FO 71 3E 2A 93 6E F6
EO 2B EA SF 38 3F A3 03 73 E4 CF 53 7D 92 BC 85 F7/
F3 F4 F6 55 EB F3 D3 EF CF 45 86 51 A9 D3 88 DA D5
42 00 B1 0A 84 2E 40 40 23 59 BF E4 69 59 70 7F 1F FO
80 58 AC 83 89 6E F8 A0 23 6E 6709 0A 67 2B 10 3B 2E
A9 3084 33521543 DB 07 C1 41 50 12 0C 2F 36 40
(N) End of message identifier: 10

The total number of bytes output from the multi-stage
compressor 1n this example 1s 131 bytes, which corresponds
fo a compression ratio of about 0.65, meaning that the
compressed file 1s 65% of the size of the original file.

Turning now to FIG. 6, a block diagram of an alternative
multi-stage lossless data block compressor 1s set forth hav-
ing the same stages as shown 1n the preferred multi-stage
compressor of FIG. 1, but also including a sliding-window
dictionary based pre-processing stage 34, and a run-length
encoder (RLE) compression stage 40.

The dictionary based compression stage 1s preferably an
LZSS stage, but could, alternatively, be another type of
dictionary based compressor. The purpose of the LZSS
pre-processing stage 34 1s to deal with certain types of data
blocks that are extremely compressible, and which may be
difficult for the BWT clustering stage to process. For
example, consider a data block consisting of 4096 1dentical
characters. Such a block can be compressed to a very small
size using a dictionary based compressor. In addition, it
would be very time consuming for the BW'T clustering stage
12 to process such a block because the lexicographical sort

10

15

20

25

30

35

40

45

50

55

60

65

138

would be very ineflicient. Thus, as shown 1n FIG. 7, if the
LZSS stage 34 can compress the mncoming data block by a
particular amount, there 1s no need to try and further

compress the block using the rest of the multi-stage com-
Pressor.

Also included 1n the alternative multi-stage compressor of
FIG. 6 1s an RLE encoder 40 between the MTF reordering
stage 14 and the block-wise adaptive statistical compressor
16. This optional stage provides an improvement in com-
pression ratio in the situation where the output of the BWT
clustering stage 12 1s a long string of i1dentical characters,
which 1s then converted to a long string of zeros by the MTF
reordering stage 14. Run-length encoders are particularly
eiiicient for compressing long strings of identical characters,
and therefore this stage 40 can improve the overall com-
pression ratio when used with the clustering and reordering
stages 12 and 14.

FIG. 7 sets forth a flow chart of the computer-
implemented steps carried out by a device executing the
alternative steps of the multi-stage compressor shown 1n
FIG. 6. The steps in FIG. 7 are mostly the same as 1n FIG.
2, with the addition of steps 34, 36, 38 and 40.

The uncompressed data file 10 1s first partitioned into
blocks at step 20, as described above with respect to FIG. 2.
At step 22, the algorithm determines if the last block has
been processed, and 1if so, an EOF byte 1s output and the
compression process 1s complete. If not, then the data block
1s passed to the sliding window compressor, which as noted
above, 1s preferably an LZSS stage, but which could,
alternatively, be another type of dictionary-based compres-
sion scheme. If the LZSS stage compresses the block to 40%
of 1its original size, than the algorithm assumes that this is
suificient compression, and outputs a 1-byte header, a 2-byte
block length, and the output tokens from the LZSS com-
pression stage. This 40% ratio could be any other ratio that
1s IS considered to be satisfactory compression for the
particular application.

If the LZSS stage did not meet the 40% threshold at step
36, then the block 1s passed, mn sequence, to the BTW
clustering stage 12, the MTF reordering stage 14, the RLE
stage 40, and finally the block-wise adaptive statistical stage
16. After being processed by these stages, as described
above 1n FIGS. 3, 4, SA and 5B, the method determines
whether the compressed block (“CBlock™) is smaller in size
than the original uncompressed block at step 28. If not, than
the algorithm outputs a 1-byte header, a 2-byte block length
and the original data block, at step 30. If, however, the
compressed block 1s smaller than the original, then the
algorithm outputs a 1-byte header and the compressed block,
as described above with reference to FIG. SB. In either case,
control passes back to block 22 and any additional blocks are
likewise compressed.

Having described 1n detail the preferred embodiments of
the present mvention, including the preferred methods of
operation, 1t 1s to be understood that this operation could be
carried out with different elements and steps. These pre-
ferred embodiments are presented only by way of example
and are not meant to limit the scope of the present invention
which 1s defined by the following claims.

What 1s claimed:

1. Amethod of compressing data blocks having a plurality
of characters, wherein the plurality of characters form an
alphabet of N characters, comprising the steps of:

assigning the N characters of the alphabet into M super-
character groups based upon the expected frequency of
occurrence of each of the N characters 1in the data
block, wherein M 1s less than N;

6,075,470

19

accumulating statistics 1n the M super-character groups
regarding the frequency of occurrence of each character
1n the data block;

generating a plurality of super-character codewords that
model the frequencies of occurrence for each character,
wherein each super-character codeword includes a vari-
able length prefix value that idenftifies the super-
character group and a fixed length index value that
identifies the particular character in the group; and

replacing the characters with the super-character code-

words to form a compressed data block.

2. The method of claim 1, wherein the assignment of
characters to particular super-character groups results in
certain super-characters being assigned a low number of
frequently occurring characters and other super-characters

being assigned a high number of infrequently occurring
characters.

3. The method of claim 1, wherein the super-character
codewords are Huffman codes.

4. The method of claim 1, further including the step of:

normalizing the accumulated statistics to a predetermined

value.

5. A block-wise adaptive statistical compressor for com-
pressing a data block having a plurality of characters, the
plurality of characters forming an alphabet of N characters
comprising:

means for assigning the N characters to M super-character

ogroups based upon the expected frequency of occur-
rence for each character, wherein M 1s less than N;

means for accumulating statistics 1n the super-character
groups regarding the frequency of occurrence of each
character in the data block;

means for generating a plurality of super-character code-
words that model the frequencies of occurrence for
cach character; and

means for replacing the characters with the super-

character codewords to form a compressed data block.

6. The block-wise adaptive statistical compressor of claim
5, wherein the super-character codewords include a variable
length prefix that identifies the super-character group to
which a particular character has been assigned, and a fixed
index that identifies the particular character 1n the group.

7. The block-wise adaptive statistical compressor of claim
6, wherein the super-character codewords are provided to a
decompression device along with the compressed data block
to enable decompression.

8. The block-wise adaptive statistical compressor of claim
5, wherein the means for assigning characters to particular
super-character groups assigns a low number of frequently
occurring characters to particular super-character groups and
a high number of infrequently occurring characters to other
super-character groups.

9. The block-wise adaptive statistical compressor of claim
5, wherein the compressor 1s programmed 1nto a mobile data
communication device.

10. The block-wise adaptive statistical compressor of
claim 9, wherein the mobile data communication device
communicates via a packet data network.

11. The block-wise adaptive statistical compressor of
claim 9, wheremn the compressor 1s permanently stored
within the memory of the mobile data communication
device.

12. The block-wise adaptive statistical compressor of
claim 9, wherein the mobile data communication device 1s
a two-way paging computer.

13. A multi-stage data compressor for compressing a data
file, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

20

means for partitioning the data file into blocks of char-
acters;

a clustering stage for transforming each data block into a
clustered block;

a reordering stage for reordering each clustered block mnto
a reordered block; and

a block-wise adaptive statistical data compressor for
compressing the reordered blocks of data, comprising:
means for assigning the characters to a plurality of
super-character groups based upon the expected fre-
quency ol occurrence for each character, wherein at
least one of the super-character groups 1s assigned a
plurality of characters;

means for accumulating statistics 1n the super-character
ogroups regarding the frequency of occurrence of
cach character 1n the data block;

means for generating a plurality of super-character
codewords that model the frequencies of occurrence
for each character; and

means for replacing the characters with the super-
character codewords to form a compressed data
block.

14. The multi-stage data compressor of claim 13, wherein

the reordering stage 1s a move to the front reordering stage.

15. The multi-stage data compressor of claim 14, wherein

the move to the front reordering stage replaces the individual
characters in the data block with numerical values having a
skewed frequency distribution.

16. The multi-stage data compressor of claim 15, wherein

the move to the front reordering stage comprises:

means for providing an 1nitial queue containing an alpha-
bet of available characters, each character being
assigned a numerical value that corresponds to 1its order
in the queue; and

for each character 1n the clustered data block, means for
replacing each character in the clustered block with the
current numerical value of the particular character in
the queue and for moving the particular character to the
front of the queue.

17. The multi-stage data compressor of claim 16, wherein
the 1nitial queue 1s preordered with an alphabet of characters
based on the projected frequency of occurrence of the
characters 1n the clustered data block.

18. The multi-stage data compressor of claim 13, wherein
the compressor 1s programmed into a mobile data commu-
nication device.

19. The multi-stage data compressor of claim 18, wherein
the mobile data communication device communicates via a
packet data network.

20. The multi-stage data compressor of claim 18, wherein
the compressor 1s permanently stored within the memory of
the mobile data communication device.

21. The multi-stage data compressor of claim 18, wherein
the mobile data communication device 1s a two-way paging
computer.

22. The multi-stage data compressor of claim 13, wherein
the super-character codewords include a variable length
prefix that identifies the super-character group to which a
particular character has been assigned, and a fixed index that
identifies the particular character in the group.

23. The multi-stage data compressor of 13, wherein the
means for assigning characters to particular super-character
groups assigns a low number of frequently occurring char-
acters to particular super-character groups and a high num-
ber of mirequently occurring characters to other super-
character groups.

24. The multi-stage data compressor of claim 22, wherein
the super-character codewords are provided to a decompres-
sion device along with the compressed data block to enable
decompression.

6,075,470

21

25. The multi-stage data compressor of claim 13, wherein
the clustering stage utilizes the Burrows-Wheeler transform
to transform the data characters in a data block so that like
characters are clustered together 1n certain locations of the
data block, thereby forming the clustered block.

26. A method of compressing a data file comprising the
steps of:

partitioning the data file mnto a plurality of data blocks,
wherein each data block includes a plurality of char-
acters,

clustering the characters 1n the data block so that similar
characters are grouped together within the block;

reordering the data block by replacing the characters with
N numerical values having a skewed frequency distri-
bution; and

adaptively compressing each data block by accumulating
the numerical values into M super-character groups,
wherein M 1s less than N, and the N numerical values
are assigned to the M super-character groups based
upon their expected frequency of occurrence 1n the data
block, and generating super-character codewords that
replace the numerical values 1n order to compress the
data block.

27. The method of claim 26, wherein tile super-character
codewords 1nclude a variable length prefix value that 1den-
fifies the particular super-character group to which the
numerical value 1s assigned and a fixed length index that
identifies the particular numerical value within the super-
character group.

28. A method of compressing a data file, comprising:

partitioning the data file into data blocks containing N
bytes;
for each data block 1n the data file:
clustering the N bytes 1n the data block using a clus-
tering algorithm;
reordering the N bytes of data in the clustered data
block;
adaptively compressing the reordered data block using
a statistically coder;

10

15

20

25

30

35

22

determining whether the adaptively compressed data
block 1s smaller than the original data block; and
if the adaptively compressed data block 1s smaller than
the original data block, then outputting a header byte
indicating that the data block 1s compressed along,
with the compressed data block, else outputting a
header byte indicating that the data block 1s not
compressed along with the original data block.
29. A method of compressing a data block comprising a

plurality of characters, wherein the plurality of characters
are assoclated with an alphabet of N characters, comprising
the steps of:

forming a super-character counting array having M
clements, wherein each element of the super-character
counting array 1S a super-character group associated
with one or more characters in the alphabet, and
wherein M 1s less than N;

accumulating statistics 1n the super-character counting
array regarding the frequency of occurrence of the
characters 1n the data block by incrementing the ele-
ments 1n the array based on the occurrence of a par-
ticular character in the data block that 1s associated with
a particular super-character group;

selecting a normalization value for one of the elements 1n
the array and normalizing the other elements 1n the
array based on the normalization value;

generating super-character codewords for each character
associated with the super-character groups by selecting,
a variable length prefix value and a fixed length 1mndex
value for each character, wherein the length of the
variable length prefix value when combined with the
length of the fixed length index value is less than the
length of an uncompressed character; and

compressing the data block by replacing the characters
with the super-character codewords.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

