US006065041A
United States Patent .9 111] Patent Number: 6,065,041
Lum et al. 45] Date of Patent: May 16, 2000
[54] INTERFACE CODE ARCHITECTURE 5,854,936 12/1998 PicKett .ovvevevverererrrereresserannas 395/710
5,883,613 3/1999 Iwakl .ccooveevvneireeieiiniveeeenenenns 345/132
[75] Inventors: Lambert Chun-Bob Lum, Hayward; 5,897,635 4/1999 Torres et al. .ooovvevvvveviiiniininnnnnnns 707/10
Craig Seidel, Palo Alto; Zhengo Guan, 5,950,011 9/1999 Albrecht et al.ccco.covveee..... 395/712
Mountain View, all of Calif.; James K. FOREIGN PATENT DOCUMENTS
Schwarz, Jr., Boulder, Colo.
0333612 9/1989 FEuropean Pat. Oft. GO6F 9/44
(73] Assignee: Electronics for Imaging, Inc., Foster 0684547 11/1995 FEuropean Pat. Off. GO6F 3/14
City, Calif. WO095/15524 6/1995 WIPOccuveeveenneee.. GOB6F 9/445
Primary Fxaminer—Mehmet B. Geckil
21] Appl. No.: 08/933,126 Attorney, Agent, or Firm—Michael A. Glenn
22] Filed: Sep. 18, 1997 [57] ABSTRACT
51] Int. CL7 .o, GO6F 15/16; GOoF 15/177 A display interface system that uses a server-client approach.
521 U.S.ClL oo, 709/203; 709/220; 709/221; The server contains all of the necessary information regard-
- 345/3 ing display information, while the client deals with the
(58] Field of Searchocccoooveeveveneneen... 709/203, 220, specific display type that it is connected to. The server
709/221, 222, 230, 246; 345/330, 521, contains generic descriptions of user interface screens which
329,204, 3, 1, 2 allow the server to be mndependent of specific display types.
This allows one version of software to support many types
[56] References Cited of displays, rather than several software revisions for each
display type, saving the software developer time,
U.S. PATENT DOCUMENTS maintenance, and labor costs. A request-response commu-
4,558,413 12/1985 Schmidt et al.ccooorveeeren.. 707/203 ~ Dication system is used whereupon the client requests pre-
4,558,418 12/1985 Schmidt et al. .vovererveevernen... 364/300 Vvious or next user display screens, system parameter
4,787,035 11/1988 BOUIME eoovveeeeeeeeeeeeeeeeeeeeeennns 700/247 requests, or updates from the server. The client requests
4,860,247 8/1989 Uchida et al. ...cocovevevunevenenenn.e. 345/521 screen 1nformation through a series of key-tag sequences,
5,045,994 9/1991 Belfer et al. ...coouevverevvnennnnnnen.. 369/286 while the server controls the Sequencing of the user dlgplay
5,280,574 2/1994 SAWYET wovvvvvricrrinrssnrsnesne 395/157 screens. The client is shielded from any knowledge of the
5,315,711 5/:994 Barone et al. ..cocovvevrniininnnnnnns 395/275 contents of the screen and is only concerned with the fact
5,388,252 2/1995 Dreste et al. cooveervvveevnennnnnn.n, 395/575 - . : : S
5530872 7/1996 Miniz et al 305/155 that something 1s being displayed. Communication between
5715444 2/1998 Danish et A 395 /604 the server and client 1s through a unified protocol, allowing
5.734.852 3/1998 Zias et al. oo 395334 the client to be located either locally, in the same machine
5,748,189 5/1998 Truebloodcceevvvvvnnnrvvnnnnnn.. 345/331 or remote, across a network.
5,768,614 6/1998 Takagi et al. ..cccevvvevrverveeeeennnenn 395/821
5,815,148 9/1998 Tanakacccoeeevviieiirininnnnnnnnn. 395/333 56 Claims, 7 Drawing Sheets
Clients
6'0?'\
Interface
Code
606 Interpreter :
601\ Disp lay
Controller
\\608
Server
Interface
Display Code
Controller Interpreter 5
604
Interface Ne“‘"{” Display
Code cnironier
603 Interpreter o0
Console 609
Application
Programming
-
6’04—'/_ Interface
Interface
Code
Interpreter
N
Display
610 Controller

U.S. Patent May 16, 2000 Sheet 1 of 7 6,065,041

101 102

Console
Application

Interface
Code

Programming
Interface

Interpreter

PiG. 1
201 202
Console Interface
Application Code
Programming Interpreter
Interface
203 205
Parameter Disp lay
Manager Controller
204 206
System _
Database Disp lay

riG. 2

U.S. Patent May 16, 2000 Sheet 2 of 7 6,065,041

301

Console

Parameter Application
Manager Programming

Interface

30

Client

FiG. 3

Interface

Code
Interpreter

Disp lay
Controller

Interface

Code Disp lay
Interpreter | Controller

Console
App lication
Programming
401 Interface

riG. 4

U.S. Patent May 16, 2000 Sheet 3 of 7 6,065,041

£05 Clients

504 Interface

Code
Interpreter

Disp lay
Controller

a06

201

Interface

Code

Server Interpreter

Console Network Display
Application

Controller

Programming | 003
Interface 507

o0

Interface

Code
Interpreter

FIG. 5 Disp lay
508 Controller

U.S. Patent May 16, 2000 Sheet 4 of 7 6,065,041
Clients
607
Interface
Code
606 Interpreter :
b0 Disp lay
Controller
608
Server
Interface
D isp lay Code
Controller Interpreter
602
Interface Network CDE?P“Z:)I/
Code Ontroilier
605 Interpreter 60>
Console 607
Application
Programming
. Interface
Interface
Code
Interpreter \
FIG. 6

Display
Controller

610

U.S. Patent May 16, 2000

Server Name 701

System Date 702

MM/DD/YY/

System Time 703

704

705

6,065,041

Sheet 5 of 7

7006

iiiiiiiiiiiiiiiiiiiiiiiiiiiii

Server Name

...............................

System Date //

llllllllllllllllllll

System Time

iiiiiiiiiiiiiiiiiii

708 709

707

Server Name
Filery XJ

riG. 7

U.S. Patent May 16, 2000 Sheet 6 of 7 6,065,041

Server Name
Filery XJ

System Date
MM/DD/YY/

System Time
13:01

Print Start Page
No

Save Changes

Yes FIG 8
805
ALERT
804
PRINT Visible
806

Idle
7134Mb 3.1
Info

0 [\

RIP 801

FUNCT ION
i FIG. 9

U.S. Patent May 16, 2000 Sheet 7 of 7 6,065,041

306
301 02
RIP ALERT
904
FUNCT ION
PRINT MENUTAB
SHEET

GUI Display

FIG. 10

6,065,041

1
INTERFACE CODE ARCHITECTURE

BACKGROUND OF THE INVENTION

1. Technical Field

The mvention relates to the transfer of information across
a plurality of dissimilar display devices. More particularly,
the 1nvention relates to a generic information interface
architecture for transferring display information from a
server to a plurality of dissimilar display devices, thereby
allowing the server to 1gnore the attributes of each particular
display device.

2. Description of the Prior Art

Computer system applications that require user interac-
fion communicate information through devices such as
Liquid Crystal Displays (LCDs), Light Emitting Diode
(LED) displays, plasma displays, and cathode ray tubes
(CRTs). Each display type requires a specialized driver to
control any graphical representations on the display. The
ographical representations may be very simple, one-line
messages, ¢.g. “Sell Test,” to very complicated graphical
user interfaces (GUISs).

A software developer must create source code that 1s
custom tailored for each display with which his application
communicates. Typically, a library 1s created that represents
all of the allowable graphic primitives on the screens that are
displayed on the chosen display. The library contains infor-
mation such as the screen creation primitives, button labels,
user messages, blink characteristics, and headings. Built on
top of the library 1s a module containing all of the screen
descriptions. The library and screen description module are
written 1n the programming language, e.g. “C,” that the
software developer 1s using and customized for the type of
display, €.g. a one, two, or five-line LCD display, or a GUI
display. The differences between a two-line and a five-line
LCD display 1s the amount of information that can be
displayed. A two-line LCD display 1s limited 1n the amount
of text that can be displayed to the user as compared to a
five-line LCD display. A GUI display has much more display
arca than a line-limited LCD display. It can display on one
screen, information that would require several screens on a
line-limited LCD display. The source code 1s then compiled
with the application source code and delivered as part of the
final product.

This hard coding of display screens requires that new
source code be created and compiled 1nto the application
software whenever a new display device 1s selected. The
source code for each display type must be archived and
maintained for the life of each display device. This 1s a
cumbersome and expensive task, €.g. there are N different
source codes for N different display devices used.

U.S. Pat. No. 4,787,035 1ssued to Bourne on Nov. 22,

1988, discloses a system which uses an interpreter that
ecxamines messages using grammar and lexical tables to
produce a parse table. The parse table 1s compared to data
needed 1n a semantics table to fire a rule which causes a
function table to be evaluated and performs user desired
functions. This 1s particularly suitable for manufacturing
systems with multiple target languages.

If the product 1s one that 1s used by an Original Equipment
Manufacturer (OEM), the OEM usually requires custom
displays to differentiate their product from the other OEMs
using the same base application. For an OEM engineer to
create his custom displays, he must know the internal
structure of the application’s software. Revealing such infor-
mation 1S many times a sensitive issue. The originating

10

15

20

25

30

35

40

45

50

55

60

65

2

company would prefer to keep such internal software struc-
tures confidential 1n an attempt to retain their value as a
product supplier to any OEM.

It would be advantageous to provide a display interface
system that allows the developer to create a single set of
screen descriptions that 1s used for all supported display
types. It would turther be advantageous to provide a display
interface system that 1s independent of the display location,
1.e. whether the display 1s embedded in the system or
network accessible.

SUMMARY OF THE INVENTION

The 1nvention provides a display interface system that has
a generic architecture and 1s thereby independent of the
supported display type. The invention uses a generic lan-
cuage approach that 1s independent of the type of display
chosen and 1ts location in relation to the generic code
generator.

The 1nvention uses a server-client approach. The server
contains all of the necessary information regarding display
information, while the client deals with the specific display
type to which it 1s connected. The server allows a software
developer to create generic descriptions of user interface
screens. The generic screen descriptions allow the server to
be independent of specific display types. This allows one
version of software to support many types of displays, rather
than several software versions for each display type. The
software developer saves on time, maintenance, and labor
COSIS.

A request-response communication system 1s used where-
upon the client, acting as the user interface, requests previ-
ous or next user display screens, system parameter requests
or updates from the server. Thus, the user interface function
1s offloaded from the server. The client requests screen
information through a series of key-tag sequences. User
display screen sequencing 1s controlled by the server. The
concept of user display screens 1s known only to the server.
The client 1s shielded from any knowledge of the contents of
the screen and 1s only concerned with the fact that something
1s being displayed.

Communication between the server and client 1s through
a unified protocol. The server-client approach, combined
with the unified protocol, allows the client to be located
cither locally, in the same machine or remotely, across a
network.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block schematic diagram of two major
components and their interface according to the invention;

FIG. 2 1s a block schematic diagram of a full system
implementation according to the invention;

FIG. 3 1s a block schematic diagram of a server client
relationship according to the invention;

FIG. 4 1s a block diagram showing a localized implemen-
tation according to the invention;

FIG. § 1s a block schematic diagram showing a remote
implementation utilizing the server-client relationship
according to the invention;

FIG. 6 1s a block schematic diagram showing a local and
remote 1mplementation utilizing the server-client relation-
ship according to the invention;

FIG. 7 1s a block schematic diagram showing a series of
screens and their equivalent translations 1n a GUI and LCD
environment according to the invention;

6,065,041

3

FIG. 8 1s a block schematic diagram showing a series of
two-line LCD displays;
FIG. 9 1s a block schematic diagram showing a sequence

of LCD targets and their display sequence according to the
mvention; and

FIG. 10 1s a block schematic diagram showing a set of
GUI targets displayed simultaneously on a GUI display
according to the invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 shows a Console Application Programming Inter-
face (CAPI) 101 and an Interface Code Interpreter 102
which comprise two major components of the invention. The
CAPI 101 allows a software developer to create generic
descriptions of user interface screens or portions ol user
interface screens, collectively referred to as “screens”. These
descriptions are then managed by CAPI 101 during normal
system run-time. A request-response communication system
1s used whereupon the Interface Code Interpreter 102, acting
as the direct user interface, requests previous or next in
sequence user display screens from CAPI 101. CAPI 101
controls the sequencing of all of the user display screens.
The concept of user display screens 1s known only to CAPI
101. The Interface Code Interpreter 102 only has the knowl-
edge that something 1s being displayed to the user, and not
the content of the display.

With regard to FIG. 2, to explain the capabilities of the
imvention further, CAPI 201 and the Interface Code Inter-
preter 202 are shown in a full system implementation. A
Parameter Manager 203 1s the interface to all of the system
information, €.g. how many print jobs are queued on the
system, or the Internet Protocol (IP) address. This informa-
fion 1s stored in the System Database 204 and accessed by
the Parameter Manager 203. The Interface Code Interpreter
202 sends a value request or a value save request to CAPI
201. CAPI 201 asks the Parameter Manager 203 for the
appropriate value from the System Database 204, 1n the case
of a value request, and sends the value response back to the
Interface Code Interpreter 202. In the case of a value save
request, CAPI 201 has the Parameter Manager 203 check the
validity of the value and then update the appropriate value
in the System Database 204. The Interface Code Interpreter
202 communicates with the user through the Display Con-
troller 205. The Display Controller 205 consequently dis-
plays information to the user through the Display 206.

Referring to FIG. 3, the invention 1s extended to a
server-client relationship. The Server 301 contains the CAPI
303 and Parameter Manager 304 components. The Client
302 contains the Interface Code Interpreter 305 and Display
Controller 306 components. The Server 301 and Client 302
communicate with each other using the CAPI 303 and
Interface Code Interpreter 305. The Parameter Manager 304
and CAPI 303 may be combined together as one functional
component and will herein be referred to as CAPI. In this
embodiment of the mvention, the client may communicate
with the server after a selected action 1s executed locally at
the client (default mode), or client/server communication
may occur 1n a direct mode, 1n which certain user actions are
communicated directly to the server, or 1n a component level
event driven mode, 1n which all user actions are communi-
cated directly to the server.

Referring to FIG. 4, 1n a local implementation, the CAPI
401, Interface Code Interpreter 402, and Display Controller
403 are combined together, thereby providing an integrated
user mterface solution.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

With respect to FIG. 5, a network implementation 1s
shown. The Server 501 contains the CAPI 502 component.
Clients communicate with the Server 501 through a Network
503. There may be any number of clients one 505, two 507,
through N 508 attached to the network. Each client contains
the Interface Code Interpreter S04 and Display Controller
506 components. The Interface Code Interpreter 504 varies
from one client to another depending on the capabilities of
the display type. All requests for user interface screens are

sent from the clients through the Network 503, to the Server
S501.

Referring to FIG. 6, the Server 601 may have a local
display attached to it and would then require the Interface
Code Interpreter 603 and the Display Controller 602 com-
ponents. Each client (and Server 601 in this case) is nor-
mally communicating to a different user. Each user has
different demands from the Server 601. Therefore, each
client may have a different user interface screen displayed to
the user. In addition, each client may have a different type of
display. For example, client one 607, may have a GUI
display, while client N 610 may have a five-line LCD
display. This requires the clients to communicate to the
Server 601 their display preferences, which 1s typically done
upon the client startup or beginning of a communications
session with the Server 601.

The Server 601 stores screen descriptions 1n a script form
in an 1nternal database. The scripts are created by the
programmer and define the screen contents. The Server 601
interprets the scripts and converts 1t to the proper protocol
form for a client to understand. The run-time interpretation
of the scripts allows the programmer or OEM to create
screen description scripts without re-compiling the source
code of the Server 601. This also 1nsulates the programmer
and OEM from the internal structure of the Server 601 code
and the language (e.g. C, Ada, C++) in which the code is
written.

The Server 601 also stores display proiile descriptions 1n
an 1nternal database. The client also has a requirement for
the language, e¢.g¢. EnglishUS, that the client wants the
strings and screens to be displayed in. The Server 601 tries
to find the closest match to the client’s profile and returns the
proiile handle. If the Server 601 does not find an exact string
size match, it looks for a string size shorter than that
requested. In the case of the language, 1t returns the default
language, ¢.g¢. EnglishUS, 1f no match 1s found. The Server
601 ignores all unknown tags and unknown values from the
client. The Server 601 dynamically creates a profile that
matches the client’s profile and returns the handle to that
proiile to the client. The client stores the profile handle and
uses 1t to tell the Server 601 the types of screens and strings
it requires. As previously mentioned, the client obtains a
proiile handle at the beginning of each communication
session because the proiile handles on the Server 601 may
change.

The display profile descriptions are created by the soft-
ware developer to indicate the capabilities of each type of
display. Additionally, the server dynamically creates any
additional display profiles to match the attributes of any
previously unknown client profiles. A display may have the
capability to display two lines of text (the smallest) or many
lines of text (in the case of a GUI display). The CAPI system
resizes the display output to fit the display type. CAPI
operates on a multiple virtual LCD model, wherein the
smallest display (two lines) constitutes a virtual LCD screen.
Several LCD screens may be displayed on a five-line LCD.
An even greater number (possibly ten) of LCD screens may
be displayed on a GUI display. The software developer may

6,065,041

S

coalesce the virtual LCDs into logical groupings so that
multiple LCDs are logically related when they are displayed
simultaneously.

With respect to FIG. 7, the coalescent behavior 1s shown
using a series of server setup screens. A typical setup
sequence allows the user to set the server name 701, system
date 702, system time 703, whether to print a start page 704,
and whether to save the changes made in the previous
screens 705. A GUI display coalesces all of these screens
onto one display 706, replacing the save changes screen 705
with an OK button 708 and a cancel button 709. The

decision making process of whether to coalesce the screens
resides 1n the client itself. The client has the knowledge of
the capabilities of the display that i1t 1s driving. The server
describes a vague, abstract grouping of the screens and the
client decides on the final grouping. For a two-line LCD 707,
the server name screen 701 would be reduced to two lines by
the client.

erence
between a GUI and LCD display 1s that the amount of
information that may be displayed on each display type
varies. For example, a two-line LCD display (FIG. 8) may
only have the ability to display a Raster Image Processor
(RIP) screen containing the job name and number of bytes
ripped. A GUI display (FIG. 10), on the other hand, adds
more information such as the job’s owner, the Postscript file
size, and ripping time. This 1s called Variable Content.

Another concept that 1s brought about by the diff

In Variable Content, the server tags all of the contents of
a run-time screen. The client picks and chooses which part
of the contents of the screen it displays and which part 1t
does not display. The decision 1s up to the client in custom-
1zing the contents according to the size of the display that 1t
1s driving. This results 1n a semi-chaotic interpretation of the
screens. The advantage of this style of interpretation 1s that
it allows the client to decide on the layout and attributes (e.g.
font, size and color) of each screen. The outputs may vary
between display types.

Referring to FIG. 9, each type of screen 1s considered a
target. An 1dle screen 801 1s currently visible 806 in an LCD
example. There are other targets that the user 1s able to scroll
through, such as a function menu target 802, RIP target 803,
print target 804, and alert target 805. The LCD targets are
only active when there 1s information other than idle to
display. An 1dle target display 801 indicates that all other
targets are 1 an 1dle state.

With respect to FIG. 10, GUI targets are displayed on a
GUI display 905. All targets such as the RIP target 901, alert
target 902, function menutab sheet target 903, and print
target 904 are visible. If any targets go 1nto an 1dle state, then

they indicate so. There 1s no need for a summary target as in
the LCD example.

Input from the user can be predetermined on the client
side. It 1s up to the client to decide at what level it pauses for
user mput. The server, on the other hand, does not know
when an 1nput event occurs.

In a preferred embodiment of the invention, CAPI allows
the software developer to use a grammar that 1s a superset of
the C programming language to create user interface screen
descriptions. One skilled 1n the art will readily appreciate
that other languages such as Ada, C++, and proprictary
scripting erammars may be used instead of or in combina-
tion with C. The following 1s an example of a C based
approach.

10

15

20

25

30

35

40

45

50

55

60

65

6

CAPI grammar (C based)
A sample code section 1s shown that demonstrates the
similar structure of the CAPI grammar with the C language.

int
serversetup (void)
1
BEGIN(asscClusterSavable)
BEGIN(textPair)
moText(“KSERVERNAME”); /* Server Name */
moEntryText(*XJ7_SERVER”, NULL, 10);
END
BEGIN(datePair)
moText(“KSYSTEMDATE”); /* System Date */
moEntryDate(“sysdate™);
END
BEGIN(timePair)
moText(“KSYSTEMTIME”); /* System Time */
moEntryTime(“systime™);
END
END

return CHOICE__NOTHING;

The mner BEGIN . . . END pairs represent small LCD
screens, 1.¢. virtual LCD screens. While the outer BEGIN . . .
END pair represents a group or cluster of small LCD
SCreens.

The pairs and clusters may also be represented as a tree of
array function pointers. A pair may be coded as one function,
and a cluster function may contain code to register the
function pointer of the pair. The function pointers are
collected 1n an array and may be executed in any order.

For larger displays, such as GUI displays, these virtual
LCD screens coalesce into dialog boxes. The inner

BEGIN . . . END pairs represents lines 1n a dialog box. The
outer BEGIN . . . END pair will represent a dialog box 1tself.
The BEGIN . . . END Operators

BEGIN . . . END pairs are implemented by means of

macros 1n the C programming language. The following 1s a
typical definition of the operators:

#define BEGIN(funPtr) \
begin(funPtr); \
1

#define END(funPtr) \

I
end();

The begin() function takes a function pointer as a param-
eter. Inside begin(), the function pointer is de-referenced and
called. The de-referenced function pointer performs some
type of setup operation, then the function pointer 1s pushed
onto a stack for end() to use later.

The end() function pops the function pointer off the stack
and performs a table lookup for a corresponding ending
function that describes how to shut down the code block.

The following 1s an example of an actual code section:

BEGIN(textPair)
END
BEGIN() starts and textPair() is called. TextPair() clears

the screen and sends the cursor to the upper left hand corner
of the screen. The function pointer textPair() is then pushed

6,065,041

7

on the stack. END() executes later and the function pointer
textPair() is popped off of the stack. The function end()
performs a table look up of textpair() to find the complement
function. The function endTextPair() is found in the table.
EndTextPair() is called and collects input from the user.

When BEGIN . . . END pairs are nested they form a
cluster. A cluster 1s a grouping of smaller BEGIN . . . END
pairs. On a GUI display, a cluster 1s equivalent to a dialog
box.

The function pointers that are passed as parameters add to
the flexibility of the system. For example, there are several
functions with the sutfix of Pairs 1n the previous examples.
The functions textPair(), datePair(), and timePair() call a
generic function called pair(). This is an example of abstrac-
fion where a function can be customized for any special
need.

The IF . . . ELSE . . . ENDIF Operators

The operators IF, ELSE, and ENDIF may be defined
specifically to fit the application. For example:

#define IF 1if
#define ELLSE else
#define ENDIF /* nothing */

On other applications, IF and ELSE may be redefined to
allow unconditional traversal of both branches of a condi-
fional branch.

The BREAK Operator

The Break operator takes the program execution to the
point just past the nearest END macro. Because the BEGIN
and END macros may perform some behind the scenes
operation, BREAK was developed to properly shut down
those operations when trying to break out.

CAPI Screen Primitives

Screen primitives are 1dentified by their prefix, mo
(malleable output). They are named for reconfigurability.
For example:

BEGIN(selectPair)
moText(“KPRTSTARTPG™); /* Print Start Page */
moEntrySelect(“PRISTARTPG”, “KYES”, “KNO”, NULL);
/* Yes, No */

END

The function moText() takes a language key parameter
and outputs a localized string to the screen. MoEntrySelect()
produces a selection choice list. The first value 1s a sysdict
key that 1s used for obtaining a default value and writing,
back the value into the sysdict. The other strings are lan-
cuage keys whose localized form composes the choice list.
The NULL designates the ending parameter in a variable
arcument list.

On any platform, the functionality of these mo functions
can be rewritten allowing for arbitrary customization. For
example, an application may want to redirect the output to
more than one destination, e.g. multiple virtual LCDs or 1t
may want to record a play back file. CAPI does not enforce
any mo display. The exact form and appearance of display
primitives 1s determined by the client application. CAPI
only gives hints and suggestions of the form and appearance
of primitives and selections.

CAPI Associative Primitives

In the previous examples, function pointers were passed
into BEGIN. These function pointers are a class of primi-
tives known as associatives. Associatives influence the

10

15

20

25

30

35

40

45

50

55

60

65

3

behavior of mo primitives or nested BEGIN . . . END pairs.
The mo functions are designed to be directed by associative
primitives. The mo functions observe certain status set up by
associatives and attempt to conform to them.

A second purpose of associatives 1s to perform implicit
operations. For example, cluster associatives implicitly posi-
fion a “save changes” screen at the end of a group of setup
screens or an 1mplicit OK button.

Associatives can also be rewritten for customization. For
example, 1f a software developer 1s porting from a small
screen LCD to a GUI display, the cluster associative 1s
rewritten to create a dialog box instead of a series of screens.
The pair associative 1s composed of two mo primitives to
create a line within a dialog box.

The following 1s a description of a server/client commu-
nication protocol 1n a preferred embodiment of the 1nven-
tion.

Description of the Protocol

Instead of computing all of the layout details and man-
aging all of the user controls on the server, CAPI offloads the
User Interface (UI) interaction onto a client application (e.g.
an LCD display client on the server, or remote applications
written in Java). The client application communicates with
CAPI using the protocol described herein.

CAPI can support remote applications on all platforms
which understand the unified protocol. Multiple UI’s of all
varieties can be driven by a single protocol even though they
differ in many ways.

The communication between the client application and
CAPI server can be viewed as a request-response dialog.
Each time the client application requires the next screen, 1t
sends a screen request to CAPI and CAPI responds with the
description of the next screen. The client must supply the
handle of its current screen 1n the request. The protocol also
pays attention to user input from the client application to
CAPI, so the server can keep track of which screen to send
at the next request. Possible requests mnclude: next screen;
previous screen; descent to next menu; and ascent from
menu.

Values from the Parameter Manager are handled in the
same manner. The client application sends a value request or
a value save request and CAPI sends back a value response
or a value save response.

Keys & Values

There is an associated key for each text string (both
localized and non-localized), choice in selection lists, and
screen (cluster or pair). This key is used by CAPI to identify
all data and screens. Keys are also manipulated, stored, and
retrieved by the Parameter Manager.

There are two parts to each key, the set key and the data
key. Using dot notation, a key 1s in the form of S.D, where
S 1s the set key and D 1s the data key.

CAPI has three types of values: string, numerical, and
Boolean. Because the client has no information on
localization, all strings sent to the client have to be pre-
localized by the server. For example, when choosing a
selection from a selection entry, the client must tell the
server which choice 1t 1s setting. The client application sends
back the key of the choice (e.g. true) rather than sending
back the localized selection string (e.g. si (Spanish)).

For numerical values, there 1s no key associated with the
value, and the client sends back the value.

Client Profile

Before the CAPI server can send back the description of
screens or respond to any requests to the client application,
the server must know what the client can display (i.e.
whether the client 1s a two line LCD, five line LCD, or Java

6,065,041

9

GUI application which can display long strings) and in
which language the client wants the strings and screens to
be. This 1s called the Client Profile.

The client application employs the following format in
performing the client profile handshaking:

From client to server:

#GETPROFILE#
Tag \t Value \n__
Tag \t_ Value \n__

Tag \t_ Value

From server back to client:

#RETURNPROFILE#_ \t Profile_ Handle

As an example, the tags can be lang and localSize. The

value for the tag lang 1s the language that the client 1s trying,
to display, e.g. EnglishUS, French, or German. The value for

the tag localSize tells the server the display size and whether
the client1s LCD or GUI, e.g. LCD5x20, LCD2x16, or GUI.

After the server receives the tags and values, 1t tries to
lookup the closest match to the client profile and return the
proiile handle. If 1t does not find an exact string size match,
it looks for a string size shorter than the requested one. In the
case of language, 1t returns the default, e.g. Englishlntl or
EnglishUS, depending on the system. The server ignores all

unknown tags and unknown values.

The Client Application then stores the Profile Handle and
uses 1t 1n requesting screens and strings from the server. It
1s advisable not to hard code the profile handle or store it
offline. The client application should perform the profile
request every session (not every request though) because the
proiile handle might vary from different server versions.

Validity, Dependency and Propagation

Validity indicates whether a parameter’s value 1s consis-
tent with the correct operation of the system. For example,
a negative value for a polling interval 1s mnvalid. Sometimes
the user can only select from a few choices, making any
other values 1nvalid.

Dependency controls whether the user can change the
values 1n a certain entry. In the present protocol, dependency
lists are sent to the client describing the dependency of an
entry or a menu item.

Propagations are triggers which are activated when the
user changes some values which cause “chain reactions.” An
example 1s when the user changes a value on the current
page, thereby causing values 1n the pages encountered
before and after to be changed.

Validity 1s maintained on LCD CAPI platforms using,
choice lists, numeric selection, range testing inside CAPI,
and some programmatic C functions in the screen descrip-
tion files. Additionally, control flow dependency 1s used on
LCD platforms rather than dependency lists. Therefore,
CAPI skips the screen if the condition 1s not met.

Validity 1s the responsibility of the client application on
GUI platforms. The protocol includes either all the possible
choices (e.g. moEntrySelect) or the range of values the user
can pick (e.g. moEntryNumber) for each entry. The client
application validates the user input before sending it back to
the server. Parameter Manager also validates the input on the
server side.

GUI applications use dependency lists to deactivate (gray
out) entries and tabsheets when certain conditions are not

10

15

20

25

30

35

40

45

50

55

60

65

10

met. For example, when the Parallel Port 1s disabled, all of
the configuration entries in the Parallel Port Setup page are
deactivated.

Propagation is performed on the server side and not on the
client side. Whenever propagation occurs, the server sends
updates of the values to the client. The client 1s responsible
for refreshing the display. The update 1s as follows:

#UPDAIE#_\n__
Key_ \t_ Value
| _\n_Key_\t Value. . .]

Note: If the value of a selection 1s #77#, this indicates the
client should erase the choice list. The #UPDATE# is

immediately followed by a #RETURNOPTION# (the new
choice list) with the corresponding key.

The update 1s easily performed 1f the client does not store
any keys and values other than those currently displayed and
the update does not affect the current page. When the client
requests a new screen, the values 1in the new screen are
up-to-date, so no special measures are required.

When the client application keeps track of keys and
values, 1t changes the stored value 1n memory and refreshes
the corresponding display upon receipt of the updates.

The most difficult part 1s when the update atfects display
and values of the current screen. This scenario requires

Direct Mode or Component Level Event Driven.
Direct Mode

Direct Mode 1s similar to the “Wizard” in GUI environ-
ments. The application guides the user, one step at a time for
cach screen. Upon completing a change to one value or
reading one message, the user can click on the NEXT button
and go to the next step.

Propagation 1s easily achieved 1n direct mode because the
client only receives one pair at a time. Therefore, propaga-
tion on the same screen does not occur. Also, flow control 1s
totally controlled by the server, so no hiding or graying out
of any components of the display 1s necessary.

Direct mode 1s activated by the “direct” tag in #SCREEN-
RESPOND#. All client applications must support direct
mode.

Component Level Event Driven (CLED)

During normal CAPI client-server interactions, the only
time the client sends back requests 1s when the user is
finished with the current screen and 1s trying to go to another
screen. This 1s also the only time the client application 1is
expecting anything from the server.

CLED differs from the normal situation. Each time the
user changes anything or presses a button, the client sends
back the value it 1s trying to set. The servers then send back
the updates. This back-and-forth value exchange continues
until the user 1s finished with the current screen, saves the

values, and proceeds to the next screen.
CLED 1s activated by the “cled” tag in #SCREENRE-

SPOND#.
Target Display Area

The server may occasionally send information, warning,
and error messages to the client in addition to the regular
screen display. The client application 1s responsible for
displaying and distinguishing these messages from the regu-
lar display. For example, on a GUI application, the user may
see an 1nformational message on a pop-up dialog box and
warning/error messages on another type of pop-up dialog
box. While on an LCD display, the user presses a menu
button to see a message on the information screen for
informational messages, or presses the menu button again to
sec warnings and errors on alert screens with the warning

LED flashing.

6,065,041

11

Each display area 1s referred to as a target. The client
application supplies the target screen as a required parameter
in each screen request. This tells the server the target for
which the next screen description 1s intended. In each screen
response, the server supplies a target tag so the client knows 5
where to display the screen description. If there are any
informational messages, warnings, or errors, the server
sends two or more screen descriptions. All screen descrip-
tions are directed to specified targets.

The message flash differs from all of the other targets. One 10
example of a message flash 1s: “Configuring Token Ring
Hardware. Wait 1 min.” After receiving any message flash,
the client application displays the message to the user and
walits for the server to signal that 1t 1s ready again. The server
also supplies a maximum timeout with the message flash 15
target. If the client expires on this maximum timeout, 1t can
send another screen request to the server. The client appli-
cation considers the server to be down or the connection lost
depending on the number of timeout expirations.

Details of the Protocol 20

The syntax of the protocol 1s covered in two sections. The
first 1s the protocol from the client application to the server
(CAPI) and the second is the protocol from the server
(CAPI) back to the client.

Note: _ /t_denotes a TAB character and _ /n__denotes a 25
NEWLINE character.

The TAB character 1s used as a delimiter for tokens on the
same line, and the NEWLINE character 1s used to indicate
the end of a token list. For debugging and readability, TAB
characters are introduced at the beginning of a line to 30
provide indentation. The client application 1gnores all of the
TAB characters at the beginning of a line.

Client to Server (CAPI) Protocol

The Client mitiates the request by first sending the Client
Profile and other information to the server. After that infor- 35
mation 1s sent, 1t can begin its request for screens.

#[AM# \t Profile Handle ‘n__
|Tag_\t Value_\n ... Tag \t Value_ ‘\n_|
#SCREENREQUEST#_\t_ Target Screen_ \t_ ScreenKey_ \t_ WhichScreen

The “tag-value™ list 1s optional and it provides a place for 45
transferring extra information from the client to the server.
The server 1gnores all unknown tags and values.

The keyword #IAM# requires one parameter, namely the
Profile Handle, obtained from the Client Profile Request. s

The #SCREENREQUEST# keyword has three param-

cters. The first parameter 1s the target screen of the client’s
primary target screen, €.g. setup, the second 1s a screen key
of the current screen, and the third 1s a command for either
previous or next, with respect to the screen key.

55

Besides screen requests, the client application can also
request the following services:

Get Parameter Value: used to get a parameter’s current
value.

#GETVALUE# '\n
key [_\t_key ...] 65

12

Set Parameter Value: set a parameter’s current values.

#SETVALUE# [_\t_tag]_\n
key_\t wvalue | _\n_key \t value ... |

There 1s an optional tag field after #SETVALUE#.
These tags include temp and cancel.

Get Parameter’s Valid Options: obtain the valid options
for the parameter and 1ts default value.

#GETOPTION#_\n__
_M_key | _\n_key...]

Get Parameter Information: get parameter type, length,
read/write etc.

#OETINFO# ‘\n_
_M_key | _\n_key ...]

Get Profile: get client profile handle for the closest
matched supported localization and display.

#GETPROFILE# \n__
tag \t value [_\n_tag \t value...]

Server (CAPI) to Client Protocol

The server side of the protocol are responses to the
client’s requests. The most common response 1s the

#SCREENRESPOND#.

#SCREENRESOND#_\t_ Target Screen_ \t_ ScreenKey_ \n_
|Tag \t Value \n_ ...Tag \t Value \n_|]
.. . Screen Description . . .

Tags include waitForServer (used with target mesgFlash),
active, direct and cled.

waltForServer: parameter 1s in units of milliseconds.
parameter 0 means do not need to wait for server.
e.g. waltForServer 60000 means wait for server to get
ready again, with a maximum timeout of 60000
milliseconds = 1 minute.

direct: true means direct mode 1s ON

false means direct mode is OFFE.

[f a #SCREENRESPOND# does not contain the direct tag,
it 1s defaulted to be false.

6,065,041

13

-continued

cled: true means CLED is ON

false means CLED 1s OFF.
[f a #SCREENRESPOND# does not contain the cled tag,
it 18 defaulted to be false.

All client applications must support Direct Mode.

In the CAPI screen description, there are three layers:
cluster, pair, and mo. Mo 1s the basic primitive, €.g. text
label, entry box, selection list, checkbox, and buttons. A pair
1s a collection of two mo’s, usually a text label and an entry
component or display component. A cluster 1s a collection of
pairs.

As disclosed above, CAPI does not enforce any mo
display. The exact form and appearance of display primitives
1s determined by the client application. CAPI only gives
hints and suggestions of the form and appearance of primi-
fives and selections. This 1s also true for pair and cluster
displays. CAPI only provides grouping hints and informa-
tion. The client application can and 1s responsible in the
actual layout of the components. The client application
ignores and skips unknown clusters, pairs, and mo’s.

A cluster corresponds to a group of related screens on
LCD platforms, e.g. all the screens 1 a Server Setup
submenu, or a single page on GUI-based platforms, €.g. a
server setup dialog box.

AsscCluster 1s a regular cluster block, and asscCluster-
Savable indicates a Save Screen or Save button 1s required
when the user tries to exit the cluster.

Cluster Block ::=
#BEGIN#_\t_ asscCluster | asscClusterSavable_ \n__

#END#_ \n__
* ¢|” denotes OR 1n the syntax, 1.e.
#BEGIN# \t asscCluster \n
_OR-
#BEGIN# \t asscClusterSavable \n_

... #END#_ \n__

... #END#_\n__

MenuScreen 1s a regular menu or tabsheet, and
menuScreenSavable requires a save screen or Save button)

Menu Block ::=
#BEGIN# _\t menuScreen | menuScreenSavable \n

#END# \n__

MesgScreen puts a message screen up with an “OK”
button. The user needs to press the button before it proceeds
to another screen. mesgFlashScreen 1s the same as mesg-
Screen with no “OK” button. It can be taken down by the

system at any time. Currently, GUI applications get the
message block description directed for a message target
area.

Message Block ::=
#BEGIN#_\t_mesgFlashScreen | mesgScreen \n__

#END#_\n__

10

15

20

25

30

35

40

45

50

55

60

65

14

A pair corresponds to a single screen on LCD platforms.
On GUI platforms, a pair 1s usually a line 1n a dialog box.

Pair Block ::=
#BEGIN# \t_ datePair | timePair | ipPair | textPair | selectPair_\n__

#END#_ \n__

ClusterTitle sets the title for the current cluster (which can
contain several screens on LCD platforms or a single page

on GUI-based platforms).

For LCDs, Mo'Title sets the title for the current screen
only. The title 1n the other screens 1n the same cluster are not
changed. For GUIs, MoTitle 1s used to set the fitle of only
the menu screen.

MoNoTitle 1s used when no title 1s desired 1n the current
screen.

Cluster Tile Statement ::=
clusterTitle \n__
Key_\t_ Title String \n__
moTitle Statement ::=
moTitle \n
Key_ \t_Title String_\n__
moNoTitle Statement ::=
moNoTile \n

MoText puts up a text string on screen.

molext Statement ::=
molext ‘\n
Key_\t_Text String \n__

For each entry (query) and menu item, there may be a
dependency list attached to 1it.

KeySignValue ::=
key == value | key != value
DependancyList ::=
#REQUIRES#_\t__BoolExp
BoolExpr::=

KeySignValue | && BoolExpr BoolExp | || BookExpr BoolExpr

MoEntry’s are the primitives on the screen. Each moEntry
1s a query linked to a key. The key refers to data that can be
manipulated by Parameter Manager.

mokEntryDate Statement ::=
moEntryDate_ \n__

Key_\t_ ValueString |\t Dependancylist] \n
FormatStringKey_ \t__FormatString \n__

* FormatString 1s a combination of “MM?”, “DD™, “YY” and
delimiters, e.g. MM/DD/YY, DD.MM.YY, YY-MM-DD
ValueString in the form of the format string using the same
delimiters, e.g. 09/01/96, 01.09.96, 96-09-01
FormatStringKey 1s the key of the FormatString. FormatString
should be treated as another localized string in the language
dictionary or in the Parameter Manager.

moEntryTime Statement ::=
moEntryltme_ \n__

Key_\t_ ValueString |\t Dependancylist] \n
FormatStringKey_ \t_FormatString \n__

6,065,041

15

-continued

* FormatString 1s a combination of “hh”, “mm”™ and delimiters,
e.g. hh:mm, hh.mm
ValueString in the form of the format string using the same
delimiters, e.g. 00:01, 16.30
FormatStringKey 1s the key of the FormatString. FormatString
should be treated as another localized string in the language
dictionary or in the Parameter Manager.

moEntryIP Statement ::=
moEntryIP_ \n__

Key_\t_ ValueString |_\t DependancyList] ‘n

* ValueString 1n the form of #.##.# where # can be from 0O to 255
e.g. 125.0.11.2

moEntryNumber Statement ::=
moEntryNumber_ \n__

Key_\t_ ValueString | _\t Dependancylist] ‘\n
Range

* ValueString (integer string, can be positive, zero or negative)

* Each Range has the format
Lower Bound [.. Higher bound [@ Step]],
and multiple ranges are separated by commas

moEntrylext Statement ::=
moEntrylext \n__

Key | _\t_ ValueString] [_\t_DependancyList] \n
Maximum Length (integer string, must be positive) _\n__

* ValueString 1s the default text, can be empty.

moEntryTextSecret (Password) Statement ::=
moEntrylextSecret__\n__

Key | _\t_ ValueString] [_\t__DependancyList] \n
Maximum Length (integer string, must be positive)__\n__

* ValueString 1s the default text, can be empty.

moEntrySelect Statement ::=
moEntrySelect \n__

Key|__\t_ ValueString] | _\t__DependancyList] \n
ChoiceList

* ValueString 1s the choice key. If left empty,
the first choice will be used as the default value.

Choicelist =
Key_\n_ Value
|\t Key_ \t Value ... |

moEntryToggle Statement ::=
Same as moEntrySelect Statement.

* moEntryToggle 1s similar to moEntrySelect. moEntrySelect can be
realized as a selection list (option list / list box widget), while a
moEntryToggle can be realized as a checkbox or radiobox (radio buttons)
primitive.

However, the difference 1s just given as a hint to the client application,
which still has the final decision in how to display the screen.

e AP
:]

MoMenultem 1s a link to further screens 1n the menu
screen.

On a GUI platform, a menu 1s realized 1n two ways, either
a row/column of buttons or a tabsheet (property sheet). The
choice 1s determined by the GUI application.

moMenultem Statement ::=
moMenultem |_\t_DependancyList] \n
Key_\t_Menu Item String_ \t

Besides the screen description, the protocol covers other
request-respond communications.

Respond to Get Parameter Value (#GETVALUE#) :
return the parameter’s current value.

#RETURNVALUE#_\n__

Key_\t_ Value | _\t_ Key n_Value ...]
Respond to Set Parameter Value (#SETVALUE#) :
tell the client application if the values are set

#SETRESPOND#_\n__

Key_ Flag Value

|\t Key \t Flag \n_Value ...]

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

Value 1s the current value, so if the set request fails, the client
can show the current value.
The flag 1s an integer where O indicates the value 1s set, and

other number is error status (for debugging purpose only).
The server may send #SCREENRESPOND# to different targets, e.g. info,
warning or error messages, before #SETRESPOND#.

Respond to Get Parameter’s Valid Options

(#GETOPTION#):

return the parameter’s valid options and the default value.
The options are the current set allowable values based on
information provided by Parameter Manager.

#RETURNOPTION# \n_key_\t
Default Value [Option...|
|\t #RETURNOPTION#_ 1\t key_ ‘\n_ Default Value

[_\t_ Option ...]...]

Note: The first option returned 1s the default value. The

number of options vary, depending on what is active on the
server. Also, each #RETURNOPTION# contains only ONE

key. Therefore, one #GETOPTION# request can result in
more than one #RETURNOPTION# response.
Respond to Get Parameter Information (#GETINFO#):

return the parameter’s information.

#RETURNINFO# \n__
key_\n_tag \t walue | _\t tag ‘\n_value ...]

|_\t_key_ \t_ tag \t wvalue [_\t_ tag ‘\n_wvalue ...]...]
Tags include type, length, read, write, usertype.
Value corresponds to each tag, e.g. length 4, type U8, usertype date.

Respond to Get Profile (#GETPROFILE#):
return the closest matched client profile handle.
#RETURNPROFILE#_ Profile_ Handle
Propagation Value Update

#UPDATE# \n
key_\t_ value
|\t _key_ \n_value ...]

Note: If the value of a selection 1s #77#, this indicates the client should
erase the choice list. The #UPDATE# will be immediately followed by a

#RETURNOPTION# (the new choice list) with the corresponding key.

Control Panel Map Generator

A control panel map 1s a map of all of the LCD screens.
Clients have the power to traverse pairs and clusters. Usually
traversal 1s 1nitiated by the user. Unlike user initiated
traversal, a control panel map generator unconditionally
traverses all of the links to assemble a map of all of the LCD
screens. This 1s very useful for the creation of documenta-
tion.

Due to the organization of the server and client, any
changes or additions to screens on the server results in the
update of only the server software. The client has no
knowledge of the number of screens that exist on the server,
only that it has a screen handle from the server.

One skilled 1n the art can readily appreciate that these
techniques can be applied 1n a different manner 1n relation to
the server and the client. For example, the client’s Interface
Code Interpreter stores the display profile descriptions 1n an
internal database. The server sends the client generic screen

6,065,041

17

descriptions 1n response to the client’s requests. The client
uses the display profile that fits its display type to translate
the generic screen description and display the screen to the
user.

The generic construction of the invention allows the
software developer to create a single software code base that
1s compatible with all possible display types. This results 1n
a labor, time, and maintenance savings. Additionally, the
ogeneric constructs allow an OEM to create user interface
screens without requiring any knowledge of the product’s
software architecture.

Although the 1nvention 1s described herein with reference
to the preferred embodiment, one skilled 1in the art will
readily appreciate that other applications may be substituted
for those set forth herein without departing from the spirit
and scope of the present invention. Accordingly, the inven-
tion should only be limited by the Claims included below.

What 1s claimed 1s:

1. A process for displaying user interface screens on a
plurality of dissimilar display devices using a unified inter-
face expression, comprising the steps of:

creating a list of generic user 1nterface screen descriptions
at a server;

identifying the display type associated with a client;

updating a client display using said generic user 1nterface
screen descriptions,

wherein said generic user interface screen description
describes an abstract grouping of virtual screens to be
displayed;

wherein said display type ranges from a two-line display
to a GUI display;

wherein said client decides whether to coalesce said
virtual screens to customize the contents to said display
type; and

wherein said client and server may optionally be

co-located.
2. The process of claim 1, further comprising the steps of:

creating a list of display type proiiles at said server; and

selecting the appropriate display type proifile from said
display type list that i1s the closest equivalent to said
client’s display type profile;

wherein said updating step sends said generic interface
screen descriptions to said client according to said

selected display type profile.
3. The process of claim 1, further comprising the step of:

creating a list of supported language types at said server.
4. The process of claim 3, further comprising the steps of:

selecting the appropriate language type from said lan-
guage type list that 1s the closest equivalent to said
client’s language type; and

conilguring said generic screen descriptions to match said
selected language type.
5. The process of claim 3, further comprising the steps of:

converting said generic screen descriptions into protocol
screen descriptions;

selecting the appropriate language type from said lan-
cuage type list that 1s the closest equivalent to said
client’s language type; and

configuring said protocol screen descriptions to match
said selected language type.
6. The process of claim 1, further comprising the step of:

responding to a client’s screen request by sending the
appropriate generic screen description to said client.

10

15

20

25

30

35

40

45

50

55

60

65

138

7. The process of claim 6, further comprising the step of:

sending the key value corresponding to said appropriate
generic screen description to said client.
8. The process of claim 1, further comprising the step of:

responding to a client’s request for a system parameter
value by sending an appropriate system parameter
value to said client.

9. The process of claim 1, further comprising the step of:

updating the appropriate system parameter value with a
value sent by a client.
10. The process of claim 1, further comprising the step of:

responding to a client’s screen request by sending an
appropriate generic screen description to said client
through a network.

11. The process of claim 10, further comprising the step
of:

sending a key value corresponding to said appropriate
generic screen description to said client through a
network.

12. The process of claim 1, further comprising the step of:

responding to a client’s request for a system parameter
value by sending an appropriate system parameter
value to said client through a network.

13. The process of claim 1, wherein said generic user
interface screen descriptions are created 1n such a manner as
to allow each screen to be displayed on any one of said
dissimilar display devices.

14. The process of claim 1, further comprising the steps
of:

creating a list of display type profiles at said client;

selecting the appropriate display type profile from said
display type list that 1s the closest equivalent to said
client’s display type profile;

receiving said generic interface screen descriptions from
said server; and

displaying said screen descriptions to a user using said
selected display type profile to interpret said screen
descriptions.

15. The process of claim 1, further comprising the steps
of:

receiving sald generic interface screen descriptions on
sald client from said server; and

displaying said generic interface screen descriptions on
said client to a user by combining said screen descrip-
fions to accommodate the display capability of the
display type attached to said client.

16. The process of claim 1, further comprising the steps
of:

receiving sald generic interface screen descriptions on
said client from said server; and

displaying said generic interface screen descriptions on
said client to a user by displaying as much of the
contents of said screen descriptions to accommodate
the display capability of a display type attached to said
client.

17. The process of claim 1, further comprising the steps

of:

converting said generic screen descriptions into protocol
screen descriptions.

18. The process of claim 17, further comprising the steps
of:

creating a list of display type profiles at said server; and

selecting the appropriate display type profile from said
display type list that 1s the closest equivalent to said
client’s display type profile;

6,065,041

19

wherein said updating step sends said protocol screen
descriptions to said client according to said selected
display type profile.

19. The process of claam 17, further comprising the step

of:

responding to a client’s screen request by sending the
appropriate protocol screen description to said client.
20. The process of claim 19, further comprising the step

of:

sending the key value corresponding to said appropriate
protocol screen description to said client.
21. The process of claim 17, further comprising the step

of:

responding to a client’s screen request by sending the
appropriate protocol screen description to said client
through a network.

22. The process of claim 21, further comprising the step
of:

sending a key value corresponding to said appropriate
protocol screen description to said client through a
network.

23. The process of claim 17, wherein said protocol screen
descriptions are created 1in such a manner as to allow each
screen to be displayed on any one of said dissimilar display
devices.

24. The process of claim 17, further comprising the steps

of:

creating a list of display type profiles at said client;

selecting the appropriate display type profile from said
display type list that 1s the closest equivalent to said
client’s display type profile;

receiving said protocol screen descriptions from said
server; and

displaying said protocol screen descriptions to a user
using said selected display type profile to interpret said
screen descriptions.

25. The process of claim 17, further comprising the steps
of:

receiving said protocol screen descriptions on said client
from said server; and

displaying said protocol screen descriptions on said client
to a user by combining said screen descriptions to
accommodate the display capability of the display type
attached to said client.

26. The process of claim 17, further comprising the steps

of:

rece1ving said protocol screen descriptions on said client
from said server; and

displaying said protocol screen descriptions on said client
to a user by displaying as much of the contents of said
screen descriptions to accommodate the display capa-
bility of the display type attached to said client.

27. The process of claim 1, further comprising the step of:

providing a direct mode of operation 1n which certain user
actions are communicated directly to said server.
28. The process of claim 1, further comprising the step of:

providing a component level event driven mode of opera-
tion 1n which all user actions are communicated
directly to said server.
29. An apparatus for displaying user interface screens on
a plurality of dissimilar display devices utilizing a unified
interface protocol, comprising:

a console application programming interface located on a
SETVEr;

10

15

20

25

30

35

40

45

50

55

60

65

20

said console application programming interface compris-
ing a list of generic user interface screen descriptions;

said console application programming interface compris-
ing a module for updating a client display using said
generic user 1nterface screen descriptions;

wherein said generic user interface screen description
describes an abstract grouping of virtual screens to be
displayed;

wherein said client display ranges from a two-line display
to a GUI display; and

wherein a client decides whether to coalesce said virtual

screens to customize the contents to said client display.

30. The apparatus of claim 29, said console application
programming interface further comprising;:

a list of display type profiles;

a module for selecting the appropriate display type profile
from said display type list that 1s the closest equivalent
to said client’s display type profile; and

wherein said updating module sends said generic interface
screen descriptions to said client according to said
selected display type profiile.

31. The apparatus of claim 29, said console application

programming interface further comprising:

a list of supported language types.
32. The apparatus of claam 31, said console application
programming interface further comprising:

a module for selecting the appropriate language type from
said language type list that 1s the closest equivalent to
said client’s language type; and

a module for configuring said generic screen descriptions
to match said selected language type.

33. The apparatus of claam 31, said console application
programming interface further comprising;:

a module for converting said generic screen descriptions
into protocol screen descriptions;

a module for selecting the appropriate language type from
said language type list that 1s the closest equivalent to
said client’s language type; and

a module for configuring said protocol screen descriptions
to match said selected language type.

34. The apparatus of claim 29, said console application

programming interface further comprising:

a module for responding to a client’s screen request by
sending the appropriate generic screen description to
said client.

35. The apparatus of claim 34, said console application

programming interface further comprising:

a module for sending the key value corresponding to said
appropriate generic screen description to said client.
36. The apparatus of claim 29, said console application
programming interface further comprising:

a module for responding to a client’s request for a system
parameter value by sending the appropriate system
parameter value to said client.

37. The apparatus of claim 29, said console application

programming interface further comprising:

a module for updating the appropriate system parameter
value with the value sent by a client.

38. The apparatus of claam 29, said console application
programming interface further comprising;:

a module for responding to a client’s screen request by
sending the appropriate generic screen description to
said client through a network.

39. The apparatus of claim 38, said console application

programming interface further comprising:

6,065,041

21

a module for sending the key value corresponding to said
appropriate generic screen description to said client
through a network.

40. The apparatus of claim 29, said console application

programming interface further comprising:

a module for responding to a client’s request for a system
parameter value by sending the appropriate system
parameter value to said client through a network.

41. The apparatus of claim 29, wherein said generic user
interface screen descriptions are structured to allow each
screen to be displayed on any one of said dissimilar display
devices.

42. The apparatus of claim 29, further comprising:

an 1nterface code interpreter located on said client;

said mterface code interpreter comprising a list of display
type proiiles;

said 1nterface code interpreter comprising a module for
selecting the appropriate display type profile from said
display type list that i1s the closest equivalent to said
client’s display type profile;

said 1nterface code interpreter comprising a module for
receiving sald generic interface screen descriptions
from said server; and

said 1nterface code interpreter comprising a module for
displaying said screen descriptions to a user using said
selected display type profile to interpret said screen
descriptions.

43. The apparatus of claim 29, further comprising:

an 1nterface code interpreter located on said client;

said interface code interpreter comprising a module for
receiving said generic interface screen descriptions
from said server; and

said 1nterface code interpreter comprising a module for
displaying said generic interface screen descriptions on
said client to a user by combining said screen descrip-
fions to accommodate the display capability of the
display type attached to said client.

44. The apparatus of claim 29, further comprising:

an 1nterface code interpreter located on said client;

said 1nterface code interpreter comprising a module for
receiving sald generic interface screen descriptions
from said server; and

said 1nterface code interpreter comprising a module for
displaying said generic interface screen descriptions on
said client to a user by displaying as much of the
contents of said screen descriptions to accommodate
the display capability of the display type attached to
said client.

45. The apparatus of claim 29, said console application

programming interface further comprising:

a module for converting said generic screen descriptions
into protocol screen descriptions.
46. The apparatus of claim 45, said console application
programming interface further comprising:

a list of display type profiles; and

a module selecting the appropriate display type profile
from said display type list that 1s the closest equivalent
to said client’s display type profile;

wherein said updating module sends said protocol screen
descriptions to said client according to said selected
display type profile.

47. The apparatus of claim 45, wheremn said protocol

screen descriptions are created 1n such a manner as to allow

10

15

20

25

30

35

40

45

50

55

60

65

22

cach screen to be displayed on any one of said dissimilar
display devices.
48. The apparatus of claim 45, further comprising;:

an 1nterface code iterpreter located on said client;

said 1nterface code interpreter comprising a list of display
type profiles;

said interface code interpreter comprising a module for
selecting the appropriate display type profile from said
display type list that 1s the closest equivalent to said
client’s display type profile;

said interface code interpreter comprising a module for
receiving said protocol screen descriptions from said
server; and

said interface code interpreter comprising a module for
displaying said protocol screen descriptions to a user
using said selected display type profile to iterpret said
screen descriptions.

49. The apparatus of claim 435, further comprising:

an 1nterface code iterpreter located on said client;

said interface code interpreter comprising a module for
receiving said protocol screen descriptions from said
server; and

said interface code interpreter comprising a module for
displaying said protocol screen descriptions on said
client to a user by combining said screen descriptions
to accommodate the display capability of the display
type attached to said client.

50. The apparatus of claim 435, further comprising;:

an interface code interpreter located on said client;

said interface code interpreter comprising a module for
receiving said protocol screen descriptions from said
server; and

said interface code interpreter comprising a module for
displaying said protocol screen descriptions on said
client to a user by displaying as much of the contents
of said screen descriptions to accommodate the display
capability of the display type attached to said client.
51. The apparatus of claim 29, said console application
programming interface further comprising:

a module for responding to a client’s screen request by
sending the appropriate protocol screen description to
said client.

52. The apparatus of claim 51, said console application

programming interface further comprising:

a module for sending the key value corresponding to said

appropriate protocol screen description to said client.

53. The apparatus of claim 29, said console application
programming interface further comprising:

a module for responding to a client’s screen request by
sending the appropriate protocol screen description to
said client through a network.

54. The apparatus of claim 53, said console application

programming interface further comprising:

a module for sending the key value corresponding to said
appropriate protocol screen description to said client
through a network.

55. The apparatus of claim 29, wherein a direct mode 1s
provided in which certain user actions are communicated
directly to said server.

56. The apparatus of claim 29, wherein a component level
event driven mode 1s provided 1n which all user actions are
communicated directly to said server.

	Front Page
	Drawings
	Specification
	Claims

