United States Patent |9

Jagannathan et al.

US006064997A
(11] Patent Number:

6,064,997

45] Date of Patent: May 16, 2000

[54] DISCRETE-TIME TUNING OF NEURAL
NETWORK CONTROLLERS FOR
NONLINEAR DYNAMICAL SYSTEMS

[75] Inventors: Sarangapani Jagannathan, Peora, Il1;
Frank Lewis, Bedford, Tex.

73] Assignee: University of Texas System, The
Board of Regents, Austin, Tex.

21]  Appl. No.: 08/821,673
22] Filed:  Mar. 19, 1997

Related U.S. Application Data
60] Provisional application No. 60/013,678, Mar. 19, 1996.

51] Int. CL7 e, GO6F 15/18
52] US.ClL o 706/23; 706/22; 706/31;

706/39; 706/103; 706/106; 364/148.03
58] Field of Search ................................ 706/22, 23, 31,

706/39, 903, 906; 364/148.03

[56] References Cited
U.S. PATENT DOCUMENTS

5,119,468  6/1992 OWENS .covivrreiriirieeiivrieeiineennns 706/906
5,121,467  6/1992 SKeirik ...coovvvvvvevriieirriieerennnn. 706/906
5,159,660 10/1992 Lu et al. ..ccovvvevvrevvrieeriieeennnen. 706/906
5,471,381 1171995 Khan ...cveeeveeevvviiievveneennneeennnn. 706/906
5,513,098  4/1996 Spall et al. ...ccuveeeereereeneeennnneee. 706/906
5,566,065 10/1996 Hansen et al. .....oovevvvnnneennnnn... 706/906

OTHER PUBLICAITONS

Jagannathan et al, “Identification of a Class of Nonlinear
Dynamical Systems Using Multilayer Neural Networks”,
1994 IEEE International Symposium on Intelligent Control,

Aug. 1994.

Jagannathan et al, “Multilayer Neural Network Controller
for a class of Nonlinear Systems”, Proceeding of the Inter-
national Symposium on Control, IEEE, Aug. 1995.

Vidyasagar, M. “Nonlinear Systems Analysis,” Prentice
Hall, Inc. Englewood, New Jersey, 1993.

F. Chen, H.K. Khalil, “Adaptive control of nonlinear sys-
Control,

tems using neural networks,” Ini. J.

55(6):1299-1317, 1992.

@Tﬁt}{"ﬁﬂ% g Maortm @)

- geritam (

G.C. Goodwin, K.S. Sin, “Adaptive Filtering, Prediction and
Control,” Prentice—Hall Inc., Englewood Cliils, NJ, 1984.

S. Jagannathan, F.L. Lewis, “Multilayer Discrete—time neu-
ral net controller with guaranteed performance,” IEEE
Transaction on Neural Networks 7(1):107-130, Jan. 1996.
[.D. Landau, “Evolution of adaptive control,” ASME Journal
of Dynamic Systems, Measurements, and Control,
115:381-391, Jun. 1993.

[.D. Landau, “Adaptive Control: The Model Reference
Approach,” Marcel Dekker, Inc., 1979.

A.U. Levine, K.S. Narendra, “Control of nonlinear dynami-

cal systems using neural networks: Controllability and sta-
bilization,” IEEE Trans. Neural Networks, 4(2), Mar. 1993.

F.L. Lewis, K. Liu, A. Yesildirek, “Multilayer Neural net

robot controller with guaranteed tracking performance,”
IEEE. Trans. on Neural Networks, Mar. 1996.

(List continued on next page.)

Primary Fxaminer—Tariq R. Hafiz
Assistant FExaminer—Michael Pender

Attorney, Agent, or Firm—Fulbright & Jaworski
[57] ABSTRACT

A family of novel multi-layer discrete-time neural net con-
trollers 1s presented for the control of an multi-input multi-
output (MIMO) dynamical system. No learning phase is
needed. The structure of the neural net (NN) controller is
derived using a filtered error/passivity approach. For guar-
anteed stability, the upper bound on the constant learning
rate parameter for the delta rule employed 1n standard back
propagation 15 shown to decrease with the number of
hidden-layer neurons so that learning must slow down. This
major drawback 1s shown to be easily overcome by using a
projection algorithm in each layer. The notion of persistency
of excitation for multilayer NN 1s defined and explored. New
on-line 1improved tuning algorithms for discrete-time sys-
tems are derived, which are similar to e-modification for the
case of continuous-time systems, that include a modification
to the learning rate parameter plus a correction term. These
algorithms guarantee tracking as well as bounded NN
welghts. An extension of these novel weight tuning updates
to NN with an arbitrary number of hidden layers 1s dis-

cussed. The notions of discrete-time passive NN, dissipative
NN, and robust NN are introduced.

6 Claims, 9 Drawing Sheets-
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DISCRETE-TIME TUNING OF NEURAL
NETWORK CONTROLLERS FOR
NONLINEAR DYNAMICAL SYSTEMS

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
application Ser. No. 60/013,678, by Frank Lewis and Saran-

gapani Jagannathan, filed Mar. 19, 1996.

1. BACKGROUND OF THE INVENTION

The following references, to the extent that they provide
exemplary procedural or other details supplementary to
those set forth herein, are specifically incorporated herein by
reference. These references may provide certain background
regarding the subject matter discussed herein.

F. Chen, H. K. Khalil, “Adaptive control of nonlinear
systems using neural networks,” Int. J. Conirol,
55(6):1299-1317, 1992.

G. C. Goodwin, K. S. Sin, “Adaptive Filtering, Prediction
and Control,” Prentice-Hall Inc., Englewood Cliils, N.J.,
1984.

S. Jagannathan, F. L. Lewis, “Discrete-time neural net
controller with guaranteed performance,” IEEE Transac-
tion on Neural Networks, January 1996.

I. D. Landau, “Evolution of Adaptive control,” ADME
Journal of Dynamic systems, Measurements, and Control,
115:381-391, June 1993.

I. D. Landau, “Adaptive Control: The Model Reference
Approach,” Marcel Dekker, Inc., 1979.

A. U. Levine, K. S. Narendra, “Control of nonlinear dynami-

cal systems using neural networks: Controllability and
stabilization,” IEEFE Trans, Neural Network, 4(2), March

1993,

F. L. Lewis, K. Liu, A. Yesildirek, “Multilayer Neural net
robot controller with guaranteed performance,” IFEEE.
Trans. on Neural Networks, March 1996.

K. S. Narendra, A. M. Annaswamy, “A new adaptive law for
robust adaptation without persistent adaptation,” IEEE
Trans. Automatic Conitrol, AC-32(2):134-145, Feb. 1987.

K. S. Narendra, K. Parthasarathy, “Identification and control
of dynamical systems using neural networks,” IEEE
Trans. Neural Networks, 1:4-27, March 1990.

R. Ortega, L. Praly, I. D. Landau, “Robustness of discrete-
time direct adaptive controllers,” IEEE Trans. Automatic
Control, AC-30(12):1179-1187, Dec. 1985.

J. Park and I. W. Sandberg, “Universal approximation using,
radial-basis-function networks,” Neural Computation,
3:246-257, 1991.

M. M. Polycarpou and P. A. loannu, “Idenfification and
control using neural network models: design and stability
analysis,” Tech. Report 91-09-01, Dept. Elect. Eng. Sys.,
Univ. S. Cal., Sept. 1991.

D. E. Rumelhart, G. E. Hinton, R. J. Wiliams, “Learning
internal representations by error propagation,” readings in
machine learning, Edited by J. W., Shavlik et al., Morgan
Kaufman Publishers, Inc. 115-137, 1990.

N. Sadegh, “Nonlinear 1dentification and control via neural
networks,” Conirol Systems with inexact Model, DSC-vol
33, ASME winter Annual Meeting, 1991.

R. M. Sanner, J. J. E. Slotine, “Stable adaptive control and
recursive 1dentification using radial gaussian networks,”
Proc. IEEE Conf. Decision and Control, Brighton, 1991.

H. J. Sira-Ramirez, S. H. Zak, “The adaptation of percep-
trons with applications to 1nverse dynamics identification
of unknown dynamic systems,” IEEE Trans. Systems,

Man, and Cybernetics, 21(3), May/June 1991.
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J.-J. E. Slotine, W. Li, “Applied Nonlinear Control,”
Prentice-Hall Inc., Englewood Cliils, N.J., 1991.

M. Tomizuka, “On the design of digital tracking
controllers,” ASME Journal o Dynamic Systems,
Measurements, and Control, 115:412—418, June 1993.

M. Vidyasagar, “Nonlinear Systems Analysis,” Prentice-
Hall Inc., Englewood Cliffs, N.J., 1993. B. Widrow, J.
Lehr, “30 Years Of Adaptive Neural Networks:
Perceptrons, Madaline, And Backpropagation,” Proceed-
ings Of The IEEFE, 78(9):1415-1442, Sept. 1990.

It has been a desire of scientists to develop control
mechanisms so that machines could function independently
without human intervention. Such controlled machines
should be able to complete an unstructured task and learn
from the feedback information about their performance.
These machines, therefore, should be able to learn tasks not
casily handled by existing machines, and more importantly,
continue to adapt and perform these tasks with increasing
cfficacy under uncertainties.

In order to confront modern technological problems that
require systems with intelligent functions such as simulta-
neous utilization of memory, learning, or high-level decision
making in response to “fuzzy” or qualitative commands,
intelligent controls 1s being investigated. Intelligent control
should utilize cognitive theory effectively with various
mathematical programming techniques. Learning 1s a first
step toward intelligent control and would replace the human
operator by making intelligent choices whenever the envi-
ronment does not allow or justily the presence of a human
operator. Learning has the capability of reducing the uncer-
tainties affecting the performance of a dynamical system
through on-line modeling (system identification), thereby
improving the knowledge about the system so that it can be
controlled more effectively.

Considerable resecarch has been conducted in system
identification (Narendra and Parthasarathy, 1990) or
identification-based NN control (Levine and Narendra,
1993), and little about the use of direct closed-loop multi-
layer NN controllers that yield guaranteed performance
(Chen and Khalil, 1992). On the other hand, some results
presenting the relations between NN and direct adaptive
control (Landau, 1993; Lewis et al., 1993), as well as some
notions on NN for robot control, are given in (Sadegh, 1991;
Sanner and Slotine, 1991). A direct continuous-time multi-
layer neural net robot controller was proposed in (Levine
and Narendra, 1993) which guarantees closed-loop tracking
performance. However, little about the application of
discrete-time multilayer NN in direct closed-loop controllers
that yield guaranteed performance is discussed in the litera-
ture.

The controller design with NN having multilayers for
both continuous an d discrete-time is treated in (Chen and
Khalil, 1992; Lewis et al., 1993; Sira-Ramirez and Zak,
1991). In (Chen and Khalil, 1992), the adaptive control of
nonlinear systems using multilayer NN 1s presented very
nicely. However, the performance of this controller 1s depen-
dent upon the choice of the deadzone and the richness of the
input signal. In addition, an explicit learning phase for the
NN controller is needed initially. In (Sira-Ramirez and Zak,
1991), it is assumed that the input to the multilayer NN 1is
considered to be fixed for successive 1terations which 1s an
unrcasonable assumption for the controller design.
Furthermore, in these papers (Chen and Khalil, 1992; Sira-
Ramirez and Zak, 1991) passivity properties of the NN are
not investigated. A three-layer NN controller design 1is
presented in (Lewis et al., 1993) for the control of
continuous-time systems. However, generalization of the
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stability analysis to NN having arbitrary number of hidden
layers cannot be deduced due to the problem of defining and
verifying the persistency of excitation condition for a mul-
tilayer NN. In addition, the weight tuning algorithms pre-
sented and the associated stability analysis discussed in
(Lewis et al., 1993) is specific to robotic systems.

To confront all these 1ssues head on 1n this invention, a
family of novel learning schemes 1s investigated for a
multilayer discrete-time NN whose weights are tuned
on-line with no learning phase needed. The weight tuning
mechanisms guarantee convergence of the NN weights
when 1nitialized at zero, even though there do not exist
“1deal” weights such that the NN perfectly reconstructs a
certain required function. The controller structure ensures
ogood tracking performance, as shown through a Lyapunov’s
approach, so that the convergence to a stable solution 1s
cuaranteed. Finally, in contrast to adaptive control, it 1s not
necessary to know a priori the structure of the plant; this
structural information 1s instead inferred on-line by the NN.

The controller 1s composed of a neural net incorporated
into a dynamical system, where the structure comes from
filtered error notions standard 1n robot control literature. It 1s
shown that the weight tuning algorithm using the standard
backpropagation delta rule 1n each layer a passive neural net.
This, 1if coupled with the dissipativity of the dynamical
system, guarantees the boundedness of all the signals in the
closed-loop system under a persistency of excitation (PE)
condition disclosed below. However, PE 1s difficult to guar-
antee 1n a NN, which by design has redundant parameters for
robust performance. Unfortunately, 1f PE does not hold, the
delta rule generally does not guarantee tracking and bounded
welghts. Moreover, 1t 1s found here that the maximum
permissible tuning rate for the developed tuning algorithm
decreases as the NN size increases; this 1s a major drawback.
A projection algorithm discussed herein 1s shown to easily
correct the problem. Finally, new modified weight tuning
algorithms introduced avoid the need for PE by making the
NN robust, that 1s, state strict passive.

SUMMARY OF THE INVENTION

The present invention includes a method of on-line tuning
of a multi-layer neural network used to control a plant,
comprising the steps of defining a functional estimate from
current values of a plurality of neural network weights and
a plurality of layer activation functions; determining weight
estimation errors to thereby tune the multi-layer neural
network. In exemplary embodiments, the updating step may
comprise the step of determining a modified functional
estimation error and/or the step of determining a filtered
tracking error.

The present invention also includes a method of on-line
tuning of a multi-layer neural network used to control a
plant, comprising the steps of defining a functional estimate
from current values of a plurality of neural network weights
and a plurality of layer activation functions; determining
welght estimation errors for the plurality of neural network
welghts; updating the weight estimation errors to thereby
tune the multi-layer neural network; and modifying the
updated weight estimation errors, thereby obtaining a pro-
jection algorithm.

The present 1nvention also includes a method for direct
adaptive control of a nonlinear plant having an internal state
x and a sensed state and an unknown function f(x), using a
discrete-time neural network controller, comprising: calcu-
lating a functional estimate of the unknown function f(x)
from current values of a plurality of neural network weights
and a plurality of activation functions, the calculating being
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a Tunction of the sensed state; comparing the sensed state
with a desired trajectory m an outer feedback loop to
produce a tracking error signal; calculating a control action
as a function of the tracking error signal and the functional
estimate; applying the control action to the plant to maintain
the internal state at the desired trajectory; and adjusting the
plurality of neural network weights such that the discrete-
time neural network controller guarantees tracking stability
and bounded weights. In an exemplary embodiment, the
adjusting step may comprise: adjusting simultanecously
on-line the plurality of neural network weights and the
tracking error control; adjusting the plurality of neural
network weights as a function of the tracking error signal by
extending standard delta rule techniques, thereby providing
cguaranteed closed-loop stability without preliminary off-line
training of the plurality of neural network weights. In
another exemplary embodiment, the adjusting step may
utilize a projection algorithm. The discrete-time neural net-
work may have a passivity property, thereby guaranteeing
robust performance of the discrete-time neural network
confroller.

BRIEF DESCRIPITION OF THE DRAWINGS

FIG. 1 1s a block diagram of a three-layer neural network.

FIG. 2 1s a block diagram of a neural network controller
according to the present 1invention.

FIG. 3 1s a block diagram of a closed-loop error system.

FIGS. 4A and 4B show tracking response of a neural
network controller of the present invention with delta rule.

FIGS. 6A and 6B 1llustrate tracking response of a neural
network controller according to the present invention with
delta rule.

FIGS. 7A and 7B 1llustrate tracking response of a neural
network controller according to the present invention.

FIGS. 8A and 8B 1illustrate tracking response of a neural
network controller according to the present invention.

FIG. 9 illustrates the tracking response of a PD controller
without a neural network.

2. DETAILED DESCRIPTION

[et R denote the real numbers, R” denote the real
n-vectors, R™*" the real mxn matrices. Let S be a compact
simply-connected set of R”. With maps f:S—R*, define
CH(S) as the space such that f is continuous. We denote by
||| any suitable vector norm. Given a matrix A=[a, ], AeR™"™
the Frobenius norm is defined by

2
|AIE = (AT A) = ) a=,

Y

with tr ( ) the tract operation. The Frobenius norm |[A],
denoted by ||.|| throughout this application until unless speci-
fied explicitly, 1s nothing but the vector 2-norm over the
space defined by stacking the matrix columns into a vector,
so that it 1s compatible with the vector 2-norm, that is,
|AX][=[|A]l.|Ix].

2.1 Neural Networks

Given X,eR, a three-layer neural network as shown in
FIG. 1 has a net output
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Ny | [ No TN (2“1)
Vi = E Gin® E Wi, O Z‘»’jkﬁ(xk)'l-gwj + O || + 05 |5
n=1 | =1 L k=1
I = 1, A N4

with p(.), o(.) and ¢(.) the activation functions, v, the
input-layer interconnection weights, w, . the hidden-layer
interconnection weights and q;, the output-layer intercon-
nection weights. The 6,0 0 _  m=1,2..., are threshold
oifsets and the number of neurons in the mput-layer 1s N,
with N, the number of hidden-layer neurons and N; the
number of output-layer neurons. The weights of the neural
net are adapted on-line 1n order to achieve a desired perfor-
mance.

The neural net equation may be conveniently expressed in
matrix format by defining x=[x,, X, . . . , Xxq 15 V=l Vo,
Y1 . .., Yaa) » and weight matrices Q'=[q,,], W'<w, ],
4 =[v4]. Including x;=1 in x allows one to include the
threshold vector [6.,,0 , ..., 0 ] as the first column of
V¥, so that V* contains both the weights and thresholds of

the 1nput-layer connections. Then,

y=0'o(W' o(V'p(x))),

with the vector of hidden-layer activation functions o(z)=
[0(2,), . . ., o(z,)]" defined for a vector z=[z, . . ., z]".
Including a 1 as the first element in o(z) (i.e. placed above
0(z,)), allows one to incorporate the thresholds 6, as the
first column of W'. Any tuning of S, W and V then includes
tuning of the thresholds was well.

A general function f(x)eC*(S) can be written, according to
the Stone-Weirstrass Theorem [ Park and Sandberg, 19911, as

=W o(Vx) e (),

(2.2)

(2.3)

with €(k) a neural net functional reconstruction error vector,
and the input and output layer activation functions, p(.) and
®(.), respectively considered to be linear. If there exists N,
and constant 1deal weights Q, W and V such that =0 {for all
xeS, then f(x) 1s said to be in the functional range of the
neural net. In general, given a constant real number €0,
f(x) 1s within €,, of the neural net range if there exists N, and
constant weights so that for all xeR”, equation (2.3) holds
with [le||Ze,-

Ditferent well-known results for various activation func-
tions 0(.), based on the Stone-Weirstrass Theorem, say that
any suiliciently smooth function can be approximately by a
suitably large net (Part and Sandberg, 1991). Typical acti-
vation functions for o(.) are bounded, measurable, non-
decreasing functions from the real numbers onto [0,1],
which include for mstance the sigmoid and so on. Note that
the selection of o(.) and the choice of the N, for a specified
S cR”, and neural net reconstruction error bound €,, are
current topics of research.

Lemma 2.1

Let o(.) be any bounded measurable non-decreasing func-
tion for a multilayered neural network. Then, the functional
range of NN given by equation (2.3) is dense in C*(S).

Proof: See (Ortega et al., 1985).

In this result, the metric defining denseness 1s the supre-
mum norm (Lewis et al., 1993), e.g., max__Jf(x)|, f:S—R*.

In general, equation (2.3) can be rewritten for an n-layer

NN as
=W, 0 IW, "¢, 1( . . . ¢s(x(R)]+e(h),

wheremW_,W_ .. ..., W,, W, are the constant weights and
d,.1(.), ¢,.-(), . - ., §:(.), §;(.) denote vectors of activation

(2.4)
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6

functions for the n—1 hidden layers, with ¢,(.) the vector of
activation functions for the output layer. For notational

convenience, the vector of activation functions of the 1nput
layer at the instant k is denoted as ¢,(k)=¢(x(k)). Then, the
vectors of hidden and output layer activation functions are

denoted by

¢m+1(k)=¢(WmT¢m(k)); Vm:l: = = oy H_l-

2.2 Stability and Passive Systems

In order to formulate the discrete-time controller, the
following stability notions are needed (Vidyasagar, 1993).
Consider the nonlinear system given by

x(k+1)=f(x(k), u(k)), y(K)=h(x(k)),

where x(k) is a state vector, u(k) is the input vector and y(k)

1s the output vector. The solution 1s said to be globally
uniformly ultimately bounded (GUUB) if for all x(k,)=x,,

there exists and e>0 and a number N(e, X,) such that ||x(k)|<e
for all k=2k,+N.

Consider now the linear discrete time-varying system
gven by

(2.5)

(2.6)

(e D=A R +BE ), y(0)=Ck)x(k), (2.7)

with A(k), B(k), C(k) are appropriately dimensional matri-
ces.

Lemma 2.2: Define (k,, k) as the state-transition matrix
corresponding to A(k) for the system (2.7), 1.e.,

k-1

Vki, ko) = | | Ao,

k=kp

Then 1f [k, kolll = 1, ¥ &y, kg = 0,

the system (2.7) is exponentially stable.

Proof: See (Sadegh, 1991).

Some aspects of passivity (Goodwin and Sin, 1984) will
subsequently be important. The set of time instants which
arc of interest is Z,=40,1,2 . . . }. Consider the Hilbert space

1,"(Z,) of sequences y:Z,—R” with inner product <..>
defined by

0 (2.8)
(youy = )y toutk).
k=0

Let P denote the operator that truncates the signal u at time
T. We have

Prutk) = utk), k < T (2.9)

=0, k=T.

The basic signal space 1,.(Z,) is given by an extension of
1,"(Z,) according to

1,2 )={u:2,~RINTeZ,, Py €1,"(Z,)}.

It 1s convenient to use the notation u,=P,u and <y,
U>, =<y, U>.

Define the energy supply function E:1, "(Z,)x1, ”(Z,)
xZ..—>R. A useful energy function E 1s the quadratic form

E(u,y, T)=2<y, Su>,<u, Ru>, (2.10)

with S and R appropriately defined matrices. In general, a
system with input u(k) and output y(k) is said to be passive
if 1t verifies an equality defined herein as the power form
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AT=y’ (k)Su(k)+u" (k)Ru(k)-g(k), (2.11)

with J(k) lower bounded and g(k)Z0. In other words,

(2.12)

T
Eu,y, T)= Zg(k)— y2, ¥ T =0,
=0

where y,=0.
A system 1s defined to be dissipative 1f it 1s passive and 1n
addition

T (2.13)
Eu, v, T)iO:Zg(k)}O,VT::O.
k=0

A special sort of dissipativity called state strict passivity
(SSP) occurs 1f g(k) is a monic quadratic function of ||x(k)|
with bounded coeflicients, where x(k) represents the internal
state of the system. Then the 1, norm of the state 1s
overbounded 1n terms of the 1, mner product of the output
and the input and the input sequence energy (i.e. power).
This 1s used to advantage i1n concluding some internal
boundedness properties of the system without the usual
assumptions of observability (e.g., persistency of
excitation), stability, and so on.
2.3 Dynamics of the mnth-Order MIMO System

Consider an mnth-order multi-input and multi-output
discrete-time nonlinear system, to be controlled, given in
multivariable canonical form

Xk + 1) = %0 (k) (2.14)
Xn-1k + 1) = x, (&)
Xpk + 1) = f(x(K)) + ulk) + d(k),
with state x(k)=[x,"(k), . . . , x,/(k)]" with x,(k)eR";

i=1, . . . n, control u(k)eR™, and d(k)eR™ a disturbance
vector acting on the system at the instant k with ||d(k)|=d,,
a known constant. Given a desired trajectory x,_ (k) and its
delayed values, define the tracking error as

€, (k)= (k) =X q(K), (2.15)

and the filtered tracking error, r(k)eR™,
r(k)=e, (K)+A e, (K)+ . .

A, e, k), (2.16)

where e,_,(k), . . ., e;(k) are the delayed values of the error
e, (k),and A, ..., A\, ; are constant matrices selected so that

17"+, 2%+ . . . +),,4| is stable. Equation (2.16) can be
further expressed as

rlk+1)=e,(k+1)+A e, (k+1)+ . . . +A, e (k+]1), (2.17)

Using (2.14) in (2.17), the dynamics of the MIMO system
(2.14) can be written in terms of the filtered tracking error
as

e+ D)= (0))=x, (et Dthse (R)+ . . . +A e (R+uk)+d®). (2.18)
Define the control input u(k) as
()= (Rt D)~ (R (k)4 r (R) =R, (k)= - . =Ay1ea(R),(2.19)

with the diagonal gain matrix k , and f(x(k)) an estimate of
f(x(k)). Then the closed-loop error system becomes

rlk+1)=(k r(k)f(x(k))+d(k), (2.20)
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where the functional estimation error 1s given by

Joek) )= () -F(x())- (2.21)

This 1s an error system wherein the filtered tracking error 1s
driven by the functional estimation error.

In the remainder of the this application, equation (2.20) 1s
used to focus on selecting NN tuning algorithms that guar-
antee the stability of the filtered tracking error r(k). Then,
since (2.17), with the input considered as r(k) and the output
as e(k) describes a stable system, standard techniques
(Slotine and Li, 1991) guarantee that e(k) exhibits stable
behavior.

In general, the closed-loop tracking error system (2.20)
can also be expressed as

(et 1)=k #(R)+T (), (2.22)

where

CoR) =T (k) +d(K). (2.23)

The next dissipativity result holds for this system.
Theorem 2.2
The closed-loop tracking error system (2.22) 1s state strict
passive from Cy(k) to k r(k) provided that

k Tk <I. (2.24)
Proof: Select a Lyapunov function candidate
T=rT(k) (k). (2.25)
The first difference 1s given by
A =Tkt D)k =T ()1 (K. (2.26)
Substituting (2.23) in (2.27) yields
AN=—r'()[I-k,"k Jr(k)+2¢" (R)k,Co+Co " (K)Co (k). (2.27)

Note (2.27) 1s in power form defined in (2.11) with the first

term taken as g(k), a monic quadratic function of the state
r(k). Hence, (2.22) 1s a state strict passive system.

3. NN Controller Design

In the remainder of this application, a three-layer NN 1s
considered 1nitially and stability analysis 1s carried out for
the closed-loop system (2.20). Thereafter, all the stability
analysis presented for a three-layer NN 1s shown to be easily
extended for a multilayer network having an arbitrary num-
ber of hidden layers. In this section, stability analysis by
Lyapunov’s direct method i1s performed for a family of
multilayer weight tuning algorithms using a delta rule in
cach layer. These weight tuning paradigms yield a passive
NN, yet persistency of excitation (PE) is generally needed
for suitable performance. Specifically, this holds as well for
standard backpropagation 1n the continuous-time case
(Lewis et al., 1993) and the two-layer discrete-time case
(Jagannathan and Lewis, 1993). Unfortunately, PE cannot
ogenerally be tested for or guaranteed 1n a NN, so that these
naive multilayer weight tuning algorithms are generally
doomed to failure. In addition, for guaranteed stability, the
welght tuning using the delta rule at each layer must slow
down as the NN becomes larger. By employing a projection
algorithm, 1t 1s shown that the tuning rate can be made
independent of the NN size. Modified tuning paradigms are
finally proposed to make the NN robust so that the PE 1s not
needed.

Assume that there exist some constant 1deal weights W,
W, and W, for a three-layer NN so that the nonlinear
function in (2.14) can be written as
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fx)=W; T W, ¢, W1T¢1(x(k))]]+ﬁ(k): (3.1)

where |le(k)|[<e,, with the bounding constant €, known.
Unless the net 1s “minimal”, suitable “i1deal” weights may
not be unique. The best weights may then be defined as those
which minimize the supremum norm over S of e(k). This
1ssue 1s not a major concern here, as it 1s needed to known
only the existence of such 1deal weights; their actual values
are not required.

For notational convenience define the matrix of all the
1deal weights as

with padding by zeros as required for dimensional consis-
tency. Then, some bounding assumptions can be stated.
Assumption 1

the 1deal weights are bounded by known positive values
so that |[W,[|=W W, |[=W and |[W,|=W or
|Z|| =2, 0
3.1 Structure of the NN Controller and Error System
Dynamics

Define the NN functional estimate by

1rricex? 2Hax? Arricx?

Joe))=W5T (k)5 (W, (oW, T (k) (x(K)))),

W,(k), W,(k) and W,(k) being the current value of the
welghts. The vector of input layer activation functions 1s
given by ¢,(k)=¢,(k)-¢(x(k)). Then the vector of activation
functions of the hidden and output layer with the actual
welghts at the instant k 1s denoted by

(3.2)

Bt 1R=0(W,, 74, (R)); Ym=1, . . . , n-1. (33)

Fact 2
The activation functions are bounded by known positive

values so that [,(K)|Z¢ 100 02001020 and [ps(k)

The error in the weights or weight estimation errors are
ogven by

WB(k)=W3_W3(k): Wz(k)=wz_wz(k): 1‘ji’;'1('I"")=1"’JV1_1‘?"";'1(3"5),* f(k)=Z—

Z(k), (3.4)
where
W
Z=|W,
Wi
and the hidden-layer output errors are defined as
¢2(k)=¢2—$2(k)9 (OB (k)=¢3—$3(k)- (3-5)
Select the control input u(k) to be
H(k)=xnd(k+1)=w3r(k)$3(k)_hleﬂ(k)_ o A ek HE),  (3.6)

where the functional estimate (3.2) is provided by a three-
layer NN and denoted in (3.6) by W5 (K)¢5(k). Then, the
closed-loop filtered error dynamics become

(et D)=k () +e (K)+ W T s (k)+e(h)+d(R), (3.7)
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10

where the 1dentification error 1s defined by

e (k)= WB T(k)‘i}’s (k).

The proposed NN controller structure 1s shown in FIG. 2.
The output of the plant 1s processed through a series of
delays 1 order to obtain the past values of the output, and
fed as puts to the NN so that the nonlinear function 1n
(2.14) can be suitably approximated. Thus, the NN control-
ler derived 1n a straightforward manner using filtered error
notion naturally provides a dynamical NN structure. Note
that neither the input u(k) or its past values are needed by the
NN. The next step 1s to determine the weight updates so that
the tracking performance of the closed-loop filtered error
dynamics 1s guaranteed.

3.2 Weight Updates for Guaranteed Tracking Performance

A family of NN weight tuning paradigms that guarantee
the stability of the closed-loop system (3.7) is presented in
this section. It 1s required to demonstrate that the tracking
error 1(k) is suitably small and that the NN weights W(k),
W, (k) and W, (k) remain bounded, for then the control u(k)
1s bounded. In order to proceed further, the following
definitions are needed.

Lemma 3.1: If A(K)=I-ap(x(k))¢’(x(k)) in (2.7), where
O<a<2 and ¢(x(k)) is a vector of basis functions, then ||p(k,,
k,)||<1 1s guaranteed if there is an L.>0 such that

(3.8)

k{+L-1

D elxtkne” (x(k) > 0

k=kg

for all k. Then, Lemma 2.2 guarantees the exponential
stability of the system (2.7).

Proof: See (Sadegh, 1991).
Definition 3.2: An input sequence x(k) is said to be

persistently exciting (Sadegh, 1991) if there are A>0 and an
integer k, =1 such that

kq (3.9)
> ek’ (k)

_RZRD

> A, kg =0,

A-m_'in

where . (P) represents the smallest eigenvalue of P.
Note that PE 1s exactly the stability condition needed 1n
Lemma 3.1.

In the following, it 1s considered that the neural net
reconstruction error bound €,; and the disturbance bound d,,
are nonzero but known constants. Theorem 3.3 gives two
alternative weight tuning algorithms, one based on a modi-
fied functional estimation error and the other based on the
filtered tracking error, guaranteeing that both the tracking
error and the error in the weight estimates are bounded 1f a
PE condition holds.

Theorem 3.3

Let the desired trajectory x, (k) be bounded and the NN
functional reconstruction error and the disturbance bounds,
€x,d,,, respectively, be known constants. Take the control
input for (2.14) as equation (3.6) and the weight tuning
provided for the mput and hidden layers as

W, (k+1)=W, (k)-cu,, k)9, T (&), (3.10)

W (k+ 1)=W, (k)- .9, (k)9," (K), (3.11)
where

91(=W.T (), (k), 9-(k)=W," (k) (R), $.(k)=W," (k) (k).  (3.12)

and the weight tuning update for the output layer 1s given by
cither:
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a) Wi (kt1)=W5(k)+asp:(k)f (k), (3.13)

where f(k) is defined as the functional augmented error
ogven by

fik)=x,, (k4 1)-u(k)~flx (k)

or

b) Walk+1)=W,(k)+0s05 (k)T (k+1), (3.15)

10

with a,>0, Vi=1,2,3 denoting constant learning rate param-
eters or adaptation gains.

Let the output vectors of the 1nput, hidden, and output
layers, ¢,(K), ¢.(k), and ¢4(k), be persistently excmng, then
the filtered tracking error r(k) and the error 1n weight

15

12

and for algorithm (b) as

1

T?:

(1 — 3 (:Q%max) |

(3.19)

Remark: PE has not been defined 1n the literature, to our
knowledge, for a multilayer NN and therefor, PE 1s defined
and verified for a multilayer NN during the proof.

Proof:

Algorithm (a): Define the Lyapunov function candidate

1

T = v (orik) + —IF(WT(/C)WIUC)) +

4]

1

&2

(3.20)

1

— (W (W2 (k) + — 1r{W5 ()W 3 (K)).

X3

estimates, W, (k), W,(k) and W,(k), are GUUB provided the
following conditions hold:

D @i <2, ¥i=1,2, (3.16)

<1, ¥i=73,

1 3.17
2) kvma:{ < — ( )

Vi

where 1 1s given for algorithm (a) as

1 (3.18)

(1 - Ey?rfpgmax) |

T?:

AJ =

—rT ()= kyJr(k) + 20k, 1 (k) [W3 @5 (k) + e(k) + d(k)] +

The first difference 1s

200 Ad=r(k+ Drtk + 1) = (Ork) + (3.21)
1 ~T
—n«-[ T+ DW k + D= W, (0)W, (k)]

4]

I
— | Wy (k + DWo(k + 1) = Wy ()W, (0)] +

25 %)

i;r[w;”(k F DWalk + 1) — W (W3 (k).

X3

Substituting equations (3.7) and (3.10) through (3.13) in
(3.21), collecting terms together, and completing the square
yields

30

(3.22)

(1 + @3] @) WT @, (k) + e(k) + d()] [WT @, (k) + e(k) + d (k)] +

[1 — a3 @3 (k)@s (k)]

1

WZZIIIEIK(PZHIEIK
(2 — Q7 ﬁa%max)

Wlmaxﬁp%max
(2 — &) (Jﬂ%ma};)

(hyr (k) + a3 0% (K)@3 K)WT 5 (k) + 2(k) + d (k)
[ — @33 (k)@ (k)]

ey r (k) + a3 81 (@5 ()W @5 (k) + 2tk) + d (k)
[1— 33 (k)3 (k)]

€; (k) — €; (k) —

T

[eyr(k) + a3 @3 ()3 ()W ] §3k) + (k) + d(k)] [kyr(k) +

[1 — 33 (k)@s (k)]

@333 (k)@3 ()(W3 35 (k) + £k) + d(k))] -

, (-] ) :
2= @1 (06, (|| W1 (), (k) - — w7 g ||
(2—a1¢]¢))
r (1 - 2283 &) 2
~ A ~ ~ — L2 ~
(2 = andy ()P, )| W3 ()@, (k) - WS B, AT S
(2 — 29, 9,)
k‘l-’ﬂlﬂ?i p
—(1 —nk O —2— r(k)|| — - [1 -
(1 = k20| PO Tl - |
. (kyr (k) + a3 @5 ()3 OWT 35 k) + £(k) + d (k) ||
EH3(JQ31113}E] Ef(k)_ AT " o
[1 — @3¢5 ()@, (k)]

(2 — a1 &) (k)@ (k)

T 1= &) ..
W ()3, (k) — 2wl -

2—a1@; &)

(1 — 237 &,)
AT

Wi o,
(2 — a9, @)

W3 ()&, (k) -

(2 — a2®; ()@, (k)
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where 1 1s given 1n (3.18) with k. the maximum singular

value of k , and

|
*y::
(1 — ¥3¥3max

- - 2
Winmax@3max + €V +dig)

and

2 2
(!ﬂlma}; Wlma};

(1 — &3 (:Q%max)

(2 — ] (:‘G%max)

g [W?)Iﬂﬂfiégma}g + EN + dM ]5

2 2 T
@21113}; WZma};

(2 — & (Ja%ﬂlﬂ}{) 1 |

Since (e +d,,) 1s constant, AT=0 as long as

|
(1 _ nk'%ma};)

GOl >

i AJ (k)

k=kg

[rkmx + \/ V2K max

-continued

+p(1 —nkZ ) ]

AJ < =TT = kT & 1rtk) + 200k, r()T (W] @, (k) + (k) + dik) +

[1— a3@3 (k)@s (k)]

= |J({o0) — J(0)| < 00 since AJ <0

as long as (3.16),(3.17) and (3.25) hold.

(3.23)

(3.24)

10

(3.25)

15

14

where the functional reconstruction error €(k) and the dis-

turbance d(k) are considered to be bounded. Applying the PE
condition (3.9) and Lemma 3.1 by using ¢(k)=¢,(k)=¢,(K);
Vi=1; ..., 3, the boundedness of W,(k), W,(k), and W4(k),
in 3.26), (3.27), and (3.28), respectively, and hence of
W, (k), W,(Kk), and W4(k), are assured.

Algorithm (b): Define a Lyapunov function candidate as
in (3.20). Substituting (3.7), (3.10) through (3.12) and (3.15)
in (3.21), collecting terms together, and completing the

square yields

(3.20)

n[WT @, (k) + (k) + dik)) (W @5(k) + £(k) + dk)) +

e;(k) —

@305 (k)@ (k) ey rth) + (WT @, (k) + (k) + d (k)

pv2 2

2111:;?11(!’::I I max

(2 — &) ﬁﬂ%max)

vvz 2

lmam:(!'i:J I max

(2 — ] (P%ma};)

@333 ()05 () ey r(k) + (W @5 (k) + £(k) + d (k)

— ei(k) —
[1 = e3¢5 (K)@s (k)]

[2 — 18] ()@, (k)

(2 — a2y (k)@ (k)

—(1 —nk?

3 &1 (k)35 (k)

(2 — a1 &) (k)@ (k)

50

55

This demonstrates that the tracking error r(k) is bounded for
all k=20 and 1t remains to show that the weight estimates

W, (k), W,(k), and W (k) or equivalently W, (k), W,(k), and

W,(k), are bounded.

60

The dynamics relative to error 1n weight estimates using,

(3.10), (3.11) and (3.13) are given by

W, (k+1)=[1 _‘511&)1(k)$1T(k) ]‘5"71 (k)+a1&)1(k)&)1T(k) Wi,
W, (ke+1)=[1- ﬂz‘i’z (k)J)zT(k) ]Wz (k) +ﬂz$2(k)&)zr(k) W,

W, (k+1)=[1- ﬂ-z&% (k)(i;s ' (k) ]\;"73 (k) +C13‘£i)3 (k)&)s "(DWs,

(3.26)

65
(3.27)

(3.28)

1L,ma;,g)[Ila*"(k)llz -2

[1 — @3¢5 (k)@ (k)]

l-a1$1¢) -
. WlT‘F’l —

W (0%, (k) —
2—-a1¢,¢))

(1 - 2@s@y) -
. Wg‘#‘z

W3 ()3, (k) —
(2— a2, %5)

YK ymax £
| r(&)I| =

—[1 -

oy - 28 0B R rk) + W (k) + k) + A || _

[1 — a3 35 (k)4 (k)]

W ()@, (k) -

(1-@,8,) ..
T W, @,
(2— a5 @)

(2 — a2 % (), ()| W3 (k)b (k) —

with 1 1s given by (3.19) and where

Y= q[w?rmax@j}ma:{ +Ey + dM ]:- (330)

and

W2 o2 (3.31)

2Zmax @21113};

M;Z 2

lmax(!ﬂlmax

P =(Wanax @z + Ev + dig )* +

(2 — ] (:g%max) (2 — 7 @%max) |

AJ=0 as long as equations (3.16), (3.17) hold and

1
(1 —nk

(3.32)

Il > + = k) |

5 Yheomas + N 72K

VITlax

the remainder of the proof follows similarly to that for
algorithm (a).

One of the drawbacks of the available methodologies that
guarantee the tracking and bounded weights (Lewis et al.,
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1993) 1s the lack of generalization of stability analysis to NN
having arbitrary numbers of hidden layers. The reason 1is
partly due to the problem of defining and verifying the
persistency of excitation for a multilayered NN. For
instance, 1n the case of a three layer continuous-time NN
(Lewis et al., 1993), the PE conditions are not easy to derive
as one 1s faced with the observability properties of a certain
bilinear system. However, according to the proof presented
in Theorem 3.3, the PE for a multilayer NN 1s defined as the
PE (in the sense of Definition 3.2) of all the hidden layer
inputs ¢(k); Vi =1, ..., n.

The following corollary presents the generalization of
Theorem 3.3 to NN having an arbitrary number of hidden
layers when the NN functional reconstruction error and the
unmodeled disturbances are nonzero but bounded by known
constants.

Corollary 3.4

Assume the hypotheses presented in Theorem 3.3 and
take the weight tuning of an n-layer NN provided for the
input and the hidden layers as

Witk + 1) = With) — ;. (097 (), Vi=1, ..., n - (3.33)
where
) = W! 0@k i=1, ... n—1, (3.34)

and the weight tuning update for the output layer 1s given by
either:

a) W, (ke 1)=W,(k)+a, 9, (k)f (K), (3.35)
Or

b) W (k+1)=W (k)\+a, @, (k) r (k+1), (3.36)
with >0, Vi=1, 2, 3, . . . n denoting constant learning rate

parameters or adaptation gains.

Let the output vectors of the input, hidden and output
layers, (f),;(k); Vi=1, 2, ..., n, be persistently exciting, then
the filtered tracking error r(k) and the error in weight
estimates, {N,:(k); Vi=1, 2, . . ., n, are GUUB provided the
condition
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D aef, . <2, Vi=1, n—1 (3.37)
< 1, [=n
1
v
hold where m is given for algorithm (a) as
_ 1 (3.39)
=T (1 - wﬂﬁﬂ%mfm)?
and for algorithm (b) as
I (3.40)

1= (1 _ wﬂ@%max) |

Proof: Consider the filtered tracking error dynamics (3.7)
and rewrite (3.7) for an n-layer NN to obtain

(ke )=k 1K) +e,(R)+ W, 70, (k) +e () +d (k). (3.41)
where the 1dentification error 1s given by
eik)=W," (), (k). (3.42)

Algorithm (a): Define the Lyapunov function candidate

ol (3.43)
7 =T (loyrk) + ; arr(wi (W ().
The first difference 1s
AT =rTtk+ Drik+ D) = ¥ (orik) + (3.44)

n
DT — oW tk+ DWWk + 1) = W; (OW;(6)]
=1 i

Considering the input and hidden (3.33), output (3.35)

welght updates as well the tracking error dynamics (3.41),
and using these in (3.44), one may obtain

, , o (3.45)
AJ = _(1 _ T?kvmax)”r(k)” + zkvma}:ynr(k)” + £~ [1 _ &rn(:ﬂn (f'()(,ﬂ”(k)] Ei(k) _
[k r() + @, &1 ()&, (KYWT @, (k) + e(k) + d(k))] i
[1 - 2,9, ()@, (k)]
N : 1 - a;9] g, ) 2
Z [2 - ;@) ), ()| W; ()@, (k) - ——————W/ (k)
- 2 - ;@] () )
where
vy =(n - 1)[W§mﬂ@nmaﬂ + oy +duy |, (3.46)
and
n—1 (3.47)
_ 1 WT ~ 4 2 Z imax 7" imax 5
p=m—=DIW, @ tEv Hdu | + 7 a0l ]

65

=1
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with 1 given 1n (3.39) AJ=0 as long as conditions (3.37),
(3.38) hold and the bound on the filtered tracking error is
given 1n (3.25) where the constants y and p are presented in

138

fact using (3.37), the upper bound on the adaptation gain can
be obtained as

(3.46) and (3.47) respectively. This demonstrates the GUUB I (3.53)
of r(k) and it remains to show that the weight estimates, s @i < 2 vi=l....n-1
W (k), Vi=1, ..., n, or equivalently W k), Vi=1, . .., n, are Taﬁ
bounded. < ——.i=n
The dynamics relative to error 1n weight estimates are P imax
given for the input and hidden layers as
iy W;;(‘lic+1)=[i_ﬂzt¢i;(k)q)i(k)]Wi(k)'l'ﬂzq)i(k)q)fr(k)wfﬂ Vi=l, ..., n@l48) .
and for the output layer as . n o .

e T, 0, O 00 O, eyl Sinee BOOR™, with N, the number of hidden-layer
where the functional reconstruction error and disturbances neuons 1n Fhe 1th.layer, it 1s evident that the upper bound on
are considered to be bounded. Applying the PE condition ~ the adaptation gain at each layer depends upon the number
(3.9) and Lemma (3.1) with ¢(k)=¢p(k); Vi=1, . . . , n, the - of h{dden-layer neurons present in that particular layer.
boundedness of W k), Vi=1, . .., n, in (3.48) and (3.49) and Specifically, 1f there are N, hidden-layer neurons and the
hence of Wi(k)? Vi=1, ..., n, are assured. maximum value of each hidden-node output in the 1th layer

Algorithm (b): Define the Lyapunov function candidate as is taken as unity (as for the sigmoid), then the bounds on the
in (3.43). Substituting (3.33), (3.36) and (3.41) in (3.44), adaptation gain in order to assure stability of the closed-loop
collecting terms together, and completing the square yields system are given by

(3.50)
AJ < (1 =k O + 2k IO + o = [1 = 0, ()3, (0] |[e; (k) -
~T ~ 2
e OO+ (W (0 + eth) + di))]| —
[1 =@, @, ()¢, (k)]
N T 1 — ;] ()@, k) ’
Z 12— 0T (0,0 || W] (0, ) — — 2 Ty |
— 2 —aip; (k) (k).

where

Y = NWomaxPrmas + &8 + i ] (3:51)

and

el (3.52)
P = NIW, aBrmas + v + i ] + Z: [;V _‘“:zf] ,
40
with 1 given in (3.40). The remainder of the proof follows
similarly to that of algorithm (a). Dem e 2 Yict  n1 (3.54)

Note from (3.25) and (3.32), that the tracking error "N, T "
increases with the NN reconstruction error bound €,, and the i
disturbance bound d,,, yet small tracking errors, but not 45 0<a; < Y i=n.
arbitrarily small, may be achieved by selecting small gains g
ky. In other words, placing the closed-loop error poles
arbitrarily close to the origin inside the unit circle forces In other words, the upper bound on the adaptation gain at
smaller tracking errors. In contrast, by selecting large gains cach layer for the case of delta rule decreases with increase
for the case of continuous system, arbitrarily small tracking sg 1n the number of hidden-layer nodes 1n that particular layer,
errors can be obtained (Ortega et al., 1985). so that learning must slow down for guaranteed perfor-

It 1s important to note that the problem of initializing the mance. The phenomenon of large NN requiring very slow
net weights (referred to as symmetric breaking (Slotine and learning rates has often been encountered in the practical
L1, 1991)) occurring in other techniques in the literature does NN literature (Chen and Khalil, 1992; Narenda and
not arise, since when Z(0) is taken as zero (with nonzero ss ©arthasarathy, 1990), but never adequately explained.
thresholds) the PD term of k r(k) stabilizes the plant, on an This major drawback can be easily overcome by modi-
Interim basis, for instance 1n certain restricted class of fyu}g the updat.e rule at each layer 1n 01:der N obtam-a
nonlinear system such as robotic systems. Thus, the NN projection algorithm (Jagann‘athan {md Lowis, 1996). To wit,
controller requires no learning phase. replace the constant adaptation gain at each layer by

3.3 projection Algorithm 60

The adaptation gains for an n-layer NN, a.>0, Vi=1, 2, . @ = 6 Vi=1....n (3.59)
.. 0, are constant parameters in the update laws presented in & + 11,1l
(3.33) through (3.36). These update laws correspond to the
delta rule (Slotine and Li, 1991; Tomizuka, 1993), or where
referred to as the Widrow-Hoff rule (24), used in standard 65
backpropagation. This reveals that the update tuning mecha- 6>0, Vi=l, ..., n (3:56)

nisms employing the delta rule have a major drawback. In

and
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0<E <2, Vi=1, ..., n-1

0<g;<1, Vi=n (3.57)

are constants. Note that ¢, Vi=1, . . . n 1s now the new
adaptation gain at each layer and 1t 1s always true that

&; (3.58)

@l <2, ¥i=1,...,n—1
Zi + 1@ (ol

<1, ¥Yi=n,

hence guaranteeing (3.37) for every N, at each layer.

From the bounds indicated for the adaptation gains in
(3.58), it is interesting to not that the upper bound on the
adaptation gains for the mput and hidden layers 1s 2 whereas
for the output layer the upper bound is given by 1. It appears
that the hidden layers act as pattern extractors (Rumelhart et
al., 1990). In other words, the hidden layers of a multilayer
NN are employed for the 1dentification of the nonlinear plant
and the output layer i1s used for controlling the plant.
Nowhere else does there appear an upper bound less than 1
for the adaptation gains 1n the output layer.

Note that for guaranteed closed-loop stability, 1t 1s nec-
essary that the hidden-layer outputs ¢p(k); Vi=1, . . ., n, be
PE. In other words, Theorem 3.3 and Corollary 3.4 reveal
the necessity of the PE condition to guarantee boundedness
of the weight estimates 1n the presence of unmodelled
bounded disturbances and functional reconstruction errors.
However, it 1s very ditficult to verily or guarantee the PE of
the hidden-layer output functions ¢(k); Vi=1, ..., n, in the
case of a multilayer NN. This possible unboundedness of the
weight estimates (c.f. parameter estimates in adaptive
control) when PE fails to hold is known as parameter drift
(Ortega et al., 1985). In the next section, improved weight
tuning paradigms are presented so that PE 1s not required.

3.4 Weight Tuning Modification for Relaxation of Persis-
tency of Excitation Condition

Approaches such as o-modification (Sira-Ramirez and
Zak, 1991), or e-modification (Park and Sandberg, 1991) are
available for the robust adaptive control of continuous
systems wherein the persistency of excitation condition 1s
not needed. A three-layer NN with continuous weight update
laws and e-modification was developed (Lewis et al., 1993),
and the GUUB of both the tracking error and the error in
welght estimates was demonstrated. However, modification
to the standard weight tuning mechanisms in discrete-time
without the necessity of PE 1s, yet to be investigated 1n both
the NN and adapative control communities. In our previous
paper (Jagannathan and Lewis, 1993), an approach similar to
e-modification is derived for two-layer (i.e., linear) discrete-
fime NN. In this 1nvention, the modified weight tuning
algorithms discussed for a two-layer discrete-time NN 1n
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(Jagannathan and Lewis, 1993) are extended to a multilayer
discrete-time NN so that Pe 1s not needed. In fact, the

following theorem shows two tuning algorithms that over-

come the need for PE 1n the case of a multilayer NN.
Theorem 3.5

Assume the hypotheses presented 1n Theorem 3.3, and
consider the modified weight tuning algorithms provided for

the 1nput and hidden layers as
W, (k+1)=W, (k)_afih (k)" (k)-T] V‘a1$1(k)&)1r(k)‘ W, (%),

W (et 1) =W (K)ot (9,7 (R)-T - cnpo (), (0| W, (),

(3.59)

(3.60)

and the modified weight update for the output layer by
cither:

a) WS (k"'l):ﬁ;?,(k)_ﬂ?ﬁ)?, (k)]? T(k)_r‘V‘ﬂ3&)3(k)&)3r(k)“w3(k): (3.61)

Or
b) WS(k"'D:WS (@“53’-3&)3(;‘)? (k+1)-T0|F _‘51363'3 (k)‘i}% T(k)HW3(k): (3.62)

with 1>0 a design parameter. Then, the filtered tracking
error r(k) and the NN weight estimates W,(k), W,(k), and
W, (k) are GUUB provided the following conditions hold:

D) aer, <2, ¥i=1,2, (3.63)
< 1,i=73,

2)0<T <1, (3.64)

(3.65)

1
(3) kuma}; < —
H

for algorithm (a) and

1

k'u‘max < —

Vo

for algorithm (b)
where 1 is given in (3.18) for algorithm (a) and o for
algorithm (b) 1s given by

| A A 5 ) ) A
o = 5[1 + T = a3 @3 (0@ (N7 + 203785, ol — a3 5 ()23 ()]

(3.66)

where 1 1n (3.66) given 1n (3.19).

Remarks: No PE condition 1s needed with the modified
tuning algorithms.

Proof:

Algorithm (a): Select the Lyapunov function candidate
(3.20). Use the tuning mechanism (3.59) through (3.61) in
(3.21) to obtain
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: (3.67)
AJ < —[1 = k2 PGNP + 2ksma VI GON + o — Z [2 - @] ()@, (k)]
=1
[(1 = ;] (K); () =TI = @@ (k)@] ol
[2 - @;@; (k)@; (k)]
a3 33 (k)5 ()]
[y r (k) + (@3 @3 (@3 (k) + Tl — a3 @3 (k)@3 (OINW3 @3(k) + ek) + d (k)]
[1 - 33 (k)5 (k)]

W, ()@ (k) - Wl @:(k)

e;(k) —

3
1 T 2 o T o T
Fy ;ll!—mgpi(k)gﬂ?(k)ll |2 W, (W (k) + 2TW; ()W (k)]
i=1

where

(@33 max + DI = @335 (63 () (3.68)

[1 — Q3 Sﬂ%max]

[Wanax @3, T €N + s ]|

vy=|1+
and

(@@ + T = a3 30027 (Ol (3.69)

3max + s [Wf')max(;a?,mag; + &y + dM ]2 +
[1 — &3 @31113};]

1 +asp

2T Wamax®s ol = @305 ()05 VO Wamax@apo e + €8 + dig ] +
2

5

=1 -

(@it + 20| = a3, 00%! Rl +

[(1 = a0 = Tl = a5, (0T GOl

2
(Jﬂimaxw'
(2 - wiﬁﬂizmax)

imax-

Consider (3.67), rewrite the last term in terms of ||Z(Kk)|,
denote the positive constants ¢ and ¢_ . as the maximum
and minimum singular value of the diagonal matrix given by

B!

— 1 = a1&, ()@, ) 0 0
3

(3.70)

0

1

4}

0 0

1

— |11 = a2, (k)5 ()] 0

— 1 = @33, ()@3 (k)
s

and complete the squares for HZ(k)H to obtain

(0 + CoZix) (3.71)

k _ max
Il = 7

1 (kI|* —

AJ < —[1-nkZ ]

VIILAX

FIIIEIK] i

2 AT ~ A AT
[(1 — a;p; (k) (k) = Tl [ 1= a0,k )p; (]

Z [2 — a;d! (k)@ (k)]

i=1

W, )&, k) —

[2 — a;@] (k)@; (k)]

Wi &;(k)

—[1-

[leyr (k) + (a3 &3 ()3 (k) + DI = a3 &3 ()33 (DS @3 (k) + £(k) + d (k)

ei(k) — ——
[1 —a39; (k)@s (k)]

3 &3 (k )y (k)]

1 -1) cpax 2
( ) i Zﬂlﬂ:{ "
(2 - r) Cmin

(2 = Dien| || Z60)|| -
with

(3.72)

Crmax 1

0D [(1 = ) emax + 172 = Deminl.

Cp =
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Then AJ=0 as long as (3.63) through (3.65) hold and the
quadratic term for r(k) in (3.71) 1s posnwe which is guar-
anteed when

|l > (3.73)

(1 - qlk [ vmax + \/yzkizfmax [+ coZi o J(1 — ki, o) ]

Similarly, completing the squares for |[r(k)|| using (3.67)
yields

2
AT = =1 = kg 1P GOI - ]] - T2 = Diewn| 20| -

Zkz

) . B 5 vmax
2(1 r)gmﬂHZ(k)HZmax [rﬂ'maxzmax (l _ nkmn

[(1 = ;&) (0)3,00) =T | 1= a;&,0)&! (]

i=1

2

;6! 0@, || W] ()@, (k) -
[2 — a;; (k)sﬂf (k)]

[lyr () + (@3 @3 (k)5 (k) + Tl = a3 33 ()@3 GOIDWS 33 (k) + £(k) + d (k)]

(3.74)

ﬂ)”]‘z[z‘

Wl o k)| -1 -

3 &% () ()]||e; (k) -

where A and p are given in (3.68) and (3.69) respectively.
Then AJ=0 as long as (3.63) through (3.65) hold and the
quadratic term for HZ(k)H in (3.74) 1s positive, which 1s
guaranteed when

[(1 = D)emuZmax + V T2(1 = DR a2 + T2 = Depin®
[2—T)

- 22
0 = | CmaxZs, . + Y Kman + 0|
(1 —nk?

VIILAX

From (3.73) and (3.75), it can be concluded that the tracking

error r(k) and the error in weight estimates Z(k) are GUUB.
Algorithm (b): Select the Lyapunov function candidate

(3.20). Use the tuning mechanism (3.59), (3.60) and (3.62)
to obtain

AJ < —(1 —nkZ_rtOl* + 2ykymaxllFEI + o —

2

[(1 — ;3! ()@, (k) — Tl — a; &, ()@, (K|

[1 — a3d5 (k)5 (k)]

(3.75)

(3.76)

Wi &;(k)

Z 12— ai6T (00 | W (0, k) -

i=1

2 — ;@] (k)@ (k)]

(@33 ()5 (k) + DI — a3 @3 ()@s (DU r(h) + (W5 @3 (k) + alk) + d (k)]

(3.77)

3 33 ()@, (6)]|[e; (k) — .
[l — a3 ¥4 (k)‘:ﬂ?, (£)]

3
1 . . A -
£ — 11 = ai (03T WP W] (W (k) + 20W] (W),
, ¥;

where

Y = q(w?mmaxf:ﬁf’,max +Ey + dM ) + rl“ — &3 (;53 (k)(;:g (k)”(:g?mmax W?rmaxa

and

— [q(w?rmaxgaj}ma:{ +En + dﬁﬁ’) + er“_ 3 &3 (k)(:bg (k)”(:%maxWSmax](WSmaEgﬁSmax t+ ey + dM) +

2
+ 201 = ;3. (k)@! () +

(3.78)

(3.79)

WE

I(P.El'ﬂﬂ}i

=1 -

5 " (1~ i) = Tl — 0 (0] ©IN”
[2 — Eyf(:ﬂizmax]

(JQ.EIIIHI{ Hnax-

24
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Completing the squares for HZ(k)H in (3.77) similar to

algorithm (a) results in AJ=0 as long as the conditions in
(3.63) through (3.65) are satisfied and with the upper bound
on the tracking error given by

(Ol > (3.80)

1
(1 —nk

2 )[?’kuma;; + \/sz%max + o+ C{}anax](l — T?k%ma;;) ]

VIIIaX

On the other hand, completing the squares for [r(k)| in
(3.77) results in AJ=0 as long as the conditions (3.63)
through (3.65) are satisfied and

[(1 - DemaZiax + § T2 = D2 emaxZ2n + T2 = Depin®

|20 > o

where

2.2
k
[ nZ .+ ¥ ymax

max

+ 0.

In general AT=0 as long as (3.63) through (3.65) are satisfied

and either (3.80) or (3.81) holds. This demonstrates that the
tracking error and the error in weight estimates are GUUB.

Note that the NN reconstruction error bound €,, and the
bounded disturbances d,, increase the bounds on |r(k)| and

Z(K)|

error bounds, but not arbitrarily small, may be achieved by

in a very interesting way. Note that small tracking

placing the closed-loop poles 1nside the unit circle and near
the origin through the selection of the largest eigenvalue,

k On the other hand, the NN weight error estimates are

YVRAX"

fundamentally bounded by Z the known bound on the

FRLEEX?

ideal weights W. The parameter 1" offers a design tradeoll

between the relative eventual magnitudes of |r(k)|| and ||

Z(fi)H; a smaller I" yields a smaller |r(k)|| and a larger HZ(k)\ :
and vice versa.

The effect of adaptation gains .., o.,, and o, at each layer

on the weight estimation error Z(k), and tracking error r(k),

can be easily observed by using the bounds presented in
(3.80) and (3.81) through c, .. and c,, .. Large values of .,
and o, forces smaller weight estimation error whereas the
tracking error 1s unaffected. In contrast, a large value of o,
forces smaller tracking and weight estimation errors. The
next corollary, by using the improved weight tuning updates,

extends the stability analysis presented for a three-layer NN
in Theorem 3.5 to an n-layer NN.

10

25

30

35

40

45

50

55

26

Corollary 3.6
Assume the same hypotheses as Theorem 3.5, and con-

sider the modified weight tuning algorithms provided for the
input and hidden layers as

Wy (k1) =W, (K=, (019, ()T -0ty (b, " (RW (), Vi1, . .
L n—1, (3.83)

and the modified weight update for the output layer 1s given
by either

a) W, (k+1)=W,(k)+a,0,(Rf (k)-Tl-,,(00," ®)[W, &), (3.84)
Or

b) W, (k=1)=W,(k)+0,9,, (k)" (k- 1)-T |- 01,9, (R), (B)| W, (k), (3.85)

with I'>0 a design parameter. Then, the filtered tracking
error r(k) and the NN weight estimates W«k); Vi=1,...,n

(3.81)

(3.82)

are GUUB provided the following conditions hold:

(D) @i, <2,Vi=1,...,n—1, (3.86)
<1, i=n,

2)0<T <1, (3.87)

(3.88)

1
(3) k'u‘ma}; < —=
H

for algorithm (a) and

|

kwma}; < —

Vo

for algorithm (b)
where 1 is given in (3.39) for algorithm (a) and o for
algorithm (b) 1s given by

1 ~ ~ 2 A A
o = 5[1 F T2 = @, 0BT GO + 203 T2 1T — 233, ()T (]

(3.89)

with 1 1 (3.89) given 1 (3.40).
Remarks: No PE condition 1s needed with the modified
tuning algorithms.

Proof:
Algorithm (a): Select the Lyapunov function candidate

(3.43). Considering the input and hidden (3.83), output
(3.84) weight updates as well as the tracking error dynamics

(3.41), using these in (3.44), and completing the squares for
|Z(k)||, one may obtain
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_ kavma}; ()O + CUZZ )_ (390)
_ _ 2 2 _ _ madax _
AJ < —[1—nk2 ] _||r(k)|| T Il - e
— (1 = 0;T (03,0 = TN = 236, 6087 (Il 2
Z 12— 0T 0, 01| W] oy — —— ot AN~ 1 OO P W gyh| = [1 - ! (0, ()
— [2 = aip; ()g; (k)]
sy L+ (@087 ()0, 0+ Tl = @, ()0, (IDW, 2, k) + 5(6) + k) :
| [1 -, 8] ()@, (k)]
(2T Z(k (1_”6"“‘“‘2 2
—[(2 = Dewin| ||Z(6)|| - ST o L
where
' > A aaaT ' (3.91)
o lis (@n ¥ max JElFﬂ; ;nsﬂn](k)sﬂn (k)”)[ans’ﬁnm con +dill.
and
2 Ol = @, & (k)G (Ol (3.92)
£ = 1+ wﬂﬁﬂimax + (ﬂ{ngﬂnmax +[1 ! 0 j;@}lg )@H( e [ana:{‘;é”max + &y + dM]z +

~ A AT ~
Q/rwnma:{(:gnmaxllf _ &'H(Jgn (k)(:pn (k)” [Wﬂmﬂigﬂlnma}; + EN + dM] +

n—1 r

g (@102 + 20N = a;d, (k@] (o) +

=1 -

A A 27
(1 = a2 ) =TIl = a:0.(0)0@] (ol E
[2 — 0P ] o

jmax "

Then AJ=0 as long as (3.86) through (3.88) hold and the
quadratic term for r(k) in (3.90) is positive, which is guar-
anteed when (3.73) 1s satisfied with 2 p 1n (3.90) are given
in (3.91) and (3.92) respectively.

Similarly completing the squares for |r(k)|| in (3.90), the
first difference 1s

30

VIILAX

T (3.93)
AJ = —[1—nk; ][Ilr(k)ll— ? ]} —

[1 —nk2

VIIL X

,yzkz

VITIaAX

[[ 2 = Dema||ZE)|| = 201 = Diemas

+ ol -

~ _ 2

n—1

Z 12— oy o, || W o, ) —

=1

1 —a: 0" 0otk =TI — a;0.(0)8! (k 2
A LA T I
[2-@'5&5 (k)gb;(k)]

@, & (), (k)]||e; (k) —

[y (k) + (@ &) ()3, (k) + Tl T = a8, (03] DWW @, (k) + (k) + d (k)]
[1 — an® ()@, (k)]

55
where p 1s given in (3.92). Then AJ=0 as long as (3.86)

through (3.88) hold and the quadratic term for HZ(k)H in
(3.93) is positive, which is guaranteed when (3.75) 1is
satisfied. This demonstrates that the tracking error r(k) and

the error in weight estimates Z(k) are GUUB. 60

Algorithm (b): Select the Lyapunov function candidate
(3.43). The first difference is given by using (3.83), (3.85)
and (3.41) as
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n—1
AJ < —(1 —nk?
i=1

[(1 = ;37 (), (k) = TN = @, ()@ (] i

W &, (k)
[2 — ;3] (k)@ (k)]

e;(k) —

2 GO + 2kl P + - Z 2 — 03T 62,01

—[1 - @,&! ()@, k)]

[(@,&;, ()3, (k) + Tl = 2,8, ()&, (Ol kyr(k) + W) @, (k) + £(k) + d (k)]

=1 !

where

Y = H(anax@nmax + En + dM) + rl“ — Eyn(:bn (k)(:b;?; (k)”(:pnmaanmaxa

and

[1—a, &l ()@, (k)]

30
(3.94)
W (), (k) -
2
_,_Z i”; - wr.@_(k)@?(k)”zrr[l“zWT(/()WI-(/() + QFWTU()WTU()L
; o 1 | |
(3.95)
(3.96)

0= [T?(Wmna;;gﬁnmax + Ex + dM) + er“ - wn(:bn (k)ﬁﬁ;{ (k)”(:ﬂnmaanmax](anaxgbnmaﬁ +En + dM ) +

n—1 r

(ﬂ{i(:pimax

Proof follows similarly to that of algorithm (a).

4. Passivity Properties of the NN

The closed-loop error system (3.7) is shown in FIG. 3, for
instance when (3.36) is employed (the structure for (3.35) is
the same); note that the NN now is in the standard feedback
configuration as opposed to the NN controller in FIG. 2.
Passivity 1s essential 1n a closed-loop system as 1t guarantees
the boundedness of signals, and hence suitable performance,

even 1n the presence of additional unforeseen bounded
disturbances (i.e., NN robustness). Therefore, in this section

the closed-loop system, are explored for various weight

tuning algorithms. Note the input and the hidden layer
weight update laws employed for algorithms (a) and (b) are
same.

Theorem 4.1
(1) The weight tuning algorithms (3.10) and (3.11) make

[

the map from W, to VTV1T , and W,* to W,”, both
passive maps.

(i) The weight tuning algorithms (3.13), (3.14) make the
map from, (W5 §5(k)+e(k)+d(k)) for the case of algo-
rithm (a), and (kr(k)+W. ¢5(k)+e(k)+d(k)) for the
case of algorithm (b), to =W, 7(K)¢,(k) a passive map.

Proof:

(1) Define a Lyapunov function candidate

1 . . 4.1
J= — oW W, 0], -
@)
where {first difference 1s given by
1 . . . . :
AT = — o[ W (k+ DW,(k + 1) = W ()W, (6)]. (#-2)
k]

2 200 = ;2. 0087 (Rl +

the passivity properties of the multilayer NN, and hence of
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(:ﬂima:{ imax"

[2 — ; (:gzzmax]

Submitting the weight update law (3.10) in (4.2) to obtain

AT==(2-c,6, (R, (R o
W7 (R0, (0) (W, (), (R)+2(1-01,0, (R0 (6)
(W, (R)a ()7 (W, (k) (R) +

o (0, (R0, (R (W, (R, (R, ()T (W, (k)4 (K)) (4.3)

Note (4.3) is in power form (2.11) as long as the condition
(3.16) holds. This demonstrates the passivity of the update
law (3.10).

Similarly, 1t can be shown by using the hidden layer update
(3.11) that the weight tuning (3.11) is in fact a passive map.

(11) Algorithm (a): Define a Lyapunov function candidate

T e 4.4
J = w—rr[wg(k)w?,(k)], (4.4
1

whose first difference 1s given by

| ~ T ~ ~ T o
J= —or|Wsk+ DWsik + 1) - W3 (W5 k)|,
3

Substituting the weight update law (3.13) in (4.5) yields

AT = ~(2 = a3} (03, U~ W3 (025 (K)) (= W3 (k)5 () + (4.6)

21— a3 @] ()3, U= W3 (05 (0)) (W3 (), (k) + 2(K) + dik) +

~T A ~ T - T
@3 3 ()@3 (W3 (@5 (k) + etk) + dik))

(W3 ()@, (k) + (k) + d k).

Note (4.6) is in power form (2.11) as long as the condition
(3.16) holds. This in turn guarantees the passivity of the
weight tuning mechanism (3.13).

Algorithm (b): Select the Lyapunov function candidate (4.4).
Use (3.14) in (4.5) to obtain
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AJ = =2 = a3 @] ()6, ()= W] (), (k) (=W (), (k) + 4.7

21— a3 @] (03, ()~ W (), ()

(kyr (k) + W3 ()5 (k) + (k) + d(k)) +

ad A ~ T - T
3 @3 ()5 () kyrik) + W3 ()35 (k) + s(k) + d(k))

(kyr (k) + W3 (k)5 (k) + (k) + d(k)).

which is in power form (2.11) for discrete-time systems as
long as the condition (3.16) holds.

The next result demonstrates the passivity properties for NN
with an arbitrary number of hidden layers.

Corollary 4.2

(1) The weight tuning algorithms (3.33) for the input and
hidden layers in a n-layer NN make the maps from W,

to W,;T (k); Vi=1, . . ., n-1, passive maps

(i1) The weight tuning algorithm (3.35), (3.36) make the
map from, (W,** (k)+e(k)+d(k)) for the case of algo-
rithm (a), and (k r(k)+W, q)n(k)+e(k)+d(k)) for the

case of algorithm (b), to =W, 7(k)¢, (k) a passive map,
Proof:

(1) Define a Lyapunov function candidate

1. 4.8
5= —o|W oW vi=1, ... ,n-1, (4-9)
&1

whose first difference 1s given by

1 A A, A, i .
Ady = —0r[W Gk + DW itk + 1) = Wy (W (0 Vi=1, ... (4)

;

Substituting the weight update law (3.33) in (4.9) to obtain

AT == (2-a (R0 (W, (R)0,(k)T (W, () () (W, (k) pi(k))+2(1-
0 (100, () (W (k) (W, (k)q) (k))+
0 (0, (00, (0) (W, (R0 k)): Vi=1, . .., n-1. (4.10)

Note (4.10) is in power form (2.11) as long as the condition
(3.37) holds. This demonstrates the passivity of the update
law (3.33) used for the input and hidden layers.

(i1) Algorithm (a): Define a Lyapunov function candidate
1 . . .
— oW, (W, (k). @1

&y

Jy =

whose first difference 1s given by

1 . o .
— o[ W, (k + DW,(k + 1) = W, (lOW,, (k). @12

¥

J, =
AT = =2 - a, 8" (), ()~ W] (i, (k) (W] k), () + (4-13)
21 = 0,8l k0, ()~ Wy ()3, K)) (W (02, (K) + an] (k)
5, 0O(WY k)3, (k) + (k) + d(k)) (W] ()3, (k) + 2(k) + d(k)).

Note (4.13) is in power form (2.11) as long as the condition
(3.37) holds. This in turn guarantees the passivity of the
weight tuning mechanism (3.35) for the output layer.

Algorithm (b): Select the Lyapunov function candidate
(4.11). Use (3.36) in (4.12) to obtain
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= — (2~ 0, 8] (05, () (=W, (0, () (- W) (3, (k) + 1%

21— 0,37 )3, (- W] (0@, (k)

(kyr (k) + W, ()@, (k) + (k) + d(k)) +

A A ~ T - T
@3 @, ()@, O kyr(k) + W, ()@, (k) + s(k) + d (k)

(kyr k) + W, (), (k) + (k) + d(k)).

which is in power form (2.12) for discrete-time systems as
long as the condition (3.37) holds.
Thus, the weight error block 1s passive and the closed-

loop filtered tracking error system (3.7) in FIG. 3 is dissi-
pative (see Theorem 2.2); this guarantees the dissipativity of
the closed-loop system [21]. By employing the passivity
theorem [2.1], one can conclude that the input/output signals
of each block are bounded as long as the external inputs are
this does not yield boundedness of the internal states of the

lower block (i.e., W,(k); Vi=1 , n) unless PE holds.
The next Theorem shows why PE 1s not needed with the

modified update algorithms of Theorem 3.5.
Theorem 4.3
(1) The modified weight tuning algorithms (3.59) and

(3.60) make the map from W,7 to W,7 (k), and W,7 (k),
both state strict passive maps.

(1) The weight tuning mechanisms (3.61), (3.62) for a
three-layer NN make the map from, (W,'

¢5(k)+e(k)+d(k)) for the case of algorithm (a), and
(k. r(K)+ W, ¢,(k)+e(k)+d(k)) for the case of algorithm
(b), to =W, 7 (K)p4(k) a sta

Prootf:

(i) The revised dynamics relative to input W, (k), and

¢ strict passive map,

hidden layer, Wz(k), error 1n weight estimates are given

by

W, (k+1)=[1-a, ) )
Oy ()W, (R)+e, 9 (R) (W, 9(k)) +T =ty 0, (), " (%) | W, (R) (4.15)

2(k+1) [‘Lﬂz¢zr(k)]wz(k)+ﬂz¢z(k)(w (I)(k)) +I|[I-
ﬂzq)z(k)q)z (k)HW (k),

Select the Lyapunov function candidate (4.1) and use (4.15)
in (4.2) to obtain

(4.16)

AT = ~(2 - a1 6T ()@, (D(W] (K03, (k) (W] ()3, (k) + (4.17)

2[(1 — a1 &1 ()@, (k) = TN = &, (k)] (K)|I]
(W1 o () W) +

o & (0@, kW o, k) WTe, (k) — x + 72,

where

| 4.18
= — |- 2,3, (007 ([T - (19

&
D)||W 1 (6)]|* =20 (1 = D)W imax||[W1 (6)]| ]

and

[2 (4.19)

¥5 = ﬂ{—llf a1 @, (@] (OIIPWE 4 21| -
1

a1 &, (O (ONle? Wi

Note (4.19) is in power form for discrete-time systems given
by (2.11) with g(k) a monic quadratic function of the state.
Similarly for the hidden layer, 1t can be easily shown that the
welght update law 1s 1n fact a state strict map.
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(i) Algorithm (a): The revised dynamics for the output Select the Lyapunov function candidate (4.8) and use (4.26)

layer relative to W(Kk) are given by in (4.9) to obtain

W1(k+1)=[f—ﬂ3$3T(k)]W3(k)+?3$1£k)(W3TH AJ < —(2—a; (;EJ'T )3 (k) WT("'()@(!() T WT(/()&(}'() . 4.27)
¢s(k)+e(k)+d(k)) +T1[I-0s05 (k)5 ()W (k) (4.20) 5 | | ( 1 ‘ ) ( ‘ i )

Select the Lyapunov function candidate (4.4) and use (4.20)
in (4.5) to obtain

T A ~ AT o ~ r
2[(1 = &} (k)@; (k) =TIl = ;& (k)@; (II(W; (k)@ (k)
WTo.(0) + ;0] ()@, k)W @,k W, k)) -
){5+7§?,V£: l,....n—-1

- . . 491 where

AT = —(2= @38 (03, (0= W1 ()5 () (= W3 (), (k) + &2 1 a2
2[(1 — a3 @3 )@ (k) — Tl — 335 ()@; (I} xi=—|I-aig, (] Wl [T~ |
~T . T T ~ ~T ~ 1
(_W3 @3 (k)) (W3 @3 (k) + E(k) + d(k)) + @3¢, (k)g;‘?) (k) F)Hﬁfl(k)Hz—QF(l _ r)wzmaxuﬁ/z(k)u]a
(W] @3 (k) + £k) + d(k)" (W] @5 (k) + &k) + d (k) — x + 73, o
where
1 4.22 R 11— @i, ()] (I" W + 201 -
. Yio = — — &R )Y, imax + o
X =—lll-asp, (@5 (ll*[T2 - R __
3 ~ AT 2 2
~ -~ wi‘:ﬂj(k)(:pj (k)“(:pima:{wimax
D)||W 3 ()||* =20 (1 = D) Wipas|| W3 (6|,
and
0" Note (4.27) is in power form for discrete-time systems given
[’ N TN (4.23) by (2.11) with g(k) a monic quadratic function of the state.
5 = — 1 =305 (k)05 (OII" Wi, + 2001 - o - * -
(S SRENNGE 3max Similarly for the hidden layer, 1t can be easily shown that the
s 06T (Ol W (War G g welght update law 1s 1n fact a state strict map.
@393 (0)@3 (Ol P3max Wimax (WimaxPamax + Ev + dit) (11) Algorithm (a): The revised dynamics for the output
25 layer relative to W (k) are given by

Note (4.21) is in power form for discrete-time systems given Select the Lyapunov function candidate (4.11) and use (4.30)

by (2.11) with g(k) a monic quadratic function of the state. in (4.12) to obtain
Algorithm (b): The revised dynamics for the output layer

relative to W;(k) are given by AT < —(2 = angl (03, () (-W,, (k)g’bn(k))T(—Wi(k)gbn(k)) + (4.31)
30 T op o n A AT
) : i : 2(1 = anel ()@, (k) = Tl - &, (k)& (k
Wy (ke )=l T-0s” (R)IW; (k) + 05, (R)Y(W5 T O ))T Vo G5 O
O3 (D)+e(k)+d (k) +T|[I-0505(K)s" (£)[[W3 k), (4.24) (=W, 0p,(00)) (W, &, (k) + elk) + d(k) +
AT pn T ~ T
Select the Lyapunov function candidate (4.4) and using U@y ()2, KXW, ”ikj + &)+ d(k) .
(4.24) in (4.5) yields Wo @ (K) + 8(K) + d1K)) = X + Vro-
35 where
T ot T T w T s (4.25) |
AJ < —(2 = 3@ (@3 )= W3 (k)35 (k) (= W3 (k)5 (k) + o= —li- 2, 0s! ©IF[re - (4.32)
201 = a3y ()3 (k) = LIl = a3 &3 (k)py (K| " . )
T f F)HW?‘I (k)H _zr(l _ F)anaxuwn (k)H]a
(W3 05(6)) (kyrtk) + W1 35 (k) + (k) + d(k)) + 40 and
@33 (03 )y rtk) + W] g3 (k) + (k) + dik)) 2 433)
- _ L, -
(kor (k) + WT 3 (k) + £0k) + d(K)) = x + 72, Yo = -l 0 @, ()@, UMW 2 + 2011 -
8, ()83, VM| @ rmax Wnmas (W max @ + €N + it ).
where y and y,~ are given in (4.22) and (4.23) respectively. 2
Note (4.25) 1S 1N power form for discrete-time systems giV@Il Note (4_3 1) 1S 1N POWET form for discrete-time systems given
by (2.11). by (2.12) with g(k) a monic quadratic function of the state.

The next result demonstrates the passivity properties for NN Algorithm (b): The revised dynamics for the output layer
with an arbitrary number of hidden layers. relative to W, (k) are given by

Corollary 4.4 - N s A - ,
W (k+D=[I-a @, ") TW. (k) +0,®. (K)(W: TP, (k)+e(k)+d (%)) +T |-
(1) The modified weight tuning of algorithms (3.82) for %Eﬁﬁﬁ)uﬁff&) (0 ety (4.34)

the input and hidden layers in a n-layer NN make the Select the Lyapunov function candidate (4.11) and using
maps from W," to W, (k); Vi=1, . . ., n—1, state strict (4.34) in (4.12) yields

50

passive mass. 55

(i1)) The weight tuning mechanisms (3.83) and (3.84) fo; AT 5 —2 - ayel (0, (- (03, (k))T W @0, () + (4.35)
a n-layer NN make the map from, (W, i ]
¢, (k)+e(k)+d(k)) for the case of algorithm (a), and 2 = @ng (00, 10) = TIT = 05,0, (), (]

(k, r(k)+W_ ¢, (k)+e(k)+d(k)) for the case of algorithm
€ S

(b), to —W”T (k)q)ﬂ(k) a state strict passive map, 60
Proof: @, & (), (), r(k) + W e (k) + elk) + dk))

(i) The revised dynamics relative to input and hidden (kyr(k) + WI'g (k) + e(k) + d(k)) = x» + 72,

(_Wz‘:bn (k))T(kvr(k) + W, @, (k) + &lk) + d(k)) +

layers, —{N,;(k); V=1, ...n-1, error in weight estimates
are given by L .
65 where ¥, and v, 4, are given in (4.32) and (4.33) respectively.
W, (et 1= T-Claps T (R) IW5 (K)+-Cep (K) (W 5 (K)+€ (k) (K)) T+T - Note (4.35) is in power form for discrete-time systems given
a.(K)e. (K)|W.(k), Vi=1, ..., n-1. (4.26) by (2.11) with g(k) a monic quadratic function of the state.
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It should be noted that SSP of both the system dynamics
and the weight tuning block does guarantee SSP of the
closed-loop system, so that the norms of the internal states
are bounded 1n terms of the power delivered to each block.
Then, boundedness of mput/output signals assures state
boundedness even without PE.
A NN 1n defined to be passive if, in the error formulation,
it guarantees the passivity of the lower subsystem in FIG. 3.
Then, an extra PE condition 1s needed to guarantee bound-
cdness of the weights. A NN 1s defined to be robust if, 1n the
error formulation, it guarantees the state strict passivity of
the lower subsystem 1n FIG. 3. Then, no extra PE condition
is needed for boundedness of the weights. Note that (1)
dissipativity of the error system 1s needed 1n addition to
tracking stability to guarantee bounded weights, and (2) the
NN passivity properties are dependent on the weight tuning
algorithm used.

5. SIMULATION RESULTS

In order to 1llustrate the performance of the NN controller,
a continuous-time nonlinear system 1s considered and the
objective 1s to control this MIMO system by using a digital
NN controller. Note that 1t 1s extremely difficult to discretize
a nonlinear system and therefore to offer stability proofs.
The second objective 1s to demonstrate that the learning rate
for the delta rule employed at each layer 1n fact decreases
with an increase 1n the number of hidden-layer neurons in
that layer. Finally, it 1s shown that the improved weight
tuning mechanisms make the NN weights bounded without
the need for PE, and can allow fast tuning even for large NN
when a projection algorithm 1s employed 1n conjunction
with the modified weight tuning updates.

Note that the NN controllers derived herein require no a

priorl knowledge of the dynamics of the nonlinear system,
not even the structure of the system being controlled, unlike

conventional adaptive control nor 1s any learning phase
needed.

Consider the nonlinear system described by
X,=X,
X=F(X,, X,))+U, (5.1)

where X,=[x;, x, ], X,=[x,, x.,]', U=[u,, u,]' and the
nonlinear function is (5.1) 1s described by F(X;, X,)=[M
(XD G(X,, X,), with

M(Xy) =

bgﬂ% + Dyt > CcOS(X) E’?gﬂ%

and

G(Xy, Xp) =

by ﬂzX%Siﬂ(Ez) + 9.8b,a,c08(x; + X5)

(b + bz)a% + bzﬂl% + 2bray arcos(xs) bzﬂ% + byaja,cos(xy)
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The parameters for the nonlinear system were selected as
a,=a,=1, b,=2, and b,=1. Desired sinusoidal

_ (zm]
sin| — |,
25

and Cosine 1nputs,

(=)
cos| — |,
25

were preselected for the axis 1 and 2 respectively. The gains
of the PD controller were chosen as k =diag (20, 20) with
A=diag {5, 5} and a sampling interval of 10 msec was
considered. A three-layer NN was selected with 4 mnput, 6
hidden and 2 output nodes. Sigmoidal activation functions
were employed 1n all the nodes in the hidden layer. The
initial conditions for X, were chosen to be [0.5, 0.1]", and
the weights were 1nitialized to zero. No learning 1s per-
formed 1mitially to train the networks. The upper bound on
the allowed adaptation gains o, o, and o5 using (3.16) for
the case of delta rule at each layer 1s computed to be 0.5,
0.32, and 0.5 respectively.

NN Controller with Delta Rule Weight Tuning and Projec-
tion Algorithm

The adaptation gains for the multilayer NN weight tuning,
are selected as a,=0.2, a.,=0.01, and 0.;=0.1 for the case of
the delta rule (3.10) through (3.4) and £,=1.5 €,=1.5, and
£,=0.7 with C,=C,=C;=0.001 for the case of the projection
algorithm (3.10) through (3.14) with (3.53). FIGS. 4A and
4B and FIGS. 5A and 5B present the tracking responses of
the controllers with delta rule and projection algorithm
respectively. It 1s clear that the controller using the delta rule
at each layer performs equally well with the projection
algorithm when the value of the adaptation gain 1s small so
that (3.16) 1s satisfied. However, large values of the weights
initially were needed not only for the delta rule with small
a,=0.1 (shown in FIG. 4B), but also for the projection
algorithm with large adaptation gains for the case of pro-
jection algorithm, overshoots and undershoots are observed
in the 1mitial stages even though the tracking performance 1s
extremely 1mpressive.

FIG. 6Aillustrates the response of the NN controller when
the delta rule 1s employed with the adaptation gain ., in the
last layer changed from 0.1 to 0.51. FIG. 6A, 1t 1s evident
that the weight tuning using the delta rule at each layer
becomes unstable at t=1.08 sec. Note that the representative
welght estimates, as 1llustrated 1n FIG. 6B, of the NN are
unbounded 1n this case. This demonstrates that the adapta-

(5.2)

(5.3)
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fion gain 1n the case of delta rule at each layer must decrease
with an increase 1n the hidden-layer neurons. In fact, the
theoretical limit implied by (3.16) 1n this case is a,=0.51, so

that this bound appears to be a tight bound 1n general.
The performance of the NN controller was 1nvestigated

while varying the adaptation gains at the output layer for the
case of projection algorithm. FIG. 7A and FIG. 7B show the
tracking response and some NN representative weight esti-
mates of the NN controller with £,=1.0, £,=1.0, and £,=0.1
with C,=C,=C;=0.001. As expected, the overshoots and
undershoots have been totally eliminated but there appears
to be a slight degradation 1n the performance. In other words
at very small adaptation gains, overshoots and undershoots
are not seen but there appears a slight degradation in the
tracking performance with a slow and smooth convergence.
On the other hand, at large adaptation gains overshoots are
observed with a good tracking performance. As the adapta-
fion gains are further increased, the oscillatory behavior
continue to 1ncrease and finally the system becomes
unstable. In other words, from the bounds presented in
(3.17), as the adaptation gains are increased the margin of
stability confinues to decrease and at large adaptation gains
(i.e. close to 1) the system becomes unstable. Thus, the
simulation results conducted corroborate with the bounds
presented 1n the previous sections.

NN Controller with Improved Weight Tuning and Projection
Algorithm

In the case of projection algorithm (3.10) through (3.14)
with (3.53), the weights in FIGS. 8A and 8B appear to be
bounded, though this in general cannot be guaranteed with-
out the PE condition. Therefore, the response of the con-
troller with the improved weight tuning (3.59) through
(3.62) with (3.53) is shown in FIG. 8B. The design param-
cter I' 1s selected to be 0.01. Note that with the improved
welght tuning, not only the tracking performance 1s
improved, for instance 1n axis 2, but also the weights remain
bounded without the necessity of PE. Finally, 1n all cases no
initial NN training or learning phase was needed. In
addition, the dynamics of the nonlinear system was not
required to implement the NN controller as opposed to
conventional adaptive control.

To study the contribution of the NN, FIG. 9 shows the
response of the PD controller with no neural net. From FIG.
9, 1t 1s clear that the addition of the NN makes a significant
improvement in the tracking performance.

6. CONCLUSION

A family of multilayer neural net controllers 1s developed
for the control of nonlinear dynamical systems. The NN has
a structure derived from passivity/filtered error notions and
offers guaranteed performance. Weight updates using the
delta rule at each layer were shown to yield a passive NN.
Thus, a persistence of excitation condition 1s needed on t he
internal signals NN signals. It was found that the adaptation
ogain 1n the case of the delta rule at each layer must decrease
with an increase 1n the number of hidden-layer neurons in
that layer so that learning must slow down for large NN.

In order to overcome the above deficiencies, a family of
improved weight tuning algorithms was derived. The
improved weight tuning paradigms consist of the weight
updates used 1n the delta rule at each layer plus a correction
term similar to e-modification approach in the case of
continuous-time conventional adaptive control. The
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improved tuning algorithms make the NN state strict
passive, so that bounded weights are guaranteed 1n practical
non-ideal situations where PE may not hold. Furthermore,
the adaptation gain 1s modified to obtain a projection algo-
rithm so that the learning rate 1s independent of the number
of hidden-layer neurons. At low adaptation gains, as
expected, a smooth and slow convergence was observed
with a slight degradation 1n tracking performance. On the
other hand, at large adaptation gains, oscillatory behavior
was seen with a good tracking performance and faster
convergence. Finally, no NN learning or training phase was
needed; simply 1nitializing the NN weights at zero made for
fast convergence and bounded errors.

What 1s claimed 1s:
1. A method of controlling a plant through on-line tuning

of a multi-layer neural network, comprising the steps of:

obtaining data on output characteristics of the plant;

estimating a functional output of the plant from past
output of the plant and current values of a plurality of
neural network weights and a plurality of neural net-
work layer activation functions;

initializing said neural network weights to give an initial
neural network output of zero;

updating said neural network weights to tune said multi-
layer network 1n accordance with weight tuning equa-
tions:

Wy (et )= W, ()=ctypy (K19, T (R)-T -y oy (K)o, ()W, ),

and

Wkt 1)=W, (k)09 (09, (k)-TlF-0,0, (k)" (k)W (R),

and 1n accordance with one of the modified weight update
equations:

a) WS (k"'l):ﬁ?a (k)_ﬂ'SJ)S (k)]_p ~(k)-TI _‘3'-3&)3 (k)‘i)?; it ‘Wa(k):

b) WB(k'Fl):WS(k)_aS&)B(k)F T(k)—ﬂU—a3$3(k)ti)3r(k)\|w3(k):;

obtaining an error function from past and present output
of the plant and a desired output of said plant;

determining a response function to control future output
of the plant;

outputting said response function to the plant; and con-
trolling the plant using said response function.
2. Amethod as claimed 1n claim 1, wherein said updating

step further comprises conditions:

(1) a:¢?

} ﬁﬂimax

<2, ¥i=1,?2,

< 1,i=73,
(2) 0 <1 <1, and

1
(3) kuma}: b

v

for weight update equation (a), and

1

k'l-’IIIEDE < —

Vo

for weight update equation (b),
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where 1 1s

1

n=1+

El

(1 — 3 @%max)

for weight update equation (a) and o for weight
update equation (b) is:

1 T 2 ) .
o = 5[1 + 27— a3 @3 (k@3 (N + 203735, 1 — a3 @3 (k)3 (1],

with 1 being

1

(l — 3 (:‘Q%max) |

7?:

3. A method for direct adaptive control of a nonlinear
plant having a sensed state x and an output trajectory, said
sensed state evolving via an unknown function f(x), using a
discrete-time neural network controller, comprising the

steps of:

obtaining data on past and present states of the plant;

estimating said unknown function f(x) from past and
present values of the past and present states of the plant
and current values of a plurality of neural network
welghts and a plurality of neural network activation
functions;

comparing said sensed state with a desired state from a
desired trajectory 1n an outer feedback loop to produce
a tracking error signal;

calculating a control action as a function of said tracking,
error signal and said functional estimate;

applying said control action to said plant to drive said
output trajectory toward said desired trajectory; and

adjusting said plurality of neural network weights such
that said discrete-time neural network controller guar-
antees tracking stability and bounded weights.

4. The method of claim 3, wherein said calculating step

COMpPrises
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extending standard delta rule technique to said tracking
error signal, thereby providing guaranteed closed-loop
stability without preliminary off-line training of said
plurality of neural network weights.

S. The method of claim 3, wherein said discrete-time

neural network comprises a passivity property, thereby guar-
anteeing robust performance of said discrete-time neural
network controller.

6. A method of controlling future output of a plant via a
neural network, comprising the steps of:

obtaining actual and desired output characteristics of the
plant;

using saild neural network to obtain modeled functional
behavior of said actual output characteristics of said
plant using a plurality of neural network weights and
activation functions;

initializing said neural network weights to give an initial
neural network output of zero;

updating said neural network weights to tune said multi-
layer network 1n accordance with weight tuning equa-
tions:

ﬁ’71(11’5"'1)=ﬁ’71 (k)_ﬂﬁh (k)P 1T(k)_ﬂ“—ﬂ1$1(k)$1r(k)‘ | I;EV1 (k),

and

Wkt 1)=W, (k)09 (09,7 (k)T -, (k)" (5) W (R),

and 1n accordance with one of the modified weight update
equations:

a) WS (k+ 1)=W3 (k)_ﬂ3$3 (k)]_c I (k)-T|I- ‘13&33 (k)&)s "l 1"’JJHV3 (k).

b) Wa(k+1)=ﬁ?3(k)_ﬂ3$3(k)r T(k)—ﬂU—m3$3(k)$3r(k)\|ﬁg(k):;

constructing a control signal from said actual output
characteristics, said modeled functional behavior, and
said desired output characteristics, and

controlling said future output of the plant using the
control signal.
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