US006059842A
United States Patent .9 111] Patent Number: 6,059,842
Dumarot et al. [45] Date of Patent: May 9, 2000
[54] SYSTEM AND METHOD FOR OPTIMIZING 5,428,791 6/1995 Andrew et al.ccoeevvvennnnnnnnne, 395/703

COMPUTER SOFTWARE AND HARDWARE 5,497,490 3/1996 Harada et al.ccouvvvvvnennnnne. 713/100
5,506,952 4/1996 Choy et al. ...ccoovvevvvireennennannens 345/348
|75] Inventors: Daniel Peter Dumarot, Cornwall; 5,613,125 3/1997 Nguyen et al. ..cocovvveveennnnaenens 709/104
David Alan Stevenson? Poughkeepsie; 5,668,995 9/1997 Bhat ..ccveevneiiiiiiieieeenee, 709/104
Nicholas Richard Dono, Hopewell 5713,009 1/1998 DeRosa, Ir. et al. covevevvereveerenne. 713/1
Junction; James Randall Moulic, 5,745,880 4/1998 Strothmannccoeevveeevvveneennnne. 705/7
Poughkeepsie; Clifford Alan Pickover; 5,784,539 7/}998 LenZ oo 706/45
Bengt-Olaf Schneider, both of 5,809,282 9/1998 Cooper et al. ...cooeuvvereenninnaeens 709/226
: _ ’ : 5,815,152 9/1998 Collier et al.ooeevvvenreennnnnnne. 345/348
ggflkﬁz 2 gzlg;tf;?geg) ert Smith, 5822565 10/1998 DeRosa, Jr. et al. 395/500.45
SHRCLPSIL, 1 5.944.819 8/1999 KUMAT €t al. woveeooveeoooseosoosoo 713/1
| 73] Assignee: International Business Machines
Corp., Armonk, N.Y. Primary Fxaminer—Tariq R. Hafiz
- Assistant Examiner—Iuan Q. Dam
21 Appl. No.: 09/060,028 Attorney, Agent, or Firm—Douglas W. Cameron; Anne
22] Filed: Apr. 14, 1998 Vachon Dougherty
51] Inte CL7 oo GO6F 9/445 [57] ABSTRACT
52] US.Cl oo 717/11; 717/1; 713/100; L. .
713/1: 709/100: 706/47: 706/922: 345/348: A method of optimizing the operation of a computer system
’ ’ ’ 345 /965* 345 /967? in running application programs in accordance with system
58] Field of Search 395/712 { 500.43 capabilities, user preferences and configuration parameters
305 /5004250034500 18- 713 /100' 1 of the application program. More specifically, with this
. 709 /100;167. 762/£82' 7‘06}47 45 9"‘22? invention, an optimizing program gathers information on the
’ 345/348, 33’?4? 330, 356, 976, ’9772 965: system capabilities, user preferences and configuration
066 parameters of the application program to maximize the
operation of the application program or computer system.
[56] References Cited Further, user selected rules of operation can be selected by
dragging rule icons to target optimizer icon.
U.S. PATENT DOCUMENTS
5,263,164 11/1993 Kannady et al.cceevveeureennennn. 713/1 32 Claims, 7 Drawing Sheets

303 OPTIMIZER
B READS SYSTEW l /

305 ~~ OPTIMIZER
READS APPLICATION

!

OPTIMIZER
READS DATA BASE

!

320~ OPTIMIZER MONITORS
SYSTEM BEHAVIOR 921

OPTIMIZER RECEIVES
USER INPUT

—

330 OPTIMIZER OPTIMIZES
N APPLICATION

!

340 — OPTIMIZER OPTIMIZES]
SYSTEM RULE

+

350 OPTIMIZER PROVIDES
RECOMMENDATIONS

!

VIEW RULES & RECORDS
(OPTIONAL)

370 \{ LEARN |

320 —~

LA
QN
N

2

RULE 331

341

K

C
n

RULE

6,059,842

Sheet 1 of 7

May 9, 2000

... | SERVER
130

U.S. Patent

12\‘

SERVER
150

62

66

57 _ITEXT(LINK

, 110

NETWORK

N

f

gEn

A

e\\

1

PRIOR ART

FIG.

6,059,342

Sheet 2 of 7

May 9, 2000

U.S. Patent

991

NILSASENS

SIAIHAVHI

SN VOO |

¢l

0L o/
JOVHOILS
%SIQ YITIOYLNOD
G8—F %SIA
dITI0YLNOD
AMOWIN
29l

NILSASHNS

SIIHAVYI
991

JHOVI
09 Jovd

¢3

1

d

J

GIl

6,059,342

Sheet 3 of 7

May 9, 2000

U.S. Patent

- 3Svd V1vd NIEL 04

dv ¥3sn
4OLINOW 19 N ge
(S
NVHI0Nd NILSAS
437INILdO INILYHIdO
95 | 9 Lvd
007
ﬁu
10N
ovl 3SvE VIVQ IIINOJ
dv ¥3sn
JOLINOW E AT |
iy
NVHI0Yd N3LSAS
43ZINILO INILVY3dO
os | ARy
oﬂu

Ll
8¢ 1
J0IA4d
INILIINNOD
0G1 001
vl
ol ENIIEN
INILIINNOD

001

041

OLl

NETWORK

6,059,342

=
N]
3 08 09% Oy 0z Ol .
7>
sy Ty |t SN TN LI *re 0GZS IS |ttt eV TV IV Z INVN 0ch
— — —_—
— s o o ‘ ‘ (e o o 6 ¢ ‘ > » ® ‘ i ‘ . { ‘ ¢
3 Yy ‘7Y ‘LY CN TN LI €S ‘7S ‘1S Q-N.,q Y L JINVN 0ch
= VLY SONILLIS SONILLIS TNV
= SNOILS399NS _ JINYNAQ NILSAS . NOILYOIddY NOLLYDTddY

U.S. Patent

U.S. Patent May 9, 2000 Sheet 5 of 7 6,059,842

500
303 OPTIMIZER
READS SYSTEM
305 OPTIMIZER
READS APPLICATION

310 OPTIMIZER
READS DATA BASE

320 OPTIMIZER MONITORS
SYSTEM BEHAVIOR 321
205 OPTIMIZER RECEIVES

USER INPUT

OPTIMIZER OPTIMIZES

330
APPLICATION SULE 331
340 \I OPTIMIZER OPTIMIZES
- SYSTEM ULE 341
350 OPTIMIZER PROVIDES
RECOMMENDATIONS RULE 351

VIEW RULES & RECORDS

360
(OPTIONAL)

U.S. Patent May 9, 2000 Sheet 6 of 7 6,059,842

041 040
[

TR,

[]
540
i e
N
| RULE RULE Ul
' /591
o

551 ¥ \ \/K

210 MEMORY
OPTIMIZER ICON

|

d
596, POSITION FILE
A pocs "
~
990 599 |
540 040 ‘
511

OPTIMIZER ICON

FIG.6

U.S. Patent May 9, 2000 Sheet 7 of 7 6,059,842

600

.y

°10 S RULE

ICON
SELECTED
?

YES

- IS |CON

NO
MOVED
?
650 DETERMINE
NEW LOCATION
640

IS ICON

"NEAR" A

REGION
Q

YES 660

650 VISUALLY INDICATE
BINDING OF ICON APPLY RULE
COLOR RULE

OR OPTIMIER ICON

670

6,059,342

1

SYSTEM AND METHOD FOR OPTIMIZING
COMPUTER SOFTWARE AND HARDWARE

TECHNICAL FIELD

This invention relates to the optimization of computer
software and hardware, and 1n particular to optimization
according to user-specified preferences, databases, and
dynamic monitoring of system behavior and performance.

BACKGROUND OF THE INVENTION

Computer operating systems include a large number of
parameters, many of which may be queried, controlled, and
changed 1n order to alter the characteristics of the computer
system. Similarly, software applications running on com-
puter systems also often include a large number of
parameters, many of which may be controlled and changed
to alter the characteristics of the application running on the
computer system. As an example, in Microsoft’s Windows
NT operating system, the resolution and color characteristics
of the computer system’s display may be changed by
selecting the “Control Panel” icon from a “Settings” menu
item. When the control panel 1s displayed, a user 1s presented
with a set of new icons, one of which (“Display Properties™)
may be selected to bring up another panel containing a set
of tabs. The “Settings” tab on the “Display Properties” panel
may be selected which allows a user to manually change the
number of colors, resolution, video refresh rate, font size,
and related graphical characteristics. The user specifies the
refresh frequency by selecting from a pull-down menu list of
available settings (e.g. 60 Hz, 70 Hz, etc.). The user can
specily the screen resolution by selecting a slider icon and
moving 1t right or left to increase or decrease the screen
resolution (e.g., from 1024x1280 pixels to 600x800 pixels).
Some of these settings may affect the performance of
applications running on the system. For example, decreasing
the color resolution and screen resolution may increase the
speed of some graphics applications.

This example focuses on system settings. When one also
considers the numerous application settings and various
different hardware configurations available to users, and the
interaction of all of these settings and configurations, the
control accessing of the plurality of settings and configura-
fions can be cumbersome and often requires detalled knowl-
cdge on the part of computer users. The need for a dynamic,
semi-automatic, consolidated, and rule-based system that
changes such settings and other aspects of the computer
system, and makes recommendations, becomes apparent.
Although many graphical user interfaces exist to control
various aspects of the system (such as the graphical slider
which controls screen resolution for Windows platforms)
and 1n applications, the need for improved graphical user
interfaces becomes apparent as computer systems become
more complex.

With reference now to the figures and 1n particular to FIG.
1, there 1s 1llustrated a computer system 1n accordance with
the method and system of the present mnvention. Typically
the computer system 12 1ncludes a computer 36, a computer
display 38, a keyboard 40, and multiple input pointing
devices 42. Those skilled 1n the art will appreciate that input
pointing devices may be implemented utilizing a pointing,
stick 44, a mouse 46, a track ball 48, a pen 50, display screen
52 (e.g. a touch display screen 52), or any other device that
permits a user to manipulate objects, icons, and other display
items 1n a graphical manner on the computer display 38.
Connected to the computer system may also be audio
speakers 54 and/or audio input devices S1. (See for example,

10

15

20

25

30

35

40

45

50

55

60

65

2

IBM’s VoiceType Dictation system. “VoiceType™ 1s a trade-
mark of the IBM Corporation.) A graphical user interface
may be displayed on screen 52 and manipulated using any
input pointing device 42. This graphical user interface may
include display of an application 60 that displays informa-
tion pages 62 using any known browser. The information
pages may include graphical, audio, or text information 67
presented to the user via the display screen 52, speakers 54,
or other output device. The mmformation pages may contain
selectable links 66 to other information pages, where such
links can be activated by one of the 1input devices, like mouse
46, to request the associated information pages. This hard-
ware 15 well known 1n the art and 1s also used in conjunction
with televisions (“web TV”) and multimedia entertainment
centers. The system 12 contains one or more memories (See
65 of FIG. 2.) where a remote computer 130, connected to
the system 12 through a network 110, can send information.
Here the network can be any known (public or privately
available) local area network (LAN) or wide area network
(WAN), e.g., the Internet. The display may be controlled by
a graphics adaptor card such as an Intergraph Intense 3D,

Graphical user interfaces (GUIs) provide ways for users
of computers and other devices to effectively communicate
with the computer. In GUIs, available applications and data
sets are often represented by 1cons 63 consisting of small
oraphical representations which can be selected by a user
and moved on the screen. The data sets (including pages of
information) and applications may reside on the local com-
puter or on a remote computer accessed over a network. The
selection of 1cons often takes the place of typing 1 a
command using a keyboard 1n order to 1nitiate a program or
access a data set. In general, icons are ftiny on-screen
symbols that simplily access to a program, command, or
data file. Icons are often activated or selected by moving a
mouse-controlled cursor onto the icon and pressing one or
more times on a mouse button.

GUIs include graphical images on computer monitors and
often consist of both icons and windows. (GUIs may also
reside on the screens of televisions, kiosks, personal digital
assistants (PDAs), automatic teller machines (ATMs), and
on other devices and appliances such as ovens, cameras,
video recorders and instrument consoles.) A computer win-
dow 1s a portion of the graphical image that appears on the
monitor and 1s dedicated to some specific purpose. Windows
allow the user to treat the graphical 1mages on the computer
monitor like a desktop where various files can remain open
simultaneously. The user can control the size, shape, and
position of the windows.

Although the use of GUIs with 1cons usually simplifies a
user’s 1nteractions with a computer, GUIs are often tedious
and frustrating to use. Icons must be maintained 1n a logical
manner. It 1s difficult to organize windows and icons when

many are similarly displayed at the same time on a single
device.

In a drag-and-drop GUI, 1cons are selected 64 and moved
68 (i.e. “dragged”) to a target icon 69 to achieve a desired
cffect. For example, an 1con representing a computer file
stored on disk may be dragged over an 1con containing an
image of a printer in order to print the file, or drageed over
an 1con of a trash can to delete the file. An 1con representing
a page ol mformation on the World Wide Web may be
selected and dragged to a trash can to delete the link to the
page of mformation. The page of information may be on the
local machine or on a remote machine. A typical user’s
screen contains many icons, and only a subset of them will
at any one time be valid, useful targets for a selected 1con.
For example, it would not be useful to drag the icon

6,059,342

3

representing a data file on top of an 1con whose only purpose
1s to access an unrelated multimedia application.

Icons 63 could include static or animated graphics, text,
multimedia presentations, and windows displaymmg TV
broadcasts. Icons 63 could also include three dimensional
images, for example, those used in virtual reality applica-
fions.

SUMMARY OF THE INVENTION

An object of this mmvention 1s a method and system for
increasing the apparent speed of a computer by automati-
cally optimizing software and hardware according to user-
specified preferences.

Another object of this invention is to provide a method
and system for increasing the apparent speed of a computer
using a database.

Yet another object of this invention 1s to provide a method
and system for effectively increasing the apparent speed of
a computer based on results obtained by dynamically moni-
foring system behavior and performance.

This invention permits users to conveniently optimize
software running on a computer. The term “optimize” refers
to running of a computer system or software more
ciiiciently, for example, by maximizing both the speed with
which a software application runs and user satisfaction,
and/or minimizing cost or resource use. “Optimization”
includes the setting of various parameters in hardware,
operating system software, or application software such that
the system as a whole runs as efficiently as possible. These
parameters might be set to optimize speed, system resource
cost, or other variables corresponding to a user’s satisfac-
fion.

Accordingly, this invention provides for a method of
enhancing, for example, program application performance
on a computer system. With this invention configuration
information and performance capabilities based on charac-
teristics of the program/system are determined. Then, the
conflguration information and the performance capabilities
are used to optimize configuration parameters of the pro-
ogram applications so as to enhance the performance of the
workstation 1n running the program’system. Further, with
this invention user preferences 1n the operation of the
program are selected by, for example, drageing rule icons to
a target optimizer icon to provide user selected rules of
operation of the application program.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further understood by reference to
the following detailed description when read 1n conjunction
with the accompanying drawings, wherein:

FIG. 1 depicts a pictorial representation of an example
computer system that embodies the present invention.

FIG. 2 1s a block diagram of the computer system archi-
tecture showing an optimization database.

FIG. 3 1s a block diagram showing portions of a computer
network wherein a local computer and a remote computer
are both connected directly to the network.

FIG. 4 are example database records that may be used for
optimization.

FIG. § 1s a flow chart depicting the steps performed 1n the
optimization.

FIG. 6 1s a schematic illustration display with an optfi-
mizer and rule icons thereon.

FIG. 7 1s a flow chart showing the steps of one preferred
method of the present invention pertaining to the use of
iconic rules.

10

15

20

25

30

35

40

45

50

55

60

65

4

DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference now to FIG. 2, there 1s 1llustrated a block
diagram of the architecture of the computer system 12 1in
accordance with the present invention.

The core architecture includes a Central Processing Unit
165, memory controller 162, system memory 65, disk stor-
age 70, disk storage controller 75, and graphics subsystem
166. The computer system 12 can be either a stand alone
workstation or a server and a workstation connected to each
other via a communications network such as the internet. A
portion of the system memory 1s set aside for an optimizer-
database cache 80. Additionally, file space 85 on the disk
storage unit 70 may be set aside for the optimizer database
140. Generally speaking, a cache or buifer 1s a place where
data (files, images, and other information) can be stored to
avold having to read the data from a slower device, such as
a remote, network-attached computer disk. For instance, a
disk cache can store information that can be read without
accessing remote disk storage.

With reference now to FIG. 3, there 1s 1llustrated a partial
portion of a computer network i1n accordance with the
method and system of the present invention. Computer
system 12 connects to the network backbone 110 by means
of a connecting device 100. Also connected to the network
110 are one or more server computers 130 by means of their
own connecting device 100'. Those skilled i the art will
appreciate that these connecting devices 100 may take
various forms, including modems, token-ring hubs, and
other network-enabling devices depending on the capabili-
fies and technology of the connecting devices. The remote
computer 130 may include an area of system memory and/or
disk storage space dedicated to storing and maintaining a
optimization database table 140 (e.g. data file). The optimi-
zation database table 140 may reside on the local client or
reside on both the client and remote computer. Portions of
the optimizer program 136 may reside on the local computer
and/or the remote computer. The optimizer program con-
tains or accesses a dynamic monitor 137 of system and
application activity. Various user applications 138 run on the
remote or local computer. For example, these applications
may be office productivity, scientific and engineering,
finance, transaction processing, Internet, or any other soft-
ware a user needs to run. Such applications may be con-
trolled by a configuration file 141 or a central database that
controls particular settings of the application that may affect
application performance. The optimizer program 136 may
contain a graphical user interface 139, used to specily
settings or provide information to the user. An operating
system 150 runs on the local computer. The operating
system, such as Windows NT, primarily provides an inter-
face between the user application and the computer hard-
ware. The operating system also provides services on behalf
of the user and applications such as networking, file
management, etc.

FIG. 4 includes example records 430 for optimizing
system performance. The set of records comprise the data-
base 140. Application settings 420 may consist of a set of
control parameters Al, A2, . .., AN shown 1n this example
in rows 430 and associated with a particular unique 1dentifier
410 for a software application. The software application may
be designated in the database 140 as an alphanumeric string
410. By way of example, parameter A1 may control the
oraphical quality of an engineering application’s 3-D graph-
ics. Lower graphical quality often implies faster use of an
application. System settings 440 contain information usually

6,059,342

S

relating to static qualities of the computer system such as the
particular operating system, amount of memory, processor
speed, graphics card name, and bios version. These values
S1,S2,...,5N are static 1n the sense that they do not usually
change during the operation of an application. Dynamic data
460 may contain current or prior reports of system behavior
or performance. The dynamic data i1s generally dynamic
information, such as current CPU, memory, and disk use, all
of which change as an application performs operations, and
reads and writes information to memory and disk. The
values M1, M2, M3 . . . for this dynamic data 460 may be
obtained by a monitor program 137 which, for example,
scans the system for CPU, memory, and disk use at speciiic
increments of time. Suggestions 480 consist of alphanu-
meric information (R1, R2, R3, . . .) that may be supplied
to the user (e.g., recommendations or warning messages) for
particular applications. The optimizer program 136 may
scan a row or record 430 of database 400 to optimize a
single, particular application, or 1t might join the results of
numerous rows to optimize for a set of concurrently running
applications designated by 1dentifiers 410. Note that in FIG.
4, parameters Al, A2, A3 . . . confrol application settings.
Parameters S1, S2, S3 . . . control system settings. Param-
cters M1, M2, M3 . . . control dynamic settings. Parameters
R1, R2, R3 . . . are recommendations.

FIG. § comprises a flow chart for an optimization process
300 that the local computer 12 or server 130 uses to optimize
software applications 138 and system response or
utilization, or to provide recommendations 480. In step 303,
the optimizer 136 gathers relevant system information
including: operating system 150 version and release data,
installed hardware components, hardware configuration, and
software configurations. For example, the optimizer deter-
mines the size of RAM, BIOS level, installed options etc.
This information gathering can be accomplished using stan-
dard operating system or other commands. For example, on
Microsoit’s Windows N'T operating system, the “Winmsd/f”
calls, the Win32 API, queries to the system registry, and
other methods known to those skilled 1n the art, allow the
optimizer to collect such information. In step 3035, the
optimizer 136 gathers relevant application information, for
example, release version, mstalled options, etc. In step 310,
the optimizer 136 reads records 430 from database 140, that
control various parameters 420, associated with a particular
application name 410. The database 140 may reside on a
remote computer or server 130 accessed over a network 110
or on the local computer 12.

In step 320, the optimizer 136 monitors system 12 behav-
1or. For example, the optimizer may query the current CPU
use, memory use, or other activity 321 using operating,
system commands known to those skilled 1n the art. Also, a
monitor program 137 may use such commands to monitor
such activity. This monitor program 137 may contain a
oraphical user interface 139 that displays such activity 1n
ographical form, such as with bar graphs, pie carts, numerical
indicators, gauges, etc. This activity 321 may be stored 1n the
form of dynamic values M1, M2, . . . , MN 1n settings 460
and read by the optimizer program 136. Alternatively, the
values corresponding to system activity/use may be directly
obtained using operating system commands. One benefit of
storing the dynamic data 1s that the optimizer 136 may
compare current to past system activity. In this step 320, the
optimizer also may perform performance measurements to
“benchmark™ the system by running built-in test routines.
For example, the optimizer may time the rotation of a 3-D
oraphical object to assess the speed of the graphics sub-
system 166.

10

15

20

25

30

35

40

45

50

55

60

65

6

In step 325, the optimizer 136 reads user input. For
example, the user may enter text or data at the keyboard 40
(or with various input devices 46, 48, 50, or by voice input
using audio input device 51) that specifies a level of opti-
mization 326. This level of optimization may control which
of the application settings 420 are used to optimize the
application 1n step 330 or optimize the system 12 1n step 340.
A user wishing to have maximum performance may, for
example, sacrifice graphic quality controlled in applications
settings 420, that are generally read upon invocation of
application 138.

By way of example, the optimizer 136 can adjust the
following parameter settings 420, in the Unigraphics control
file to adjust performance. (Unigraphics is an graphically-
intensive engineering application created by EDS.) The

values for each of these settings may be determined 1 step
325 and stored 1n record 430.

Low Performance settings
*Ugrafl30.real TimeDynamics: TRUE
*Ugrall30.suppressAutoRetresh: FALSE
*Ugrafl30.backfaceCulling : FALSE
*Ugrafl30.depthSortedWireframe: TRUE
*Ugrafl30.line Antialiasing: TRUE

*Ugrafl30.disableTranslucency: FALSE
High Performance settings

*Ugrafl30.real TimeDynamics: FALSE
*Ugrafl30.suppressAutoRetfresh: TRUE
*Ugrafl30.backfaceCulling: TRUE

*Ugrafl30.depthSortedWireframe: FALSE
*Ugrall30.linc Antialiasing: FALSE

*Ugrafl30.disableTranslucency: TRUE

In this example, 1f a user sets suppressAutoRelresh to
TRUE, the application performance can improve by reduc-
ing excess redrawing. “Low Performance” 1s generally cor-
related with higher graphical quality. The “level” of opti-
mization 326 may correspond to the number of “high
performance” settings selected. For example, highest per-
formance (highest level of optimization) may correspond to
the use of all the settings 1n their high performance states.
Lower levels of optimization correspond to fewer of the
high-performance settings being used. Those values that
constitute high performance settings may be stored 1n appli-
cation settings 420.

Similarly, the optimizer also optimizes system settings
440. These are settings independent of applications and
ogenerally associated with the computer or 1ts hardware or
software components. For example, the graphics card may
have general settings that control the resolution, color depth,
synchronization on vertical refresh, and other features. The
disk may have a fragmentation state which may be altered.
The s1ze of “swap” spaces may be specified. These system
settings are sometimes stored 1n the system registry or in
initialization files which may be modified using methods
known to those skilled in the art.

Returning to step 325 1n FIG. §, as an alternative to text,
a graphical user interface 139 may be used to provide input
data. For example, a graphical depiction of a slider may be
used to control the program optimization level by causing
the optimizer 136 to optimize 330 the application by writing
discrete records 1n an application configuration file 141
stored on disk. See step 330. Such a {file as the configuration
file 141 1s typically read by an application when the appli-
cation starts and controls various performance characteris-
tics of a particular application. The audio mput device 51
also permits speech mput in step 325. Generally speaking, 1n

6,059,342

7

steps 330 and 340, the optimizer uses the information
acquired 1n steps 303, 305, 310, 320, and 325 to adjust
system or application parameters in order to optimize the
operation of the application. For example, the ensemble of
data from 310, 320, and 325 may cause the optimizer to not
only specify settings to the application but also to the
graphics card, or system to alter the speed of the application.
In general, the optimizer adjusts system and application
settings to best meet user-specified quality/performance
trade-oifs. The information gathered in steps 303, 305, and
320 may be stored 1n the database 140 maintained by the
optimizer. The database can be helpful 1in determining
changes to system and application configurations at different
points 1n time, 1n evaluating the effects of changing appli-
cation settings, and in comparing actual system/application
settings with recommended settings.

In step 350, the optimizer 136 may provide suggestions or
recommendations 480, for example, in the form of speciiic
text that 1s output to the user. This output may appear in the
optimizer’s graphical user interface 139, in a web browser
90, or as audible sound played through speakers 54 another
audio output device. These recommendations may be used to
warn the user of various conditions (e.g. “disk space is
low™), or give suggestions on how to improve performance
(e.g. “purchase more memory”). The optimizer contains
rules 331, 341, 351 that 1t uses to make such optimizations
330, 340 and recommendations 350. For example, a rule
may be: If Al=yes, and S1=200 MHz, or M1=90%, then
make suggestion and change (in step 340) the graphic card
settings (e.g. 450) that control “synchronization on vertical
refresh”. In this example, S1 corresponds to the processor
frequency, and M1 corresponds to the percentage of memory
used. Arule may consist of a set of conditionals and Boolean
operations (e.g. if A and B are true and C is false then make
suggestions and take action).

Note that the suggestions 480, entire records 430, and
rules 331, 341, 351 may be segregated into different files in
database 400, stored at a local machine 12 or remote
machine 130. Users may view (360) the rules 331, 341, 350,
records 430, and suggestions 480 using graphical user
interface 53, which may visually segregate these items based
on origin of the suggestions (¢.g. companies, individuals,
etc.), severity, date, or other criteria. These rules and sug-
gestions may be web accessible (using network 110) for
dynamic optimization across the web using a propriety
program product at the web server.

Referring to FIGS. 1 and §, note that the rules 331, 341,
351 may also be represented as 1cons 63 displayed on the
graphics screen. (These icons representing rules are hereaf-
ter sometimes referred to as “iconic rules”.) Particular rules
may be selected 64 from a set of available rules by the user
and dragged 68 to an 1con 69 representing the optimizer 136
so that the optimizer will implement 330, 340, 350 the rules.
Additionally, the rules 331, 341, 351 may require password
protection so that only certain users or classes of users have
permission to implement the rules. In an example scenario,
a user drags 68 an iconic rule 63 to optimizer icon 69. This
rule may require that the graphical quality be degraded for
a model part if the model part consists of greater than
100,000 triangular facets. (This will enhance the display
speed of the model part.) When the user drops the iconic rule
on the optimizer icon, the user must enter a password (e.g.
consisting of a keyboard entry, speech 1nput, mouse swipes,
a sequence of mouse key presses, a secret position on the
optimizer icon, or by other means) before the rule is acted
upon 1n steps 330, 340, or 350. In another embodiment, the
rules are dragged to a region 70 of the screen and not to the

5

10

15

20

25

30

35

40

45

50

55

60

65

3

optimizer 1con 1n order for the rules to take effect. Password
protection may be useful in a variety of situations, for
example, if certain rules are being tested by developers and
administrators or if certain rules cause actions that should be
restricted (e.g. access to confidential databases, CPU or
cost-intensive jobs, the allocation of e-money and credit
information, etc.)

The optimizer 1n steps 330, 340 and 350 may learn 370
from a user’s past activity. For example, if the user has
always used an application with small files, and past CPU
use has always been low (e.g. as stored 1n settings 470), the
software optimizer can make suggestions (480), accord-
ingly. Note that one benefit of having portions of the
database 140 (e.g. the settings and suggestions) and rules
331, 341, and 351 on a remote machine 130 1s that a
company or system administrator can continually manage
and update messages and rules as new information 1s pro-
vided by application vendors. When a user runs an applica-
tion 1n 410, the user can make use of the latest information
in the database. If the database 140 resides on a remote
machine 130 the optimization 330, 340, and 350 can be
performed either on the local machine or the remote
machine. If performed on a remote machine, messages and
other parameters are fed from the remote server 130 to the

client 12 using the network 110.
FIG. 6 1s a block diagram of a GUI 591 with rule icons

540, 63 (See FIG. 1.) including optimizer icons 69, 510, S11.
In the present invention, the user uses a selection device
such as mouse 46 to select 512 an 1con 540 and drags 550
the 1icon to optimizer icons 510, 511. If the 1con 540,
representing a rule, is touching or close (within a threshold
distance 590) to the optimizer icon 510, then the rule 541,
331, 341, 351 1s applied. In other words, “closeness™ of an
icon 1s determined by computing the distances from the
selected 1con 540 to regions 520 of the optimizer icon
displayed on the GUI. If the distance 1s smaller than a
particular threshold 5§92, the icon 540 1s close to a region of
the optimizer.

In one embodiment, the optimizer icon 510 consists of
different regions 520 to which 1conic rules 540 are dragged.
The optimizer software determines near what location 520
icon 1s positioned using techniques which are well known to
those skilled in the art of GUI interfaces. In addition to
performing general optimization, the optimizer icons 510
may be used to specily the ‘nature’ of the update; for
example, one optimizer icon 510 may be specilied for
optimization concerning graphics, while another icon 511
may be specific for controlling all aspects of memory and
disk space. The optimizer icon may change its graphical
attribute such as color or brightness 570 1n response to the
information gained when the optimizer software applies the
rules 541. For example, once a rule 1s successtully applied,
then the optimizer region 520 may turn red 570. The iconic
rules 541 may also change graphical attributes in a similar
manner. (Changes in graphical characteristics of the iconic
rules and optimizer 1cons are carried out 1n step 670 1 FIG.
7).

The rule application can be carried out by the optimizer
software by comparing the position 585 of icon 540 to
values stored 1n a position file 596 which may be stored on
disk.

The optimizer icon 510 may also contain graphical 1ndi-
cations of regions 520, such as cutouts 530, to which iconic
rules 540 may be dragged. In this manner, when the 1cons are
placed 1n the optimizer icon 510 there can be a graphical
indication 551 of the binding to the user. Additionally, the
arca around the cutout may change color or brightness 570

6,059,342

9

once an 1con 340 1s located 1n the cutout. The use of discrete
cutouts 530 may be useful when only a limited number of
rules may be used. The rules may be evident to the user by
text 560 written on the optimizer icon or by colors 570.

FIG. 7 1s a flow chart 600 showing the steps 600 per-
formed for a preferred version of optimizer 163 executed by
the system 1n FIG. 1. In step 610, a program checks 1f an
icon 540 (e.g., if an iconic rule) is selected. The selected icon
540 may be selected by any selection method: e.g., pointing
and clicking or by an application program If the icon 1s
moved 620, 1ts new location 1s determined 630. If the icon
is near (within a threshold distance §90 from) an optimizer
region 520 (step 640), then a visual indication 650 of
placement such as changing color or brightness 570 of a
region 520 optionally may be given. As stated i1n the
description of FIG. §, the region 520 may be graphically
depicted as cutouts 530 to help give users a graphical
(visual) indication of the placement. Also as mentioned in
the description for FIG. 5, “nearness” or “closeness” 1s
determined by computing the distances from the selected
icon to all optimizer icons regions 520 on the GUI. In one
preferred embodiment, distances are computed using known
geometrical methods. For example, if (x1,y1) are the coor-
dinates of an icon 540 and (x2,y2) are the coordinates of a
region 520, then the distance is d-sqrt ((x2-x1)**2+(y2-
y1)**2). This formula may be extended to include additional
variables for higher dimensional spaces, such as 1n a virtual
reality or three-dimensional environment. An optimizer
table (file) 596 on disk may store the x,y locations of regions
520.

The rule 541 represented by an 1con 540 1s applied 660.
The 1con 540 or optimizer icon 510 optionally may change
color, brightness, texture, blink rate, shape, size, or other
graphical attribute (see step 670). This graphical attribute
may be a function of the nature of the rule. For example, an
iconic rule that increases graphics quality may be red. An
icon representing a rule that decreases graphics quality may
be green. The optimizer 1con may change colors when the
rule 1s successtully applied or has a beneficial etfect.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent 1s:

1. In a computer system, a method of enhancing program
application or system performance of said computer system,
sald method comprising;:

a. determining configuration information of said computer
system,
b. determining performance capabilities of said computer

system based on known characteristics and behaviors
of said program application; and

c. optimizing confliguration parameters of said program
application 1n response to said configuration 1nforma-
tion and said performance capabilities.

2. A method as recited 1n claim 1, further comprising:

a. determining user preferences for the operation of said
computer system and further optimizing said computer
system 1n response to said user preferences.

3. A method as recited 1in claim 1, determining perfor-

mance capabilities of said computer system comprises:

a. comparing system performance against previous sys-
tem performance, where said previous system perfor-
mance 1s stored 1n a database with said configuration
parameters.

4. A method as recited in claim 2, wherein said user
preferences are determined using a graphic user interface
through which a user enters said user preferences.

5. A method as recited 1 claim 1, further comprising:

10

15

20

25

30

35

40

45

50

55

60

65

10

a. providing recommended system configurations in
response to said performance capabilities that are deter-
mined.

6. A method as recited m claim 1, wherein said configu-

ration 1nformation comprises at least one of the following:

a. CPU speed, memory capacity, disk subsystem
capabilities, system BIOS version, graphics adapter
type, driver levels, operating system software and ser-
vice pack release levels.

7. A method as recited 1 claim 1, wherein said perfor-

mance capabilities comprise at least one of the following:

a. CPU performance for mteger and floating point tasks,
memory subsystem throughput, disk subsystem
throughput,

b. 3D graphics performance, and

c. 2D graphics performance.

8. A method as recited in claim 1, wherein said computer
system can operate according to a plurality of rules of
operation, wherein said graphic user interface comprises
user selectable rule icons, each of which represents one of
said rules of operation for said computer system, and
wherein a user can select at least one of said rules of
operation by selecting at least corresponding one of said rule
icons.

9. A method as recited in claim 8, wherein said user
selects one of said rule icons by dragging and dropping said
one 1con to an optimizer 1con, wherein said dropping results
in the application of said selected one rule of operation.

10. Amethod as recited 1n claim 9, wherein said optimizer
icon comprises a plurality of locations, each location
capable of accepting one of said rule 1cons, wherein one of
said rules 1s implemented when a corresponding one of said
rule 1cons representing said one rule 1s placed on said
oraphical user mterface within a threshold distance of said
one location.

11. Amethod as recited 1in claim 10, wherein each location
1s visually distinguished.

12. Amethod as recited 1n claim 10, wherein each location
1s visually distinguished by at least one of the following
characteristics: color, outline, textures, and brightness.

13. Amethod as recited 1n claim 10, wherein each location
1s spatially distinguished.

14. A method as recited 1n claim 10, wherein at least one
of said locations 1s a cutout on said optimizer 1con.

15. A method as recited 1in claim 10, wherein there 1s a
visual indication that one of said rule icons 1s within said
threshold distance.

16. A method as recited 1n claim 1, further comprising:

a. storing said known characteristics and behaviors of said

program application 1n a database.

17. Amethod as recited 1n claim 16, wherein said database
1s hard-coded 1nto said program application.

18. Amethod as recited 1n claim 16, wherein said database
1s stored as a table.

19. Amethod as recited 1n claim 16, wherein said database
1s constructed by the user via a graphical user interface that
uses a drag-and-drop paradigm to construct rules by com-
bining graphical user interface components representing
components of the rule.

20. Amethod as recited in claim 16, wherein said database
1s stored 1n a storage device that is remote from said
workstation.

21. Amethod as recited 1n claim 1, wherein said computer
system comprises a server and a remote station which can be
interconnected to each other through a communications
network.

6,059,342

11

22. A method as recited 1 claim 1, further comprising
optimizing configuration parameters of said computer sys-
tem 1n response to said configuration information and said
performance capabilities.

23. A method as recited 1n claim 1, wherein determining
performance capabilities of said computer system com-
Prises:

a. determining real time resource utilization when said

program application 1s being executed.

24. A method of running an application program on a
computer system to accomplish a user selected result in the
running of the application program, said method compris-
Ing:

a. determining the utilization of selected resources of said

computer system at selected intervals during the run-
ning of the application program;

b. comparing said resource ufilization with predefined
thresholds; and

c. alerting a user of said computer system to alter appli-
cation program parameters 1f said resource utilization
comparison satisfies predefined criteria with respect to
said thresholds.

25. A method as recited 1n claim 24, wherein said pre-
defined criteria comprises a combination of resource utili-
zation requirements for a set of said resources of said
computer system.

26. A method of enhancing computer systems
performance, said method comprising;:

a. monitoring user activity;
b. determining user activity patterns;

c. matching said user activity patterns against entries in a
database; and

d. making suggestions or alerting said user to alter at least
onc of computer system parameters and application
program parameters 1n accordance with said entries.

27. A program storage device readable by machine, tan-

o1bly embodying a program of instructions executable by the
machine to perform method steps for enhancing program
application or system performance of a computer system,
said method steps comprising:

a. determining configuration information of said computer
system,
b. determining performance capabilities of said computer

system based on known characteristics and behaviors
of said program application; and

c. optimizing configuration parameters of said program
application 1n response to said configuration informa-
tion and said performance capabilities.

10

15

20

25

30

35

40

45

12

28. A program storage device readable by machine, tan-
o1bly embodying a program of instructions executable by the
machine to perform method steps for running an application
program on a computer system to accomplish a user selected
result 1n the running of the application program, said method
steps comprising:

a. determining the utilization of selected resources of said
computer system at selected intervals during the run-
ning of the application program,;

b. comparing said resource utilization with predefined

thresholds; and

c. alerting a user of said computer system to alter appli-
cation program parameters 1f said resource utilization
comparison satisfies predefined criteria with respect to

said thresholds.

29. A program storage device readable by machine, tan-
o1bly embodying a program of instructions executable by the
machine to perform method steps for enhancing computer
systems performance, said method comprising:

a. monitoring user activity;
b. determining user activity patterns;

c. matching said user activity patterns against entries 1n a
database; and

d. making suggestions or alerting said user to alter at least
one of computer system parameters and application
program parameters in accordance with said entries.

30. A system for enhancing program application or system

performance of a computer system comprising:

a. means for determining configuration information of
said computer system;

b. means for ascertaining performance capabilities of said
computer system based on known characteristics and
behaviors of said program application; and

C. processing means for automatically optimizing con-
figuration parameters of said program application
based on said configuration information and said per-
formance capabilities.

31. The system of claim 30 further comprising notifying
means for notifying a user of said optimal configuration
parameters.

32. The system of claim 30 wheremn said automatically
optimizing comprises automatically resetting configuration
parameters of said program application.

	Front Page
	Drawings
	Specification
	Claims

