United States Patent |9

Dale et al.

US006049664 A
(11] Patent Number:

6,049,664

(45] Date of Patent: Apr. 11, 2000

[54] TIER-NEUTRAL DEVELOPMENT
MECHANISM FOR HYPERTEXT BASED
APPLICATIONS

|75] Inventors: Geoftrey W. Dale, Cupertino; Kric J.
Swenson, Santa Cruz; Michael J.

Skok, Atherton; Matthew Stave, San
Jose; Sanjay J. Poonen, Cupertino, all
of Calif.

| 73] Assignee: AlphaBlox Corporation, Min. View,
Calif.

[21] Appl. No.: 08/978,349

22] Filed: Nov. 25, 1997
51] Int. CL7 e, GO6F 15/16
521 USe Cla oo 395/701
58] Field of Search ... 395/701, 682,
395/685

[56] References Cited

U.S. PATENT DOCUMENTS

5,027,269 6/1991 Grant et al. ..cooevvevenrivvnieennnnnnn. 709/300
5,050,074 971991 MaAICA .ovevveeeenvreneeereeenreereevnnenenes 707/8
5,446,902 8/1995 Islam ...ccooeevveeirvviieiveinniinneeennn. 395/703
5,457,797 10/1995 Butterworth et al. 395/682
5,592,626 1/1997 Papadimitriou et al. 709/102
5,724,506 3/1998 Cleron et al. ...ooeeevvvnevvvenneennnnn. 709/230
5,781,189 7/1998 Holleran et al.c.............. 3457335
5,784,619 7/1998 Evansocovveevvvieeiveieeennneeennnne. 709/302
5,838,906 11/1998 Doyle et al. .ccoovvveerverveeeeeeenenn 395/685
5,870,544 2/1999 CUItIS .evvrvvrrrneerrerieerereeenrneeennnnss 713/201
5,884,056 3/1999 Steele .coverineiiiiiiiiiieieiieeennnn, 395/339
5,889,520 3/1999 Glaser ..ooveevveevveiieiveieiiinneeennnn. 345/349
5,892,909 4/1999 Grasso et al. ...oevvvvnnnnnennn.. 395/200.31
5,911,075 6/1999 GIaSer ..coceeveeeveeeeveeeerrrnneeennnnns 395/704

OTHER PUBLICAITONS

Robert Orfali et al., “Client/Server With Daistributed
Objects,” Essential Client/Server Survival Guide,Chapter
21, Part 7, 19 pages, Van Nostrand Reinhold, 1994.

USER CLICKS ON HYPERTEXT i
LINK -
BROWSER TRANSMITS REQUEST o2
TC HTTP SERVER
HTTP SERVER PASSES REQUEST 503
TO APPLICATION SERVER
504

APPLICATION SERVER RETRIEVES

REQUESTED PAGE
50
ANY SERVER-3IDE > SERVER-SIDE
APPLETS? ROUTINE
NO

506

APPLICATION SERVER PASSES
REQUESTED PAGE TO HTTP
SERVER

o07
HTTP SERVER TRANSMITS
REQUESTED PAGE TO BROWSER

Andy Patrizio, “Lotus Forges Java Links—InfoBus lets
Beans, applets Communicate,” Information Week,May 12,

1997.

InfoWorld,*“The Web Hotlist; Web sites worth checking out,”
IDG Communications, Inc., May 26, 1997, p. 75.

Paula Rooney, “InfoBus to Direct JavaBeans Traffic,” PC
Week, Apr. 21, 1997, vol. 14, No. 16, p. 31.

“Importance of JavaBeans highlighted,” Workgroup Com-

puting Report, Phillips Business Information, Inc., April 15,
1997,

Darryl K. Taft, “Sun Shipping New Java OS,” TechWire,
CMP Media, Inc., Mar. 6, 1997.

Primary Fxaminer—Tariq R. Hafiz

Assistant Examiner—John Q. Chavis
Attorney, Agent, or Firm—DBlakely, Sokoloff, Taylor &

Zatman LLP
[57] ABSTRACT

A tier-neutral development mechanism for network-based
applications 1s provided. An application created using the
mechanism 1ncludes a plurality of hypertext-based pages, at
least some of which incorporate executable components.
The application 1s invoked by a hypertext request for a page
from a browser running on a client tier. An application server
responds to the request by retrieving the requested page and
assigning any components incorporated therein to the proper
tier for execution. The mechanism provides a single model
by which any executable component can be specified by an
application developer for execution on any tier on the
network or made subject to an automatic, dynamic tier
assignment by the application server. Components of a given
application can be distributed across, and specified for
execution on, three or more different tiers and moved from
tier to tier. An application developer can use a conventional
hypertext editor to integrate selected components into
extended hypertext pages to create an application.

30 Claims, 14 Drawing Sheets

BROWSER RECEIVES i

REQUESTED PAGE

FOUND APPLET TAG
FOR A COMPONENT?

YES

602
NO

603

BROWSER INSTANTIATES
COMPONENT

604
INFRASTRUCTURE
REGISTERS COMPONENT
>
h 4

605
BROWSER RENDERS PAGE

6,049,664
Page 2

OTHER PUBLICAITTONS

“Grid Source Code,” PC Quest (India), Financial Times
Asia Intelligence Wire, Mar. 1, 1997.

Steve Steinke, “Novell CEO Brings a Shot of Catfeine,”
Network,Information Access Company, vol. 12, No. 6, p. 18,
Jun. 1997.

“Gensym Focuses on Distributed Intelligent Systems,” Tele-
comworldwire Information Access Company, May 29, 1997.
“Visigenic’s IDIL—-to—Java Language Mapping Recom-
mended as New Internet Standard,” Telecomworldwire, May
29, 1997.

“Middleware Technology Provides a Missing Link,”
Advanced Intelligent Network News, vol. 7, No. 11, May 28,
1997.

Tony Pompili, “Multiple Personalities,” PC Magazine, vol.
16, No. 10, p. 117, May 27, 1997.

“Persistence Expands Role in Object Management Group;
Persistence Software Now has Full Voting Rights 1n World’s
Largest Object Technology Consortium,” PR Newswire, May
27, 1997.

Sharon Gaudin, “A Darwinian Leap Past the Visual; App
developers await time—saving tools,” Computerworld,soft-
ware section (Closer Look), p. 47, May 26, 1997.

Natalie Engler, “Code Conspirators,” Computerworld, Com-
puterworld Intranets section, p. 1, May 26, 1997.

Michael Moeller, “Uniting Crossware Apps; Netscape’s
component plan ties SuiteSpot to other Platforms,” PC
Week, vol. 14, No. 21, p. 6, May 26, 1997.

“Neuron Data Adds Integration to Intersolv PVCS Version
Manager; Elements Environment to Gain Advanced Soft-
ware Configuration Management Capabilities,” PR News-
wire, Financial News Section, May 22, 1997.

“Visigenic: Visgenic’s VisiBroker ORB brings IIOP func-
tionality to Cincom’s Total FrameWork,” M2 Presswire,
Information Access Company, May 21, 1997.

“AlphaBlox: AlphaBlox announces ActiveBox based on
Microsoft’s ActiveX,” M2 Presswire Information Access
Company, Oct. 30, 1996.

Sun Microsystems, Inc. press release dated Dec. 4, 1995,
“Netscape & Sun Announce Javascript™ The Open, Cross—
Platform Object Scripting Language for Enterprise Net-
works & the Internet,” 10 pages.

“JavaBeans™ The only Component Architecture {for
Java™ ” downloaded from http://splash.javasoft.com/beans/
glasgow.html on Jun. 16, 1997, 21 pages.

“The Kona InfoBus Technology Brief,” downloaded from
http://kona.lotus.com/21¢c2.html on Jun. 16, 1997, 4 pages.

“JavaScript Reference,” downloaded from http://developer-

Jnetscape.com/library/documentation/communicator/jsret/
contents.htm, Oct. 31, 1997, 12 pages.

Paul Dreytus, “JavaScript on the Server: Internet Applica-
tion Development Without Native Code,” downloaded from
http://developer.netscape.com/news/viewsource/javas-
cript.html on Nov. 6, 1997, 9 pages.

Rich Kadel, “Java Servlets in Netscape Enterprise Server,”
downloaded from http://developer.netscape.com/news/
viewsource/kadel servlet.html on Nov. 16, 1997, 13 pages.

Niel Jenkins et al., Client/Server Unleashed, Sep. 1996,
395-405.

U.S. Patent Apr. 11, 2000 Sheet 1 of 14 6,049,664

1 ,
CLIENT HTTP HTTP
3 SERVER
5
4
HTML

|
|
|
|
|
|
: HTML HTML
|
|
|
|
|
|
|

6,049,664

Sheet 2 of 14

Apr. 11, 2000

U.S. Patent

Ll

30IAdd
NQO

€l

FOVHOLS
SSVYIN

8l

9l

30IA30
ONILNIOd

NOYH

ddvOdA3IM

NVH

AV 1dSIG

NdO

Sheet 3 of 14

¢ Ol

6,049,664

|_
|
|
|
|
|
|
|

<

Apr. 11, 2000

q0¢ NAP
¢C

dliH

d3AH3S
NOILVYOIddV

Bye el¢ e0¢

U.S. Patent

Sheet 4 of 14

vy Old

6,049,664

Apr. 11, 2000

(S)H3IL 2 82
43HLO
oL JHNLONYLSYHANI
s vy _
_ |
_ e 06 52 _
_ o _
_ AHIANO i~ TavL HOLO3HIQ | |
|

| |
_ |
|

U.S. Patent

6,049,664

Sheet 5 of 14

Apr. 11, 2000

U.S. Patent

gy Ol

d-N|
WINQO

qiG

JHNLONYLSVYHANI

48¢

eyg

d01034Id 318V1
ge6¢ 0t

H3AHIS NOILVYOlddV

elg
H4NI
- NWOD
ege
JHNLONH.LSYHANI

N.v\ .
.......... > 38N0 [P LHYHO AH3IND HOL034Id

6

o 3V’ g € B6e

INENe
e0¢ /

U.S. Patent Apr. 11, 2000 Sheet 6 of 14 6,049,664

USER CLICKS ON HYPERTEXT o)
LINK -
BROWSER TRANSMITS REQUEST 502
TO HTTP SERVER
HTTP SERVER PASSES REQUEST 503
TO APPLICATION SERVER
APPLICATION SERVER RETRIEVES
REQUESTED PAGE

505

ANY SERVER-SIDE YES
APPLETS?

508

SERVER-SIDE
ROUTINE

506
APPLICATION SERVER PASSES
REQUESTED PAGE TO HTTP
SERVER
507

HTTP SERVER TRANSMITS

REQUESTED PAGE TO BROWSER

FIG. 5

U.S. Patent Apr. 11, 2000 Sheet 7 of 14 6,049,664

1
BROWSER RECEIVES >
REQUESTED PAGE

602

NO

FOUND APPLET TAG
FOR A COMPONENT?

603

BROWSER INSTANTIATES
COMPONENT

604

INFRASTRUCTURE
REGISTERS COMPONENT

605
BROWSER RENDERS PAGE

6,049,664

Sheet 8 of 14

Apr. 11, 2000

U.S. Patent

Q0O
QY

9GE

IlllilllliIIIIIIIIIIIIIIIIII'IIIIIIiIII

dNOD-ANS

d01034Id

147

'dNOD-aNS
1X341INOD

dNOO-8NS

1X31INOO

r—\——— —

AH3N0O d01044dId

|
|
|
|
|
T1gvL “
|
_
_

U.S. Patent Apr. 11, 2000 Sheet 9 of 14 6,049,664

801

BROWSER INSTANTIATES

COMPONENT

802

COMPONENT INSTANTIATES ITS CONTEXT
SUB-COMPONENT

CONTEXT SUB-COMPONENT ATTEMPTS TO 803

LOCATE DIRECTOR SUB-COMPONENT

806

CONTEXT
NO SUB-COMPONENT

DIRECTOR
SUB-COMPONENT
FOUND?

CREATES DIRECTOR
SUB-COMPONENT

YES

805

CONTEXT SUB-COMPONENT REGISTERS
ITS COMPONENT WITH DIRECTOR

SUB-COMPONENT

FIG. 8A

6,049,664

Sheet 10 of 14

Apr. 11, 2000

U.S. Patent

d8 "Dl

ddAH3S

99

374

9

d3AH3S NOILYOliddV

LN3ITO

U.S. Patent Apr. 11, 2000 Sheet 11 of 14 6,049,664

BEGIN

COMPONENT PROVIDES ITS CONTEXT
SUB-COMPONENT WITH REQUEST FOR A
CONNECTION

901

CONTEXT SUB-COMPONENT CONTACTS 902

DIRECTOR SUB-COMPONENT AND
REQUESTS LIST OF REGISTRATIONS

DIRECTOR SUB-COMPONENT PROVIDES 903

LIST OF REGISTRATIONS TO CONTEXT
SUB-COMPONENT

904

CONTEXT SUB-COMPONENT EXECUTES
'FINDSERVICEPROVIDER" TO SEARCH LIST
FOR APPROPRIATE SERVICE PROVIDER
COMPONENT(S)

905

906

CONTEXT SUB-COMPONENT RETURNS
REFERENCE(S) TO SERVICE PROVIDER
COMPONENT(S) TO ITS OWN COMPONENT

END

6,049,664

Sheet 12 of 14

Apr. 11, 2000

U.S. Patent

0l Ol

HOLO3HI |

L — — —

+1SOH. HAAH3S

(001 < AVYO)
HIAHIS

__&ql—o__

-

_
38N0 | |HOLO3HIA |

I — — — =

(001 > avO)
HIAH3S

«dV 10,

dligo

H01034ld

6,049,664

Sheet 13 of 14

Apr. 11, 2000

U.S. Patent

mml\

|
0078 | qgy

a0y -

AO01d
*10] %

3019
40v

q0¥

qov

qo0¥

H

LY

A0018 | qop| MO0

3
0018 | qgp| Y0078

[g
-
ot
L
“
- = 4 = =m m m m Efjm wm ="

86

NO014 A001d

q0v

N

10014 N001d

d0.1034dId
210]7%

MOGNIM 1437 3HL OLNI NOILYOINddY HNOA

q0v

NI JAMTONI OL IMIT ATNOM NOA SMO0T8 JHL DVHA

MOONIM SNOILdO 1id3 31

6,049,664

Sheet 14 of 14

Apr. 11, 2000

U.S. Patent

\

avs
¢ AdAL-IHVYHO O

mm\D
0¥

| 3dAL-LHYHO O

mmE N_‘ .G_H_
8¢

/G (_H 'HO100 ANNOYDYOVE

35 :1X31 431004
2 3dAL-aD O

- 1X3L AQOg

AHIND
3HNA300Hd d3401S O AHIND F1dWIS @

o3 SISATYNY 28
TYNOISNIWIG-LLTNIA SISATYNY 02 ®
o LVINHO4 NOILY.LNISIHd NOILYWHOANI
65

2 1X31 H3AV3H
I\ FWYN L3SVLVC
8¢ A]

b5 I3IWVYN NOILYOITddY

6,049,664

1

TIER-NEUTRAL DEVELOPMENT
MECHANISM FOR HYPERTEXT BASED
APPLICATIONS

FIELD OF THE INVENTION

The present invention pertains to the field of network-
based software. More particularly, the present invention
relates to software applications that are designed for use on
the Internet.

BACKGROUND OF THE INVENTION

The rapid growth 1n the use of the Internet and the World
Wide Web (“the Web™) has sparked a dramatic increase in
the development of Internet-based software applications.
Developments 1 Internet software have arisen 1n many
different areas ranging from on-line shopping and banking to
cgames and entertainment. Web-based tools such as Java,
JavaBeans, and ActiveX have helped to partially bridge the
gap between the simple, text-only Web pages of the early
Internet and sophisticated software applications. In
particular, these tools allow Web designers to include small,
special-purpose programs (sometimes referred to as
“applets”, “Beans”, or more generally, “components”)
within Web pages written 1in a hypertext language, such as
the Hypertext Mark-up Language (HTML). Thus, Web
pages have been transtormed from passive, text-only dis-
playable documents to dynamic documents that can provide
moving graphics, video, sounds, and interactive capability.

While progress 1s beimng made 1n the development of
Internet applications, application development tools for the
Internet still have a number of shortcomings. For example,
conventional Web-oriented programming models such as
Java, JavaBeans, and ActiveX are not “tier-neutral” with
respect to the environments 1n which they run. That 1s, the
services upon which such models rely tend to be very
specific to the tier (e.g., client or server), operating system,
and 1n some cases, hardware. For example, while Java and
JavaBeans do not have operating system and hardware
dependencies as ActiveX controls do, they must exist 1n an
environment or infrastructure that provides the necessary
services (e.g., communications, access to environment,
parameterization, connectivity to external services, etc.) to
operate.

The surrounding environment or infrastructure in prior art
application development systems tend to be ftier-specific.
The tools, mechanisms, and services available on client
tiers, for example, are quite different from those available on
server tiers. In heterogeneous hardware environments, the
server tiers may also provide significantly different environ-
ments. Further, these systems do not allow components of an
application to be moved from one tier to another, or to be
distributed among multiple tiers. Such capability may be
desirable for purposes of performance, security, or browser
capability.

In addition, with conventional tools, interfaces between
applets or other executable components must be custom-
coded 1nto the hypertext document. In particular, an appli-
cation developer specifically “wires” (i.e., writes code for)
the connections between components, so that the compo-
nents can communicate with each other. This constraint
makes 1t difficult for mexperienced programmers to create
Web applications and causes application development to be
a laborious, time consuming process.

A common approach to creating application development
tools for the Web has been to retrofit existing tools with Web
“front ends” (user interfaces). As a result, such tools are not

10

15

20

25

30

35

40

45

50

55

60

65

2

ideally-suited to the development of Web applications.
Further, retrofitted tools are not likely to adapt well to future
changes 1n the platforms, users, and types of usage of the
Internet.

Hence, 1t would be desirable to have Internet applications
and application development mechanisms which overcome
the above-mentioned disadvantages. In particular, what 1is
needed 1s an application development mechanism that is
specifically designed for development of Internet
applications, especially Web-based applications. What 1s
further needed 1s a single development mechanism that is
based on a single, tier-neutral model, using which applica-
tion developers can create application components for
execution on any tier on a network, distribute application
components across multiple tiers on a network, or move
application components from tier to tier. In addition, what 1s
needed 1s an application development mechanism which
allows Internet applications to be created faster and more
casily by people who have little or no programming expe-
rience.

SUMMARY OF THE INVENTION

The present invention includes a mechanism for creating,
a software application for execution on a network that has
multiple tiers. The mechanism comprises means for speci-
fying application components, which allows any specified
application component to be assigned to execute on any of
the tiers of the network. The mechanism further comprises
means for enabling the application components to be asso-
clated with one or more hypertext-based pages, which
allows the components to be executed 1n response to
requests for the hypertext-based pages. Other features of the
present mvention will be apparent from the accompanying
drawings and from the detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example
and not limitation i1n the figures of the accompanying
drawings, in which like references indicate similar elements
and 1n which:

FIG. 1 illustrates a network arrangement by which a Web
server provides a client computer with access to HITML
pages.

FIG. 2 1llustrates a computer system.

FIG. 3 illustrates a network arrangement by which a
server computer provides a client computer with access to a

Web-based application 1in accordance with the present inven-
tion.

FIG. 4A 1llustrates software application components 1n
communication with an infrastructure.

FIG. 4B 1illustrates a software application distributed
across multiple tiers.

FIG. 5 1s a flow diagram 1llustrating a routine by which a
software application 1s invoked.

FIG. 6 1s a flow diagram 1llustrating a routine by which a
component 1s instantiated and registered.

FIG. 7 1llustrates 1n greater detail the components 1llus-
trated 1n FIG. 4.

FIG. 8A 1s a flow diagram 1illustrating 1n greater detail
certain steps of the routine of FIG. 6.

FIG. 8B 1s a diagram 1llustrating three executable com-
ponents of an application being executed on three separate
tiers.

FIG. 9 1s a flow diagram 1llustrating a routine by which an
interface between two components 1s established.

6,049,664

3

FIG. 10 1s a diagram 1illustrating multiple executable
components of an application being executed on multiple
tiers.

FIG. 11 illustrates a display screen showing a graphical
user interface for assembling a software application.

FIG. 12 1illustrates a display screen showing a graphical
user 1nterface, using which an end user can assemble and

execute a customized application.

DETAILED DESCRIPTION

A tier-neutral development mechanism for Web-based
applications 1s described. In the following description, for
purposes of explanation, numerous speciiic details are set
forth 1n order to provide a thorough understanding of the
present invention. It will be evident, however, to one skilled
in the art that the present invention may be practiced without
these specific details. In other instances, well-known struc-
tures and devices are shown 1n block diagram form 1n order
to facilitate description of the present invention.

The present invention includes a “tier-neutral” mecha-
nism for application assembly, using which developers with
little or no programming experience can casily create Web
based applications. In other words, using a single application
development mechanism 1n accordance with the present
invention, Web developers can create applications to run on
any tier on a network or to run across multiple tiers. In this
description, the term “tier” 1s used to distinguish between a
client and a server on a network and to distinguish between
multiple servers.

The present invention may be carried out in one or more
computer systems, each in response to 1ts central processing
unit (CPU) executing sequences of instructions contained in
memory. That 1s, execution of the sequences of mstructions
contained 1n memory causes the computer’s CPU to perform
steps to execute part or all of a Web-based application. As
will be apparent from the description which follows, the
instructions may be loaded into the computer’s memory
from a persistent store, such as a mass storage device, and/or
from one or more of the other computer systems
(collectively referred to as the “host computer system™) over
the Internet. For example, the host computer system may
fransmit a sequence ol 1instructions to the receiving
(“target”) computer system in response to a message trans-
mitted to the host computer system over a network by the
target computer system. As the target computer system
receives the instructions via a network connection, such as
a conventional telephone modem, Ethernet adapter, Inte-
grated Services Digital Network (ISDN) adapter, or the like,
the target computer system stores the instructions 1in
memory. The target computer system may store the istruc-
tions for later execution or execute the instructions as they
arrive over the network connection. The host computer
system may also execute various aspects of the Web-based
application.

In some cases, 1nstructions which embody the present
invention may be directly supported by the CPU of the
executing computer. Consequently, execution of the mstruc-
fions may be performed directly by that computer’s CPU. In
other cases, the mstructions may not be directly executable
by the computer’s CPU; under these circumstances, the
instructions may be executed by causing the CPU to execute
an 1nterpreter that interprets the instructions, or by causing
the CPU to execute instructions which convert the received

instructions to instructions which can be directly executed
by the CPU.

In alternative embodiments, hardwired circuitry may be
used 1n place of, or 1n combination with, software instruc-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions to implement the present invention. Thus, the present
invention 1s not limited to any specilic combination of
hardware circuitry and software, nor to any particular source
for the 1nstructions executed by a computer system.

FIG. 1 illustrates an arrangement of processing systems
by which a user can browse the World Wide Web (“the
Web”). A client computer system 1 has a connection 3 via
the Internet to a server computer system 2. The client system
1 executes browser software which, in response to a user
command, sends a request for a Hypertext Mark-up Lan-
guage (HTML) page to the server 2 using Hypertext Trans-
port Protocol (HT'TP). The requested HIML page is one of
a number of HI'ML pages 4 that are stored 1in a storage
facility 5. The storage facility § may or may not be physi-
cally located on the same computer system as the server 2.
The HITML pages 4 are functionally interconnected by
various hypertext links and may be logically arranged 1 a
tree hierarchy, as shown. In response to the browser’s
request, the server 2 retrieves the requested page and pro-
vides 1t to the client 1, which then displays the page to the
USeT.

FIG. 2 1s a simplified block diagram of the architecture of
a computer system, such as a conventional personal com-
puter (PC). Client system 1, server system 2, and any other
computer system mentioned 1n this description may have the
architecture of FIG. 2 or a similar architecture, except as
stated otherwise. Numerous variations upon the overall
configuration illustrated 1n FIG. 2 are possible, however,
within the scope of the present invention. The computer
system of FIG. 2 includes a CPU 10, random access memory
(RAM) 11, read-only memory (ROM) 12, and a mass
storage device 13, all coupled to a bus 18. The bus 18 may
actually include one or more physical buses interconnected
by one or more adapters, bridges and/or controllers. Also
connected to the bus 18 are a display device 14, a keyboard
15, a pointing device 16, and a communication device 17.
The communication device 17 provides an interface between
the 1llustrated computer system and the network connection
3 for purposes of communicating with other computer
systems.

The communication device 17 may be any suitable device
for providing digital communication over the network con-
nection 3, such as a conventional Ethernet or other local area
network (LAN) adapter, telephone modem, ISDN adapter,
Digital Subscriber Line (xDSL) adapter, cable television
modem, or any other suitable device. The mass storage
device 13 may include any suitable non-volatile medium for
storing large amounts of data, such as a magnetic disk, a
magneto-optical (MO) disk, a CD-ROM, CD-R, CD-RW, or
the like. The pointing device 16 may be any suitable device
for allowing a user to position a pointer displayed on the
display device 14, such as a mouse, trackball, touchpad, or
the like. Numerous variations upon the aforementioned
components are possible within the scope of the present
invention.

The present mvention includes a “tier-neutral” model by
which Web developers can easily create Web based appli-
cations. In other words, using a single application assembly
mechanism of the present invention, Web developers can
create applications for any tier and, if desired, distribute
applications across multiple tiers. Further, the tool allows
applications to be created quickly and easily by someone
with little or no programming experience.

Using the above-mentioned development mechanism,
Web based applications are created from conventional
HTML pages in combination with certain executable “com-

6,049,664

S

ponents” and a program infrastructure, as will be described
below. The specific functions of the executable components
depend upon the nature of the application but may include,
for example, charting or spreadsheet functions, spell
checking, and various user interface functions. The compo-
nents can be written 1n Java programming language and
implemented as Java classes. In such embodiments, the
components can be incorporated into HI'ML pages using
applet tags. Thus, an application designed according to the
present 1nvention includes one or more conventional HTML
pages with one or more of these components. The compo-
nents are dynamically downloaded as needed when the user
browses to a corresponding HIML page, and the entire

application 1s maintained on the server side.

FIG. 3 illustrates one arrangement by which the user of a
client computer system 20a can access and execute a Web-
based application 19 created 1n accordance with the present
invention. In the description which follows, the present
invention 1s described using the example of an application
which resides and executes on a wide area network (WAN),
1.€., the Internet. Note, however, that the present invention
can also be used to assemble applications which reside and
execute on a LAN, such as 1n an Intranet environment.
Referring then to FIG. 3, the client computer system 20a
executes browser software and preferably includes a Java
Virtual Machine JVM) 20b. The client 20a executes browser
software and communicates over the Internet with a con-
ventional Web server (hereinafter the “HTTP server”) 21a
via a network connection 22 using HT'TP protocol. Network
connection 22 may be a conventional telephone link, ISDN
link, xDSL link, cable television link, Ethernet link, or any
other suitable communication link. The HTTP server 21a
may include 1ts own JVM 21b, as shown, although that 1s not
necessary for purposes of the present invention. The HTIP
server 21la may comprise any conventional Web server
software, such as Netscape Enterprise Server, Microsoft
Internet Information Server, or Apache.

In accordance with the present invention, the network
arrangement also mcludes a second server 24a, which shall
be referred to as the “application server” 24a. As will be
described below, the application server 24a performs certain
functions associated with the present invention, such as
assigning executable application components to appropriate
tiers. The HTTP server 21a and the application server 24a
may or may not be physically located on the same computer
system. The “application server” includes a JVM 24b. The
JVM 21b of the HTTP server 214 includes a link component
23, which provides a communication interface between the
HTTP server 21a and the application server 24a using
Transport Control Protocol (TCP). The link provides a
mechanism by which the HTTP server 21a can delegate
HTTP requests to the application server 24a. If the HT'TP
server 21a does not include its own JVM 21b, this link
mechanism can be provided using, for example, CGI
(Common Gateway Interface), NSAPI (Netscape Server
Application Program Interface), or Microsoft ISAPI
(Internet Server API).

The HTTP server 21a and the application server 24a each
have access to the contents of a storage facility 27. The
storage facility 27 may or may not be physically located on
the same computer system as the HTTP server 21a and/or
the application server 24a. In fact, the storage facility 27
may be located essentially anywhere on the Internet and may
be distributed across multiple computer systems. Further,
the storage facility may be embodied as separate data
repositories for the HT'TP server 21a and the application
server 24a, or one storage facility may be a subset of the

10

15

20

25

30

35

40

45

50

55

60

65

6

other. Thus, the storage facility 27 1s described herein as a
single logical and physical entity only for purposes of
simplicity. The storage facility 27 may be embodied as one
or more conventional storage devices.

The storage facility 27 stores a number of HI'ML pages
25 and a number of executable components 26 of the present
invention. The HIML pages 25 1n combination with the
components 26 form a Web-based application 19 1n accor-
dance with the present invention. The HIML pages 25 may
be logically arranged i1n a tree hierarchy, as shown.
Generally, the application 19 1s invoked 1n response to a
request from the client 20a for an HI'ML page that includes
one or more references (“tags”) to one or more of the
components 26. Execution of the application 19 is supported
by a programming infrastructure 28, the purpose and func-
tions of which are described below.

The components 26 of the present invention are based on
the conventional concept of “applets”, 1.e., small portions of
executable code that can be incorporated (by reference) into
HTML pages. The components 26 may be embodied as Java
classes, as 1s assumed to be the case for purposes of this
description. However, 1t will be recognized that the compo-
nents 26 may alternatively be implemented 1n another
object-oriented language. Thus, the present invention 1s not
limited to a Java implementation. Each of the components
26 1s 1ncorporated 1nto one or more of the HIML pages 25
by placing an applet tag corresponding to the component
within the appropriate HITML page or pages.

The application components 26 have several distinguish-
ing characteristics, however, which make them conducive to
rapid and easy application assembly. In particular, the com-
ponents have relatively large granularity as well as fully
exposed controls, which allow the components to be used by
all levels of users from casual page designers to application
developers. The components differ by an order of magnitude
in granularity from traditional applets. Because the compo-
nents tend to be inherently larger than traditional applets,
they may encompass an entire business process or function.
For example, a single component can be a charting compo-
nent or a spreadsheet component.

The components 26 can execute on any tier on the
network, €.g., only on the application server 24a, only on the
client 20a, or on any available tier (e.g., one of several
available servers). User interfaces of the components 26 are
completely decoupled and can be rendered on different
platforms using different languages. Further, the compo-
nents 26 have features which allow connections between
them to be automatically established at run time without any
scripting or custom coding. All components have fully
exposed properties (e.g., applet parameters), methods, and
events that can be controlled through script, for example.
Alternatively, properties can be set at design time using a
development tool or text editor and become the 1nitial state
of a component. If the application developer 1s using any
conventional page design tool, such as Netscape Visual
JavaScript, Microsoft FrontPage, or Net Objects Fusion, the
property style sheets can be presented in simple dialog
boxes, and the exposed properties, methods, and events can
be scripted through point-and-click dialogs.

As noted above, the components 26 can execute on any
tier. More specifically, the system of the present mmvention
allows the application developer to make an explicit choice
of tier assignment for any component, i1if desired.
Accordingly, each component can be explicitly specified to
execute on the client tier, on the server tier, or on a speciiic
onc of multiple server tiers. Alternatively, the application

6,049,664

7

server 24a can automatically decide on which tier a com-
ponent 1s to execute, such as when no tier specification 1s
made for the component. This automatic tier assignment
may be made based on, for example, available resources,
load balancing criteria, hints, performance criteria, or other
criteria. In that case, the application developer need not be
concerned with the tier or tiers on which a component should
execute. The ability to make an automatic, dynamic tier
assignment, therefore, provides an advantage over other
application development systems, 1n which the developer
must explicitly choose a tier.

Server-side components (i.e., components which execute
on a server tier) can be specified to execute so that their
output 1s rendered as HITML back into the referencing
HTML page 1n place of the applet tag before the referencing
page 1s provided to the client 204. In that case, the client 20a
receives only a conventional HTML page with no applet
tags.

Another important feature of the present invention is that,
in contrast with conventional Web-based development tools,
functional connections between components of a Web appli-
cation can be established to allow components to commu-
nicate with each other, without the need for custom coding
by the application developer to specifically “wire” (specify)
the connections. Thus, the tier-neutral model of the present
invention allows the creation of components which effec-
fively “snap together” automatically when the application 1s
executed. This characteristic 1s 1n contrast with conventional
programming models which require custom coding within
hypertext pages to create connections between applets.

A simple example of how the application 19 executes 1s
described now with reference to FIG. 4A. For purposes of
description, assume that the components 26 have been
assigned to execute on the client tier 20a, unless stated
otherwise. However, note that many of the functions
described below can also be performed 1n like manner by the
application server 24a. In the example of FIG. 4A, the
application 19 allows a user of the client 20a to perform a
query upon a database (not shown). The result set of the
query 1s to be provided by a table. Consequently, the
components 26 include a query component 31 for receiving
user mput specifying the query and a table component 30 for
actually querying the database and for providing a result set
in response to the query. Note that the table component 30
may also provide the result set to some form of output
component (not shown) for displaying a chart or some other
form of report to the user.

At this point, 1t should be noted that 1n this description,
certain components, methods, and routines are described as
“performing”, “for performing”, or “responsible for” a par-
ticular function, or other similar language. It will be
recognized, however, that 1t 1s the execution of these
components, methods, and routines by a processor (i.c., a

CPU) which actually causes the function to occur.

To perform the query upon the database, a functional
connection 32 1s required between the query component 31
and the table component 30. With conventional program-
ming models, such a connection would be established by
custom coding the query component 31 and/or the table
component 30, or by custom coding an event handler in
script or a language which bridges the two components.
However, the present invention enables this connection to be
automatically created at run time, so as to eliminate the need
for such custom coding. This feature, which 1s described
below, enables Web designers with little or no programming,
experience to easily construct Web-based applications.

10

15

20

25

30

35

40

45

50

55

60

65

3

In accordance with the present invention, the components
26 also mclude a special-purpose component 29 referred to
as the “director” component, as shown i FIG. 4A. The
director component 29 provides various control functions
assoclated with the application, which are performed in
conjunction with the infrastructure 28. These functions
include maintaining registrations for the other components
26 and maintaining certain global default parameters of the
application 19. The director component 29, the table com-
ponent 30, and the query component 31 each have a con-
nection to the infrastructure 28.

FIG. 4B 1llustrates how a software application created
according to the present invention may be distributed across
multiple tiers (two 1n this case). As shown, the infrastructure

on one tier may have a connection to a corresponding
infrastructure on at least one other tier. Connections 47 and

49 between application components and connection 33 are
established across tiers. A director component and an infra-
structure are instantiated on each tier on which a component
1s to execute, and more specifically, for each different
session on each tier on which a component 1s to execute.
Thus, if an application includes both client-side components
and server-side components, then separate director compo-
nents and 1nfrastructure are 1nstantiated on the client and on

the server and, more specifically, on any client or server
machine on which a component 1s to execute. In the case of
a multi-tiered application, the director component 29 1s
connected to a corresponding director component on at least
one other tier via the infrastructures.

Referring still to FIG. 4B, the application 19 1s distributed
between the client 20a and the application server 24a. An
infrastructure 28a 1s mnstantiated on the client 20a, while an
essentially identical infrastructure 285 1s mstantiated on the
server 24a. In this example, the components 26 of applica-
tion 19 include a query component 31, a chart component
45, and a cube component 46, each 1nstantiated on the client
20a and connected to the infrastructure 28a. The compo-
nents 26 further include a director component 2956 and a
table component 30, both instantiated on the server 24a and
connected to the infrastructure 28b. The query component
31 is for enabling a user to mput a query upon a database
(not shown). The table component 30 is for communicating
with the database and for maintaining a result set based on
the query. The cube component 46 1s for transforming
two-dimensional data from the database into a multi-
dimensional representation which supports examining slices
or cross-sections of the data. The chart component 45 1s for
displaying the results to a user. The client 204 and server 24a
further maintain communications infrastructures 51a and
51b, respectively, which manage communications over con-
nection 33. Communications infrastructure 51a has a con-
nection to the client’s main infrastructure 284, while com-
munications infrastructure 515 has a connection to the
server’s main infrastructure 285 and (via link 33) to com-
munications infrastructure 5la.

In this example, connection 47 1s automatically estab-
lished between the query component 31 and the table
component 30 at run time, to allow the query component 31
to specily to the table component 30 data that is to be
retrieved from the database. Connection 48 1s automatically
established between the chart 45 and the cube 46 at run time,
to allow the chart component 45 to receive data from the
cube component 46. Further, connection 49 1s automatically
established between the table component 30 and the cube
component 46 at run time, to allow data to be transferred

from the table 30 to the cube 46.

The process for mvoking an application will now be
described at a high level with reference to FIG. 5. In step

6,049,664

9
501, the user of client 20a (FIG. 3) clicks on a hypertext link

to one of the HIML pages 25. The client 204 then transmits
a request for the corresponding page to the HT'TP server 21a
in step 502. In step 503, the HTTP server 21a passes the
request on to the application server 24a, and 1n step 504, the
application server 24a retrieves the requested page from the
storage facility 27.

10

tiated and available only throughout a particular browser
session, and “global” scope indicates that the applet 1s to

remain 1nstantiated until 1t 1s explicitly destroyed and 1is
accessible to all clients and applications.

An example of an applet tag including the “tier” and
“scope” parameters 15 as follows:

(applet code = sample tier = server scope = session name = sample_component)

(/applet)

Each of the components 26 1s referenced by an applet tag
in at least one of the HITML pages 25. Each applet tag may
include 1information that 1s not found 1n conventional applet
tags, such as a designation of which tier the applet 1s to be
executed on and/or the scope (duration) of a component’s
instantiation. Therefore, 1n step 505, the application server
24a determines whether the requested page refers to any
server-side components (i.e., components to be executed on
any tier other than the client tier) based on the contents of the
corresponding applet tags and any rules or heuristics estab-
lished by the system admuinistrator. If no server-side com-
ponents are 1dentified 1n the requested page 1n step 505, then
in step 506 the application server 24a passes the requested
page to the HTTP server 21a, which passes the page to the
client 20a 1n step 507. If the application server 1dentifies one
or more server-side components referenced by the requested
page 1n step 505, then the application server 24a performs
the server-side routine of step 508, which 1s described below.
Following the server-side routine, the routine of FIG. 5
proceeds from step 506.

As noted above, each applet tag may include information
which 1s not found 1n conventional applet tags, such as a
designation of which tier the component 1s to be executed on
and/or the scope (duration) of a component’s instantiation.
This information 1s provided 1n the form of applet attributes
designated “tier” and “scope”, respectively. Possible values
for “tier” nclude, for example, “client”, which 1s the default
in one embodiment, “server”, or other values to specily
more complicated designations, as set up by the system
administrator. In addition, a component can be specified for
a particular client tier or a particular server tier by defining
additional values for “tier”, or a component can support a
dynamic choice of tier by the application server 24a, as
noted above. The ability to explicitly assign a component to
a given tier allows the application designer to determine
where to put the application logic and how to distribute the
processing load. By using the tier attribute, the difference
between running on the client or the server becomes a simple
property that can be easily toggled for testing purposes or
conditionally set to run on a client or server based on user
proiile, browser specifications, or other run-time properties,
such as server load, performance, etc.

The “scope” attribute represents the duration of a com-
ponent’s mstantiation on 1ts specified tier and can have the
values “request”, “application”, “session”, or “global”.
“Request” scope, which 1s the default in one embodiment,
indicates that the corresponding component will be 1nstan-
fiated as an object only while the corresponding HI'ML page
1s rendered. “Application” scope indicates that the corre-
sponding component will be instantiated and available to
other tiers provided they are executing the same application.
“Session” scope mndicates that the component will be 1nstan-

15

20

25

30

35

40

45

50

55

60

65

In the above example, the component known as “sample__
component” 1s specifled to execute on a server tier and to
have “session” scope.

Generally, when a page 1s requested, a number of objects
are 1nstantiated (created) for each component referenced by
the page. Instantiation of a component 1s performed by the
tier to which the component has been assigned. Thus, in the
example of FIG. 4, the client 20a instantiates the table
component 30 and the query component 31 when the page
referencing these components 1s downloaded. Also, down-
loading the first HIML page that references one of the
components 26 to the client also results in the creation of the
director component 29.

Upon 1nstantiation of a component, the component reg-
Isters 1ts existence, as will now be explained with reference
to FIG. 6. FIG. 6 1llustrates a routine by which a component
1s 1nstantiated and registered. In step 601, the client 204
receives a requested HIML page. In step 602, 1f the client
20a detects an applet tag for a component, the browser
instantiates the component 1n step 603. In step 604, the
infrastructure 28 registers that component’s existence, and
the browser renders the page 1n step 603. If no applet tag was
found for a component 1n step 602, then the client 20a
simply renders the page normally 1n step 605. When the first
HTML page containing an applet tag for one of the com-
ponents 26 1s downloaded to the client 204, the director
component 29 and each other component referenced by that
page (e.g., table component 30 or query component 31) are
instantiated on the client computer system 1.

Referring now to FIG. 7, the components 26 and infra-
structure 28 will now be described 1n greater detail. The
infrastructure 28 includes an object referred to as the direc-
tor sub-component 34. The director component 29 generally
provides the front end to director sub-component 34, in
addition to the functions mentioned above. The director
sub-component 34 1s responsible for managing the core
functions of the application 19, including maintaining reg-
istrations of the other components (¢.g., table component 30,
query component 31, etc.) associated with the application 19
and handling requests from various components for connec-
tions to other components. In particular, (execution of) the
director sub-component 34 maintains a list of registrations
of all components of the application 19, which includes a
reference to each component, and the use of which 1is
described below. These functions of the director sub-
component 34 enable the components to automatically
acquire connections to each other without the need for the
application developer to explicitly “wire” (i.e., write code to
specify) the connections.

Note that in one embodiment, an application of the
present invention will create one director component and
one director sub-component for each distinct scope level

6,049,664

11

used by the application. For example, if certain components
default to the “request” scope while others are specified as
“application” scope for a given tier, then at least two director
components and at least two director sub-components would
be created on that tier, 1.€., one for “request” scope and one
for “application” scope.

In addition to 1nstantiating components 29, 30, and 31, the
client 20a also instantiates several additional objects. (If one
or more components are server-side components, however,

then these additional objects may be created by the appli-
cation server 24a.) The additional objects include, for each
component, an object referred to as a context sub-
component. Each context sub-component 1s associated with
a particular one of the components 26, although the context
sub-components are actually part of the infrastructure 28.
Each context sub-component may be implemented as a Java
class and includes methods for setting parameters and
properties, locating other components, and registering its
corresponding component. Hence, the client 20a (or appli-
cation server 24a) creates a context sub-component 35a for
the director component 29, a context sub-component 35b for
the table component 30, and a context sub-component 35c¢
for the query component 31. Each context sub-component
has a reference to its corresponding component and a
reference to the director sub-component 34. Note that,
although the illustrated embodiment includes a separate
context sub-component for each component, the context
sub-components can be i1mplemented as a single object
which has a reference to all components.

FIG. 8A illustrates a routine that 1s performed as a result
of executing the objects shown 1n FIG. 7. In step 801, the
client 20a (or application server 24a in the case of the
server-side routine—see below) finds an applet tag for one
of the components 26 upon receipt of the HITML page and
instantiates that component. Next, in step 802 the newly
created component creates its context sub-component. For
example, if the browser 1nitially finds the tag for the table
component 30 1n step 801, then 1n step 802 the newly created
table component 30 creates 1ts context sub-component 35b.

Since the tag for the director component 29 may not be the
first tag 1dentified by the client 20q, the director component
29 may not be the first component to be instantiated.
Consequently, the first component 26 to be instantiated
during execution of the application 19 will then instantiate
the director sub-component 34 (using its context sub-
component). Thus, in step 803, the newly instantiated con-
text sub-component attempts to locate the director sub-
component 34. If the component 1s the first component to be
instantiated, then its context sub-component will not be
successful in locating the director sub-component 34 (step
804). In that case, the context sub-component first creates
the director sub-component 34 in step 806 and then registers
its newly 1nstantiated component with the director sub-
component 295 1n step 803. If the director sub-component
was found in step 804 (i.e., the component is not the first
component to be instantiated), then the context sub-
component registers 1ts component with the director sub-
component 34 1n step 805. The above routine of FIG. 8A 1s
repeated for each component referenced 1n the downloaded
HTML page.

As noted above, certain components may be specified as
server-side components using the “tier” attribute of the
applet tag. When that 1s the case, the application server 24a
performs the server-side routine of step 508 (FIG. 5). The
server-side routine of step 508 involves a process substan-
tially similar to that of FIG. 8A, discussed above. That 1is,
any server-side components and their supporting infrastruc-

10

15

20

25

30

35

40

45

50

55

60

65

12

ture (i.e., director sub-component and context sub-
component) are instantiated on the appropriate server tier,
which may be the application server 24a or any other server
in the network. In addition, the application server 24a strips
out the corresponding applet tag from the HTML page
before allowing the page to be returned to the client 20a. As
a result, the client 20a sees only a standard HTML page. If
the output of a server-side component 1s HIML code, then
that code can be rendered back into the calling page by the
application server 24a before the page 1s provided to the
client 20a. Note that when a component 1s instantiated on a
server tier and must persist for longer durations than han-
dling the current request, its scope will generally be altered
from the default “request” scope to a scope of longer

duration.

Note that the present mvention enables different compo-
nents of an application, and even different components
referenced by a single HIML page, to be instantiated and
executed on different tiers. In addition, the present invention
enables components of a single application to be concur-
rently 1nstantiated and executed on three or more different
tiers, €.g., a client tier and two or more server tiers. F1IG. 8B
illustrates a simple example of these capabilities. Another
example 1s described below with reference to FIG. 10. In
FIG. 8B, an HIML page 62 and three executable compo-
nents 63, 64, and 65 referenced by the HI'ML page 62 are
parts of an application of the present invention and are stored
in storage facility 27. Of course, components 63, 64, and 65
are not 1nstantiated as stored in storage facility 27.

The application server 24a receives a request for the
HTML page 62 from the client 20a via the HT'TP server 21a
(see FIG. 3). In response to the request, the application
server 24a provides the HIML page 62 to the client 20a.
Also 1n response to this request, the application server 24a
causes component 63 to be instantiated and executed on the
client 20a, causes component 64 to be instantiated and
executed on the application server 24a, and causes compo-
nent 65 to be 1nstantiated and executed on another server 66.

The tier assignments of components 63, 64 and 65 may be
based on any or all of the above-mentioned tier assignment
techniques, such as use of the tier attribute, load balancing,
performance, etc. Thus, 1n this example, components 635,
64b, and 65b are concurrently 1nstantiated and executed on
three separate tiers, the client 20a, the application server
244, and the second server 66. Note, however, that compo-
nents need not be executed on the application server 24a;
that 1s, components could just as easily be executed on the
client tier 20a and two or more server tiers other than the
application server 24a.

Many application components may be considered to be
data “producers”, data “consumers”, or “data controllers”. A
functional connection is often required between a particular
data producer and a particular data consumer or between a
data producer and a data controller, to allow data to be
communicated between those components. As noted above,
the director sub-component 34 (FIG. 7) maintains a list of
registrations of all application components 26, which 1s used
to automatically establish such connections. In accordance
with the present invention, connections between executable
components are established automatically and
asynchronously, as required by the application 19, in
response to requests from data producers or data consumers.
Consequently, individual components effectively “snap
together” automatically, without an application developer
having to specify the connections.

Referring again to the example of FIG. 7, a connection 32
1s required between the table component 30, which 1s a data

6,049,664

13

producer, and the query component 31, which 1s a data
controller. The function of establishing connections between
components 1s generally performed by the infrastructure 28
and, more specifically, by the context sub-component of
whichever component 1s requesting a connection. The pro-
cess of establishing a connection between two components
1s described now 1n greater detail with reference to FIG. 9.

In step 901, a component, such as a data consumer,
provides 1ts context sub-component with a request. The
request specifies a set of criteria to be used to 1dentily one
Oor more appropriate “service providers”, or components to
which the requesting component can be connected, such as
a data producer. The criteria may include, for example, the
name of one or more components to which a connection 1s
needed or the name of one or more interfaces which the
requesting component supports. In this context, an “inter-
face” 1s a specification of the methods, or subroutines, which
a component supports.

The request 1s actually provided to a method of the
context sub-component Java class designated “findService-
Provider.” (See the sample Java code below for an example
of how the method findServiceProvider is used.) Thus, in
step 902, the method findServiceProvider contacts the direc-
tor sub-component 34 and requests the list of registered
components maintained by the director sub-component 34.
In step 903, the director sub-component 34 provides the list
of registrations to the findServiceProvider of the requesting
context sub-component. In step 904, findServiceProvider
scarches the list for the appropriate service provider or
providers. Specifically, findServiceProvider uses the refer-
ences 1n the list to 1dentify any component or components
which match the criteria specified in the request (e.g., which
have the specified name or support the specified interface).
Note that Java allows an object to be queried to determine
whether the object supports a particular interface.

More than one of the other components may satisfy a
request. Accordingly, the criteria specified 1n the request also
include a flag, which the requesting component can set to
indicate that 1t requires a reference to all components which
satisty 1ts request. In addition, the criteria of the request may
specifically limit the request to service providers
(components) on the same tier as the requesting component
(the local tier) or to service providers on a remote tier.
Furthermore, remote requests can be limited to a set of
scopes, clc.

Thus, 1f findServiceProvider finds a component or mul-
tiple components which satisfy the criteria in the request

<html>
<head>

10

15

20

25

30

35

40

45

14

(step 905), then 1n step 906 findServiceProvider provides to
the requesting component the reference or references to the
onc or more components which satisty the request. If no
component 1s found which satisfies the request, then the
routine ends, with the request remaining pending until a
component which satisfies the request becomes instantiated
and registered on the current tier. Thus, connections between
the components 26 of the present invention are established
automatically and asynchronously as required by the appli-
cation 19. “Asynchronously” means, 1n this context, that the
requesting entity 1s able to perform other processing func-
tions while the request 1s pending, rather than having to wait
for a response to the request. Consequently, there 1s no
specific temporal relationship between the issuance of a
request for a connection and the response to that request; a
request can be satisfied at any time after 1t has been
submitted. Further, a connection can be automatically estab-
lished even if the component which satisfies the request is
not yet instantiated at the time the request 1s submitted.

In addition, a component may become “unregistered” for
various reasons. Unregistration of a component may occur,
for example, when the component becomes no longer
instantiated, such as 1f the component 1s explicitly destroyed.
If a component becomes unregistered for any reason, then
the director sub-component 29a provides any components
which have a connection to the unregistered component with
a notice of unregistration, which indicates to such compo-
nents that the unregistered component 1s no longer available.

Below 1s an example of the Java code for a HTML page
that incorporates two application components, designated
Blox1l and Blox2, as well as the Java code for these
components. The component Blox1 supports an interface,
ITest, which contains one method, getResponse. The method
ogetResponse returns a string representation of the text in the
text box displayed in this component. The function of these
two components 1s to enable a user to change the text in the
text box, such that another component can retrieve the text
using the I'Test interface. The component Blox2 has a user
interface which shows certain status information 1n a text
box and supports a button which, when pushed, will 1nvoke
the getResponse method of the ITest interface on Bloxl.
Blox2 locates this mterface using the method IBloxContex-
t.findServiceProvider. The call to this method may be in the
bloxStart method of the component, which 1s discussed
below. When the button is pushed, the string value, which
originated 1n the text box of Bloxl1, 1s displayed 1n the text

box of Blox2.
Thus, the sample HIML page 1s as follows:

<title>Example application</title>

</head>
<body>

<pP>

<hl>Example application</hl>

Here are three Components: (Director, Blox1, and Blox2)

Director and Blox2 will be colored magenta because the Application. BGCOLOR property set

on Director will be used as the default BGCOLOR property for all components that don’t
have their own BGCOLOR property. Note that Blox2 doesn’t define any BGCOLOR, and
gets 1ts default value from Director.

Blox1 will be colored cyan since it overrides the default BGColL.oR

property.

6,049,664
15

-continued

When this page finishes loading, “found I'lest interface™ will be displayed in the text field
in Blox2. This means that the findServiceProvider call in Blox2 located the I'Test interface
defined in Blox1.

[f one enters text in the text box in Blox1 and then push the button in Blox2, then the text
that you entered in Blox1 will be displayed 1n Blox 2.

Note that no explicit wiring up between Blox1 and Blox2 occurs in the HIT'ML file.

<applet code=alphablox.blox.applet.Director
codebase="/classes”
name=Director
height=20
width=20>
<param name=Application.BGCOLOR value=magenta>
</applet>
<applet code=Blox1
codebase="/classes”
name=Blox1
height=200
width=200>
<param name=BGCOLOR value=cyan>
</applet>
<applet code=Blox2
codebase*“*“/classe”™
name=Blox?2
height=200
width=200>
</applet>
</body>
</html>

The following i1s sample Java code for the component
Blox1.

import alphablox.mortar.*;

import alphablox.awt.*;

import java.awt.”;

public class Blox1 extends BloxApplet implements I'Test

1

TextField textField = new TextField(“default value™); // a text box where one can edit
the response

public void bloxInit()

1

super.bloxInit(); // make sure BloxApplet.bloxInit gets
an opportunity to run

setLayout(new BorderLayout());
add(“Center”, textField);

h

// bloxStart was not overridden, but the base class BloxApplet defined a bloxStart
that caused this component to become registered with the infrastructure.

// implementation of [Test interface
/=+==+=

* Return the contents of the text field
*/
public String getResponse()

1

return textField.getText();

h

The following 1s the sample Java code for Blox2. The
sample code 1illustrates the use of methods bloxStart and
findServiceProvider.

16

6,049,664
17

import alphablox.mortar.*;

import alphablox.awt.*;

import java.awt.™;

public class Blox2 extends BloxApplet implements [ServiceFoundListener

1
TextField textField = new TextField(20); // a text box where one can write
text
Button pushMe = new Button(*PushMe”); // a button which one can push to
cause an action to occur
private [Test test; // where the ITest interface will be put when it 1s
received from Blox1
public void bloxInit()
1
super.bloxInit{); // make sure BloxApplet.bloxInit gets an opportunity to run
setLayout(new BorderLayout());
add(“Center”, textField);
add(“South”, pushMe);
pushMe.disable(); // disable this button until service provider is
found

h
public void bloxStart()

1

run

super.bloxStart(); // make sure BloxApplet.bloxStart gets an opportunity to

getBloxContext().findServiceProvider(“ITest™, this); // start search for any
component that supports the I'lest interface

h

/=+==+=

*This method 1s invoked by infrastructure when a service requested by
findServerProvider 1s satisfied
*/
public void serviceProviderFound(ServiceEvent event)

{

textField.setText(“got a response from findServerProvider™);
Object serviceProvider = event.getServiceProvider();
if (serviceProvider instanceof I[Test) // it was indeed an [Test supporting object

1

test = (ITest)serviceProvider; // therefore, remember this interface . . .
textField.setText(“found [Test interface™);
pushMe.enable(); // and enable the button so it can be called
;
;
/=+==+=
* This method 1s invoked by the infrastructure when a service provider is no
longer available.
* We 1gnore this event.
*/
public void serviceProviderUnregistered(ServiceEvent event)

1
h

/=+==+=

* This method is called by AWT (windowing library) when, for example, a button
1s pushed.
*/
public boolean action(Event event, object arg)
{
boolean handled = false;
if (event.target == pushMe) // when the pushMe button is pressed
1
String response = test.getResponse(); // ask Blox1 for a “response”
textField.setText(“got \’“ + response + * from Blox1”); // display what was
returned
handled = true; // tell AWT that event was
handled
;

return handled;

h

6,049,664

19

The following 1s sample Java code for the I'Test interface:

public interface [Test

1
h

String getResponse();

As 1s well known, Java applets support four standard
methods (among others): init, start, stop, and destroy. In the
present invention, these methods are called by the client 204
or the application server 24a to manage the lifetime of an
applet (e.g., one of the components 26). Generally, calling
the 11t method causes an applet to be initialized; calling start
causes an applet to be started; calling stop causes an applet
to be stopped; and calling destroy causes an applet to be
destroyed. In the present invention, these four methods call
four additional methods, referred to as bloxIit, bloxStart,
bloxStop, and bloxDestroy. For a given component (e.g.,
Blox1 or Blox2 in the example below), the default (base)
implementation of bloxInit causes the component’s context
sub-component to be created. The default implementation of
bloxStart causes the component to be registered with the
director sub-component. In addition, if there are any
requests for connections pending from other components,
the act of registration causes a determination of whether the
newly registered component matches the criteria of any of
the requests and, if so, a message to be sent to the service
requestor that the component i1s registered. The default
implementation of bloxDestroy method causes a component
to be unregistered and a message of unregistration sent to
any component which has a connection to that component.

In the example above, Director 1s the embodiment of the
director component 29. Director serves only as a place to
define certain global defaults, as noted above. An example of
such a default 1s the definition of Application. BGCOLOR
property on Director, which 1s used by all components of the
application as the “background color” unless explicitly
overridden on 1ndividual components.

Blox1l and Blox2 are both derived from the base class
BloxApplet. This class 1s defined in the infrastructure 28
(see FIGS. 3, 4A, and 4B). The class BloxApplet defines the
default implementation of bloxInit, bloxStart, bloxStop, and
bloxDestroy, described previously. BloxApplet creates the
BloxContext, which 1n turn exposes the IBloxContext inter-
face. The getBloxContext method in BloxApplet returns the
IBloxContext interface.

Blox1l and Blox2 override the default bloxInit
implementation, while delegating to 1t to get the base
functionality. In the overridden method, each blox does its
specific 1mitialization. Blox1 does not override bloxStart,
bloxStop, and bloxDestroy, and therefore simply gets the
default implementation from BloxApplet. Blox2 overrides
the default bloxStart implementation, while delegating to it
to get the base functionality. In the overridden method,
Blox2 attempts to locate an object which supports the ITest
interface. It does so by using the getBloxContext method 1n
BloxApplet to get the IBloxContext interface, and then calls
the findServiceProvider method on this interface.

There are two possibilities 1n this example: Either Blox1
will be 1nstantiated first or 1t will be 1nstantiated second. If
Blox1 1s instantiated first, then when 1ts base 1implementa-
fion of bloxStart 1s called, 1t will be registered with the
Director sub-component 34. When Blox2’s bloxStart is
called, the findServiceProvider call will result in the infra-
structure’s locating Blox1 and invoking Blox2’s servicePro-

10

15

20

25

30

35

40

45

50

55

60

65

20

viderFound method, notitying Blox2 of the component
which satisfies 1ts request.

If Blox2 1s instantiated first, the findServiceProvider call
will not find any component to satisty the request, and the
request will remain pending. When Blox1 1s instantiated,
and when 1ts base implementation of bloxStart 1s called, it
will be registered with the Director sub-component 34. This
action will result in the infrastructure’s noticing the pending

request and notifying Blox2 (via the serviceProviderFound
method) of Blox1’s existence.

As menftioned above, the present invention also provides
the capability to distribute components of a single applica-
tion across three or more separate tiers (e.g., a client tier and
two or more server tiers) and to automatically establish
connections between the appropriate components. An
example of this capability was described above with refer-
ence to FIG. 8B. The following 1s sample Java code for
another example 1n which components are executed on three
separate tiers, which 1s also illustrated in FIG. 10.

<html>

<head>

<title>N-tier Example</title>

<body>

<hl>N-tier Example</hl>

<body>

<applet code=alphablox.blox.applet.Director
name=Director
codebase=/classes
tier=client

<param name=ApplicationName value=MyApp>

</applet

<applet code=alphablox.blox.applet.Table
name=Table
codebase=/classes
tier=“server:host=Host1”
scope=application

<param name=ApplicationName value=MyApp>

</applet>

<applet code=alphablox.blox.applet.Cube
name=Cube
codebase=/classes
tier="server:load<100,class=0lap™
scope=application

<param name=ApplicationName value=MyApp>

<fapplet>

<applet code=alphablox.blox.applet.Grid
name=Grid
codebase=/classes
tier=client

<param name=AppliationName value=MyApp>

</applet>

</body>

</html>

In the above “n-tier” example, there are four blox
imvolved: Director, Table, Cube, and Grid, as shown 1n FIG.
10. Director and Grid are specified to be run on the client
tier. Table and Cube are specified to run on server tiers. Note
that while Director 1s explicitly authored to execute on the
client tier, in accordance with the present invention, addi-
tional Director components are also automatically instanti-
ated and executed on each additional tier on which another
component 1s to execute. Table 1s explicitly specified to run
on a server named “Host1l”. Cube 1s specified to run on any
server tier which match specific criteria. These criteria are
coniligurable by system administrators and are specified here
only for purposes of illustration. In this example, Cube will
be run on any available server whose “load” factor 1s less
than 100 and which belongs to a class of servers that have
been labeled as “olap”. Both of the server components are

6,049,664

21

speciflied as being of “application” scope, which means that
these components will be available to any other components
in the same application. The application used for all com-
ponents 1n this example 1s named, “MyApp”.

In operation, the application server 24a (not shown in
FIG. 10—see FIG. 3) will strip out the two server-scope
components from the HTML sent to the client 20a. Thus, the
client 204 will only instantiate the Director and Grid com-
ponents. Prior to serving the page to the client 204, however,
the application server 24a will locate the appropriate servers
which match the specified tier criteria and cause these
components to be executed on those tiers. It will also keep
frack of all the servers mnvolved 1n serving this request so
that 1t can know which servers to contact to satisfy findSer-
viceProvider requests.

The Table component, once instantiated on its tier, will
locate its external data source (due to the role that Table
plays, 1t doesn’t attempt to locate another component, but
uses external protocols to determine its data source). The
Cube component, however, cannot function until it locates a
Table datasource (more accurately, a component which
supports the I'TableProducer interface, which Table does).
Cube attempts to locate the ITableProducer component on
its own tier, and doesn’t find it. It then contacts the appli-
cation server 24a to find the correct component. Because the
application server 24a knows that 1t instantiated components
on Hostl and the requesting tier, 1t passes the request to
Hostl (assuming that the requesting tier has already been
searched). Hostl’s Director gets the request and locates the
Table component, returning this result to the application

server 24a. The application server 24a then returns this
result to Cube. A connection between Cube and Table 1s thus

established.

On the client tier, Grid looks for its data source (of type
[CubeProducer). Not finding the data source on its tier
(client 20a), it passes the request to the application server
24a. The application server 24a passes the request to both
Hostl and the host on which 1t started the Cube component.
The Cube component (which supports the ICubeProducer
interface) is thus located, and a reference to it returned to the
Grid component on the client 20a.

Implicitly, remote proxies and stubs are created to allow
the appearance of a local iterface when, 1n fact, the inter-
face spans separate tiers.

The present mvention also includes a mechanism for
generating applications of the type described above, based
on templates. Using this mechanism, any conventional Web
page design environment or Internet integrated development
environment (IDE) (e.g., Microsoft FrontPage, Netscape
Visual JavaScript, or Net Objects Fusion) can be used to
create applications according to the present invention.
Specifically, a conventional storage facility can be used to
store a library of components that can be included by
application designers 1n various different Web applications.
Thus, an application designer can select particular compo-
nents to create custom-designed applications. This process
may be performed via a graphical user interface such as
illustrated 1n FIG. 11. FIG. 11 shows a display 35 mncluding
two windows 36 and 37. A number of icons 40b are
displayed 1n window 37, each of which represents a com-
ponent according to the present mmvention. The application
developer uses a pointing device to place a cursor 38 on
particular ones of 1cons 40b and to drag-and-drop them 1nto
window 36 to incorporate the corresponding components
(i.e., Java classes) into the application. The interface of FIG.
11 may be such that icon 40a representing the director

10

15

20

25

30

35

40

45

50

55

60

65

22

component 29 appears 1n window 36 by default, since each
application mcludes at least one director component.

In response to the application developer’s dragging and
dropping an icon into window 36, a corresponding applet tag
1s automatically inserted into the HTML page being
authored. In one embodiment, window 36 can also be used
to mput text using a conventional HI'ML editor, such that the
application developer can graphically combine standard
HTML with various components. In response to icons 405
being dropped within window 36, the corresponding com-
ponents are elfectively included within the application that
1s being created. Consequently, at run time the infrastructure
28 will automatically ensure that the correct connections
between the components are automatically established. The
application developer 1s not required to specily these con-
nections.

FIG. 12 1llustrates another graphical user interface by
which an end user can both assemble and execute a cus-
tomized application. In this example, the application to be
assembled 1s a database application. The display screen 50
1s an HTML page, and the application includes one or more
executable components according to the present invention.
From the display screen 50, the end user can effectively
select which components are included in the application and
thereby generate a customized output report of data stored in
the database. The display 50 also includes a set of options
from which the user can select to generate a customized
output report. The options include the particular format of
the report to be generated. The user’s selections from among
these options determine which executable components are
included 1n the application for the current run of the appli-

cation.

In this example, the executable components which may be
included in the application (which are not shown) include a
orid component for generating a report 1n grid format, a
chart component for generating a report 1n chart format, and
a cube component for maintaining a multi-dimensional data
set. Each of rectangles 55 represents an 1mage depicting a
reduced-size example of the corresponding format.
Accordingly, the user can select one of buttons 54A to
request a specific grid format; alternatively, the user can
select one of buttons 54B to request a specific chart format.
In this example, there are two different grid formats and two
different chart formats from which the user may choose.
When the user subsequently clicks on the “Assemble”
button 59, the user’s format selections cause the appropriate
component or components (i.e., grid component or chart
component) to be automatically identified and executed. The
user’s selection of button 62 for “Multi-Dimensional Analy-
sis” will result mn the cube component being automatically
included in the application and executed when “Assemble”
button 59 is clicked on. Further, by employing the above-
described techniques for automatically establishing connec-
fions between components, the appropriate connections are
automatically established between the selected components
in response to the “Assemble” button 59 being clicked on.
The end user does not need to wire any of the connections.

The end user can also customize various attributes of the
application components using screen 350. For example, the
user can: enter the name of the application to be assembled
in field 51 or choose from a list of previously assembled
applications; specily a predefined data set 1in field 52 rather
than specilying a new query; specily text to be included 1n
the header, body, and footer of the report by entering the text
in fields, 53, 56, and 57, respectively; and, specify a back-
oground color for the report 1n field 58.

Thus, using a graphical user interface such as that shown
in FIG. 12 1 conjunction with other features of the present

6,049,664

23

mmvention, the user can assemble and execute a customized
application by selecting only the desired components for
inclusion 1n the application. Connections between the
selected components are automatically established when the
application 1s executed, such that the end user does not need
to be concerned with “wiring” components together.

Thus, a tier-neutral development mechanism for Web-
based applications has been described. Although the present
invention has been described with reference to speciiic
exemplary embodiments, 1t will be evident that various
modifications and changes may be made to these embodi-
ments without departing from the broader spirit and scope of
the mnvention as set forth in the claims. Accordingly, the
specification and drawings are to be regarded 1n an 1llustra-
tive rather than a restrictive sense.

What 1s claimed 1s:

1. A mechanism for enabling a developer to create a
software application for execution on a network having a
plurality of tiers, the mechanism comprising;:

specilying means for enabling the developer to specily a
plurality of executable components; and

means for enabling the executable components to be
assoclated with at least one hypertext-based document,
such that the executable components are executable 1n
response to requests for the at least one hypertext-based
document, and such that an executable component of
the plurality of executable components can be auto-
matically and dynamically assigned to an appropriate
tier for execution at run-time 1n response to a request
for an associated hypertext-based document or can be
speciflied to execute on a particular tier using an applet
tag specifying the tier within the associated hypertext-
based document.

2. A mechanism according to claim 1, wherein the speci-
fying means comprises means for specifying a plurality
application components of a single software application for
execution on at least three separate tiers of the network.

3. A mechanism according to claim 2, wherein the plu-
rality of tiers includes at least one server tier and at least one
client tier.

4. A mechanism according to claim 1, wherein each of the
application components 1s an object.

5. A mechanism for enabling execution of a software
application, the software application configured for execu-
fion on at least one tier of a network having a plurality of
tiers, the software application including at least one
hypertext-based page referencing at least one executable
component, the mechanism comprising;

means for assigning a first executable component to a tier
of the network based on an applet tag specitfying the tier
in one of said at least one hypertext pages;

means for receiving from a remote tier a request for one
of the at least one hypertext-based pages referencing a
second executable component;

means for dynamically and automatically determining at
run time on which tier of the network the second
executable component should be executed 1n response
to the request without using information specifying a
tier; and
means for causing the second executable component to be
executed on an appropriate tier of the network 1in
response to the request, based on a result of said
determining.
6. A mechanism according to claim 5, further comprising
means for providing the requested hypertext-based page to
the remote tier in response to the request.

10

15

20

25

30

35

40

45

50

55

60

65

24

7. A mechanism according to claim 5, wherein the means
for determining comprises means for determining on which
tier of the network said component should be executed based
on an attribute associated with said component.

8. A system for enabling a software application to be
executed on at least one of a plurality of tiers on a network,
the system comprising:

a Processor;

a first storage unit accessible to the processor and having

stored therein a plurality of executable components,
and

a second storage unit accessible to the processor and
having stored therein a plurality of pages functionally
connected by hypertext links, the plurality of pages
incorporating the plurality of executable components;
wherein the processor 1s configured to:
receive a request for one of the pages from a remote tier
on the network; and

access one of the pages and a corresponding first one of
the executable components 1n response to the
request;

dynamically and automatically 1dentily at run time an
appropriate tier on which said first one of the execut-
able components should be executed 1n response to
the request without using information specifying a
tier assignment; and

cause said first one of the executable components to be
executed on said appropriate tier 1n response to the
request, including causing the requested page to be
provided to the remote tier after the first one of the
executable components 1s executed 1f the remote tier
1s not 1dentified as said appropriate tier.

9. A system according to claim 8, wherein the processor
1s configured to dynamically 1dentily said appropriate tier at
run time based on a current parameter.

10. A system according to claim 8, wherein the processor
1s further configured to:

determine whether the first one of the executable compo-
nents should be executed on the remote tier; and

cause the first one of the executable components to be
executed before the requested page 1s provided to the
remote tier, if 1t 1s determined that the first one of the
executable components should not be executed on the
remote tier.

11. A system according to claim 8, wherein execution of
said component results 1n an output, and wherein the pro-
cessor 1s further configured to incorporate the output into the
requested page before the requested page 1s provided to the
remote tier if said first one of the executable components
should not be executed on the remote tier.

12. A system according to claim 8, wherein the applica-
tion further comprises at least one hypertext-based page
referencing a second one of the executable components and
at least one hypertext-based page referencing a third one of
the executable components;

and wherein the processor 1s further configured to:

receive a request for a hypertext-based page referenc-
ing the second one of the executable components;

receive a request for a hypertext-based page referenc-
ing the third one of the executable components;

determine on which tier of the network each of the
second and third ones of the executable components
should be executed;

causing the second one of the executable components
to be executed on a second tier of the network; and

causing the third one of the executable components to
be executed on a third tier of the network.

6,049,664

25

13. An apparatus for executing a software application
distributed across multiple tiers of a network having a
plurality of tiers, the software application including a plu-
rality of hypertext-based documents and a plurality of
executable components referenced by the plurality of
hypertext-based documents, the apparatus comprising;:

means for receiving a request for one of the hypertext-
based documents;

means for assigning each of the executable components to
an appropriate tier in response to the request, including
means for assigning at least one of executable compo-
nents to an appropriate tier based on an applet tag
specifying a tier within a corresponding one of the
hypertext-based documents; and
means for dynamically and automatically assigning at
least one of the executable components to an appro-
priate tier at run time without using information
specilying a tier assignment; and

means for establishing a functional connection between

one of the executable components residing on a {irst tier
and another one of the executable components residing
on a second tier in response to a request generated by
saild one of the executable components, including
means for establishing said functional connection with-
out using a definition of the functional connection.

14. An apparatus according to claim 13, wherein the
plurality of tiers includes at least one server tier and at least
one client tier.

15. An apparatus according to claim 13, wherein the
means for dynamically and automatically assigning com-
prises means for determining on which tier of the network
said component should be executed at run time, based on a
current parameter associated with the network.

16. A method of creating a software application for
execution on a network having a plurality of tiers, the
method comprising:

creating a plurality of executable components; and

associating each of the executable components with at
least one hypertext-based document, such that each of
the executable components can execute 1n response to
a request for a corresponding hypertext-based
document, wherein said associating includes assigning
at least one of executable components to execute on a
particular tier of the plurality of tiers by providing an
applet tag 1n the corresponding hypertext-based docu-
ment specitying the tier, and wherein at least one of the
executable components can be automatically and
dynamically assigned to an appropriate tier at run-time
In response to a request for an associated hypertext-
based document.

17. A method according to claim 16, wherein said speci-
fying comprises speciiying the executable components to
execute on at least three different tiers of the network.

18. A method of executing an application on a network
having a plurality of tiers, the application including at least
one hypertext document and a plurality of executable com-
ponents referenced by said at least one hypertext document,
the plurality of executable components including a first
executable component, a second executable component, a
third executable component and a fourth executable
component, the plurality of tiers mncluding a first tier, a
second tier, and a third tier, the method comprising the steps

of:

receiving from a client system a request to execute the
application, the request including at least one request
for said at least one hypertext document;

10

15

20

25

30

35

40

45

50

55

60

65

26

in response to the request to execute the application,
dynamically and automatically assigning each of the
first, second, and third executable components to an
appropriate tier of the network for execution at run time
without using information specitying a tier; and

assigning the fourth executable component to an appro-
priate tier based on an applet tag of said at least one
hypertext document specifying the tier.

19. Amethod according to claim 18, wherein said assign-

INg COMprises:

assigning the first executable component to be executed

on the first tier;

assigning the second executable component to be
executed on the second tier; and

assigning the third executable component to be executed

on the third tier.

20. A method according to claim 18, wherein the first tier
1s the client system, the second tier 1s a first server system,
and the third tier 1s a second system.

21. A method according to claim 18, wherein each of the
first, second, and third executable components 1s an object.

22. A method according to claim 18, wherein the assign-
ing step comprises, for at least one of the first, second, and
third executable components, dynamically determining on
which tier of the network the component should be executed
at run time based on a current state.

23. A method according to claim 18, wherein each appli-
cation component 1s defined according to a single mecha-
nism by which an application component can be specified
for execution on any tier on the network.

24. A method of executing a software application, the
software application configured for execution on at least one
tier of a network having a plurality of tiers, the software
application 1ncluding at least one hypertext-based page
referencing at least one executable component, the method
comprising the steps of:

receiving from a remote tier a request for a first hypertext-
based page referencing a first executable component of
the software application;

determining on which tier of the network the first execut-
able component should be executed based on an applet
tag of the first hypertext-based page specilying a tier;

causing the first executable component to be executed on
the speciiied tier;

receiving from a remote tier a request for a second
hypertext-based page referencing a second executable
component of the software application,;

automatically and dynamically determining on which tier
of the network the second executable component
should be executed at run time without using informa-
tion specilying a tier;

causing the second executable component to be executed

on an appropriate tier of the network 1n response to the
request; and

providing at least one of the first hypertext-based page

and the second hypertext page to the remote tier.

25. A method according to claim 24, wherein said auto-
matically and dynamically determining step comprises
determining, 1n response to the request, on which tier of the
network said component should be executed, based on a
current parameter assoclated with the network.

26. A method according to claim 24, wherein each appli-
cation component 1s defined according to a single mecha-
nism by which an application component can be specified
for execution on any of the plurality of tiers of the network.

6,049,664

27

27. A method according to claim 24, wherein step of
causing the first executable component to be executed on an

appropriate tier comprises the steps of:

determining whether the first executable component
should be executed on the remote tier; and

causing the first executable component to be executed
before providing said first hypertext-based page to the
remote tier 1f the first executable component should not
be executed on the remote tier.

28. A method according to claim 24, further comprising
the step of, if the first component should not be executed on
the remote fier, causing a result of executing the first
component to be mcorporated into the first hypertext-based

page before providing the first hypertext-based page to the <

remote tier.
29. A method of executing a software application distrib-

[

uted across multiple tiers of a network having a plurality of

[

tiers, the software application including a plurality of

[

hypertext-based documents and a corresponding plurality of

23

executable components referenced by the hypertext-based
documents, the method comprising the steps of:

receiving a request for invoking the application by access-
ing at least one of the hypertext-based documents;

in response to the request, assigning each of the execut-
able components to an appropriate tier, including
dynamically and automatically assigning at least one of
the executable components to an appropriate tier at
run time without using mmformation specifying a tier
assignment; and
assigning at least one of the executable components to
an appropriate tier according to an applet tag speci-
fying a tier 1in a corresponding hypertext-based docu-
ment.
30. A method according to claim 29, wherein the assign-
Ing step comprises assigning said component to an appro-
priate tier of the network for execution based on a current

parameter associlated with the network.

	Front Page
	Drawings
	Specification
	Claims

