United States Patent |9

Benson

US0060477242A
(11] Patent Number: 6,047,242
45] Date of Patent: Apr. 4, 2000

[54] COMPUTER SYSTEM FOR PROTECTING
SOFTWARE AND A METHOD FOR

PROTECTING SOFTWARE
|75] Inventor: Glenn Benson, Munich, Germany

73] Assignee: Siemens Aktiengesellschatt, Munich,
Germany

[21] Appl. No.: 08/936,455
22| Filed: Sep. 24, 1997

30 IForeign Application Priority Data
May 28, 1997 [EP]

Furopean Pat. Oft. 97710013

EXR I 17 ! PR HO4N 1/413

52] US.Cl oo, 702/35; 713/169; 713/170;
380/277; 380/283

58] Field of Search ... 380/277, 283,
380/284; 713/168, 169, 170, 171

[56] References Cited

U.S. PATENT DOCUMENTS

5,923,763 7/1999 Walker et al.ccoevvneniiiinnnnnnnnnn 380/51
5,935,246 8/1999 Bensomn ...ccccceveeeeereeeerrenieerennnnss 713/200
5,937,066 8/1999 Gennaro et al. ..ccoevevenveniinnnnnnn. 380/21
5,940,516 8/1999 Mason et al. ...cooevevvviviieiivinnnennn. 380/49

OTHER PUBLICAITONS

Davis et al., “Cryptographic Randomness from Air Turbu-
lence 1n Disk Drives”, Advances 1n Cryptology: Crypto "94,
Springer Verlag, pp. 114-120.

A. Menezes et al., Handbook of Applied Cryptography, CRC
Press, pp. 405—424.

A. Choudhury et al., “Copyright Protection for Electronic
Publishing Over Computer Networks”, IEEE Network,
May/Jun. 1995, pp. 12-20.

ISO/IEC 95941, “Information technology—Open Systems
Interconnection—The Directory: Overview of concepts,
models and services”, International Organization for Stan-
dardization, Geneva, Switzerland, 1995, pp. 1-20.

R. Rivest “The MD5 Message—Digest Algorithm”, RFC
1321, pp. 1-18.

D. Knuth, The Art of Computer Programming, vol. 2,

Seminumerical Algorithms, Addison—Wesley Publishing
Co., Reading MA, 2”4 Edition, 1981, pp. 38-73.

Primary Fxaminer—Thomas R. Peeso
Attorney, Agent, or Firm—Hill & Simpson

57 ABSTRACT

A method for protecting an item of software, wherein at least
one first challenge means 1s associated with said protected
item of software, and at least one {first response means
accesses one private keying material. At least a third means
(either challenge or response also exists). The first challenge
means has no access to the said private keying material. The
first response means proves to the first challenge means that
the first response means has access to the private keying
material. The first challenge means validates this proof using
the public keying material that corresponds to the first
response means’ private keying material.

153 Claims, 4 Drawing Sheets

PROTECTED] 13
SOFTWARE

U.S. Patent Apr. 4, 2000 Sheet 1 of 4 6,047,242

FIG 1 PROTECTED] 103
SOFTWARE
STEP 1 CUSTOMER
104 Y
101 [REGISTRATION
PACKAGE
STEP2 |vENDOR CUSTOMER

101 105 102

KEYFILE
STEP3 | VENDOR CUSTOMER

101 102

FIG 2

LICENSE | o
SERVER

CHALLENGE l

MECHANISM i

KEYFILE
24

105

COPY-
PROTECTED

SOFTWARE 103

U.S. Patent Apr. 4, 2000 Sheet 2 of 4 6,047,242

FIG 3

PROTECTED PROGRAM VALIDATES
LICENSE SERVER

31

LICENSE SERVER OPTAINS AND

VALIDATES KEYFILE

33| LICENSE SERVER EXTRACTS PUBLIC
KEYING MATERIAL FROM KEYFILE
34

PROTECTED PROGRAM PROVES TO
THE LICENSE SERVER THAT THE

PROTECTED PROGRAM HAS ACCESS
TO PRIVATE KEYING MATERIAL USING

A GUILLOU-QUISQUATER ZERO
KNOWLEDGE PROOF PROTOCOL

U.S. Patent Apr. 4, 2000 Sheet 3 of 4 6,047,242

FIG 4
THREAD 1

VALUE LIST:=EMPTY }°]

COUNTER:=0 v,
DONE_TEST:=FALSE

EXECUTE THREAD 2 }-93
INCREMENT COUNTER

DONE_TEST=TRUE?

YES

TERMINATE THREAD 2.
SAVE COUNTER IN
VALUE LIST

NUM_BITS:= 57
STATSTEST(VALUE_LIST)
58
HAVE ENOUGH RANDOM
BITS BEEN GENERATED? | yq
YES

EXTRACT NUM_BITS LOW-
ORDER BITS FROM EACH

SAVED COUNTER VALUE

56

oY

RETURN

6,047,242

Sheet 4 of 4

Apr. 4, 2000

U.S. Patent

RN
ug o ainjeubis sy) -
fay 21qnd S U JoAISS BSUdDIT .

(ug) 2}e2NILBD U JOAIBS 8SUBDIT

0vS

INVD
J0 aJnjeubis sJOpusp
L Aoy ongnd s,yD -
INVD

0LS

4%
LG

TIYI0 e

1G7J0 ainjeubis sy o
foy ongnd s, # JOAIBS BSUBDLT

(1S7) 91804IH8D | # JOAIDS BSUSIT

0tS

" 19YJ0 e
Y0 JO ainjeubis SO
2 feyolqnd s,yQ -

0CS

A%
LES

6,047,242

1

COMPUTER SYSTEM FOR PROTECTING
SOFTWARE AND A METHOD FOR

PROTECTING SOFTWARE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to mechanisms for protect-
ing software against unauthorized use and, in particular,
against unauthorized copying and license violation.

2. Description of the Related Art

The Business Software Alliance estimates the 1995 finan-
cial losses attributed to software piracy as US$ 8.1 Billion
for business application software and US$ 15.2 Billion for
all software.

Solutions have been proposed 1n two areas:

improved Intellectual Property Rights (IPR) legislation, and
enhanced electronic copy and license protection (ECP)
mechanisms.

IPR legislation and enforcement are improving in many
countries, but there are still significant difficulties 1n other
parts of the world. As a result, some software vendors are
currently reassessing ECP.

Some example requirements that an ECP mechanism may
potentially satisty the need for piracy prevention are listed
below:

Unauthorized users or customers should be prohibited from
executing protected software.

Customers should be prohibited from executing software
without a valid license.

The customer should not be prohibited from making backup
copies of the software.

The ECP mechanism should have minimal impact upon the
user nterface. The visible impact should be limited to the
first 1mitial login to the operating system and/or smart
card.

Only standard hardware and software assumptions should be
made. For example, although hardware dongles provide
copy protection services, many vendors do not wish to
limait the sale of the software to the collection of customers
who own or are willing to install a dongle.

The ECP mechanism should not limit execution of the
protected software to a limited collection of machines.
When a customer legitimately purchases software, the
customer should be able to execute the software on any
machine regardless of ownership. The customer should
optionally be able to authorize stmultaneous execution of
the software 1n multiple machines.

The ECP mechanism should have no required network
dependencies 1n order to execute an already purchased
protected program.

The vendor should be permitted to distribute an identical
version of the protected software to all customers. This
requirement permits the protected software to be distrib-
uted through normal channels such as, for example,
CD-ROMs, floppy disks, or network bulletin boards.

It should be excessively difficult and/or computationally
infeasible for a potential software pirate to circumvent the
ECP mechanism without modifying the protected pro-
oram. This requirement also serves as an virus-protection
measure because a digital signature supplied by the ven-
dor would not validate if a pirate distributes a modified
version of the original program.

The ECP mechanism should not disclose the private keying
material to the vendor, to any program produced by the
vendor, or to any potential Trojan horse program. Though
the primary functionality is to protect the software vendor,
one must not do so at the expense of the customer.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

The ECP mechanism should be available 1n a software-only
version as well as 1n a hardware-assisted version, using a
smart card, for example, to assure widespread market
acceptance.

In the publication by Choudhury et al., entitled, “Copy-
richt Protection for Electronic Publishing over Computer
Networks”, a mechanism 1s proposed 1n which a protected
document can be viewed only via a specially configured
viewer program, which allows a customer to view the
document only if the customer supplies to the viewer the
customer’s private keying material. This deters the customer
from distributing unauthorized copies of the viewer
program, since that would require the customer to divulge
his or her private keying material to others. However,
because this mechanism requires that the viewer program
obtain access to the private keying material, it breaks one of
the requirements described above. Furthermore, this mecha-
nism may not be used in conjunction with a smart card that
1s configured to avoid releasing private keying material.

An overview on asymmetric cryptography, for example
on the RSA (Rivest-Shamir-Adleman) scheme, symmetric
cryptography, and probabilistic encryption, for example the
Blum-Goldwasser probabilistic public-key encryption
scheme can be found in “Handbook of Applied Cryptogra-
phy” by Menezes, et al.

An overview of digital signature schemes (e.g. Rivest-
Shamir-Adleman (RSA) scheme, etc.,) and a formal math-
ematical definition of digital signatures can be found 1n the
Menezes book.

An example of a message digest function (otherwise
known as a one-way hash function) is MD5 as described in
the publication by Rivest, “The MD5 Message-Digest Algo-
rithm”. It 1s computationally infeasible or very difficult to
compute the 1nverse of a message digest.

The Chi-Square Test, the Kolmogorov-Smirnov Test, and
the Serial Correlation Test are described 1n “The Art of
Computer Programming” by Knuth.

In the publication by Fenstermacher et al., cryptographic
randomness from air turbulence 1n disk drives 1s described.

An overview over different probabilistic proof schemes,
for example zero knowledge proof schemes (e.g. Feige-Fiat-
Shamir scheme, Guillou-Quisquater scheme, Blum-
Feldmann-Micali scheme, Brassard scheme, Crepau
scheme, etc.) or witness hiding proof schemes (e.g. Feige-
Shamir scheme, etc.) can be found in the Menezes book.

SUMMARY OF THE PRESENT INVENTION

An object of the present invention i1s to provide an
improved ECP (electronic copy and license protection)
mechanism that 1s able to satisfy most, if not all, of the
example requirements described above.

A storage device 1s any mechanism that can store data and
subsequently provide the data or information about the data.
Examples of practical storage devices are smart cards,

CD-ROMs, Digital Video Disks, and floppy disks.

In the Menezes book, certificates, certificate hierarchies,
chains of cerfificates, certificate topologies, certification
paths, and certification authorities are discussed. A root
certificate (otherwise known as a Certificate Authority
Certificate) 1s a certificate that holds the certification authori-
ty’s public key. Typically, root certificates are signed using
the certificate authority’s private key. A descendent certifi-
cate is one that can be reached (or validated) from the root
certificate via a certification path.

Software that 1s licensed may only use resources 1n
accordance to the software license. For example, a software

6,047,242

3

license may permit software to physically reside on a shared
storage device yet prohibit the software from simultaneously
executing on multiple machines. In this case the “resource”
1s a machine that executes the software. Another example of
a resource 1S a file. In this case, the license server could
potentially modify the access control list of a special file in
order to permit licensed programs the ability to access the
special file.

A program’s binary code 1ncludes a sequence of instruc-
tions that a computer follows when the computer executes
the program.

A chosen-plaintext attack 1s one where the adversary
chooses plaintext and is then given corresponding cipher-
text. Subsequently, the adversary uses any information
deduced 1n order to recover plaintext corresponding to
previously unseen ciphertext, as mentioned in the Menezes

book.

An adaptive chosen-plaintext attack i1s a chosen-plaintext
attack wherein the choice of plaintext may depend on the
ciphertext received from previous results, also in the Men-
ezes book.

A zero knowledge prootf protocol 1s one kind of asym-
metric method that 1s particularly suitable for copy protec-
fion and licensing. A zero knowledge proof does not suifer
degradation of security with repeated use [and a zero knowl-
edge proof resists | chosen-text attacks. These properties are
especially desirable 1n copy protection and licensing because
they provide excellent protection of private keying material.
Suppose, for example, that private keying material were

stored on a smart card. In this case, the customer could make
the smart card available to a machine without concern of

attack from a Trojan Horse or other program with 1ill-intent.
A Trojan Horse, could not, for example, repeatedly query the
smart card, using chosen queries, for the purpose of obtain-
ing information that would be useful 1n subsequent cryp-

toanalysis.

A zero knowledge proof protocol resists both chosen-
plaintext attacks and adaptive chosen-plamtext attacks.

As an example of a zero knowledge proof, consider the
Guillou-Quisquater (GQ) zero-knowledge proof protocol,
including two parties A and B, wherein A has the private
keying material to which B has no access. A proves to B that
A has access to the private keying material. The GQ proot
protocol 1s described below.

In the following, we assume that an RSA key pair 1s as
defined 1n Menezes. We use the notation from Menezes 1n
the following description. Some aspects of this notation are:
the RSA public key is (n,e), the RSA private key is d,
gcd(e,D))=1, ®=(p-1)(g-1), and n=p-q.

Calculate System parameters:

a. Using the prime factorization, p and g, suitable for use 1n
the computation of an RSA-like key pair, compute n=p-q
and d=(p-1)(q-1)

b. A defines a public exponent v=3 with gcd(v,P)=1 where
® and gcd 1s the Greatest Common Divisor.

¢c. A computes a private exponent s=v""'(mod @)

d. System parameters (uv,n) are made available as the public
keying material.

Calculate User parameters:

a. A selects and publishes a well known 1dentity I and the
redundant identity J=f(I) satisfying 1<J<n using a known
redundancy function . An example of the redundancy
function f is the redundancy mapping of the preprocess-
ing stage ol ISO/IEC 9796, see the Rivest publication.

b. A retains as the private keying material s,=J""(mod n).
The GQ key pair 1s (private key=s,) and (public key=(uv,

n)). A makes known to B, Lf, and J=f(I). B validates that

J=f(I) (see Box 33).

10

15

20

25

30

35

40

45

50

55

60

65

4

The protocol messages of the GQ proof protocol are
presented below:

A—B: Jx=r" (mod n) (1)
(2)

(3)

B—A: e(where [Ze=n)
A—B: y=r+s,°(mod n)

A proves 1ts 1dentity to B by t executions of the following
steps where B accepts A’s identity only 1f all t executions are
successful (see Box 34).

a. A selects a random secret integer r (the commitment),

1=r=n-1, and computes (the witness) x=r"(mod n)

b. A sends to B the pair of integers (I,x)

c. B selects and sends to A, a random integer ¢ (the
challenge), 1Se=v

d. A computes and sends to B (the response) y=r's,“(mod n)

B receives vy, constructs J from I using f, computes z=J¢-y"
(mod n) and accepts A’s proof of identity if both z=x and
z#0.

7. 1s the set of mtegers modulo n

7, *={XeZ |gcd(x,n)=1}

The present invention makes use of a protocol that uses
asymmetric cryptographic methods. Examples of asymmet-
ric cryptographic methods are asymmetric confidentiality,
digital signatures, and probabilistic proofs.

An asymmetric cryptographic method includes public
keying material and corresponding private keying material.
It 1s computationally infeasible to compute the private
keying material when given no more information than the
corresponding public keying material. In this invention, we
use asymmetric cryptography in interactions between two
parties, A and B. A proves to B that it has access to private
keying material and B validates the proof. A does not
disclose the private keying material to B.

Some examples of asymmetric cryptographic methods are
described below.

A digital signature 1s an electronic analog of a handwritten
signature. A digital signature proof imvolves at least two
parties, A and B. After posting his or her public keying
material to a public location, A encrypts a message using the
private keying material. Since anyone may access the public
keying material, there 1s no message secrecy. However,
since A 15 the only customer with access to the private
keying material, no one else can “forge A’s signature” by
performing the encryption. Anyone may validate A’s signa-
ture using the public keying material.

An asymmetric confidentiality proof mnvolves at least two
parties, A and B. A possesses private keying material and B
has no access to A’s private keying material unless B
discloses the private keying material itself (which B should
not do). At the beginning, A and B have no shared secret.
During the method, a shared secret becomes known to A and
B.

An example of an asymmetric confidentiality proof 1is
public key encryption. As 1illustrated 1n the asymmetric
confidentiality protocol below. A proves to B that A knows
the private keying material.

A<—B: h(1), B, P,(1, B)
A—=B:r

The protocol scheme described above uses the following

notation:

A—B denotes that A sends a message to B; and B—A
denotes that B sends a message to A.

r denotes a random number used as a nonce

6,047,242

S

h(r) is a message digest of the nonce
P, (r,B) is encryption of the nonce and B’s identity using A’s

public keying material

Here, B generates a nonce and encrypts the nonce
(together with B’s identity) using A’s public keying
material, 1.€., P,(r,B).

Additionally B computes the message digest of the nonce,
h(r).

B sends the mformation described above, along with B’s
identity, to A.

Next, Auses its private keying material to decrypt PA(r,B)
obtaining r,B. A computes the message digest of the

decrypted random value, r, and compares the result against
h(r) obtained from B.

At this point, the random number 1s a shared secret known
by both A and B.

In order to complete the protocol, A returns the random
number to B 1n order to demonstrate that A knows the secret.

Of course, once A provides the disclosure, the secrecy of the
random number 1s lost. B validates A’s proof by checking
A’s returned secret with the one that B originally generated.

A second example of an asymmetric confidentiality proof
protocol 1s a probabilistic encryption scheme, €.g. the Blum-
Goldwasser probabilistic public key encryption scheme.
Here, the encryption or decryption mechanism uses random
numbers or other probabilistic means. One should not con-
fuse probabilistic public-key encryption with probabilistic
proois, e.g., zero knowledge proofs. In the first case, proba-
bilistic means are used to execute the encryption algorithm.
In the second case, probabilistic means are used to define a
degree of assurance. Probabilistic proofs are described
below.

A probabilistic proof mvolves at least two parties, A and
B. A possesses private keying material and B has no access
to A’s private keying material without disclosing the private
keying material itself. A’s proof i1s probabilistic rather than
absolute because B forces A to demonstrate that A probably
has access to the private keying material by supplying
evidence.

There are two variants of probabilistic proofs:

a) zero-knowledge-proofs, where it is provable that B or any
observer of the proof learns nothing from the proof,
except the fact that A possesses the private keying mate-
rial.

b) witness-challenge-response-proofs, which comprise the
following four elements in a sequence:

1. A sends information, which 1s not constant for all
invocations of the proof, to B. This iformation is
called the witness. For many protocols, the witness 1s
generated randomly and should never be repeated.

2. B sends information to A, called the challenge. For
many protocols, the challenge 1s generated randomly.

. A sends a response to B.

4. B verifies whether A indeed knows the private keying,
material by executing computations involving the
witness, the challenge, and the response.

In fact, many zero-knowledge-proofs are witness-

challenge-response-proois.

Zero knowledge proof schemes are e.g. the Feige-Fiat-
Shamir scheme or the Guillou-Quisquater scheme, but also
the Mono-directional zero knowledge proof schemes, ¢.g.
the Blum-Feldmann-Micali scheme, or Statistical zero
knowledge proof schemes, e.g. the Brassard scheme or the
Crepau scheme, etc.

Witness hiding proof schemes are e.g. the Feige-Shamir
scheme, etc.

In the following, one possible general structure of a
zero-knowledge protocol is described (cp. Menezes). For

D

10

15

20

25

30

35

40

45

50

55

60

65

6

illustrative purposes, this general structure 1s also of the
witness-challenge-response-proof format.

The protocol 1nvolves two parties, A and B.

1. The prover claiming to be A selects a random element
from a pre-defined set as its secret commitment (providing
hidden randomization), and from this computes an associ-
ated (public) witness. This provides initial randomness for
variation from other protocol runs and defines a set of
questions all of which the prover claims to be able to answer,
thereby a prior1 constraining his or her forthcoming
response. Only the legitimate party A, with knowledge of
A’s secret, 1s truly capable of answering all the questions,
and the answer to any one of these provides no information
about A’s long-term secret.

2. B’s subsequent challenge selects one of these ques-
tions.

3. A provides 1ts response.

4. B checks the response for correctness.

The protocol may be iterated to improve the bounds
limiting the probability of successful cheating. Each cus-
tomer may post his or her public keying material to a
publicly accessed directory without compromising the cor-
responding private keying material. The customer usually
should guard his or her private keying material as a close
secret, as otherwise the cryptographic system may not
cguarantee correctness. The best known mechanism for pro-
tecting one’s private keying material 1s through the use of a
smart card. In this case, the smart card 1s a device with no
interface for releasing private keying material (in a non-
cryptographically protected form).

Although smart cards provide the best protection, social
factors of electronic commerce may provide a role 1n ensur-
ing private keying material protection. One of the significant
difficulties associated with asymmetric cryptographic ser-
vices 1s authentication. For example, 1f A posts his or her
public keying material to a public directory, then how does
B assess validity? That 1s, a pirate may attempt to masquer-
ade as A but post the pirate’s keying material. Some com-
mercial organizations provide solutions to this problem by
acting as Certification Authorities (CA). For (possibly) a fee,
the CA solicits identifying material from potential customers
such as a driver’s license or passport. After validating the
identifying material, the CA posts the customer’s public
keying material to a public directory, and the CA signs a
certificate (using a digital signature with the CA’s private
key) that holds the customer’s public keying material. Stan-
dardized services, for example X.500, may be adopted to
help facilitate the use of directories that contain public
keying material.

Once a customer posts his or her public keying material
to the CA, the customer should make an effort to protect his
or her private keying material. In this case, if the customer’s
private keying material were to become compromised, then
the private keying material could no longer be used 1n a
meaningiul way. For some asymmetric keys, if the custom-
er’s private keying material were to become unknowingly
compromised, then the customer would have cause for
significant concern. For example, in the case of RSA
(Rivest-Shamir-Adleman) keys that can be used for digital
signatures, networked vendors could potentially authorize
clectronic commerce transactions.

According to the present invention, there 1s provided a
computer system comprising a protection mechanism for
protecting software, the protection mechanism comprising at
least three 1tems wherein there are at least a challenge means
assoclated with a protected item of software and a first
response means having access to private keying material of

6,047,242

7

an asymmetric key pair and being able to communicate with
the challenge means, and a second response means being
able to communicate with the challenge means, wherein

a) the challenge means has no access to the private keying
material accessed by the first response means,

b) the challenge means comprises means for validating an
asymmetric proof of the first response means and n
proof of the second response means without requiring,
that the first response means disclose its private keying
material, respectively,

¢) the challenge means comprises means for prohibiting a
protected program from executing unless either or both
validations 1s or are successiul.

In the subsequent text we use the terms response means
and asymmetric response means interchangeablyin order to
denote asymmetric response means. When discussing sym-
metric response means we explicitly use the term in its
entirety.

According to the present invention, the way of proving
that an asymmetric response means has access to the private
keying material 1s not important, e.g any of the above
described principles may be used, e.g. asymmetric confi-
dentiality proof, digital signatures proof, or probabilistic
proof.

According to a further aspect of the invention there 1s
provided a computer system comprising a protection mecha-
nism for protecting software, the protection mechanism
comprising at least four items wherein there are at least a
first challenge means associated with a protected item of
software and a second challenge means, a first response
means having access to private keying material of an asym-
metric key pair and being able to communicate with the first
challenge means, and a second response means having
access to secret keying material being able to communicate
with the second challenge means, wherein

a) the first challenge means has no access to the private
keying material accessed by the first response means,

b) the first challenge means validates an asymmetric proof
of the first response means that the first response means
has access to the private keying material without
requiring that the first response means disclose the

private keying material,

c) the second challenge means validates a proof of the
second response means that the second response means
has access to the secret keying material,

d) the first challenge means or the second challenge
means prohibit using the protected item of software or
prohibit using the software 1n an unlimited mode unless
cither or both of the validations 1s or are successiul.

According to a further aspect of the present ivention

there 1s provided a computer system comprising means for
inputting a program to be protected, and for embedding at
least three 1tems wherein there are at least a challenge means
assoclated with a protected item of software and a first
response means having access to private keying material of
an asymmetric key pair and being able to communicate with
the challenge means, and a second response means being
able to communicate with the challenge means, wherein

a) the challenge means has no access to the private keying
material accessed by the first response means,

b) the challenge means comprises means for validating an
asymmetric proofl of the first response means and a
proof of the second response means without requiring
that the first response means disclose its private keying
material, respectively,

¢) the challenge means comprises means for prohibiting a
protected program from executing unless either or both
validations 1s or are successtul.

10

15

20

25

30

35

40

45

50

55

60

65

3

According to a further aspect of the invention, there 1s
provided a computer system comprising means for inputting
a program to be protected, and for embedding at least four
items wherein there are at least a first challenge means
assoclated with a protected item of software and a second
challenge means, a first response means having access to
private keying material of an asymmetric key pair and being
able to communicate with the first challenge means, and a
second response means having access to secret keying
material being able to communicate with the second chal-

lenge means, wherein

a) the first challenge means has no access to the private
keying material accessed by the first response means,

b) the first challenge means validates an asymmetric proof
of the first response means that the first response means
has access to the private keying material without
requiring that the first response means disclose the
private keying material,

¢) the second challenge means validates a proof of the
second response means that the second response means
has access to the secret keying material,

d) the first challenge means or the second challenge
means prohibit using the software or prohibit using the
software 1n an unlimited mode unless either or both of
the validations 1s or are successiul.

According to a further aspect of the invention, there 1s
provided a method of distributing software to a plurality of
customers wherein each customer has a computer system
comprising a protection mechanism for protecting software,
the protection mechanism comprising at least three items
wherein there are at least a challenge means associated with
a protected 1tem of software and a first response means
having access to private keying material of an asymmetric
key pair and being able to communicate with the challenge
means, and a second response means being able to commu-
nicate with the challenge means, wherein a) the challenge
means has no access to the private keying material accessed
by the first response means; b) the challenge means com-
prises means for validating an asymmetric proof of the first
response means and a proof of the second response means
without requiring that the first response means disclose its
private keying material, respectively, ¢) the challenge means
comprises means for prohibiting a protected program from
executing unless either or both validations i1s or are
successtul, and wherein every customer receives an 1dentical
copy of the protected program and of the challenge means.

According to a further aspect of the invention, there is
provided a method for protecting an item of software
comprising a protection mechanism for protecting software,
the protection mechanism comprising at least three items
wherein there are at least a challenge means associated with
a protected 1tem of software and a first response means
having access to private keying material of an asymmetric
key pair and bemng able to communicate with the challenge
means, and a second response means being able to commu-
nicate with the challenge means, wherein

a) the challenge means has no access to the private keying
material accessed by the first response means and the

second response means, respectively,

b) the challenge means validates an asymmetric proof of
the first response means and an asymmetric proof of the
second response means without requiring that the first
response means or the second response means disclose
its private keying material, respectively,

c) the challenge prohibits a protected program from
executing unless either or both validations 1s or are
successiul.

6,047,242

9

According to a further aspect of the ivention, there 1s
provided a method for protecting an item of software
comprising a protection mechanism for protecting software,
the protection mechanism comprising at least four items
wherein there are at least a first challenge means associated
with a protected item of software and a second challenge
means, a lirst response means having access to private

keying material of an asymmetric key pair and being able to

communicate with the first challenge means, and a second

response means having access to secret keying material
bemng able to communicate with the second challenge
means, wherein

a) the first challenge means has no access to the private
keying material accessed by the first response means,

b) the first challenge means validates an asymmetric proof of
the first response means that the first response means has
access to the private keying material without requiring
that the first response means disclose the private keying
material,

c) the second challenge means validates a proof of the
second response means that the second response means
has access to the secret keying material,

d) the first challenge means or the second challenge means
prohibit using the protected item of software or prohibit
using the software 1n an unlimited mode unless either or
both of the validations 1s or are successtul.

According to a further aspect of the invention, it may be
advantageous to generate a random challenge by repeatedly
fiming responses to device accesses 1n order to enforce the
security of the random challenge. Although one may poten-
tially time responses to any one of a variety of devices, 1n
this present example we assume use of a disk (commonly
known as a hard disk and sometimes known as a direct
access storage device) as the device. Additionally, it is
possible to query multiple different devices when generating,
one particular random value.

According to a further aspect of the 1nvention, in order to
further enforce the security of the random challenge one
may, while generating the random challenge, fork new
threads 1in such a manner as to introduce an additional degree
of randomness 1nto the random challenge by exploiting
unpredictabilities in the operating system’s scheduler.

According to a further aspect of the invention, in order to
further enforce the security of the random challenge one
may perform a statistical test to determine the number of
random bits obtained by each of the disk accesses, and cause
disk accesses to be repeated until a predetermined number of
random bits has been obtained.

According to a further aspect of the invention, it 1s
advantageous to mclude a root certificate which 1s accessed
and trusted by the challenge means. The purpose of the root
certificate 1s to authenticate a particular descendent certifi-
cate. The descendent certificate holds public keying material
that 1s used to validate the proof provided by a response
means. In some cases, 1t may be advantageous to use
multiple root certificates, e.g, that holds the public keying
material that corresponds to the private keying material
accessed by each of a plurality of response means.

The method as well as the computer systems may be used
for copy protecting software and/or for licensing software.

In the case of multiple challenge means embedded in
cither a single program or multiple programs, the respective
challenge means may participate 1in proofs that demonstrate
cither the presence of the same private keying material or
possibly different private keying material.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flow diagram of a purchasing protocol used
when a customer wishes to purchase software that i1s pro-
tected by a protection mechanism in accordance with the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 2 1s a block diagram showing the software compo-
nents that are required to be installed mm the customer’s
machine to enable the customer to run the protected soft-
ware.

FIG. 3 1s a flow diagram showing the operation of the
protection mechanism 1n the protected software.

FIG. 4 1s a flowchart showing the operation of a random
number generator used to generate nonces.

FIG. 5 shows a certificate infrastructure 1n accordance
with the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS OF THE
INVENTION

A protection mechanism in accordance with the imnvention
will now be described by way of example with reference to
the accompanying drawings.

Purchasing protocol

FIG. 1 shows a purchasing protocol used when a customer
102 wishes to purchase software that 1s protected by an ECP
(electronic copy and license protection) mechanism in
accordance with the present invention. The vendor 101 has
public and private keying material used for digital signa-
tures; and each potential customer 102 has public and
private keying material used for asymmetric proof protocols.
Each party makes its public keying material available to
other parties, but keeps its private keying material secret.

In step 1, the customer 102 obtains the protected software
103 from a vendor 101 by downloading the software from a
network bulletin board. A challenge mechanism 24 (cp. FIG.
2), to be described later in detail, 1s embedded in the
protected software 103 in such a way that a potential attacker
cannot easily separate the challenge mechanism 24 from the
protected program 103. The attacker would need to disas-
semble the code and to manually remove the challenge
mechanism. The challenge mechanism 24 has the vendor’s
public keying material embedded 1n 1t. As will be described,
the challenge mechanism 24 prevents the customer from
running the software at this stage. The entire protected
program, including the challenge mechanism 1s signed using
the vendor’s private keying material.

In step 2, the customer 102 sends a registration package
104 to the vendor 101 by electronic mail. The registration
package 104 contains a reference to a public directory that
holds the customer’s public keying material.

In step 3, the software vendor 101 locates the customer’s
public keying material and embeds the customer’s public
keying material into a keyfile 105 and sends the keyfile 105
to the customer 102 by electronic mail. Once the customer
102 installs the keyiile, the protection mechanism permits
the customer 102 to execute the protected software 103
provided that the customer can prove that he or she has
access to the customer’s private keying material. In the case
of licensed software, the software may need to obtain
resources from the license server in order to execute 1n an
unlimited mode.

The creation of the keyfile 105 1s performed by a keyfile
generator, which 1s a program that executes at the vendor’s
facility. The vendor 101 must take care to guard this pro-
gram.

In use of the keylile generator, an operator enters the
following information:

Vendor name: Vendor name 1s the name of the vendor’s
company.

Vendor password: Vendor password 1s the password that
unlocks the vendor company’s private keying material.

6,047,242

11

Company employees who do not know the password

cannot generate keyfiles.

Customer name: The customer name 1s the distinguished
name of a customer (as defined 1n the publication “Infor-
mation Technology—Open Systems Interconnection—
The Director: Overview of Concepts, Models and Ser-
vices” for whom to generate a keyfile. The name indexes
into a database of public keying material.

Keyfile name: The keylile name 1s the name of a new keyfile.
After obtaining this information, the keyiile generator

builds a keyiile 105 containing the customer’s public keying,

material. Portions of the keyfile 105 appears to the customer

102 as a completely random sequence of values.

Building of the keyiile 105 1involves the following opera-
tions.

First, the keyfile generator creates a file and inserts the
customer’s public keying material into the file, along with
thousands of decoy bits. In the present example, each keyfile
105 contains approximately 480,00 decoy bits. This number
of bits represents a significant amount of decoy material, yet
can fit into a standard e-mail (electronic mail) message.

Each keyfile 105 stores the customer’s public keying
material in a different location. Additionally, each keyfile
105 has encrypted customer information embedded 1n it
without disclosing the required encryption key. This
encrypted customer information permits a software vendor
to easily identify the owner of a keyfile 105 1n the event that
the keyfile 105 appears 1n a public location, such as a
bulletin board. The keyfile generator then encrypts and
re-encrypts the keyfile (or portions of the keyfile) multiple
fimes, using different algorithms. Finally, the keyfile gen-
crator signs the keyfile using the vendor’s private keying
material by applying a digital signature algorithm.

Akeyiile 1s said to be validated 1if the challenge means can
validate the vendor’s signature using the public keying
material stored in the challenge means’ binary and access
the decrypted public keying material stored in the keytile.
Plurality of License Servers

FIG. 5 shows a certificate infrastructure that may be
helpful when a plurality of license servers are used, or
possibly when a single license server i1s used that periodi-
cally changes the keying material.

The challenge mechanism accesses a validated keyfile
510. During the validation procedure, the challenge mecha-
nism extracts the vendor’s public keying material from the
protected program’s binary and uses the vendor’s public
keying material to validate the signature 512 of the keyiile.
We call this keyfile the CAKF 510 denoting the Certificate
Authority Keyfile. Using the CA’s public key stored in the
CAKEF 511, the challenge means validates the signature 522
of a Certificate Authority Certificate (CAC) 520.

The CAC 520 contains at least a public key 521 and a
digital signature 522 of the entire CAC. After validation of
this digital signature, we say that the CAC 1s validated.

The protected program 103 searches the file system for
License Server Certificates (LS1, i=1 . . . n) stored in the file
system. In this present example, assume that the L.S1 1s 530.

Each License Server Certificate LLS1 contains at least the
public key of the license vendor (the public key of license
server) 5331, and a digital signature of the entire LS1 532.

When the protected program 103 locates a License Server

Certificate, LS1 530, the protected program 103 checks the
available information to determine if the License Server
Certificate LS1 can be used.

Then, the protected program 103 validates the digital
signature of the L.S11n accordance with a chain of certificates
until the chain ultimately reaches the validated CAC, as

10

15

20

25

30

35

40

45

50

55

60

65

12

described in the Menezes book. Note that each certificate 1n
the chain must be found by the challenge mechanism. Note
also that 1n FIG. 5 the chain is short because the CA directly
signs each of the License server certificates 532.

If the validation succeeds, the protected program 103
accepts the License Server Certificate LS1. We call this LS1
certificate a validated license server certificate (VLSC).

The VLSC’s public key 531 may subsequently be used to
validate the license server.

Authentication of the License Server

To reach a mutual authentication between the protected
program 103 and a license server L1, the protected program
103 validates that i1t 1s communicating with the correct
license server Li and the license server L1 validates that it 1s
communicating with the correct protected program 103.

At least one of these two validations must execute a
protocol that uses asymmetric cryptographic methods. In
this present example, both validations use the GQ (Guillou-
Quisquater) proof—an asymmetric cryptographic method
with the zero knowledge property (as described above).
Validating the license server:

First the protected program obtains (including validation)
a license server certificate VLSC using the method described

above. A public key VLSCPK 531 1s the public key
VLSCPK 531 stored 1n the license server certificate VLSC.
In accordance to the description of the GQ (Guillou-
Quisquater) proof protocol above, the license server Li (as
party A) proves to the challenge mechanism 24 (as party B)
that the license server L1 has access to private keying
material LSPVTK. The challenge mechanism uses the pub-
lic key VLSCPK 3531 1n the validation the GQ proof.

If the challenge mechanism 24 validates the proof, then
the protected program 103 executes 1n an unlimited mode
which 1s not constrained or limited by the copy protection or
license system.

If the challenge mechanism 24 cannot validate the proof,
then the protected program 103 stops executing, runs in a
limited mode, or takes other appropriate action.

It 1s possible that the protected program 103 has embed-
ded 1n 1t a single challenge means that communicates with
multiple license servers in the manner described above.
Alternatively, multiple challenge means may communicate
with multiple license servers 1n the manner described above.
Mutual authentication between the protected program and
the license server
(See Box 31) (compare FIG. 3) First the protected program
103 validates the license server Li using the mechanism
described above. Next, the license server Li validates the
protected program 103 as described below.

The protected program 103 contains an embedded

response means. This response means contains embedded
private keying material PPPVTK where the private keying
material PPPVTK 1s different than the license server’s
private keying material LSPVTK.
(Box 32) The license server L1 obtains and validates a
program’s keyfile PPKEFE. The validation procedure 1s analo-
gous to the wvalidation procedure of the CAKEF. In the
validation procedure, the license server validates the digital
signature of the PPKF using the license server’s public
keying material.

It should be noted that the protected program’s keyiile
PPKF is not the license server’s keyfile CAKF.

(Box 33) The license server Li extracts the public keying
material from the protected program’s keyfile PPKF by
performing multiple decryptions as required.

(Box 34) The protected program 103 proves to the license
server L1 that the protect program 103 has access to private

6,047,242

13

keying material PPPVTK using a GQ prootf protocol. The
license server validates the proof using the public key
extracted from the program’s keyiile PPKF.

If the license server’s validation succeeds, then the license
server grants to the protected program resources that permit
the protected program 103 to operate in a potentially unlim-
ited mode. Otherwise the protected program 103 might
execute 1n a limited mode.

As an alternative to the method described above, the
license server may validate the protected program using
symmetric keying material.

Before executing the protocol, the challenge means 1n the
license server (denoted by B) and the response means in the
protected program (denoted by A), each obtain access to the
same symmetric keying material k. In the following
protocol, the response means proves to the challenge means
that the response means has access to the symmetric keying
material.

A<B: 14 (1)

(2)

Step (1): First, the license server’s challenge means gener-
ates a random number rz, and sends the random number rj,
to A.

Step (2): Next, the protected program’s response means
extracts the shared keying material k, the random number 14,
and the unique 1dentity of the license server B. The response
means concatenates, 1n the following order: k,r;,B. Next,
using the message digest function, h, €.g., the message digest
MDS5, the response means computes h(k,rz,B). Finally, the
challenge means performs a validation procedure by first
recalling the shared keying material, k, and the random
number generated in step (1) rpz, and the license server’s
identity B. The challenge means calculates h(k,r,, B) and
compares the result (for equality) against the corresponding
value received in Step (2). If the equality check succeeds,
then the challenge mechanism accepts the proof, otherwise,
the challenge mechanism rejects the proof.

As can be seen from both methods of mutual
authentication, the response means proves that the response
means has access to secret keying material.

In the case of asymmetric cryptography, the secret keying,
material 1s the private keying material of an asymmetric key
pair. In the case of symmetric means, the secret keying
material 1s a shared key. Note that 1n this case, we say that
symmetric means includes both symmetric encryption algo-
rithms such as the Data Encryption Standard (DES) and
other algorithms 1n which the encryption key 1s derivable
from the decryption key and vice versa. Symmetric means
additionally includes message digests, such as MD3, or
other cryptographic means in which both parties share
common keying material.

Authenticating and Validating a second License Server

In the case of a protected program with an embedded
challenge means that communicates with two or more
response means, the mechanisms and methods of commu-
nication are 1dentical. The challenge means uses the mecha-
nisms and methods described above to validate first one
response means and then the other. The challenge means
may be configured to require validation of both response
means or possibly just one. In either case, after successtul
validation the protected program may execute 1n an unlim-
ited mode. Otherwise, the protected program ceases
execution, or executes 1n a limited mode.

The challenge means may potentially communicate with
the first response means using an asymmetric protocol and

A—B: hik,rz, B)

10

15

20

25

30

35

40

45

50

55

60

65

14

the challenge means may potentially communicate with the
second response means using a symmetric protocol. Or, 1t
could be the case that both protocols are symmetric.
Customer software

FIG. 2 shows the software components that are required
to be installed in the customer’s machine, such as a
computer, to enable the customer to run the protected
software 103 after the mutual authentication. These consist
of a license server 20, the keyfiles 105, the protected
software 103, and the certificates (not shown). The protected
software 103 includes a challenge mechanism 24 and pos-
sibly a response mechanism (not shown). The license server
accesses private keying material (not shown). In the case
that the protected program includes a response mechanism,
then the protected program’s response mechanism accesses
secret keying material.

The license server 20 1s a program that the customer 102
executes when the system 1nitially boots. The customer 102
enables the system by inserting a smart card that contains the
customer’s private keying material. The license server 20
then prompts the customer 102 for a pass phrase used to
enable the smart card. The license software does not execute
if the customer cannot supply the correct pass phrase to
unlock the smart card. The license server does not obtain
access to the private keying material stored on the smart
card. The license server 20 then executes 1n the background.
Nonce generator

Generation of a nonce 1s performed by a nonce generator
included 1n the challenge mechanism 24. Operation of the
nonce generator 1s as follows.

First, the nonce generator queries a large number of
system parameters, €.g. the system time, the amount of space
remaining free in the page table, the number of logical disk
drives, the names of the files 1n the operating system’s
directory, efc.

Next, the nonce generator builds a random number, using,
a random number generator. The random number generator
consists of two process threads, referred to herein as Thread
1 and Thread 2. FIG. 4 shows the operation of Thread 1,
which 1s the main thread of the random number generator.
(Box 51) Thread 1 first creates a data structure value_ list,
for holding a list of counter values. The list 1s mitially empty.
(Box 52) Thread 1 sets a current counter value to zero, and
sets a done__test flag to FALSE.

(Box 53) Thread 1 then forks Thread 2. Thread 2 posts an
asynchronous disk access and then sleeps until the disk
access 1s complete. When the disk access 1s complete,
Thread 2 sets the done__test flag to TRUE. Note that Thread
1 and Thread 2 share the done_ test flag.

(Box 54) Thread 1 increments the counter value by one.
(Box 55) Thread 1 then tests whether the done-test flag is
now TRUE, indicating that the disk access initiated by
Thread 2 1s complete. If the done-test flag 1s FALSE, the
thread returns to box 54. Thus, 1t can be seen that while
waiting for the disk access to complete Thread 1 the counter
value 1s continuously incremented.

(Box 56) When done_ test flag is TRUE, Thread 1 termi-
nates Thread 2 and saves the counter value in the first free
location 1n the value list.

(Box 57) Thread 1 then calls a Statstest function, which
estimates the degree of randomness of the counter values (or
portions of counter values, €.g., low-order bits) saved in the
value_ list. This function may use the Chi-Square Test, the
Kolmogorov-Smirnov Test, or the Serial Correlation Test,
which are described 1n the Knuth book. The Statstest func-
tion may be optimized to ensure that complicated calcula-
tions are not repeated for each disk access. The Statstest

6,047,242

15

function returns a value which indicates how many low-
order bits of each saved counter value should be considered
as random.

(Box 58) Thread 1 compares the value returned by the
Statstest function when combined with the length of the
value_ list with a predetermined threshold value to deter-
mine whether enough random bits have now been generated.
If not enough random bits have been generated, the process
returns to box 52 above so as to generate and save another
counter value.

(Box 59) When the required number of random bits has been
ogenerated, Thread 1 extracts the specified number of low-
order bits from each counter value in the value_ list and
returns this sequence of bits as the output random number.

In summary, it can be seen that the random number
generator 5 exploits the unpredictability 1n the timing of a
series of disk accesses as a source of randomness 1n the
generation of nonces (see the Fenstermacher publication).
By forking new threads on each disk access, the random
number generator also exploits unpredictabilities 1n the
operation of the operating system’s scheduler as a second
source ol randomness.

The analysis performed by the Statstest function permits
the random number generator to self-tune for any speed
processor and disk, by computing the number of low-order
bits of each saved counter value to return. For example, a
system with a high-variance disk access time will generate
more random bits per-disk access than a system with a
low-variance disk access time. For example, for a Quantum
1080s disk (6 ms average write time), and a 486 (Intel
80486) 66 Mhz processor, the system generates approxi-
mately 45 bits per second. Alternatively, one may hard code
the number of bits per-disk access and use a de-skewing
technique to ensure a good degree of randomness.

The nonce generator also queries the operating system to
ensure that 1t posts each disk access to an actual disk. The
final output nonce 1s formed by combining the output
random number from the random number generator with the
result of querying the system parameters as described above
using a message digest.

The nonce generator described above works best when
executing on an operating system that provides direct access
to the disk, e.g., Microsoit Windows 95 or Microsoft Win-
dows NT 4.0. In such an operating system, special operating
system calls available to programs executing in user space
permit a program to bypass the operating system’s internal
buffering mechanism and write directly to the disk. Most
programs do not take advantage of these special operating
system calls because they may be relatively inefficient and
difficult to use. On Windows 95 and Windows NT, a
program may only use these special calls if the program
accesses data that 1s a multiple of the disk’s sector size by
querying the operating system.

If the operating system does not provide direct access to
the disk, then the challenge mechanism 24 could still use the
disk timing random number generator. However, 1n this
case, the quality of the generated values would have a
orcater reliance upon unpredictabilities 1n the operating
system’s scheduler as opposed to the variance inherent to the
disk access time.

The example of the mvention described above assumes
that the operating system permits a program to fork multiple
threads within a single address space. Additionally, the
example of the invention assumes that the operating system
permits the threads to access synchronization variables such
as semaphores. Most modem operating systems provide
these services. The example of the invention uses multiple

10

15

20

25

30

35

40

45

50

55

60

65

16

threads to 1implement a mechanism which quantifies each

disk access time. However, if an implementation of the

invention were to execute on a system that does not provide
multiple threads or synchronization variables, then the

nonce generator could substitute other mechanisms, e.g.

querying a physical clock.

Some possible modifications
The customer need not get the software by downloading

the software from a network bulletin board. The customer

may also get the software on a floppy disk, or a CD-ROM
at a PC store, via the Internet, or some other means of
distribution.

Furthermore, a smart card may be used to store the
customers or vendor’s private keying material. In such a
smart card-enabled configuration, a pirate cannot extract the
private keying material from the smart card, which provides
an even greater defense against attack.

Private keying material can be stored on an unsecured
storage device, such as a floppy disk. In this case, the private
keying material should be encrypted. A response mechanism
should not be able to perform the decryption routine unless
a customer {first presents a password. In this case, the
response means obtains access to the private keying material
but does not release the private keying material out of its
address space.

We may optionally extend this present example by con-
structing the challenge means to reference an internal timer,
¢.g2., a counting thread, or an external timer, e€.g., a clock. It
an a priorl defined threshold terminates before completing,
the probabilistic proof protocol, then the validation auto-
matically fails.

Multiple programs may have embedded challenge means
that communicate with the same response means. In this
case, the response means could potentially use the same
smart card to store the private keying material used 1n its
interactions with all of the respective challenge means.
Optionally, the programs may be configured so that the
response means uses the same private keying material 1n its
interactions with each of the respective challenge means.

A computer system that includes at least two response
means may potentially include one response means that
relies upon asymmetric cryptography and a second response
means that does not. An example of a response means that
does not use asymmetric cryptography 1s a dongle that relies
upon symmetric cryptography. In this case the dongle has no
access to asymmetric private keying material.

In addition to implementing copy protection, the mecha-
nism described above may be used to trace software pirates.
The mechanism provides excellent traceability, without
requiring that each customer obtain a unique version of the
program.

The license server 20, the challenge mechanism 24, and
the protected software 103 described above may be
deployed 1 a number of different configurations.

For example:

The license server 20 may reside 1n one address space and
the challenge mechanism 24 and the protected software
103 may reside 1n a different address space 1n a single
machine.

The license server 20 may reside 1n an address space on one
machine and the challenge mechanism 24 and the pro-
tected software 103 may reside 1n a different address
space on a different machine.

Furthermore, multiple customers, each with their own
copy of the protected 1tem of software, may share a common
license server 20, which responds to challenges from all
these copies.

6,047,242

17

Another alternative 1s that multiple customers may share
common private keying material. A company may use one or
more of these deployment options, for example, when
constructing multi-user licensing functionality.

In another possible modification, the keyfile 105 may
contain hidden mmformation concerning selective activation
of services of the protected program 103. For example, the
keyfile 105 may specily that the protected program 103 may
permit execution of a Print service but disable execution of
a Save-On-Disk service. As another example, the keyfile 105
may contain an expiration date that describes the last date
that a particular service may execute. The protected program
103 would read the keyiile 105 to determine the services that
the protected program 103 should execute. A customer could
obtain the ability to execute more services by requesting
another keyfile from the vendor. If a license server fails to
authenticate a program, then the license server can refuse to
grant resources to the program. The program may, at 1ts own
discretion, refuse to operate certain services unless suflicient
resources are obtained.

Although other modifications and changes may be sug-
ogested by those skilled 1n the art, it 1s the intention of the
inventors to embody within the patent warranted hereon all
changes and modifications as reasonably and properly come
within the scope of their contribution to the art.

I claim:

1. A computer system, comprising:

a protection mechanism for protecting software, the pro-

tection mechanism including

a challenge means associated with a protected item of
software,

a first response means having access to private keying,
material of an asymmetric key pair and being able to
communicate with said challenge means, and

a second response means being able to communicate
with said challenge means, wherein

a) said challenge means has no access to the private
keying material accessed by said {first response
means,

b) said challenge means has means for validating an
asymmetric proof of said first response means and a
prootf of said second response means without requir-
ing that said first response means disclose 1ts private
keying material, respectively,

c¢) said challenge means has means for prohibiting a
protected program from executing unless at least one
validation 1s successtul.

2. A computer system according to claim 1, wherein said
first response means and said second response means access
private keying material held on a same storage device.

3. A computer system, comprising:

a protection mechanism for protecting software, the pro-
tection mechanism including

a first challenge means associated with a protected item
of software,

a second challenge means,

a first response means having access to private keying,
material of an asymmetric key pair and being able to
communicate with the first challenge means, and

a second response means having access to secret keying
material being able to communicate with the second
challenge means, wherein

a) said first challenge means has no access to the private
keying material accessed by said {first response
means,

b) said first challenge means validates an asymmetric
proof of said first response means that said first

10

15

20

25

30

35

40

45

50

55

60

65

138

response means has access to said private kKeying
material without requiring that said first response
means disclose said private keying material,

¢) said second challenge means validates a proof of said
second response means that said second response
means has access to said secret keying material,

d) one of said first challenge means and said second
challenge means prohibit using the software at least
in an unlimited mode unless at least one of the said
validations 1s successtul.

4. A computer system, comprising:

means for mputting a program to be protected and for
embedding including

at least a challenge means associated with a protected
1item of software,

a first response means having access to private keying,
material of an asymmetric key pair and being able to
communicate with the challenge means, and

a second response means being able to communicate
with the challenge means, wherein

a) said challenge means has no access to the private
keying material accessed by said {first response
means,

b) said challenge means has means for validating an
asymmetric proof of said first response means and a
proof of said second response means without requir-
ing that said first response means disclose 1ts private
keying material, respectively,

¢) said challenge means has means for prohibiting a
protected program from executing unless at least one
validation 1s successtul.

5. A computer system, comprising:

means for mputting a program to be protected and for

embedding including

a first challenge means associated with a protected item
of software,

a second challenge means,

a first response means having access to private keying,
material of an asymmetric key pair and being able to
communicate with the first challenge means, and

a second response means having access to secret keying,
material being able to communicate with the second
challenge means, wherein

a) said first challenge means has no access to the private
keying material accessed by said first response
means,

b) said first challenge means validates an asymmetric
proof of said first response means that said first
response means has access to said private keying
material without requiring that said first response
means disclose said private keying material,

¢) said second challenge means validates a proof of said
second response means that said second response
means has access to said secret keying material,

d) at least one of said first challenge means and said
second challenge means prohibit using the software
at least 1 an unlimited mode unless at least one of
the said validations 1s successtul.

6. A computer system according to claim 3, wherein the
secret keying material 1s private keying material of a second
asymmetric Key pair.

7. A computer system according to claim 3, wherein the
secret keying material of said second response means 1s
keying material of a symmetric key pair.

8. A computer system according to claim 1, further
comprising:

a storage system that holds at least some of the private

keying material and that interacts via a protocol that

resists chosen-plaintext attacks.

6,047,242

19

9. A computer system according to claim 1, further
comprising:

a storage system that holds at least some of the private

keying material and that interacts via a protocol that

resists adaptive chosen-plaintext attacks.

10. A computer system according to claim 1, wherein

said first response means accesses a lirst private keying,

material, and

said second response means access a second private

keying material.

11. A computer system according to claim 1, wherein a
same private keying material 1s accessed by both said first
and second response means.

12. A computer system according to claim 1, wherein a
license server’s private key, respectively, 1s accessed 1n the

first and second response means.
13. A computer system according to claim 1, wherein said

means for validating uses at least one proof selected form the
following types of proofis:

digital signature,
asymmetric confidentiality, and

probabilistic proof.

14. A computer system according to claim 13, wherein
said proof 1s said asymmetric confidentiality scheme which
1s the Blum-Goldwasserscheme.

15. A computer system according to claim 13, wherein
said proof 1s said probabilistic proof scheme which 1s a zero
knowledge proof scheme.

16. A computer system according to claim 13, wherein
said proof 1s said probabilistic proof scheme which 1s a
witness hiding proof scheme.

17. A computer system according to claim 3, wherein one
of said first challenge means and said second challenge
means 1ncludes means for issuing a random challenge as
information.

18. A computer system according to claim 17, wherein
said means for 1ssuing a random challenge includes means
for generating a random challenge by repeatedly timing
responses to device accesses.

19. A computer system according to claim 18, wherein
saild means for generating a random challenge includes
means for forking new threads in such a manner as to
introduce an additional degree of randomness into said
random challenge by exploiting unpredictabilities 1n an
operating system’s scheduler.

20. A computer system according to claim 18, wherein
said means for generating a random challenge includes:

means for performing a statistical test to determine a
number of random baits obtained by each of said device
accesses, and

means for causing device accesses to be repeated until a
predetermined number of random bits has been
obtained.

21. A computer system according to claim 1, wherein said
challenge means 1s embedded m said protected item of
software.

22. A computer system according to claim 1, wherein said
challenge means uses public keying material for validating
a proof.

23. A computer system according to claim 22, wherein the
system 1ncludes a keyfile for holding the public keying
material.

24. A computer system according to claim 23, wherein the
public keying material held 1n said keyfile 1s cryptographi-
cally secured, whereby it 1s computationally infeasible to
alter any portion of the keyiile, including the public keying
material, without altering the challenge means.

10

15

20

25

30

35

40

45

50

55

60

65

20

25. A computer system according to claim 24, wherein
said keyfile includes information identifying a customer to
which the software has been supplied.

26. A computer system according to claim 24, wherein
said keyfile includes decoy bits for disguising the public
keying material held therein.

27. A computer system according to claim 24, wherein at
least one of said keyfile and the challenge means and the
software 1ncludes information concerning selective activa-
tion of services of the software.

28. A computer system according to claim 27, wherein the
challenge means validates the response means to at least
partially determine whether a particular facility of the soft-
ware.

29. A computer system according to claim 1, wherein said
software 1ncludes a plurality of protected 1tems of software,
cach having its own challenge means, and a single response
means shared between all of said protected 1tems.

30. A computer system according to claim 1, further
comprising:

at least one root certificate used for validating descendant

certificates, the descendant certificates including at
least a public keying material for said response means.

31. A computer system according to claim 30, wherein
said at least one root certificate 1s two root certificates, one
of said root certificates for each of said first and second
response means.

32. A computer system according to claim 1, wherein said
protection mechanism provides one of copy protection for
the software and for licensing software.

33. A method of distributing software to a plurality of
customers, comprising the steps of:

providing each customer with a computer system with a
protection mechanism for protecting software, the pro-
tection mechanism including
a challenge means associated with a protected item of

software,

a first response means having access to private keying,
material of an asymmetric key pair and being able to
communicate with said challenge means, and

a second response means being able to communicate
with said challenge means, wherein

a) said challenge means has no access to the private
keying material accessed by said first response
means,

b) said challenge means has means for validating an
asymmetric proof of said first response means and a
prootf of said second response means without requir-
ing that said first response means disclose 1ts private
keying material, respectively,

¢) said challenge means has means for prohibiting a
protected program from executing unless at least one
validation 1s successful, and

providing every customer with an identical copy of said
software and of said challenge means.
34. A method for protecting an 1tem of software, com-
prising the steps of:
providing a protection mechanism for protecting the
software,

associating a challenge means with a protected item of the
software,

accessing by a first response means to private keying
material of an asymmetric key pair and being able to
communicate with the challenge means, and

communicating by a second response means with the
challenge means, wherein

6,047,242

21

a) said challenge means having no access to the private
keying material accessed by said first response means
and said second response means, respectively,

b) validating by said challenge means an asymmetric
proof of the said first response means and a proof of the
said second response means without requiring that said
first response means disclose 1its private Keying
material, respectively,

c) prohibiting a protected program from executing by said
challenge means unless at least one of the validations 1s
successtiul.

35. A method according to claim 34, further comprising

the step of:

accessing private keying material held on a same storage
device by said first response means and the said second
response means.
36. A method for protecting an item of software, com-
prising the steps of:

providing a protection mechanism for protecting
software, including:

providing a first challenge means associated with a pro-
tected item of software and

providing a second challenge means,

accessing private keying material of an asymmetric key
pair with a first response means and being able to
communicate with the first challenge means, and

accessing a second response means having access to
secret keying material and being able to communicate
with the second challenge means, wherein

a) the said first challenge means has no access to the

private keying material accessed by said first response
means,

b) validating an asymmetric proof of the said first
response means that the said first response means has
access to said private keying material by said first
challenge means validates without requiring that said
first response means disclose said private Kkeying
material,

c¢) validating a proof of said second response means that
said second response means has access to said secret
keying material by said second challenge means,

d) prohibiting using the software at least in an unlimited
mode by one of said first challenge means and said
second challenge means unless at least one of said
validations 1s successtul.

37. A method according to claim 34, wherein the secret
keying material 1s private keying material of a second
asymmetric key pair.

38. A method according to claim 34, wherein the secret
keying material 1s keying material of a symmetric key pair.

39. A method according to claim 34, further comprising
the step of:

interacting via a protocol that resists chosen-plaintext
attacks by a storage system that holds at least some of
the private keying material.
40. A method according to claim 34, further comprising,
the step of:

interacting via a protocol that resists adaptive chosen-
plaintext attacks by a storage system that holds at least
some of the private keying material.
41. A method according to claim 34, further comprising,
the steps of:

accessing a first private keying material by the first
response means, and

10

15

20

25

30

35

40

45

50

55

60

65

22

accessing a second private keying material by the second

response means.

42. A method according to claim 34, wherein at least said
second challenge means has no access to and no knowledge
about the private keying material stored 1n any of the at least
fwo response means.

43. A method according to claim 34, further comprising,
the steps of:

securcly storing in the at least two response means a
license server’s private key, respectively.
44. A method according to claim 34, further comprising,
the steps of:

marking the mmformation using at least one of:

digital signature,
asymmetric confidentiality, and
probabilistic proof.

45. A method according to claim 44, wherein said infor-
mation 1s marked using the asymmetric conifidentiality
scheme which 1s the Blum-Goldwasser scheme.

46. A method according to claim 44, wherein said infor-
mation 1s marked using said probabilistic proof scheme
which 1s a zero knowledge proof scheme.

47. A method according to claim 44, wherein said infor-
mation 1s marked using said probabilistic proof scheme
which 1s a witness hiding proof scheme.

48. A method according to claims 34, wherein said
challenge means includes means for i1ssuing a random
challenge, and further comprising the step of:

1ssuing said random challenge.

49. A method according to claim 48, wherein said means
for 1ssuing a random challenge generates a random chal-
lenge by repeatedly timing responses to disk accesses.

50. A method according to claim 49, wherein said means
for generating a random challenge forks new threads in such
a manner as to mtroduce an additional degree of randomness
into said random challenge by exploiting unpredictabilities
in the operating system’s scheduler.

51. A method according to claim 49, wherein said means
for generating a random challenge performs a statistical test
to determine a number of random bits obtained by each of
said disk accesses, and causes disk accesses to be repeated
untll a predetermined number of random bits has been
obtained.

52. A method according to claim 34, further comprising,
the step of:

embedding said challenge means 1n said protected 1tem of
software.
53. A method according to claim 34, further comprising
the step of:

using first public keying material for encrypting the
information by said challenge means.
54. A method according to claim 34, further comprising,
the step of:

holding first public keying material 1n a keyiile.
55. A method according to claim 54, further comprising,
the step of:

cryptographically securing the first public keying material
held in said keyfile, whereby 1t 1s computationally
infeasible to alter any portion of the keyfile, including
the first public keying material, without altering the
challenge means.

56. A method according to claim 55, wherein said keyiile
includes information identifying a customer to which the
protected item of software has been supplied.

57. A method according to claim 3§, further comprising,
the step of:

6,047,242

23

including decoy bits for disguising the first public keying,
material 1 said keyiile.
58. A method according to claim 35, further comprising
the step of:

including information concerning selective activation of 3

services ol the protected i1tem of software 1 said
keyfile.

59. A method according to claim 34, further comprising,
the step of:

using at least two root certificates, one for each response
means, respectively, for validating descendant
certificates, the at least two root certificates including at
least a public keying material for each response means,
respectively.
60. A method according to claim 34, further comprising
the step of:

using said system for at least one of copy protecting
software and for licensing software.

61. A computer system according to claim 5§, wherein the
secret keying material 1s private keying material of a second
asymmetric key pair.

62. A computer system according to claim 5, wherein the
secret keying material of said second response means 1s
keying material of a symmetric key pair.

63. A computer system according to claim 3, further
comprising:

a storage system that holds at least some of the private
keying material and that interacts via a protocol that
resists chosen-plaintext attacks.

64. A computer system according to claim 4, further

comprising:

a storage system that holds at least some of the private
keying material and that interacts via a protocol that
resists chosen-plaintext attacks.

65. A computer system according to claim 5, further

comprising;

a storage system that holds at least some of the private
keying material and that interacts via a protocol that
resists chosen-plaintext attacks.

66. A computer system according to claim 3, further

comprising:

a storage system that holds at least some of the private
keying material and that interacts via a protocol that
resists adaptive chosen-plaintext attacks.

67. A computer system according to claim 4, further

comprising:

a storage system that holds at least some of the private
keying material and that interacts via a protocol that
resists adaptive chosen-plaintext attacks.

68. A computer system according to claim 5, further

comprising;:

a storage system that holds at least some of the private
keying material and that interacts via a protocol that
resists adaptive chosen-plaintext attacks.

69. A computer system according to claim 3, wherein

the first response means accesses a first private keying
material, and

the second response means accesses a second private
keying material.
70. A computer system according to claim 4, wherein

the first response means accesses a first private keying,
material, and

the second response means accesses a second private
keying material.
71. A computer system according to claim 5, wherein

10

15

20

25

30

35

40

45

50

55

60

65

24

the first response means accesses a first private keying

material, and

the second response means accesses a second private

keying material.

72. A computer system according to claim 3, wheremn a
same private keying material 1s accessed by both said first
and second response means.

73. A computer system according to claim 4, wherein a
same private keying material 1s accessed by both said first
and second response means.

74. A computer system according to claim 5, wherein a
same private keying material 1s accessed by both said first
and second response means.

75. A computer system according to claim 3, wherein a
license server’s private key 1s accessed i the first and
second response means.

76. A computer system according to claim 4, whereimn a
license server’s private key 1s accessed in the first and
second response means.

77. A computer system according to claim 5§, wherein a
license server’s private key 1s accessed in the first and
second response means.

78. A computer system according to claim 3, wherein said
means for validating uses at least one proof selected form the
following types of proois:

digital signature,
asymmetric confidentiality, and

probabilistic prootf.

79. A computer system according to claim 78, wherein
said proof 1s said asymmetric confidentiality scheme which
1s the Blum-Goldwasser scheme.

80. A computer system according to claim 78, wherein
said proof 1s said probabilistic proof scheme which 1s a zero
knowledge proof scheme.

81. A computer system according to claim 78, wherein
said proof 1s said probabilistic proof scheme which 1s a
witness hiding proof scheme.

82. A computer system according to claim 4, wherein said
means for validating uses at least one proof selected form the
following types of proois:

digital signature,
asymmetric confidentiality, and

probabilistic prootf.

83. A computer system according to claim 82, wherein
said proof 1s said asymmetric confidentiality scheme which
1s the Blum-Goldwasser scheme.

84. A computer system according to claim 82, wherein
said proof 1s said probabilistic proof scheme which 1s a zero
knowledge proof scheme.

85. A computer system according to claim 82, wherein
said proof 1s said probabilistic proof scheme which 1s a
witness hiding proof scheme.

86. A computer system according to claim 5, wherein said
means for validating uses at least one proof selected form the
following types of proois:

digital signature,
asymmetric confidentiality, and

probabilistic proof.

87. A computer system according to claim 86, wherein
said proof 1s said asymmetric confidentiality scheme which
1s the Blum-Goldwasser scheme.

88. A computer system according to claim 86, wherein
said proof 1s said probabilistic proof scheme which 1s a zero
knowledge proof scheme.

89. A computer system according to claim 86, wherein
said proof 1s said probabilistic proof scheme which 1s a
witness hiding proof scheme.

6,047,242

25

90. A computer system according to claim §, wherein one
of said first challenge means and said second challenge
means Includes means for issuing a random challenge as
information.

91. A computer system according to claim 90, wherein
said means for 1ssuing a random challenge includes means
for generating a random challenge by repeatedly timing
responses to device accesses.

92. A computer system according to claim 90, wherein
saild means for generating a random challenge includes
means for forking new threads in such a manner as to
introduce an additional degree of randomness into said
random challenge by exploiting unpredictabilities 1n an
operating system’s scheduler.

93. A computer system according to claim 90, wherein
said means for generating a random challenge includes

means for performing a statistical test to determine the
number of random bits obtained by each of said device
accesses, and

means for causing device accesses to be repeated until a
predetermined number of random bits has been
obtained.

94. A computer system according to claim 3, wherein said
challenge means 1s embedded in said protected 1tem of
software.

95. A computer system according to claim 4, wherein said
challenge means 1s embedded m said protected item of
software.

96. A computer system according to claim 5, wherein said
challenge means 1s embedded in said protected 1tem of
software.

97. A computer system according to claim 3, wherein said
challenge means uses first public keying material for vali-
dating a proof.

98. A computer system according to claim 4, wherein said
challenge means uses first public keying material for vali-
dating a proof.

99. A computer system according to claim 5§, wherein said
challenge means uses first public keying material for vali-
dating a proof.

100. A computer system according to claim 3, wherein the
system 1ncludes a keyfile for holding first public keying
material.

101. A computer system according to claim 100, wherein
the public keying material held 1n said keyfile 1s crypto-
oraphically secured, whereby it 1s computationally infea-
sible to alter any portion of the keyfile, including the public
keying material, without altering the challenge means.

102. A computer system according to claim 101, wherein
said keyfile includes information identifying a customer to
which the software has been supplied.

103. A computer system according to claim 101, wherein
said keyfile includes decoy bits for disguising the public
keying material held therein.

104. A computer system according to claim 101, wherein
at least one of said keyfile and the challenge means and the
software includes information concerning selective activa-
tion of services of the software.

105. A computer system according to claim 104, wherein
the challenge means validates the response means to at least
partially determine whether a particular facility of the soft-
ware.

106. A computer system according to claim 4, wherein the
system 1ncludes a keyfile for holding first public keying
material.

107. A computer system according to claim 106, wherein
the public keying material held 1in said keyfile 1s crypto-

10

15

20

25

30

35

40

45

50

55

60

65

26

ographically secured, whereby it 1s computationally infea-
sible to alter any portion of the keyfile, including the public
keying material, without altering the challenge means.

108. A computer system according to claim 107, wherein
said keyfile includes information identifying a customer to
which the software has been supplied.

109. A computer system according to claim 107, wherein
said keyiile includes decoy bits for disguising the public
keying material held therein.

110. A computer system according to claim 107, wherein
at least one of said keyfile and the challenge means and the
software 1ncludes information concerning selective activa-
tion of services of the software.

111. A computer system according to claim 110, wherein
the challenge means validates the response means to at least
partially determine whether a particular facility of the soft-
ware.

112. A computer system according to claim 5, wherein the

system 1ncludes a keyfile for holding first public keying
material.

113. A computer system according to claim 112, wherein
the public keying material held 1in said keyiile 1s crypto-
ographically secured, whereby it 1s computationally infea-
sible to alter any portion of the keyfile, including the public
keying material, without altering the challenge means.

114. A computer system according to claim 113, wherein
said keyfile includes information identifying a customer to
which the software has been supplied.

115. A computer system according to claim 113, wherein
said keyfile includes decoy bits for disguising the public
keying material held therein.

116. A computer system according to claim 113, wherein
at least one of said keyfile and the challenge means and the
software 1ncludes information concerning selective activa-
tion of services of the software.

117. A computer system according to claim 116, wherein
the challenge means validates the response means to at least
partially determine whether a particular facility of the soft-
ware.

118. A computer system according to claim 3, further
comprising:

a plurality of protected 1tems of software each having its
own challenge means, and a single response means
shared between all of said protected 1tems.

119. A computer system according to claim 4, further

comprising;

a plurality of protected 1tems of software each having its
own challenge means, and a single response means
shared between all of said protected 1tems.

120. A computer system according to claim 35, further

comprising:

a plurality of protected items of software each having its
own challenge means, and a single response means
shared between all of said protected 1tems.

121. A computer system according to claim 3, further

comprising:

at least one root certificate used for validating descendant
certificates, the certificates comprising at least a public
keying material for response means.

122. A computer system according to claim 121, wherein
said at least one root certificate 1s at least two root
certificates, one of said root certificates for each of said first
and second response means.

123. A computer system according to claim 4, further
comprising:

at least one root certificate used for validating descendant
certificates, the certificates comprising at least a public
keying material for response means.

6,047,242

27

124. A computer system according to claim 123, wherein
said at least one root certificate 1s at least two root
certificates, one of said root certificates for each of said first
and second response means.

125. A computer system according to claim 5, further
comprising:

at least one root certificate used for validating descendant

certificates, the cerfificates comprising at least a public
keying material for response means.

126. A computer system according to claim 125, wherein
said at least one root cerfificate 1s at least two root
certificates, one of said root certificates for each of said first
and second response means.

127. A computer system according to claim 3, wherein
said protection mechanism is used for one of copy protecting
software and for licensing software.

128. A computer system according to claim 4, wherein
said protection mechanism 1s used for one of copy protecting
software and for licensing software.

129. A computer system according to claim 5, wherein
said protection mechanism 1s used for one of copy protecting
software and for licensing software.

130. A method according to claim 36, wherein the secret
keying material 1s private keying material of a second
asymmetric key pair.

131. A method according to claim 36, wherein the secret
keying material 1s keying material of a symmetric key pair.

132. A method according to claim 36, further comprising
the step of:

interacting via a protocol that resists chosen-plaintext
attacks by a storage system that holds at least some of
the private keying material.
133. A method according to claim 36, further comprising
the step of:

interacting via a protocol that resists adaptive chosen-
plaintext attacks by a storage system that holds at least
some of the private keying material.
134. A method according to claim 36, further comprising
the steps of:

accessing a first private keying material by the first
response means, and

accessing a second private keying material by the second

response means.

135. A method according to claim 36, wherein 1n at least
second challenge means has no access to and no knowledge
about the private keying material stored 1n any of the at least
fwWO response means.

136. A method according to claim 36, further comprising
the steps of:

securcly storing in the at least two response means a
license server’s private key, respectively.
137. A method according to claim 36, further comprising
the steps of:

marking the information using at least one of:

digital signature,
asymmetric coniidentiality, and
probabilistic proof.

138. A method according to claim 135, wheremn said
asymmetric confidentiality 1s used which 1s the Blum-
Goldwasser scheme.

139. A method according to claim 135, wheremn said
probabilistic proof 1s used which 1s a zero knowledge proot
scheme.

10

15

20

25

30

35

40

45

50

55

60

23

140. A method according to claim 135, wherein said
probabilistic proof 1s used which 1s a witness hiding proof
scheme.

141. A method according to claam 36, wherein said
challenge means includes means for 1ssuing a random
challenge, and further comprising the step of:

1ssuing said random challenge.

142. A method according to claim 139, wherein said
means for 1ssuing a random challenge generates a random
challenge by repeatedly timing responses to disk accesses.

143. A method according to claim 139, wherein said
means for generating a random challenge forks new threads
in such a manner as to introduce an additional degree of
randomness 1nto said random challenge by exploiting unpre-
dictabilities 1n the operating system’s scheduler.

144. A method according to claim 139, wherein said
means for generating a random challenge performs a statis-
tical test to determine the number of random bits obtained by
cach of said disk accesses, and means for causing disk

accesses to be repeated until a predetermined number of
random bits has been obtained.

145. A method according to claim 36, further comprising
the step of:

embedding said challenge means 1n said protected 1tem of
software.
146. A method according to claim 36, further comprising
the step of:

using the first public keying material for encrypting the
information by said challenge means.
147. A method according to claim 36, further comprising
the step of:

providing a keyfile for holding the first public keying
material.
148. A method according to claim 145, further comprising
the step of:

cryptographically securing the first public keying material
held in said keyfile, whereby 1t 1s computationally
infeasible to alter any portion of the keyiile, including,
the first public keying material, without altering the
challenge means.

149. A method according to claim 146, wherein said
keyfile includes information identifying the customer to
which the protected item of software has been supplied.

150. A method according to claim 146, wherein said
keyfile includes decoy bits for disguising the first public
keying material held therein.

151. A method according to claim 146, wherein said
keyfile includes information concerning selective activation
of services of the protected item of software.

152. A method according to claim 36, further comprising
the step of:

using at least two root certificates, one for each response
means, respectively, for validating descendant
certificates, the at least two root certificates including at
least a public keying material for each response means,
respectively.
153. A method according to claim 36, further comprising
the step of:

using said system for at least one of copy protecting
software and for licensing software.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

