US006038639A
United States Patent .9 111] Patent Number: 6,038,639
O’Brien et al. 451 Date of Patent: Mar. 14, 2000
[54] DATA FILE STORAGE MANAGEMENT Leffler, Samuel J.; Marshall Kirk McKusick; Michael J.
SYSTEM FOR SNAPSHOT COPY Karels; John S. Quarterman; The Design and Implementa-
OPERATIONS tion of the 4.3BSD UNIX Operating System, Addison—Wes-

ley Publishing Company; 1989; pp. 187-205.
|75] Inventors: John Timothy O’Brien, Louisville; Jay

Stuart Belsan, Nederland; Michael Primary Emmir:ser—]ohn W. Cabeca
Steven Milillo, Louisville, all of Colo. Assistant Examiner—Nasser Moazzami
Attorney, Agent, or Firm—I1mothy R. Schulte; Wayne P.
| 73] Assignee: Storage Technology Corporation, Bailey; James M. Graziano
Louisville, Colo. (57 ABSTRACT
21] Appl. No.: 08/925,787 The present data file storage management system for snap-

shot copy operations maintains a two level mapping table
which enables the data files to be copied using the snapshot

22] Filed: Sep. 9, 1997

ST Inte CL7 oo GO6F 12/00 copy process and only having to update a single correspond-
521 U.S. Cle oo 711/114: 711/206; 711/207; ing mapping table entry when the physical location of the
- 711/208; 711/4 data file 1s changed. The snapshot copy updates to the
(58] Field of Searchcccccocoocovceveun..... 711/206, 207, ~ contents of the first level of the two level mapping table are

711/208. 4. 114: 707/204: 364/236.2 stored on the backend data storage devices to provide a
o ? ’ record of the snapshot copy operation which can be used to

[56] References Cited recover the correct contents of the mapping table. This
record of the snapshot copy operations remains valid even

U.S. PATENT DOCUMENTS though the physical location of a copied data file instance 1s

5,193,184 3/1993 Belsan et al. ..oooooveeerererionreeenenn. 711/4 ~ Subsequently changed. Furthermore, the physical storage
510,866 5/1993 Milligan et al.ovvveeene..... 364/236.2 Space holding the updated portions of the first level of the
5,403,639 4/1995 Belsan et al. .oooevveeververrereen.. 707204 two level mapping table can be managed using techniques
5,410,667 4/1995 Belsan et al. ..ocoevvevervrennrnnnn, 711/114 like those used to manage the physical storage space holding

data file instances. Mapping table updates resulting from the
FOREIGN PAIENT DOCUMENTS snapshot copy operation are delayed until all mapping table
0361 683 A2 4/1990 Furopean Pat. Off. GO6F 11/14 updates resulting from earlier data file write operations have

WO 96/12232 4/1996 WIPOcovvvvvevcvernnn, GO6F 12/16 been completed and any attempt to update the mapping table
to reflect data written to the original data file or the copy data
OTHER PUBLICATIONS

f1le that occurs after initiation of the copy must wait until the

Ritchie, Dennis M.: Ken Thompson; The UNIX Time—Shar- first set of mapping table pointers have been copied.
ing System, Association for Computing Machinery, Inc., pp.

1-8, 1974. 28 Claims, 14 Drawing Sheets
rmo
101-1 DATA STORAGE SUBSYSTEM 105-1
\ 103-1 \
104
| DATA STORAGE *
PROCESSOR | - S f
| , DEVICE
| CONTROLLER
I
107 106 |
I 1\ Rt |
DATAFILE
101-K 103-N COPY PROCESS MANAGEMENT
) | SYSTEM
— |
% I I
PROCESSOR e DATA STORAGE
DEVICE 4
| CACHE 102 |
MEMORY &_
105-1

A
) } OId
o
o
0‘./
&
AHOWIN
Z01 FHOVO

) 39IAd(0

. JOVHOLS V1VC e Y40S$SI00Yd
o

= NALSAS

SSID0¥d AdOD
INTWIOVNYI N-€01 ..
T4 V1VQ LOHSdVNS A0

—

—

—

g\ |

Z

e

~ H3ITTOHINOD

= 301A30 | ¥08s300Md

IOVHOLS V1VC
0L
L-201
N NILSASENS FOVHOLS V1Va -101

001

U.S. Patent

6,033,639

Sheet 2 of 14

¢ Old

553ddadv Vo100

JOQUINN ¥l |
o e e

SOME

|) ML 'G5C IAD

J3UINN 0Bl [

SOV 17

L W] ‘662 1AD

SOV 14

01 ‘662 1AD

ENINE

-
'

Mar. 14, 2000

pug-¥Jeg

U.S. Patent

DY BOT[SOV] €201 Xapu| /S| %&u\\\ h
Ippy B[SOV T3] 220} ¥apul ‘LG, abed SOV huL R &
| h JAQUINN YOBIL[SOV T | YL ‘92 KD
1ppy BOTISOV1] | Xapul /S Shed 4——— BQUNN YOEIL[SOV T3] 0L 921 KO
1ppy B07[SOVT4] 0 Xapu) ‘G abed . E T
/G o0eg INL e —
DY [IPPY BO7[SOVTI| €201 Xapuj ‘| abed
0d [1ppy B07[SOV14| zz01 xapu| ‘| abed
“Uﬂx\ﬂ] R— ——"
04 |1PPY mﬂ SOV 14| | Xapu| immn_f 1553400V V31901 >
1ppy B0 xapu| ‘|, obe JBQUINN %91 [SOVT4| ¥) M1 ‘Lz IAD
0 wa@mh mﬁ,mé Xpu| ‘| obed 1OQUINN Y081 [SOV T4
— 9% i - JOQUINNDPRBILISOVE] | w1 “/7) 1An
JaQUINN ¥OBJL [SOVYTH| o1 ‘221 1AD
0d [IppY MS SOV| €201 Xapu “omm& <« S
M) 07|SOV Xapu} ‘g abed < _
m\ﬂ%ﬁ 2] ccOL BP0 JRQUINOELLISOVT] 7} WL 0 1D
DY [Py BOT[SOV T} | Xapui ‘0 abed < QAN YOBIL[SOV 4| | ML 0 1AD
04 [1ppy B07|SOVT4] 0 Xapu| 0 abeg - JlaquinN yoel [SoOv 14| 0 %L ‘0 1AD
- -
0 abed INL pobed [Ip T—

U.S. Patent Mar. 14, 2000 Sheet 3 of 14 6,038,639

or VIT PAGE INSTANCE 1 | ~or VIT PAGE INSTANCE 2

pe— —— PP, - - E . 1

VIRTUAL TRACK INSTANCE 1 | VIRTUAL TRACK INSTANCE 2 |

VIRTUAL TRACK INSTANCE N OPTIONAL 1CD 1CD ,
or VTT PAGE INSTANCE N PAD ENTRYN | ENTRY N-

(cO | LD LCDENTRY | VTTPAGE LOGICAL CYLINDER
ENTRY 2 ENTRY 1 COUNT ENTRY COUNT | SEQUENCE NUMBER

= — — -/

\ [LoGIcAL
CYLINDER
DIRECTORY

| CD ENTRY TYPE = VIRTUAL TRACK INSTANCE
VIRTUAL TRACK ADDRESS
TRACK NUMBER

LOGICAL ADDRESS
VIRTUAL TRACK INSTANCE LENGTH

FIG. 4

LCD ENTRY TYPE = VTT PAGE INSTANCE
VTT PAGE IDENTIFIER
ORIGINAL LCSN
LOGICAL ADDRESS

FIG. 5

U.S. Patent Mar. 14, 2000 Sheet 4 of 14 6,038,639

RECEIVE COPY o FIG. 6A
SOURCE IDENTITY

602

MODIFIED

SOURCE TRACKS

IN CACHE
?

NO

YES

WRITE MODIFIED ~— 603
SOURCE TRACKS

WRITE NEW LOGICAL
ADDRESSES INTO TNT

ENTRIES

604

RECEIVE COPY
TARGET IDENTITY 605

606

TARGET
TRACKS IN

CACHE
?

NO

YES
REMOVE TARGET TRACKS 807
FROM CACHE
SELECT VTT PAGE 608

U.S. Patent

b o I s A ———

Mar. 14, 2000

Sheet 5 of 14

1S

TARGET
TRACK NUMBER
EQUAL TO NULL

N

6,033,639

611

1

DECREMENT REFERENCE |
COUNT IN TNT ENTRY

COPY TN FROM SOURCE VTT
ENTRY TO TARGET VTT ENTRY

S 613

SOURCE

AN

EQUAL TO NULL
?

YES

TRACK NUMBER NO

.y B

™-612

614

)

INCREMENT REFERENCE
COUNT IN TNT ENTRY

_ |

MORE

_YES 6ARGET TRACKS
INVTT PAGE

N\

v

—

WRITE LOGICAL ADDRESS

618

MORE

VTT PAGES
YES(CONTAINING
TARGET TRACKS

™ ?

NO l\ REPORT SNAPSHOT

WRITE VTT PAGE t ~— 610

OF NEW VTT PAGE INSTANCE 617
INTO VTT PAGE

619

COPY COMPLETE

U.S. Patent Mar. 14, 2000 Sheet 6 of 14 6,038,639
SELECT LOGICAL CYLINDER 701 MARK CURRENT 203
T CYLINDER AS BEING
-~ EMPTY
702

MORE LCD
ENTRIES TO NO

PROCESS

?
FIG. 7A

SELECT NEXT LCD ENTRY

LCD

ENTRY DESCRIBES

VTT PAGE
7

[NO
706

1S
REFERENCE
COUNT

NON-ZERO
I

NO

YES
707

LOG ADDR
INLCD ENTRY =
LOG ADDR IN
TINT ENTRY

NO

YES
708

1S
VTAIN

LCD ENTRY

NULL
?

NO

TN INLCD
ENTRY = TN IN VTT

718

LOG ADDR
IN VIT PAGE =
LOG ADDR IN
TNT ENTRY

NO

YES

709

1S

ENTRY
?

YES

U.S. Patent Mar. 14, 2000 Sheet 7 of 14 6,038,639

VTA IN NEW
LCD = NULL

VTA IN NEW VTT PAGE ID IN
LCD =VTA FROM NEW LCD = VIT PAGE
OLD LCD ID FROM OLD LCD

710

711

L 710
719 TN INNEW LCD = TN ORIGINAL LCSN IN
FROM OLD LCD NEW LCD = ORIGINAL
LCSN FROM OLD LCD
L 720
INSTANCE LENGTH IN
713 NEW LCD = INSTANCE
LENGTH FROM OLD LCD
WRITE TRACK INSTANCE WRITE VTT PAGE INSTANCE
714 TO ANOTHER LOGICAL 721 TO ANOTHER LOGICAL
CYLINDER CYLINDER
WRITE NEW LOG ADDR OF WRITE NEW LOG ADDR OF
715-"1 TRACK INSTANCE TO 722 VTT PAGE INSTANCE TO
NEW LCD ENTRY NEW LCD ENTRY
WRITE NEW LCD ENTRY WRITE NEW LCD ENTRY
716 TO LCD IN LOGICAL 723 TO LCD IN LOGICAL

CYLINDER CYLINDER

UPDATE TNT ENTRY WRITE LOG OF NEW

WITH NEW LOG ADDR OF 724 VTT PAGE INSTANCE INTO
TRACK INSTANCE VIT PAGE

"

717

6,033,639

Sheet 8 of 14

Mar. 14, 2000

U.S. Patent

¢ =4
10 =V1

¢ =04
010=V1

6 Old
2 Q0I43d FNIL
8 = NSO

¢L9 =Nl

AN = VIA
18 =NSJ1 DId0
X'N =0ldIA

0A JONVLSNI
N Mdl LdIA

£A JONVLSNI

XN 30vd LIA

JA JONVLISNI
N Mal LdIA

INL

VIAD D0

_—

¢ =Nl

= N1
¢ =Nl
l =NL

X TAJ N 'A3d
d04 LIA

LA
t# LA

L#LA

INI

8 Ol

L JOId3d JWIL

08 = NSOI

o1

¢A JONVISNI
¢ Ml 1dIA

LA JONVLSNI
L YL LdIA

L TAD D0 1

| T=NL | 7
| IENL |

X TAD ‘N 'A3d
d04 LIA

L Ol

¥ OIa4d JWIL

6,033,639

¢8 = NSO

£8 =NSJ1 91d0

< X'N = QldLA
) .
&~
2 ”
2
= GA JONVLSNI
X'N 39Vd LIA
= 0740 907
—
@\
4..., L
oy *
5)
=
=Nl
— e
2’70=¥Y] ¢ =Nl
- Im =0y w‘.‘ =N
~— - |
&~ AR £ =NL
A 010=VT h
. INL X TAD ‘N "AQ
404 LIA

U.S

LA
G# LN
2:30)
c#LN
C#LA
J#1A

| =0d
¢c0=VY]
¢ =Jd
L1 0=V

| =0
01 0=V

INL

0L Old

¢ JOIdda 4N

¢8 = NSOT

PA JONVLSNI
L MdL 1dIA

A FONVLSN
| N YL LMIA

¢ 1A0 901

.
~<

¢ =Nl
L =NL
¢ =Nl

e=NL

X TAO ‘N 'A3C
d04 LIA

PR1A
%4 W)\
%)
L#LA

6,033,639

Sheet 10 of 14

Mar. 14, 2000

U.S. Patent

¢ =0d

¢0=VI

INI

EL OI4

9 dOId3d JLL

68 = NSO

¢8 =NSO1 OIH0
X'N = {dIdLIA

YT YT

GA JONVLSNI
XN 39vVd LIA

d 1A9 D01

X TA0 ‘N 'A3d
d04 L1A

CELN
CHLA
V#LA

| =0d
0Q00=VI

INL

¢l Old

5 dOlY3d JNIL

78 = NSOI

¢A JONVLSNI
¢ N4l 1dIA

LA JONVLISNI
) Ndl LA

d 1A9 201

¢ =Nl
£=NL
¢=Nl
=Nl
¢ =Nl

t =NL

X TAD ‘N 'A3@
d04 LIA

S#IN
G#IA
12: 3T\
XA
Z AN
L# LA

U.S. Patent Mar. 14, 2000 Sheet 11 of 14 6,038,639

1401

TARGET
OF IN-PROGRESS
SNAPSHOT

COPY
?

NO

YES

TRANSLATE TARGET

DO NOT TRANSLATE
VIRTUAL TRACK ADDRESS

1403
1402 VTA TO SOURCE VTA

FIG. 14

1501

TARGET
OF IN-PROGRESS
SNAPSHOT
COPY
?
DELAY WRITING 1502

VIRTUAL TRACK UNTIL

1503 VTT PAGE IS WRITTEN

SOURCE
OF IN-PROGRESS
SNAPSHOT
COPY
?
DELAY WRITING VIRTUAL 1504

TRACK UNTIL TARGET

VTT PAGE IS WRITTEN

ALLOW WRITING OF
DATA FILE TO PROCEED

1505

FIG. 15

U.S. Patent Mar. 14, 2000 Sheet 12 of 14 6,038,639

FIG. 16A

PROCESSOR TRANSMITS THE VIRTUAL TRACK
1601 INSTANCE AND ITS ASSOCIATED VIRTUAL TRACK
ADDRESS TO THE DATA STORAGE SUBSYSTEM

600 DATA STORAGE SUBSYSTEM STORES
THIS DATA IN CACHE MEMORY
1603 CONTROLLER ALLOCATES
TWO LOGICAL ADDRESSES

CONTROLLER GENERATES TWO
1604 IMMUTABLE NAMES FOR THESE TWO

VIRTUAL TRACK INSTANCES

CONTROLLER DESTAGES THE
1605 TWO VIRTUAL TRACK INSTANCES
FROM THE CACHE MEMORY TO
THE ALLOCATED LOGICAL ADDRESSES

608 CONTROLLER UPDATES
TWO LEVEL MAPPING TABLE
07 PROCESSOR REQUESTS THE CREATION
1 OF A SNAPSHOT COPY OF VIRTUAL TRACKS 1 2

U.S. Patent Mar. 14, 2000 Sheet 13 of 14 6,038,639

—“—_—H—_—____— —“———“““—__

DATA STORAGE SUBSYSTEM ACTIVATES
1608 DATA FILE STORAGE MANAGEMENT SYSTEM
FOR SNAPSHOT COPY OPERATIONS TO CREATE
A SINGLE COPY OF BOTH VIRTUAL TRACKS

DATA FILE STORAGE MANAGEMENT SYSTEM

1609 FOR SNAPSHOT COPY OPERATIONS CREATES
TWO DUPLICATIVE POINTERS TO POINT TO

THE SAME VIRTUAL TRACK INSTANCES

DATA STORAGE SUBSYSTEM CREATES
1611 A NEW VIRTUAL TRACK INSTANCE

1610 PROCESSOR UPDATES OR MODIFIES
VIRTUAL TRACK 1

DATA FILE STORAGE MANAGEMENT SYSTEM
FOR SNAPSHOT COPY OPERATIONS UPDATES
MAPPING TABLE TO REFLECT THE PRESENCE
1612 OF ANEW VIRTUAL TRACK INSTANCE;

GENERATES AN IMMUTABLE NAME FOR
THE NEW VIRTUAL TRACK INSTANCE
& UPDATES THE TWO LEVEL MAPPING TABLE

1613 PROCESSOR REQUESTS CREATION OF A
SNAPSHOT COPY OF VIRTUAL TRACKS 1 AND 2

FIG. 16B

U.S. Patent Mar. 14, 2000 Sheet 14 of 14 6,038,639

1614 /“l DATA FILE STORAGE MANAGEMENT SYSTEM
FOR SNAPSHOT COPY OPERATIONS DUPLICATES
THE TWO IMMUTABLE NAMES THAT WERE USED
FOR THE TWO ORIGINAL VIRTUAL TRACK INSTANCES

DATA FILE STORAGE MANAGEMENT SYSTEM
FOR SNAPSHOT COPY OPERATIONS UPDATES
1615 THE TWO LEVEL MAPPING TABLE TO REFLECT THE
PRESENCE OF NEW VIRTUAL TRACK ADDRESSES

CONTROLLER INITIATES FREE SPACE
COLLECTION PROCESS, COLLECTS
1622—" | LOGICAL CYLINDERS 1 AND A, AND
CREATES LOGICAL CYLINDER D

CONTROLLER INITIATES FREE SPACE
COLLECTION PROCESS, COLLECTS
LOGICAL CYLINDER C, AND

CREATES LOGICAL CYLINDER E |

1623

FIG. 16C

6,033,639

1

DATA FILE STORAGE MANAGEMENT
SYSTEM FOR SNAPSHOT COPY
OPERATIONS

FIELD OF THE INVENTION

This invention relates to a data storage subsystem which
uses a snapshot copy process to copy a data file by dupli-
cating the data file pointer in a mapping table to reference
the original data file, such that the name used to i1dentify the
original data file and the name used to i1dentify the copied
data file are both mapped to the same physical data storage
location. The integrity of the mapping table 1s maintained by
the use of a redundantly stored two level mapping table
which enables a data file to be relocated with only a simple
change to a single enfry in the mapping table, even when
there are multiple data file names which refer to the data file.

Problem

It 1s a problem 1 computer systems and data storage
subsystems to perform the data file copy operation 1 a
manner that minimizes the use of processing resources and
data storage space 1n memory. In the past, data files were
copied 1n their entirety by the processor, such that two exact
copies of the selected data file were resident in memory. This
operation consumed twice the amount of memory for the
storage of two 1dentical copies of the data file and also
required the mtervention of the processor to etfect the copy
of the original data file.

An improvement over this copy process was the data file
snapshot copy process disclosed 1n U.S. Pat. No. 5,410,667,
wherein a dynamically mapped virtual data storage sub-
system stored data files received from a processor in back-

end data storage devices by mapping the processor assigned
data file identifier to a logical address that identifies the
physical storage location of the data. This dynamically
mapped virtual data storage subsystem performed a copy of
a data file by simply creating a duplicate data file pointer 1n
a data file i1dentifier 1n a mapping table to reference the
original data file. In this dynamically mapped virtual data
storage subsystem, the data files are referred to as virtual
tracks and each data file 1s identified by a unique Virtual
Track Address. The use of a mapping table provides the
opportunity to replace the process of copying the entirety of
a data file 1n the data storage devices with a process that
manipulates the contents of the mapping table. A data file
appears to have been copied 1if the name used to identity the
original data file and the name used to 1dentily the copy data
file are both mapped to the same physical data storage
location. This enables the processor to access the data file via
two virtual track addresses while only a single physical copy
of the data file resides on the backend data storage devices
in the data storage subsystem. This process minimizes the
fime required to execute the copy operation and the amount
of memory used since the copy operation 1s carried out by
creating a new pointer to the original data file and does not
require any copying of the data file itself.

A problem with this copy system 1s that only the infor-
mation stored 1in the mapping table 1dentifies the fact that the
data file has been copied. If the mapping table 1s lost or its
contents corrupted, the effect of the data file copy operation
1s lost. This problem can be avoided if the data storage
subsystem stores the data file copy mmformation 1n the data
file 1tself to thereby replicate the mapping table data.
However, such a process requires that the original data file
be updated to reflect each copy operation that 1s executed
and this overhead reduces the benefit of the pointer manipu-

10

15

20

25

30

35

40

45

50

55

60

65

2

lation. Furthermore, any updates or changes to a data file 1n
a log structured file system results 1n the entirety of the data
file being rewritten 1n memory. Therefore, a log structured
file system does not benefit from this replication of the
mapping data.

A further problem with this copy system 1s that the
process of updating mapping table pointers to emulate the
copying of data files requires a finite amount of processing
time. It 1s therefore desirable for the processor to execute
read and write operations during the process of updating the
mapping table pointers, and this interleaved copy operation
1s termed an mcremental copy process. This interleaving of
operations can create instances 1n which the original data file
(source area) 1s being written or the copy data file (target
area) is being read or written before the mapping table
update 1s completed. In this instance, data written to the
original data file before the completion of the mapping table
updates may or may not be reflected in the copy data file.
The copy data file also now occupies its own unique physical
space in memory (target area) since it does not correspond
to the original data file. Similarly, data read from the copy
data file before the completion of the mapping table updates

may be the data file being copied or the data file which was
stored 1n the target arca before the copy operation was
initiated. Furthermore, data written to the copy data file
before the completion of the mapping table updates may or
may not be overwritten by the data file being copied. This
results 1n uncertainty with regard to the correspondence
between the original data file, 1ts modified version and the
copy data file. This incremental copy process 1s therefore
less desirable than a point 1n time copy process where the
identity between the original and copy data files 1s ensured.
With a point 1 time copy process, all data written to the
copy source area before the initiation of the copy operation
will appear 1n the copy target area, all data written to the
copy target arca before the inmitiation of the copy will be
overwritten by data from the copy source area, no data
written to the copy source area after the initiation of the copy
will appear in the copy target area and no data written to the
copy target arca after the 1nitiation of the copy process will
be overwritten by data from the copy source areca. It 1s
therefore desirable to provide an incremental copy process
which interleaves read and write operations with the map-
ping table updates, but also preserves the point in time
snapshot copy semantics to ensure correspondence of the
copy and original data files during the mapping table
updates.

Another problem with the incremental copy process 1s
that this process can bypass security policies that block
unauthorized data access. For example, a certain group of
users may have access to a data file that was previously
stored 1n the memory location now used for the copy data
file. These users can access the copy data file that 1s being
written to this area as part of the incremental copy process
if the mapping table pointers, with 1ts file access
permissions, has not yet been updated. Thus, the access
permission process 15 not synchronized with the copy pro-
cess and users can access files for which they are not
authorized.

Thus, there presently 1s no snapshot copy process avail-
able that both efficiently ensures the reliability of the map-
ping table data and also performs an incremental copy
process which preserves the point in time copy semantics to
ensure copy data file correspondence to the original data file.

Solution

The above described problems are solved and a technical
advance achieved by the present data file storage manage-

6,033,639

3

ment system for snapshot copy operations. This system
maintains a two level mapping table which enables the data
files to be copied using the snapshot copy process but only
requires the update of a single corresponding mapping table
entry when the physical location of the data file instance 1s
changed. The snapshot copy updates to the contents of the
first level of the two level mapping table are stored on the
backend data storage devices to provide a record of the
snapshot copy operation which can be used to recover the
correct contents of the mapping table. This record of the
snapshot copy operation remains valid even though the
physical location of a copied data file 1nstance i1s subse-
quently changed. Furthermore, the physical storage space
holding the updated portions of the first level of the two level
mapping table can be managed using techniques like those
used to manage the physical storage space holding data file
instances. In addition, the synchronization of the snapshot
copy operation with the reading and writing of data to the
original and copy data files 1s maintained by detecting
accesses to the original data file or the copy data file during
the time that the snapshot copy process 1s being executed
and the mapping table 1s being updated. Mapping table
updates resulting from the snapshot copy operation are
delayed until all mapping table updates resulting from
carlier data file write operations have been completed and
any attempt to update the mapping table to reflect data
written to the original data file or the copy data file that
occurs after initiation of the snapshot copy operation must
wait until the first set of mapping table pointers have been
updated.

The present data file storage management system for
snapshot copy operations 1s implemented 1n a dynamically
mapped virtual data storage subsystem to maintain data file
copy 1ntegrity in snapshot copy operations. The data storage
subsystem 1s connected to at least one processor and func-
fions to store data files for the processor in the backend data
storage devices that are part of the data storage subsystem.
The processor assigns a virtual track address to a data file
which 1s transmitted to the data storage subsystem for
storage 1n an allocated physical storage location in the
backend data storage devices. The assignment of a physical
storage location on the backend data storage devices 1is
cffected by a controller contained within the data storage
subsystem, which defines the correspondence between the
processor assigned virtual track address and the logical
address of the stored data file. A mapping table translates the
virtual track address mto a logical address which identifies
the location of the data file on a physical disk drive. The
location of the data file changes as the data storage sub-
system free space collection process moves the data file to
create free space into which new data can be written. It 1s
therefore 1nsufficient to store the translation from a virtual
address to a logical address as a means of preserving a
record of the mapping table updates, since the free space
collection process changes the physical location of the data
file but does not update these translations. The data files
stored on the disk drives must therefore contain information
that 1s independent of the logical address at which the data
file presently bemng copied 1s stored. This enables the disk
stored information to remain valid even though the physical
location of the data file may change over time. This is
accomplished by the use of a two level mapping architec-
ture. The first level of mapping tables maps a virtual address
to an immutable name which 1dentifies a unit of data, such
as a virtual track. The second level of mapping tables maps
the immutable name to a given logical address. The snapshot
copy operation operates on the first level of the mapping

10

15

20

25

30

35

40

45

50

55

60

65

4

table to create multiple copies of the virtual track, thereby
climinating the need to associate with each virtual track
address a mapping table entry which contains a logical
address.

In a snapshot copy operation, to provide the illusion of
there being two independent copies of the data, any write to
one of the copies must leave the other copy unchanged. In
a log structured file system, the writing of data or changes
to a data file results in the data file being written to a different
location 1n memory. If the original data file 1s accessible by
a plurality of virtual addresses, 1t must remain 1n 1ts original
form for access by the remaining users, while the changes to
this data file must be reflected 1n a new copy of the data file
which incorporates these changes. The mapping table must
therefore be updated 1n such a manner that the wvirtual
address of the new data file points to this new copy of the
data file, while the remaiming virtual addresses point to the
original data file location.

The problem of providing point 1n time copy semantics
for the snapshot copy operation 1s solved by completing data
file accesses that are already 1n progress before initiating the
mapping table updates performed by the snapshot copy
process and detecting accesses to the original data file or the
copy file during the time that the snapshot copy process 1s
being executed and the mapping table 1s being updated. The
mapping table updates performed by the snapshot copy
process are delayed until the completion of the data file
accesses that preceded the command that 1nitiated the snap-
shot copy process and any attempt to update the mapping
table to reflect data written to the original data file or the
copy data file that occurs after initiation of the snapshot copy
process must wait until the first set of mapping table pointers
have been updated. This ensures that the data file access
operations behave as though data file access operations
initiated before the snapshot copy operation were completed
before the initiation of the snapshot copy operation and all
data file access operations initiated after the initiation of the
snapshot copy operation were 1nitiated after the completion
of the snapshot copy operation. The use of a fault tolerant
cache allows this write delay to be hidden from the proces-
sor. Any request to read data from the copy data file received
before the mapping table pointers have been updated 1s
redirected to the original data file to ensure that the data file
read operation behaves as though the snapshot copy process
had been completed.

Thus, the present data file storage management system for
snapshot copy operations both efficiently ensures the reli-
ability of the mapping table data and also performs an
incremental copy process which preserves the point in time
copy semantics to ensure copy data file correspondence to
the original data file.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 1llustrates 1n block diagram form the architecture
of a typical data storage subsystem 1n which the present data
file storage management system for snapshot copy opera-
tions 15 1mplemented;

FIG. 2 illustrates 1n block diagram form the implemen-
tation of the two level mapping table as a Virtual Track Table
and a Track Number Table;

FIG. 3 illustrates 1in block diagram form a typical imple-
mentation of a Logical Cylinder;

FIG. 4 illustrates 1 block diagram form a Logical Cyl-
inder Dairectory entry which describes a Virtual Track
Instance;

FIG. § 1llustrates in block diagram form a Logical Cyl-
inder Directory entry which describes a Virtual Track Table
Page Instance;

6,033,639

S

FIGS. 6 A—6B 1llustrate in flow diagram form the opera-
tional steps taken by the controller to perform a snapshot
COPY Process;

FIGS. 7TA-7B 1illustrate in flow diagram form the opera-
tional steps taken by the controller to carry out the free space
collection process;

FIGS. 813 1illustrate in block diagram form the state of
the mapping table at various stages of a snapshot copy
operation;

FIG. 14 illustrates in flow diagram form the operational
steps taken by the controller when screening data file read
requests;

FIG. 15 illustrates in flow diagram form the operational
steps taken by the controller when screening virtual track
write requests; and

FIGS. 16 A—16C 1llustrate in flow diagram form the opera-
fional steps taken by the present data file storage manage-
ment system for snapshot copy operations to store a received
data file and create copies thereotf.

DETAILED DESCRIPTION

The present data file storage management system for
snapshot copy operations maintains a two level mapping
table which enables the data files to be copied using the
snapshot copy process but only requires the update of a
single corresponding mapping table entry when the physical
location of the data file instance 1s changed. The snapshot
copy updates to the contents of the first level of the two level
mapping table are stored on the backend data storage
devices to provide a record of the snapshot copy operation
which can be used to recover the correct contents of the
mapping table. This record of the snapshot copy operation
remains valid even though the physical location of a copied
data file nstance 1s subsequently changed. Furthermore, the
physical storage space holding the updated portions of the
first level of the two level mapping table can be managed
using techniques like those used to manage the physical
storage space holding data file instances. In addition, the
synchronization of the snapshot copy operation with the
reading and writing of data to the original and copy data files
1s maintained by detecting accesses to the original data file
or the copy file during the time that the snapshot copy
process 1s being executed and the mapping table 1s being
updated. Mapping table updates resulting from the snapshot
copy operation are delayed until all mapping table updates
resulting from earlier data file write operations have been
completed and any attempt to update the mapping table to
reflect data written to the original data file or the copy data
file that occurs after initiation of the snapshot copy operation
must wait until the first set of mapping table pointers have
been updated.

Data Storage Subsystem Architecture

The present data file storage management system for
snapshot copy operations 106 1s implemented 1n a dynami-
cally mapped virtual data storage subsystem 100 which 1is
connected to at least one processor 101 and which functions
to store data files for the processor 101 1n the backend data
storage devices 105 that are part of the data storage sub-
system 100. The processor transmits a data file for storage in
the data storage subsystem 100 over a selected one of the
data channels 103 which serve to interconnect the processor
101 with the data storage subsystem 100. The processor 101
assigns a virtual track address to the data file transmitted to
the data storage subsystem 100 and the received data file 1s
stored 1n an allocated physical storage location in the
backend data storage devices 105 contained in the data

5

10

15

20

25

30

35

40

45

50

55

60

65

6

storage subsystem 100. The assignment of a physical storage
location on the backend data storage devices 1035 1s effected
by a controller 104 contained within the data storage sub-
system 100, which defines the correspondence between the
processor 101 assigned virtual track address and the logical
address of the stored data file. This translation of the virtual
track address to the logical address corresponding to the
physical storage location comprises the “dynamically
mapped virtual” aspect of the data storage subsystem 100. A
cache memory 102 1s included 1n the data storage subsystem
100 to provide temporary storage for data files as well as
data used by the controller 104. The present data file storage
management system for snapshot copy operations 106 1is
implemented, m part, 1n the controller 104, with the exact
implementation details of this system being a matter of
engineering choice.

Snapshot Copy Process

The snapshot copy process 107 1s implemented by the use
of a two level mapping architecture. The first level of
mapping maps the processor 101 provided virtual address to
an 1mmutable name which 1dentifies a unit of data, such as
a virtual track. The second level of mapping maps the
immutable name to a given logical address. The snapshot
copy operation operates on the first level of the mapping
table, thereby eliminating the need to associate with each
virtual track address a mapping table entry which contains a
logical address. The two mapping tables used to implement
the two level mapping table, as shown in FIG. 2, are the
Virtual Track Table and the Track Number Table. The Virtual
Track Table 1s mndexed using the processor 101 provided
virtual track address which then provides a unique 1mmu-
table name, comprising a Track Number, that 1s used as the
index for the Track Number Table. The Track Number 1s
valid for the life of the virtual track instance, as determined
by the reference count contained 1n the Track Number Table.
The reference count represents the number of times a virtual
track instance (physical copy of the received data file)
appears as a virtual track to the processor 101.

There are three sources for updates to the Virtual Track
Table: snapshot copy, data file delete, and normal processor
101 write activity. When the processor 101 writes to an
existing virtual track, the data file storage management
system for snapshot copy operations 106 must check the
reference count 1n the Track Number Table entry pointed to
by the Track Number associated with that virtual track
address. If the reference count 1s one, no other virtual tracks
share the storage of the virtual track instance, therefore the
new virtual track instance simply uses the same track
number and the Track Number Table entry i1s updated to
reflect the new logical address for this data file. The old
logical address of the data file now contains invalid data (old
virtual track instance) and the data storage subsystem 100
free space collection process eventually discards this old
virtual track instance. If the processor 101 writes to a virtual
track which has a reference count greater than one or writes
to a track that has never been assigned a track number, a new
track number must be assigned to the new wvirtual track
instance. The data file storage management system for
snapshot copy operations 106 decrements the reference
count for the track number originally associated with the
virtual track address (if any) to remove this virtual track’s
usage of the old virtual track instance. The data file storage
management system for snapshot copy operations 106 then
acquires an unused Track Number, which 1s assigned to the
virtual track’s address 1n the Virtual Track Table. There 1s
one Track Number for each possible virtual track instance
that 1s defined by the present virtual device configuration. If

6,033,639

7

processor 101 1nstructs data storage subsystem 100 to delete
a virtual track, data file management system for snapshot
copy operations 106 decrements the reference count for the
track number associated with the Virtual Track Address (if
any) to remove this virtual track’s usage of the virtual track
instance. Data file management system for snapshot copy

operations 106 then removes the association between the
Virtual Track Address and the Track Number which previ-

ously 1denfified the virtual track instance selected by the
Virtual Track Address.

The beneflits of a two level mapping table are:
1. Snapshot copy operations are performed without hav-

ing to write new instances of the virtual tracks involved
in the copy.

2. Error recovery capability of the mapping table. A copy
1s made of the mapping table Virtual Track Table and
this data 1s written to the disks of the backend data
storage devices 105 as with other data. The mapping
table data 1s thereby recoverable the same as virtual
track instances.

3. The number of copies of a virtual track instance 1s
determined solely by the size of the reference count

field.
Virtual Track Table
FIG. 2 illustrates 1n block diagram form the implemen-
tation of a two level mapping table 1n the present data file
storage management system for snapshot copy operations

106. The first level of the mapping table, comprising the
Virtual Track Table, provides the mapping from the indi-
vidual virtual addresses provided by the processor 101 to an
immutable name which 1s used to index the corresponding
entry 1n the second level of the two level mapping table. The
second level of the mapping table, comprising the Track
Number Table, provides the mapping from the immutable
name stored in the Virtual Track Table to the logical address
which 1dentifies the physical storage location 1n the backend
data storage devices 105 that contains the received virtual
frack instance.

In the example provided herein, the processor 101 stores
virtual tracks, which are associated with a virtual device, 1n
the data storage subsystem 100. The Virtual Track Address,
assigned by processor 101 to a virtual track, identifies a
particular track by assigning the track a virtual cylinder
number and a virtual track number. For each virtual device
defined by the processor 101, the data storage subsystem 100
stores a list of addresses which point to Virtual Track Table
Pages (VTT Pages), each page containing a predetermined
number (for example: 8192) of byte segments of memory.
The physical storage for these Virtual Track Table Pages
may be within cache memory 102, within controller 104,
within data storage devices 105, or a combination of these
locations as a matter of engineering choice.

These Virtual Track Table Pages each contain an entry for
cach virtual track within a 128 cylinder boundary of the
virtual device. The number of Virtual Track Table Pages per
virtual device 1s dependent on the maximum number of
virtual cylinders that are defined in the virtual device’s
configuration. Also contained within each Virtual Track
Table Page 1s data which defines the Logical Address of a
copy of the Virtual Track Table Page comprising a Virtual
Track Table Page Instance which has been written on
backend data storage devices 105 during the snapshot copy
operation. This Logical Address identifies the physical stor-
age location 1n the backend data storage devices 105 that
contains the most recently written instance of the present
Virtual Track Table Page.

Each of the Virtual Track Table Pages comprise a plurality
of table entries, which are indexed by wvirtual cylinder

10

15

20

25

30

35

40

45

50

55

60

65

3

number and virtual track number within the virtual device
(for example: Cyl 0, Trk 0). The table entries comprise a
serics of flags and a Track Number comprising a data entry
of predetermined size, which contains the data required to
access a corresponding entry contained 1n the Track Number
Table. In the example provided herein, the Track Number
comprises a 30 bit entity which contains three segments:

Track Number Partition, Track Number Segment Index,
Track Number Sufh

1x. The Track Number Partition selects a
list of Track Number Table Page addresses and occupies 10
bits. The Track Number Segment Index 1s 10 bits 1n size and
1s the index into the list of Track Number Table Page
addresses for this track partition number. The Track Number
Suifix 1s 10 bits 1n si1ze and comprises the mdex within the
Track Number Table Page. The Track Number therefore
comprises a unique 1dentifier which points to a single entry
in the Track Number Table, which contains data that 1s used
to 1dentity the physical storage location 1n the backend data
storage devices 1035 that contains the received virtual track
Instance.

Track Number Table

FIG. 2 also 1llustrates, in block diagram form, the imple-
mentation of a Track Number Table 1n the present data file
storage management system for snapshot copy operations
106. Conceptually, the Track Number Table 1s a linear table
that maps each Track Number representing a virtual track
instance to a logical address which 1dentifies the physical
storage location holding the virtual track instance on the
backend data storage devices 105. In practice, the Track
Number Table 1s organized much like the Virtual Track
Table, with portions of the table segmented into the Track
Number Table Pages. The Track Number Table 1s mnitially
indexed with the Track Number Partition which selects a list
of Track Number Table Page addresses. The Track Number
Segment Index then selects the appropriate Track Number
Table Page address from the list of Track Number Table
Page addresses. A Track Number Table Page address points
to a Track Number Table Page which contains a predeter-
mined number (for example: 8192) of byte segments of
memory. These Track Number Table Pages each contain an
entry for each virtual track within a 1024 Track Number
boundary. As with the Virtual Track Table, the physical
storage for these Virtual Track Table may be within cache
memory 102, within controller 104, within data storage
devices 105, or a combination of these locations as a matter
of engineering choice.

The particular implementation of the two level mapping
table disclosed herein represents one implementation and
other variations of this scheme can be used for the same
purpose. What 1s of note herein 1s that the Track Number
represents an immutable name for the virtual track 1nstance,
such that the Virtual Track Table can be manipulated by the
present data file storage management system for snapshot
copy operations 106 to perform the snapshot copy function
without regard for the logical address of the virtual track
instance. The logical address of the virtual track instance 1s
managed such that any change 1n the physical storage
location of the virtual track mstance need be recorded only
in a single location in the Track Number Table, regardless of
the number of virtual track addresses associated with the
virtual track instance 1n the Virtual Track Table.
Additional Data Structures

Data storage subsystem 100 formats the data it stores on
backend data storage devices 105 1n a data structure known
as a Logical Cylinder. FIG. 3 illustrates 1n block diagram
form a typical implementation of a Logical Cylinder. The
Logical Cylinder consists of a plurality of Virtual Track

6,033,639

9

Instances and/or VI'T Page Instances and a Logical Cylinder
Directory (LCD). The Logical Cylinder Directory consists
of an LCD entry for each Virtual Track Instance and/or VI'T
Page instance 1n the Logical Cylinder, a count of the total
number of LCD Entries 1n the LCD, a count of those LCD
Entries which describe VI'T Page Instances and a Logical
Cylinder Sequence Number (LCSN). An optional pad area
may separate the Virtual Track Instances and/or VI'T Page
Instances from the Logical Cylinder Directory so as to
ensure that the final portion of the LCD 1s stored at the end
of the regions of the backend data storage devices 105 which
together are used to hold the Logical Cylinder. The LCD
summarizes the contents of the Logical Cylinder. The Logi-
cal Cylinder Sequence Number can be used to determine the
order in which Logical Cylinders were written, enabling the
recovery of the mapping table by repeating the sequence of
mapping table updates which took place when each logical
cylinder was written.

FIG. 4 depicts 1n block diagram form a Logical Cylinder
Directory entry which describes a Virtual Track Instance.
Each Logical Cylinder Directory entry contains a Logical
Cylinder Directory Entry Type, which 1n this case 1dentifies
the entry as being one which describes a Virtual track
Instance. The Virtual Track Address field within this type of
Logical Cylinder Directory entry contains the Virtual Track
Address which processor 101 mitially assigned to the virtual
track when 1t was most recently written or modified. If a
virtual track 1s copied, processor 101 subsequently modifies
the virtual track and then the physical position of the virtual
frack instance 1s changed by the free space collection
process, a NULL value 1s written into the Virtual Track
Address field. This NULL value indicates that even though
the Virtual Track Instance still represents the current data file
assoclated with the Track Number 1n the LCD entry, 1t no
longer represents the current data file associated with the
Virtual Track Address to which the data file was most
recently written.

The Track Number field contains the immutable name by
which this Virtual Track Instance 1s known. The Track
Number contained 1n the Track Number field of this type of
Logical Cylinder Directory entry 1s used to select the entry
in the Track Number Table which contains the logical
address of the Virtual Track Instance described by the
Logical Cylinder Directory entry.

The Logical Address and Virtual Track Instance Length
fields identity where in the Logical Cylinder the Virtual
Track Instance starts and ends.

FIG. 5 depicts 1n block diagram form a Logical Cylinder
Directory entry which describes a Virtual Track Table Page
Instance. The Logical Cylinder Directory Entry Type 1den-
fifies the Logical Cylinder Directory entry as being one
which describes a VIT Page Instance. The VTT Page
Identifier field 1dentifies which VT'T Page 1s contained 1n the
Logical Cylinder. The Original LCSN field contains the
LCSN of the Logical Cylinder in which this instance of the
V1T Page was first written. This will differ from the LCSN
of the Logical Cylinder that currently contains the VI'T Page
Instance when the physical location of the VTT Page
Instance has been changed by the free space collection
process. Preserving the LCSN of the Logical Cylinder in
which the VIT Page Instance was originally written allows
the recovery of the mapping table updates performed by a
snapshot copy operation when the mapping table 1s being
recovered by repeating the sequence of mapping table
updates which took place when each logical cylinder was
written. In the case of the mapping table updates captured in
the VI'T Page Instance, the time at which the mapping table

10

15

20

25

30

35

40

45

50

55

60

65

10

recovery process reads the VIT Page Instance imto the
mapping table 1s determined by the LCSN of the logical
cylinder into which the VI'T Page Instance was originally
written, not the LCSN of the Logical Cylinder in which the
VTT Page Instance 1s currently stored.

FIG. 6 1illustrates 1 flow diagram form the operational
steps taken by controller 104 to carry out snapshot copy
process 107 1 response to processor 101 instructing data
storage subsystem 100 to copy one or more source data files
for which processor 101 has assigned one or more Virtual
Track Addresses (these data files constituting the source
area) to an equal number of target data files which are again
1dentified by processor 101 using one or more Virtual Track
Addresses (the target area). Host processor 101 has the
flexibility to specily a single source data file multiple times
in its definition of the source arca. In this fashion, processor
101 may employ a single snapshot copy command 1ssued to
data storage subsystem 100 to direct the snapshot copy
process 107 depicted 1 FIG. 6 to make a plurality of copies
of a source data file.

At step 601, controller 104 receives the identity of the
copy source data files from processor 101. In preferred
implementation, processor 104 speciiies the data files to be
copied by transmitting over data channel 103 the Virtual
Track Addresses of the data files (also known as virtual
tracks or simply tracks) to be copied. At step 602, controller
104 determines whether modified forms of any of the source
tracks are stored 1n cache memory 102. If such modified
source tracks are found 1n cache memory 102, processing
proceeds with step 603 at which point controller 104 writes
the modified source tracks to backend data storage devices
105. If processor 100 had 1ssued a command to write data to
a source track before the initiation of the snapshot copy
command and this write command has not yet completed,
the processor 101 initiated write to the source track is
allowed to complete before the modified form of the source
track 1s written to backend data storage devices 105. At step
604 controller 104 updates the Track Number Table (TNT)
by writing into the TINT entries which describe the virtual
track 1nstances written at step 603 the logical addresses of
the locations within backend data storage devices 105 at
which the modified track instances were stored. At the
completion of step 604 or if no modified source tracks were
found 1n cache memory 102 at step 602, processing proceeds
with step 605.

At step 603, controller 104 receives the identity of the
copy target data files from processor 101. As 1n the case of
rece1ving the identity of the copy source data files, processor
104 transmits over data channel 103 the Virtual Track
Addresses of the copy target data files. The copy target data
files are the ones to which the copy source data files will
appear to have been copied as soon as the specification of the
copy target data files has been received by controller 104.

At step 606, controller 104 determines whether any of the
target tracks are stored 1in cache memory 102. If target tracks
are found 1n cache memory 102, processing proceeds with
step 607 at which point controller 104 removes the target
tracks from cache memory 102. If processor 100 had 1ssued
a command to read data from a target track before the
initiation of the snapshot copy command and this read
command has not yet completed, the target track read
command 1s allowed to complete before the target track
being read 1s removed from cache memory 102. The target
tracks removed from cache memory 102 represent the data
files which processor 101 had written into the copy target
arca prior to the initiation of the snapshot copy operation.
Removing these target tracks from cache memory 102

6,033,639

11

ensures that 1f processor 101 reads a target data file from data
storage subsystem 100 after it has transmitted the definition
of the target arca to storage subsystem 100, processor 101
will not receive the data files which were stored 1n the target
data area prior to the snapshot copy operation. At the
completion of step 607 or if no target tracks were found 1n
cache memory 102 at step 606, processing proceeds with

step 608.

At step 608, controller 104 chooses a Virtual Track Table
Page which contains one or more entries that are selected by
target Virtual Track Addresses. Step 608 1s the first step in
a program loop consisting of steps 608 through 618. Each
iteration of this program loop carries out the steps required
to update a Virtual Track Table Page and store the Virtual
Track Table Page on backend data storage devices 1035.

At step 609, controller 104 chooses a Virtual Track Table
entry within the currently selected Virtual Track Table Page
which maps a target Virtual Track Address to a Track
Number. Step 609 1s the first step 1n a program loop
consisting of steps 609 through 615. Each iteration of this
program loop carries out the steps required to update a
Virtual Track Table entry so that the Virtual Track Table
entry maps a target Virtual Track Address to the same Track
Number as the Track Number which represents the source
data file which 1s being copied to the target Virtual Track
Address.

At step 610, controller 104 determines whether the Track
Number contained 1n the selected Virtual Track Table entry
contains a NULL value. If no data has ever been written to
the data file described by the selected Virtual Track Table
entry or processor 101 has instructed data storage subsystem
100 to delete the data file described by the selected Virtual
Track Table entry, the Track Number field in the Virtual
Track Table entry will contain a NULL value. If the Track
Number stored in the selected Virtual Track Table entry is
found not to be a NULL value, processing proceeds with
step 611. At step 611, controller 104 decrements the refer-
ence count in the TNT entry selected by the Track Number
stored 1n the selected Virtual Track Table entry. This indi-
cates that there 1s now one less Virtual Track Address by
which the data file described by the TNT enfry can be
accessed. If the resulting reference count 1s zero, 1t indicates
that the data file described by the TNT entry can no longer
be accessed by any Virtual Track Address. In this case, the
virtual track instance described by the TNT entry i1s no
longer needed and the Track Number which selects the TN'T
entry 1s free to be used to describe some new data file to
which processor 101 will assign some other Virtual Track
Address. At the completion of step 611 or if the Track
Number 1n the currently selected Virtual Track Table entry
was found to be NULL at step 610, processing proceeds with
step 612.

At step 612, controller 104 copies the Track Number from
the Virtual Track Table entry selected by the source Virtual
Track Address to the Virtual Track Table entry selected by
the current target Virtual Track Address. This will cause
processor 101 reads from either the source Virtual Track
Address or the Target Virtual Address to read the wvirtual
frack instance described by the Track Number which was
just copied.

At step 613, controller 104 determines whether the source
Track Number which was just copied 1s a NULL value. If the
source Track Number 1s found not to be a NULL wvalue,
processing proceeds with step 614. At step 614, controller
104 increments the reference count i1n the TNT entry
selected by the source Track Number. This indicates that
there 1s now one more Virtual Track Address by which the

10

15

20

25

30

35

40

45

50

55

60

65

12

data file described by the TNT entry can be accessed. At the
completion of Step 614 or if the source Track Number was
found to be NULL at step 613, processing proceeds with step
615.

At step 615, controller 104 determines whether there are
additional target tracks within the currently selected Virtual
Track Table Page which have not yet been processed. If there
1s an as yet unprocessed target track which selects a Virtual
Track Table entry within the current Virtual Track Table
Page, processing proceeds with step 609. Otherwise, pro-
cessing proceeds with step 616.

At step 616, controller 104 writes the contents of the
current Virtual Track Table Page to the backend data storage
devices 105. This creates a new Virtual Track Table Page
Instance within a Logical Cylinder. When writing a Virtual
Track Table Page Instance to a Logical Cylinder, controller
104 also writes a Virtual Track Table Page Instance Logical
Cylinder Directory Entry to the Logical Cylinder Directory
within the Logical Cylinder. This Logical Cylinder Direc-
tory entry describes the Virtual Track Table Page instance
stored within the Logical Cylinder and contains the same
Logical Cylinder Sequence Number which 1s contained in
the Logical Cylinder Directory. The LCSN field of the
Virtual Track Table Page Instance Logical Cylinder Direc-
tory Entry identifies the Logical Cylinder in which the
Virtual Track Table Page mstance was first written so that
even 1f the Virtual Track Table Page instance 1s subsequently
moved to a different logical cylinder, the mapping table can
be recovered by repeating the sequence of mapping table
updates which took place when each logical cylinder was
written.

At step 617, controller 104 writes into the Logical
Address field of the Virtual Track Table Page within the
mapping table which was written at step 616 the logical
address at which the Virtual Track Table Page instance was
written at step 616.

At step 618, controller 104 determines whether there are
additional Virtual Track Table Pages which contain entries
that are selected by target tracks that have not yet been
processed. If there 1s an additional Virtual Track Table page
contaming a Virtual Track Table entry which describes an as
yet unprocessed target track, processing proceeds with step
608. Otherwise, processing proceeds with step 619.

At step 619, controller 104 transmits status information
over data channel 103 indicative of the completion of the
snapshot copy operation.

FIG. 7 illustrates 1n flow diagram form the operational
steps taken by controller 104 to carry out the free space
collection process which 1s a part of data file management
system for snapshot copy operations 106. The free space
collection process moves virtual track mstances and Virtual
Track Table Page instances from one logical cylinder to
another 1n order to create completely empty logical cylinders
into which new virtual track instances and Virtual Track
Table Page instances can be written. When the free space
collection process encounters a virtual track instance or a
Virtual Track Table Page instance, 1t determines whether
controller 104 has written an updated virtual track instance
or an updated Virtual Track Table Page instance to some
other physical location on backend data storage devices 1035.
When a more recent instance exists on backend data storage
devices 1035, the free space collection process does not copy
the now obsolete 1nstance to a different logical cylinder. In
this way, the free space collection process discards virtual
track instances which are now obsolete because processor
101 has updated the data file contained within the virtual
track instance and controller 104 has written this updated

6,033,639

13

data file to a different location 1n backend data storage
devices 105. Similarly, the free space collection process
discards Virtual Track Table Page instances which are now
obsolete because a later snapshot copy operation has caused
a more recent instance of the Virtual Track Table Page to be
written to a different location 1n backend data storage
devices 105. Thus, it 1s the free space collection process
which limits the amount of memory contained in backend
data storage devices 105 which 1s consumed holding the
record of snapshot copy operations. This record of snapshot
copy operations may be used by controller 104 to allow it to
recover the mapping table. The free space collection process
discards obsolete Virtual Track Table page mstances, result-
ing 1n there being no need to store more Virtual Track Table
page mstances on backend data storage devices 105 than the
number of Virtual Track Table Pages within the mapping
table. Without some process for discarding the record of an
old snapshot copy operation, an unbounded amount of
memory within backend data storage devices 105 would be
consumed as processor 101 1ssues an unlimited number of
snapshot copy commands.

At step 701, controller 104 selects a logical cylinder
which will have its contents moved to a different logical
cylinder so that the selected logical cylinder will be made
empty and available for holding new virtual track instances
and Virtual Track Table Page instances.

At step 702, controller 104 determines whether there 1s
another Logical Cylinder Directory entry in the Logical
Cylinder Directory for the selected logical cylinder which
has not yet been processed. Step 702 1s the first step 1n a
program loop consisting of steps 702 through 724. Each
iteration of this program loop carries out the steps required
to determine whether the virtual track instance or the Virtual
Track Table Page instance described by the currently
selected Logical Cylinder Directory entry should be moved
to another logical cylinder. If the instance should be moved
to another logical cylinder, the steps within this program
loop write the mstance to the other logical cylinder, creating
a Logical Cylinder Directory entry which will be written to
the other logical cylinder. If, at step 702, controller 104
determines that there are no more Logical Cylinder Direc-
tory entries 1n this logical cylinder which have yet to be
processed, processing proceeds with step 703. Step 703
marks the currently selected logical cylinder as being empty
so that the memory arca within data storage devices 105
which holds the logical cylinder 1s available for being used
o store new virtual track instances and new Virtual Track
Table Page 1nstances. When step 703 completes, processing
proceeds with step 701.

If controller 104 determines at step 702 that there 1s an
additional Logical Cylinder Directory entry within this
logical cylinder which 1s yet to be processed, processing
proceeds with step 704. At step 704, controller 104 sclects
the next Logical Cylinder Directory entry to be processed.
Then at step 7035, controller 104 examines the Logical
Cylinder Directory Entry Type field of the Logical Cylinder
Directory entry to determine whether the Logical Cylinder
Directory entry describes a virtual track mnstance or a Virtual
Track Table Page instance. If the Logical Cylinder Directory
entry describes a virtual track istance, processing proceeds
with step 706.

At step 706, controller 104 determines whether the ref-
erence count field of the TNT entry selected by the Track
Number 1n the Logical Cylinder Directory entry is non-zero.
If the reference count field contains the value zero, the
virtual track instance described by this Logical Cylinder
Directory entry 1s no longer needed because processor 101

10

15

20

25

30

35

40

45

50

55

60

65

14

has mstructed data storage subsystem 100 to delete the data
file contained 1n the virtual track instance selected by the
Track Number in the current Logical Cylinder Directory
entry. In this case, there 1s no need to preserve the virtual
track instance described by the current Logical Cylinder
Directory entry by writing the virtual track instance to
another logical cylinder so processing proceeds with step
702. If controller 104 determines at step 706 that the
reference count field of the TNT entry selected by the Track
Number in the Logical Cylinder Directory entry in non-zero,
processing proceeds with step 707.

At step 707, controller 104 determines whether the logical
address contained 1n the TNT entry selected by the Track
Number 1n the current Logical Cylinder Directory entry 1s
equal to the logical address of wvirtual track instance
described by the current Logical Cylinder Directory entry. It
the two logical addresses are not equal, the virtual track
instance described by the current Logical Cylinder Directory
entry 1s obsolete because a more recent instance of this
virtual track 1s stored at a different logical address than the
virtual track instance described by this Logical Cylinder
Directory entry. In this case, there 1s no need to preserve the
virtual track instance described by the current Logical
Cylinder Directory entry by writing the virtual track instance
to another logical cylinder so processing proceeds with step
702. If controller 104 determines at step 707 that the two
logical addresses are equal, the wvirtual track instance
described by the current Logical Cylinder Directory entry 1s
the most recent 1nstance of this virtual track that i1s stored
within backend data storage devices 105 and processing
proceeds with step 708.

At step 708, controller 104 determines whether the Virtual
Track Address field in the current Logical Cylinder Direc-
tory entry contains a NULL value. If the Virtual Track
Address field does not contain a NULL value, processing
proceeds with step 709 where controller 104 determines
whether or not the Track Number 1n the Virtual Track Table
entry selected by the Virtual Track Address field of the
current Logical Cylinder Directory entry i1s equal to the
Track Number contained in the current Logical Cylinder
Directory entry. If the two track numbers are not equal,
processor 101 has updated the data file stored within the
virtual track instance but because the data file had been
copied to another Virtual Track Address, a new Track
Number was assigned to represent the modified data file. In
this case, the virtual track instance described by the current
Logical Cylinder Directory entry can no longer be accessed
using the Virtual Track Address at which it was originally
written by processor 101 and processing proceeds with step
710. Also, it controller 104 determines at step 708 that the
Virtual Track Address in the current Logical Cylinder Direc-
tory entry already contains a NULL value, processing pro-
ceeds with step 710.

At step 710, controller 104 writes a NULL value into the
Virtual Track Address field of the new Logical Cylinder
Directory entry which will describe the current virtual track
instance when 1t 1s written to another logical cylinder.

If controller 104 determines at step 709 that the Virtual
Track Address 1n the current Logical Cylinder Directory
entry 1s mapped to the same Track Number as 1s stored 1n the
Track Number field of the current Logical Cylinder Direc-
tory enfry. processing proceeds with step 711. At step 711,
controller 104 copies the Virtual Track Address stored 1n the
current Logical Cylinder Directory entry into the new Logi-
cal Cylinder Directory entry.

After the completion of either step 710 or step 711,
processing proceeds with step 712. At step 712, controller

6,033,639

15

104 copies the Track Number from the current Logical
Cylinder Directory entry to the new Logical Cylinder Direc-
tory entry. Then, at step 713, controller 104 copies the virtual
frack instance length from the current Logical Cylinder
Directory entry to the new Logical Cylinder Directory entry.

At step 714, controller 104 writes to another logical
cylinder within backend data storage devices 105 the virtual
frack 1nstance described by the current Logical Cylinder
Directory entry. At step 715, controller 104 writes into the
Logical Address field of the new Logical Cylinder Directory
entry the logical address at which the virtual track instance
was written at step 714. At step 716, controller 104 writes
the new Logical Cylinder Directory entry into the Logical
Cylinder Directory contained in the logical cylinder to
which the virtual track istance was written at step 714.

At step 717, controller 104 writes 1nto the TNT entry
selected by the Track Number contained in the current
Logical Cylinder Directory entry the logical address at
which the virtual track instance was written at step 714. This
completes the process of moving the virtual track instance
described by the current Logical Cylinder Directory entry to
another logical cylinder. After the completion of step 717,
processing proceeds with step 702.

If controller 104 determines at step 705 that the current
Logical Cylinder Directory entry describes a Virtual Track
Table Page 1nstance processing proceeds with step 718.

At step 718, controller 104 uses the Virtual Track Table
Page Identifier in the current Logical Cylinder Directory
entry to select a Virtual Track Table Page within the mapping
table. Controller 104 then reads the Logical Address field
from this Virtual Track Table page within the mapping table
and compares this logical address to the logical address of
the Virtual Track Table Page instance described by the
current Logical Cylinder Directory entry. If the two logical
addresses are not equal, the Virtual Track Table Page
instance described by the current Logical Cylinder Directory
entry 1s obsolete because a later snapshot copy operation
caused a more recent 1nstance of this Virtual Track Table
Page to be stored at a different logical address than the
Virtual Track Table Page instance described by this Logical
Cylinder Directory entry. In this case, there 1s no need to
preserve the Virtual Track Table Page instance described by
the current Logical Cylinder Directory entry by writing the
Virtual Track Table Page 1nstance to another logical cylinder
so processing proceeds with step 702. If controller 104
determines at step 718 that the two logical addresses are
equal, the Virtual Track Table Page instance described by the
current Logical Cylinder Directory entry 1s the most recent
instance of this Virtual Track Table Page that 1s stored within
backend data storage devices 105 and processing proceeds
with step 719.

At step 719, controller 104 copies the Virtual Track Table
Page Identifier stored in the current Logical Cylinder Direc-
tory entry into the new Logical Cylinder Directory entry
which will describe the current Virtual Track Table Page
instance when 1t 1s written to another logical cylinder.

At step 720, controller 104 copies the contents of the
Original LCSN field from the current Logical Cylinder
Directory entry to the new Logical Cylinder Directory entry.

At step 721, controller 104 writes to another logical
cylinder within backend data storage devices 1035 the Virtual
Track Table Page mnstance described by the current Logical
Cylinder Directory entry. At step 722, controller 104 writes
into the Logical Address field of the new Logical Cylinder
Directory entry the logical address at which the Virtual
Track Table Page instance was written at step 721. At step
723, controller 104 writes the new Logical Cylinder Direc-

10

15

20

25

30

35

40

45

50

55

60

65

16

tory entry into the Logical Cylinder Directory contained 1n
the logical cylinder to which the Virtual Track Table Page
instance was written at step 721.

At step 724, controller 104 writes mto the Logical
Address field of the Virtual Track Table Page within the
mapping table selected by the Virtual Track Table Page
Identifier field of the current Logical Cylinder Directory
entry the logical address at which the Virtual Track Table
Page 1nstance was written at step 721. This completes the
process of moving the Virtual Track Table Page instance
described by the current Logical Cylinder Directory entry to
another logical cylinder. After the completion of step 724,
processing proceeds with step 702.

The free space collection process 1S an ongoing pProcess
within data file management system for snapshot copy
operations 106. The free space collection process will pause
at step 701 1f there are no logical cylinders which contain
obsolete virtual track instances or obsolete Virtual Track
Table Page instances or 1f the free space collection process
determines that data storage subsystem 100 would not
benelit from the immediate collection of the free space from
an additional logical cylinder. The details of this aspect of
the behavior of the free space collection process are not
relevant to the understanding of the present invention.
Virtual Track Management Example

FIGS. 8—13 1llustrate, 1 block diagram form, the state of
the mapping table and particular logical cylinders at various
stages of a snapshot copy operation, which 1s also illustrated
in flow diagram form 1n FIGS. 16 A—16C. This represents a
chronological view of a set of virtual tracks and their
assoclated data structures from their conception through a
number of typical snapshot copy and data storage subsystem
100 operations. For the purposes of simplicity of
description, the representation for the various entries in the
two level mapping table and the logical cylinders are sim-
plified to thereby 1illustrate the concepts of the present
system and avoid the complexity of the implementation
details.

The virtual track is created within the processor 101 as
part of the processor 101°s data management function. The
processor 101 1s connected to and views the dynamically
mapped virtual data storage subsystem 100 as a particular
size and architecture data storage device. Therefore, when
the processor 101 wishes to store a virtual track 1nstance on
the “data storage device” embodied by the data storage
subsystem 100, the processor 101 formats the virtual track
instance and assigns it a particular virtual track address. The
processor 101 then transmits the virtual track instance and
its associated virtual track address to the data storage
subsystem 100 at step 1601 over a selected one of the data
channels 103. In the present example, 1t 1s assumed that the
processor 101 creates two virtual track instances for storage
on the data storage subsystem 100. The data storage sub-
system 100, upon receipt of these two virtual track 1nstances
at step 1602, stores this data in cache memory 102 and the
controller 104 allocates two logical addresses which 1dentily
two physical data storage locations on the backend data
storage devices 105 for the storage of the two received
virtual track instances at step 1603. The controller 104 also
generates two 1immutable names for these two virtual track
instances at step 1604, with the immutable names compris-
ing Track Numbers as described above. The controller 104
then writes the two virtual track instances from the cache
memory 102 to the allocated logical addresses where the
data 1s stored at step 16035. The controller 104 at step 1605
then updates the two level mapping table to reflect the
presence of these two virtual track mstances on the backend

6,033,639

17

data storage devices 105. The mapping table entries com-
prise two entries 1n the Virtual Track Table VT'T for Device
N, Cylinder X, with the first entry VI#1 having an entry of
TN=1 and the second entry VI#2 having an entry TN=2.
These Track Numbers (TN=1, TN=2) are shortened versions
of the actual numbers but serve to illustrate the operation of
the mapping table. The Track Numbers point to correspond-
ing entries 1n the Track Number Table TINT, wherein data
indicative of the logical address and reference count for the
two virtual track instances are stored. The logical address
data for the first and second wvirtual track instances are
[LA=0.1.0 and LA=0.1.1, respectively, indicative of the
physical storage locations of logical device 0, logical cyl-
inder 1, sectors 0, 1, respectively. Since these two virtual
frack instances are newly crated and no other virtual track
addresses point to them, the reference counts RC are set to
1 to indicate that a single virtual track address points to the
respective virtual track instances. Thus, as shown 1n FIG. 8,
at the end of time period 1, the processor 101 has created two
virtual tracks, virtual track 1 and wvirtual track 2, both of
which are stored 1n the allocated logical addresses compris-
ing logical cylinder 1 of logical device O, sectors 0 and 1.
The Logical Cylinder Directory LCD for logical cylinder 1
contains data entries that identify the existence of virtual
tracks 1, 2. The logical address entry in the Virtual Track
Table Page contains a NULL value, since no snapshot copies
have been made mvolving virtual tracks 1n the page.

At step 1607, the processor 101 requests the creation of a
snapshot copy of virtual tracks 1, 2 and has assigned Virtual
Track Addresses of N.X.3 and N.X.4 respectively to these
two copies of the original virtual track instances. The Virtual
Track addresses N.X.3 and N.X.4 are indicative of virtual
device N, cylinder X. tracks 3, 4, respectively. In response
to receipt of commands from the processor 101 received
over a selected data channel 103, of step 1608 the data
storage subsystem 100 activates the data file storage man-
agement system for snapshot copy operations 106 to create
a single copy of both virtual tracks. This 1s accomplished at
step 1609 by simply creating two duplicative pointers to
point to the same virtual track instances. The Virtual Track
Table entries VI#1, VI#2 are copied to Virtual Track Table
entries V1#3, VI#4, on the same virtual cylinder, respec-
fively. At the end of time period 2, the reference counts RC
in the Track Number Table have been incremented to 2, to
indicate that there are two Virtual Track Table entries V1#1,
VT1#3, and VT1#2, V1#4 pointing to the virtual track
instances V1, V2 respectively, stored in the physical
memory. These two virtual track mstances are identified as
V1, V2 only for the purposes of this illustration to allow later
instances of the same virtual tracks to be 1dentified uniquely.
In 1ts operation, data file storage management system for
snapshot copy operations 106 does not utilize or store names
such as V1, V2 to uniquely 1dentily particular virtual track
instances. Instead, the particular virtual track instance which
represents the data most recently written to a Virtual Track
Address 1s 1dentified by the Track Number which points to
the virtual track imstance. The data for mapping a Virtual
Track Address to a Track Number 1s stored in the Virtual
Track Table entries VI#3, VT#4, with the entries stored
therein comprising the Track Numbers TN=1, TN=2 as with
the entries for the original Virtual Track Addresses, since the
virtual tracks are unmodified. A Virtual Track Table Page
Logical Cylinder Directory entry 1s made in the Logical
Cylinder Directory. This entry i1n the Logical Cylinder
Directory contains the identity of the Virtual Track Table
Page and the Logical Cylinder Sequence Number assigned
to the current instance of logical cylinder A. Also, the Virtual

5

10

15

20

25

30

35

40

45

50

55

60

65

138

Track Table Page that contains the virtual tracks that were
affected by the snapshot copy operation 1s written to the
logical cylinder 1n the same manner as virtual track
instances. The backup of the Virtual Track Table Page
contained within logical cylinder A allows a mapping table
recovery process to reconstruct the mapping tables without
requiring that either the copied virtual track instances be
rewritten or the complete history of all copy operations be
maintained on backend data storage devices 105. The
backup of an entire page 1s a fundamental concept 1n the two
level mapping table design in that 1t simplifies the free space
collection process by maintaining the snapshot copy history
in Virtual Track Table Page size units rather than virtual
track size units. Therefore, only the most recent version of
that page needs to be maintained on the backend data storage
devices 105 even though multiple copies within that page
may have occurred.

At step 1610, the processor 101 updates or modified
virtual track 1 1n cylinder X of device N and the modified
version of virtual track 1 must now be embodied 1n a
physical virtual track instance which differs from the origi-
nal virtual track instance of virtual track 1 to reflect these
changes. The data storage subsystem 100 creates a new
virtual track instance at step 1611 by applying the modifi-
cations received from processor 101 to a physical copy of
the original virtual track instance V1, resulting in a new
virtual track instance which, for purposes for illustrating this
example, 1s 1dentified 1n FIG. 10 as virtual track instance V4.
The data storage subsystem 100 writes the modified version
of virtual track instance V1, as virtual track instance V4,
onto the backend data storage device location logical device
0, cylinder 2, sector 2 (LA=0.2.2) and must update the
mapping table to reflect the presence of a new virtual track
instance at step 1612. In particular, the data file storage
management system for snapshot copy operations 105 gen-
erates an immutable name for the new virtual track instance
with the immutable name comprising a Track Number as
described above. The data file storage management system
for snapshot copy operations 106 then updates the two level
mapping table to reflect the presence of this new virtual track
instance on the backend data storage devices 105. The
mapping table entries comprise an entry in the Virtual Track
Table for virtual device N, cylinder X, with the first entry
V'T#1 being converted to an entry of TN=3 to reflect the fact
that the current virtual track instance selected by this Virtual
Track Address 1s a modified version of the original virtual
track instance but the original virtual track instance must be
preserved because 1t can be accessed by a different Virtual
Track Address. Virtual track mstance V1 no longer repre-
sents the contents of virtual track 1 with the original data at
sector 0 now being pointed to only by the Track Number
Table entry that 1s pointed to by the Virtual Track Table entry
for virtual track 3. At the end of time period 3, the reference
count 1 the Track Number Table entry has been decre-
mented and a new entry (3) has been added to the Track
Number Table. The Logical Cylinder Directory for logical
cylinder 2 contains a normal virtual track entry for the
updated virtual track.

At step 1613, the processor 101 requests the creation of a
snapshot copy, with virtual tracks 1 and 2 being copied to
virtual tracks 5 and 6 respectively, of the same cylinder. The
controller 104 responds to receipt of this snapshot copy
request by creating two new entries in the mapping table to
reflect the snapshot copy of two virtual tracks. In particular,
the data file storage management system for snapshot copy
operations 106 duplicates the two immutable names that
were used for the two original virtual track 1nstances at step

6,033,639

19

1614, with the immutable names comprising the two origi-
nally created Track Numbers TN=2 and TN=3 as described
above. The data file management system for snapshot copy
106 then updates the two level mapping table to reflect the
association of these new virtual track addresses with the
already existing virtual track instances at step 1616. The
mapping table entries comprise two entries 1n the Virtual
Track Table for device N, cylinder X, with the first entry
VT#5 being populated with an entry of TN=3 to reflect the
fact that the data stored at this virtual track address 1s the
data which resulted from the modifications written to virtual
track 1 at step 1610 above and the second entry, VI#6 being
populated with an entry of TN=2 to reflect the fact that this
virtual track address selects the virtual track instance which
was originally written to virtual track 2. The reference
counts for the Track Number Table entries 2 and 3 have been
incremented to RC=3 and RC=2 to retlect the current
number of Virtual Track Table entries which now point to
these Track Number Table entries and thence to the virtual
track instances V4 and V2 which reside on the backend data
storage devices 105. A Virtual Track Table Logical Cylinder
Directory entry 1s made in the Logical Cylinder Directory
which contains the 1dentify of the Virtual Track Table Page
and the Logical Cylinder Sequence Number assigned to the
current 1nstance of logical cylinder C. The Virtual Track
Table Page that contamns the virtual tracks which were
affected by the snapshot copy 1s written to logical cylinder
C. FIG. 11 illustrates the state of the mapping table at the end
of time period 4 at which point the data originally written to
virtual track 1 at step 1601 now exists as a single instance
of data addressed only by virtual track 3 as a consequence
of the first snapshot copy that was performed in this
sequence and the subsequent writing or modified data to
virtual track 1.

At step 1622, the controller 1nitiates the free space col-
lection process which collects logical cylinders 1 and A,
creating logical cylinder D, which contains all of the col-
lected area. Logical cylinder 1 contains Logical Cylinder
directory entries that define the creation of virtual track
instances V1 and V2 which processor 101 originally wrote
to Virtual Track Addresses N.X.1 and N.X.2. Logical cyl-
inder A contains a Logical Cylinder Directory entry which
describes the Virtual Track Table Page that defines the first
snapshot copy operation which was performed at step 1609.
For virtual track entries, the free space collection process
uses the track number that 1s contained within the Logical
Cylinder Directory entry to index the Track Number Table
to determine whether the current virtual track instance 1s the
most recent. In this case, at the start of time period 5, the
Track Number Table entries for track numbers 1 and 2 each
contain a non-zero reference count and the logical addresses
within each of these two entries 1n the Track Number Table
arec equal to the logical addresses of the virtual track
instances V1 and V2 within logical cylinder 1. Therefore,
the two virtual track instances V1 and V2 can each be
accessed by one or more Virtual Track Addresses and these
two virtual track 1nstances are still the most recent instances
associated with track numbers 1 and 2 respectively. The free
space collection process copies the virtual track instances
V1 and V2 from logical cylinder 1 to logical cylinder D so
that logical cylinder 1 can be used to hold new virtual track
instances and Virtual Track Table Page instances. Before
writing the Logical Cylinder Directory entries describing,
virtual track instances V1 and V2 to the Logical Cylinder
Directory within logical cylinder D, the free space collection
process determines whether these virtual track instances are
still selected when processor 101 accesses the Virtual Track

10

15

20

25

30

35

40

45

50

55

60

65

20

Address at which the virtual track instances were originally
written. In the case of virtual track instance V1, the {ree
space collection process uses the Virtual Track Address
X.N.1 from the Logical Cylinder Directory entry for virtual
track mstance V1 to index the Virtual Track Table. This
Virtual Track Address selects Virtual Track Table entry
VT#1 which, at step 1622 contains TN=3. The track number
in Virtual Track Table entry VT#1 1s no longer equal to the
track number 1n the Virtual Track Instance Logical Cylinder
Directory entry for virtual track instance V1. Therefore, the
free space collection process writes a NULL value into the
Virtual Track Address field of the new Logical Cylinder
Directory entry for virtual track instance V1 that 1t writes to
logical cylinder D. However, 1n the case of virtual track
instance V2, the Virtual Track Table entry VI#2 selected by
Virtual Track Address X.N.2 still contains TN=2. Therefore,
the free space collection process copies the virtual track
address X.N.2 from the Logical Cylinder Directory entry for
virtual track mstance V12 1n logical cylinder 1 into the new
Logical Cylinder Directory entry for virtual track instance
VT2 m logical cylinder D. The free space collection process
then writes 1nto the Track Number Table entries for Track
Numbers 1, 2 the logical addresses 1dentifying the physical
locations within logical cylinder D of virtual track instances
V1, V2, respectively.

For Virtual Track Table Page Logical Cylinder Directory
entries, the free space collection process uses the Virtual
Track Table Page 1dentifier contained in the entry to index
into the Virtual Track Table to find the logical address of the
most recent instance of the Virtual Track Table Page which
was written to backend data storage devices 103. The logical
address read from the selected Virtual Track Table Page 1s
compared to the logical address of the Virtual Track Table
Page 1nstance described by the Virtual Track Table Page
Logical Cylinder Directory entry. If the two logical
addresses are not equal, then the Virtual Track Table Page
described by the current Logical Cylinder Directory entry 1s
not the most recent 1nstance stored on backend data storage
devices 105 and the Virtual Track Table Page instance
described by the current Logical Cylinder Directory entry
can be discarded. The logical address contained in the
Virtual Track Table Page 1identifies a more recent instance of
this Virtual Track Table Page which was written to backend
data storage devices 103 as a consequence of a later snapshot
copy operation. Thus, the free space collection process does
not copy the Virtual Track Table Page instance V4 from
logical cylinder C to logical cylinder D. FIG. 12 shows the
contents of the mapping table and the contents of logical
cylinder D at the end of time period 5.

At step 1623, the controller 104 1nitiates the free space
collection process which collects logical cylinder C, creating
logical cylinder E, which contains all of the collected data.
Logical Cylinder C contains a Logical Cylinder Directory
entry which describes the Virtual Track Table Page that
defines the second snapshot copy operation which was
performed by steps 1614 and 1615. The free space collection
process uses the Virtual Track Table Page identifier con-
tained 1n the Virtual Track Table Page Logical Cylinder
Directory entry to index into the Virtual Track Table to find
the logical address of the most recent instance of the Virtual
Track Table Page which was written to backend data storage
device 1035. In this case, the logical address stored in the
Virtual Track Table Page 1s equal to the logical address of the
Virtual Track Table Page instance described by the Logical
Cylinder Directory 1n logical cylinder C. This means that the
Virtual Track Table Page instance 1s the most recent instance
of this Virtual Track Table Page stored on backend data

6,033,639

21

storage devices 105 so the free space collection process
copies the Virtual Track Table Page instance from logical
cylinder C to logical cylinder E. In the new Virtual Track
Table Page Logical Cylinder Directory Entry written to
logical cylinder E by the free space collection process, the
Original Logical Cylinder Sequence Number field contains
a copy of the Original Logical Cylinder Sequence Number
field from the Logical Cylinder Directory entry from logical
cylinder C. Should 1t become necessary to recover the
mapping table using the Logical Cylinder Directory entries,
the Virtual Track Table Page Logical Cylinder Directory
entry will indicate that the appropriate time to apply the
Virtual Track Table Page mstance which the free space
collection process copied to logical cylinder E 1s after
applying the mapping table updates resulting from the
writing of logical cylinders with a logical Cylinder Sequence
Number less than 83 and before applying updates resulting
from logical cylinders with a Logical Cylinder Sequence
Number greater than 83. Now that the Virtual Track Table
Page instance has been copied from logical cylinder C to
logical cylinder E, the free space collection process writes
the logical address of the newly written Virtual Track Table
Page 1nstance into the Virtual Track Table Page.
Maintenance of Point in Time Copy Semantics

For a snapshot copy operation to provide point in time
copy semantics, the data read and write operations 1nitiated
by processors 101-1 through 101-K must behave as though
the data files being copied using the snapshot copy method
were copied at the instant the snapshot copy command 1s
received by data storage subsystem 100. To provide this
behavior, controller 104 within data storage subsystem 100
carries out steps to ensure that data access operations
performed by any processor 101 are completed before the
mapping table updates resulting from the snapshot copy
operation are performed. Steps 601 through 607 1n FIG. 6
ensure that all data written to the copy source area before the
initiation of the copy operation will appear 1n the copy target
arca, all data written to the copy target area before the
initiation of the copy will be overwritten by data from the
copy source area and all data being read from the target arca
before the 1nitiation of the copy operation will not reflect the
results of the copy operation.

Another aspect of maintaining point in time copy seman-
fics 1s ensuring that no data written to the copy source arca
after the 1nitiation of the copy will appear 1n the copy target
arca, no data written to the copy target area after the
initiation of the copy will be overwritten by data from the
copy source area and all data read from the copy target arca
after the mitiation of the copy will reflect the completion of
the copy operation and will not result 1n reading the data
previously stored in the target area. FIGS. 14 and 15 depict
the steps performed by data file management system for
snapshot copy operations 106 within controller 104 to
achieve this second aspect of maintaining point in time copy
semantics.

FIG. 14 1llustrates 1n flow diagram form the operational
steps taken by controller 104 when screening data file read
requests recerved from processor 101 by data storage sub-
system 100. At step 1401, controller 104 determines whether
the data file read request specifies a Virtual Track Address
which 1s the target of an in-progress snapshot copy opera-
tion. If the data file read request 1s for a virtual track which
1s the target of an in-progress snapshot copy operation and
the update of the Virtual Track Table entry selected by the
data file’s Virtual Track Address has not yet been performed
by the snapshot copy process, processing proceeds with step

1402.

10

15

20

25

30

35

40

45

50

55

60

65

22

At step 1402, controller 104 translates the Virtual Track
Address of the data file which 1s the target of the snapshot
copy operation to the Virtual Track Address of the data file
which 1s being copied. This translated Virtual Track Address
1s then used for all subsequent operational steps required to
complete the processor 101 read file request. In this way,
data storage subsystem 100 transfers the copy source data
f1le to processor 101 1n response to the data file read request.
Thus, the data file received by processor 101 1n response to
a data file read request that 1s received by data storage
subsystem 100 while a snapshot copy operation 1s 1n
progress 1n the same as the data file that would have been
received by processor 101 in response to the data file read
request had the snapshot copy operation been performed
instantly.

Alternatively, if controller 104 determines at step 1401
that either the data file read request 1s not for a copy target
data file or the snapshot copy operation has already copied
the Track Number describing the source data file to the
Virtual Track Table entry which describes the target data file,
processing proceeds with step 1403. The step 1403, proces-
sor 104 uses the Virtual Track Address specified by proces-
sor 101 1n the read file request for all subsequent operational
steps required to complete the read file request. These
subsequent operational steps are the usual steps performed
by a dynamically mapped virtual storage subsystem.

FIG. 15 1llustrates in flow diagram form the operational
steps taken by controller 104 when screening virtual track
write requests which are generated by data file management
system for snapshot copy operations 106 for the purpose of
writing new or modified virtual tracks to backend data
storage devices 105. At step 1501, controller 104 determines
whether the virtual track 1s the target of an in-progress
snapshot copy operation and the Virtual Track Table entry
selected by the Virtual Track Address of the virtual track
being written 1s within a Virtual Track Table Page which the
snapshot copy operation has not yet written to backend data
storage devices 103. If this 1s so, processing proceeds with
step 1502. At step 1502, controller 104 delays the writing of
the virtual track until the m-progress snapshot copy opera-
tion has written the Virtual Track Table Page that contains
the Virtual Track Table entry selected by the Virtual Track
Address assigned by processor 101 when 1t wrote or modi-
fied the wvirtual track. This prevents any modified data
written by processor 101 to the data file contained 1n the
virtual track subsequent to the initiation of the snapshot copy
operation from being overwritten by the data file contained
in the source virtual track that 1s being copied.

If controller 104 determines at step 1501 that the writing,
of the virtual track did not have to be delayed due to the track
being the target of an in-progress snapshot copy, processing
proceeds with step 1503. At step 1503, controller 104
determines whether the virtual track 1s the source of an
In-progress snapshot copy operation and the Virtual Track
Table entry selected by the Virtual Track Address of the
virtual track to which the current virtual track i1s being
copied 1s within a Virtual Track Table Page which the
snapshot copy operation has not yet written to backend data
storage devices 103. If this 1s so, processing proceeds with
step 1504. At step 1504, controller 104 delays the writing of
the virtual track until the m-progress snapshot copy opera-

tion has written the Virtual Track Table Page that contains
the Virtual Track Table entry selected by the Virtual Track
Address of the virtual track to which the current virtual track
1s being copied. This prevents any modified data written by
processor 101 to the data file contained 1n the virtual track
subsequent to the initiation of the snapshot copy operation

6,033,639

23

from being copied to the data file which 1s the target of the
snapshot copy operation.

If controller 104 determines at step 1503 that the writing
of the virtual track did not have to be delayed due to the track
being the source of an 1n-progress snapshot copy, processing,
proceeds with step 1505. At step 1505, controller 104 allows
the write of the virtual track instance to proceed without
delay.

Summary

Thus, the present data file storage management system for
snapshot copy operations 106 both efficiently ensures the
reliability of the mapping table data and also performs an
incremental copy process which preserves the point in time
copy semantics to ensure copy data file correspondence to
the original data file. This system maintains a two level
mapping table which enables the data files to be copied using
the snapshot copy process 107 and only having to update a
single corresponding mapping table entry when the physical
location of the data file 1s changed. In addition, the synchro-
nization of the snapshot copy operation with the reading and
writing of data to the original and copy data files 1s main-
tained by detecting accesses to the original data file or the
copy file during the time that the snapshot copy process 107
1s being executed and the mapping table 1s being updated.

What 1s claimed:

1. A data file storage management system for use 1n a
dynamically mapped virtual data storage subsystem to main-
tain data file integrity in copy operations, wherein said
dynamically mapped virtual data storage subsystem com-
prises a set of data storage devices for storage of data files,
said data file copy management system comprising:

a first mapping table which associates a virtual address
assigned to a received data file with an 1mmutable
identification;

a second mapping table which associates said immutable
identification to a logical address which i1dentifies a

physical storage location on a one of said data storage
devices for storage of said received data file;

means for storing said received data file as indicated by
said logical address;

means, responsive to relocation of said stored data file, for
updating said second mapping table to reflect relocation
of said stored data file exclusive of updating said first
mapping table; and

means, responsive to a request to copy said received data
file to a second virtual address, for updating said first
mapping table to associate said second virtual address
with said immutable 1dentification.

2. The system of claim 1 further comprising:

means for storing a copy of said first mapping table on at
least one of said data storage devices.
3. The system of claim 2 further comprising:

means, responsive to loss of said first mapping table, for

retrieving said copy of said first mapping table.

4. The system of claim 1, wherein said second mapping
table comprises a count field associated with each 1mmu-
table identification, said count field indicative of the number
of virtual addresses corresponding to said immutable 1den-
tification.

5. The system of claim 1 further comprising:

means, responsive to a request to modity said received
data file during processing of said request to copy said
received data file to a second wvirtual address, for
delaying storing of the modified form of said received
data file on said data storage devices.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

6. The system of claim 1 further comprising:

means for storing said first mapping table on at least one
of said data storage devices.

7. The system of claim 1 further comprising:

means for storing a portion of said first mapping table that
contains updated data on at least one of said data
storage devices.

8. The system of claim 7, further comprising;:

means, responsive to said means for storing said portion
of said first mapping table, for updating said {first
mapping table to reflect location of said stored portion
of said first mapping table.

9. The system of claim 8, further comprising;:

means, responsive to relocation of said stored portion of
said first mapping table, for updating said first mapping,
table to reflect said relocation of said stored portion of
said first mapping table.

10. The system of claim 11 further comprising:

means, responsive to receipt of a request to modity said
received data file during processing of said request to
copy said recerved data file to a second virtual address,
for delaying the storing of the modified form of said
received data file on said data storage devices until after
said modified portion of said first mapping table has
been stored on said at least one data storage device.

11. The system of claim 1 further comprising;:

means for maintaining a list of unused immutable 1den-
tifications;

means, responsive to receipt of a data file having a virtual
address, for selecting a one of said unused 1mmutable
identifications; and

means for associating said selected unused immutable
identification with said received data file.

12. The system of claim 1 further comprising:

means, responsive to a request to read a data file associ-
ated with said second virtual address during processing,
of said copy request and prior to association of said
immutable 1dentification with said second wvirtual
address, for reading said data file from said physical
storage location 1dentified by said logical address asso-
clated with said immutable 1dentification in lieu of
reading data file from physical storage location identi-
fied by logical address associated with immutable 1den-
tification currently associlated with said second virtual
address.

13. The system of claim 1, further comprising:

means, responsive to said request to copy said received
data file, for determining 1f a portion of said received
data file 1s located 1n a cache memory and has been
modified, and 1if so, storing said modified portion to at
least one of said data storage devices and updating said
second mapping table to reflect logical address of said
stored modified portion.

14. The system of claim 1, further comprising:

means, responsive to said request to copy said received
data file, for determining 1f a portion of a data file
assoclated with said second virtual address 1s stored 1n
a cache memory, and 1if so, flushing said portion from

said cache memory.
15. A method of data file storage management for use 1n
a dynamically mapped virtual data storage subsystem to
maintain data file integrity in copy operations, wherein said
dynamically mapped virtual data storage subsystem com-
prises a set of data storage devices for storage of data files,
said data file copy management method comprising the steps

of:

6,033,639

25

storing data 1n a first mapping table to associate a virtual
address assigned to a received data file with an 1mmu-
table identification;

storing data 1n a second mapping table to associate said
immutable idenfification to a logical address which
identifies a physical storage location on a one of said

data storage devices for storage of said received data
file;

storing said received data file as indicated by said logical
address;

updating, 1n response to relocation of said stored data file,
said second mapping table to reflect relocation of said
stored data file exclusive of updating said first mapping
table; and

updating, 1n response to a request to copy said received
data file to a second virtual address, said first mapping
table to associate said second virtual address with said
immutable 1dentification.

16. The method of claim 15 further comprising the step of:

storing a copy of said first mapping table on at least one
of said data storage devices.
17. The method of claim 16 further comprising the step of:

retrieving, 1n response to loss of said first mapping table,
said copy of said first mapping table.
18. The method of claim 15 further comprising the step of:

updating, 1n response to said step of updating said first
mapping table, data indicative of the number of virtual
track addresses corresponding to said immutable 1den-
tification.

19. The method of claim 15 further comprising the step of:

delaying, 1n response to a request to modity said received
data file during processing of said request to copy said
received data file to a second virtual address, storing of
the modified form of said received data file on at least
one of said data storage devices.

20. The method of claim 15 further comprising the step of:

storing said first mapping table on at least one of said data
storage devices.
21. The method of claim 15 further comprising the step of:

storing a portion of said first mapping table that contains
updated data on at least one of said data storage
devices.

22. The method of claim 21, further comprising the step

of:

updating, 1n response to said step of storing said portion
of said first mapping table, said first mapping table to
reflect location of said stored portion of said first
mapping table.

23. The method of claim 22, further comprising the step
of:

5

10

15

20

25

30

35

40

45

50

26

updating, 1n response to relocation of said stored portion
of said first mapping table, said first mapping table to
reflect said relocation of said stored portion of said first
mapping table.

24. The method of claim 21 further comprising the step of:

delaying, 1n response to receipt of a request to modily said
received data file during processing of said request to
copy said received data file to a second virtual address,

the storing of the modified form of said received data

file on said data storage devices until after said modi-

fied portion of said first mapping table has been stored
on said at least one data storage device.

25. The method of claim 15 further comprising the steps

maintaining a list of unused 1immutable 1dentifications;

selecting, 1n response to receipt of a data file having a
virtual address, a one of said unused immutable 1den-
tifications; and

associating said selected unused immutable 1dentification
with said received data file.

26. The method of claim 15 further comprising the step of:

reading, 1n response to a request to read a data file
assoclated with said second virtual address during
processing of said copy request and prior to association
of said immutable identification with said second vir-
tual address, said data file from said physical storage
location 1dentified by said logical address associated
with said immutable identification 1n lieu of reading
data file from physical storage location identified by
logical address associated with immutable 1dentifica-
tion currently associated with said second wvirtual
address.

27. The method of claim 15, further comprising the steps

determining, 1n response to said request to copy said
received data file, if a portion of said received data file
1s located 1n a cache memory and has been modified,
and 1t so, storing said modified portion to at least one
of said data storage devices and updating said second
mapping table to reflect logical address of said stored
modified portion.

28. The method of claim 15, further comprising the steps

determining, 1n response to said request to copy said
received data file, 1f a portion of a data file associated
with said second virtual address 1s stored in a cache
memory, and i1f so, flushing said portion from said
cache memory.

	Front Page
	Drawings
	Specification
	Claims

