US006035386A

United States Patent .9 111] Patent Number: 6,035,386
Christie et al. 451 Date of Patent: *Mar. 7, 2000
[54] PROGRAM COUNTER UPDATLE 0380854 A3 8/1990 FEuropean Pat. Off. .
MECHANISM 0381471 A2 8/1990 FEuropean Pat. Off. .
0454984 A2 11/1991 European Pat. Off. .
[75] Inventors: David S. Christie; Scott A. White; 045;32?43% 1;? ggé 6“{‘;[3;9% Pa;. Off. . GOGF 9/38
. . 1 nie NEgUOIN
%Ehael D. Goddard, all of Austin, 0301546 1/1993 WIPO .
' 03 20505 10/1993 WIPO .
: : : 03 20507 10/1993 WIPO .
73] Assignee: Advanced Micro Devices, Inc., Del. 93/20507 :0?:993 WIPO
| *] Notice: This patent 1s subject to a terminal dis- OTHER PUBLICATTIONS
laimer.
e IBM Technical Disclosure Bulletin, vol. 32, No. 5A, Oct.
| 1989, pp. 33-36, XP 000048827, “Roll-Back Interrupt
[21] Appl. No.: 09/037,436 Method for Out—O1—Order Execution of System Programs”™.
[22] Filed: Feb. 10, 1998 Toyohiko Yoshida, et al., “The Approach to Multiple
Instruction Execution 1in the GMICRO/400 Processor”,
Related U.S. Application Data [EEE, ©1991, pp. 185-195.
Michael Slater, “AMD’s K5 Designed to Outrun Pentium”,
[63] Continuation of application No. 08/716,764, Sep. 23, 1996, Microprocessor Report, Oct. 24, 1994, pp. 1, 6—11.
Pat. No. 5,799,162, which 1s a continuation of application Gurindar S. Sohi, “Instruction Issue Logic for High—Perfor-
No. 08/252,030; Jun. 1, 1994, Pat. No. 5,559,975. mance, Interruptible, Multiple Functional Unit, Pipelined
51] Int. CL7 e, GO6F 9/26 Computers”, IEEE Transactions on Computers, vol. 39, No.
52] USe Clu e 712/205 3, ©1990, pp. 349-359.
58] Field of Search 712/200, 214, (List continued on next page.)
712/205, 41
Primary FExaminer—David Y. Eng
[506] References Cited Attorney, Agent, or Firm—Skjerven, Morrill, MacPherson,
US PATENT DOCUMENTS Franklin & Friel, L.L.P; Michael P. Adams; Sam G.
e Campbell, III
3,781,808 12/1973 Ahearn et al.coovveeenennnneee. 340/172.5
3,875,391 4/1975 Shapiro et al. ...ooovrvveenn. 364/736.05 O] ABSTRACT
4,044,338 8/1977 WOIL ..covrriiee e 365/49 A hich includ fetch (owit
4155119 5/1979 DeWard et al. wovveveveerererrennn., 711/206 Processor WIICL EIIUes a 1C1C Progratil counter clicul
4179737 12/1979 KIM oo 395/588 and an execute program counter circuit is disclosed. The
4200,912 4/1980 Harrington et al. ..oo.eveeeeenn. 395/742 fetch program counter circuit provides less significant pro-
4,384,343 5/1983 Morganticccoeceveriveerenennnne. 395/800 oram counter value bits 1n addition to a fetch program
4,453,212 6/1984 Gaithercccccevvevvevrvervevennne. 395/400 counter value. The execute program counter circuit gener-
4,727,481 2/1988 AUGUIlle w.coovrvvrrinrrrririrne 395/775 ates an execute program counter value using the less sig-
4,736,288 4/1988 Shintani et al.ovevveeeennnnnen.. 364/200 nificant program counter value bits. The execute program
(List continued on next page.) counter circuit .receives a plurality of }ess Signiﬁi::an‘t Pro-
oram counter bit values and selects a single less significant
FOREIGN PATENT DOCUMENTS program counter bit value thus generating execute program
0180 005 5/1986 European Pat. Off. counter values 1n a multiple pipeline processor.
0259095 A2 3/1988 European Pat. Off. .
0 363 222 4/1990 European Pat. Off. . S Claims, 13 Drawing Sheets
| &I:%'g I:t:arrg.r: - Other I jl;;m L;Fé:la‘.a
VIR VO O A N A A fﬁm
E _%}f r E\JL/L?_ COMTROL
e

ELECUTE P
1308

N

6,035,336

Page 2

U.S. PATENT DOCUMENTS 5,651,125 7/1997 Witt et al. veveeveeeeeeeeeeennn 395/394
4.807,115 2/1989 TOIME ..covveerreieiieeeeiireeenrerenns 364/200 OTHER PUBLICATTONS
4,853,889 8/1989 Ditzel et al. wovevevevevererererenenn., 395/584 |
5,056,006 10/1991 Archarya et al. .oooerveeerene.e. 395/425 lom R. Halfhill, “AMD K6 'Takes on Intel P6”, BYTE
5,131,086 7/1992 Circello et al. .oveveveevevererernn. 395/375 magazine, Jan. 1996, pp. 67-08, 70 and 72.
5,133,062 7/1992 Joshi et al. ...coooevveverrrenenneennne 395/500 IEEE Computer Society Press, “1988 IEEE International
5,136,697 8/1992 Johnsonevviivveneennnne 395/375 Conference on Computer Design: VISI 1n Computers &
5?1555816 10/1992 KORMN ovvveeiniinieeveveee, 395/375 PI'OC@'SSOI'S,” 1988? Pp. 06—101.
gﬁig?gg? 13? ggg glbwli o gggggg IEEE Micro No. 4, “Implementing Precise Interruptions in
. 5 1 I'ﬁy CL], crrriiieeitttnressssnsnssnnns : . a9 :
5226126 7/1993 McFarland et al. .o 395/375 gépi;ned RISC Processors,” Los Alamitos, CA, 1993, pp.
5,226,130 7/1993 F Eale oo, 395/375 A . . .
5.261.063 112993 KOMD. o 395?375 IEEE Micro No. 3, “Architecture of the Pentium Micropro-
5274790 12/1993 SUZUKL oevvovevereerereeerersereresenen. 305/425 cessor,” Los Alamitos, CA, 1993, pp. 11-21. |
5.325,499 6/1994 Kummer et al. woooeveveverevnene... 395/425 IEEE Transactions on Computers, No. 5, “Implementing
5,367,650 11/1994 Sharangpani et al. 395/375 Precise Interrupts 1in Pipelined Processors,” New York, NY,
5,390,355 2/1995 HOTSE weveveeeeeieieeeeeeeeeeeeeeeeene. 395/800 1988, pp. 562-573.
5?404?470 4/995 MlYﬂkﬁ 395/375 IEEE Computer Society? The 11th Annual International
5,450,560 9/:995 Br@ges et al. e, 395/410 Symposium on Computer Architecture, “Instruction Issue
5,454,117 9/1995 Puziol et al. .eooocrrcvverserrnn 395/800 Logic For Pipelined Supercomputers,” Ann Arbor, Michi-
5.465.373 11/1995 Kahle et al. .oveveervevererereererann, 395/800

1 s gan, 1984, pp. 110-118.
5,467,473 11/1995 Kahle et al. .ccovvvervevvnnieeeinnnnnen. 395/800 FEE C Soct The 14th Annual I . al
5,471,593 11/1995 Branigin e...oooeeeeeveveeveereereeeen 395/375 omputer Society, lhe 14t nual Internationa
5546551 8/1996 KOND wevevevevereererererereeeeer s, 395/375 Symposium on Computer Architecture, “WISQ: A Restart-
5,568,624 10/1996 Sites et al. .evveeeeereeereeeeennn.. 395/375 able Architecture Using Queues,” Pittsburgh, PA, 1987, pp.
5,574,928 11/1996 White et al. ..covvvvvvevvevnerinnnnnene. 395/800 290-299.

6,035,386

Sheet 1 of 13

Mar. 7, 2000

U.S. Patent

SNg 1394V.1X

¢l
3114 43151934

- i

NOILLVOOTIV 1SNOD

801

300030d NOILONYLSNI

901
3N3AN0 31A4

124]!
JHOVO NOILONYLSNI

€01 201

Vi 9Ol

6,035,386

Sheet 2 of 13

Mar. 7, 2000

U.S. Patent

1 Ol

 Ol3 01 A3

dl Ol

21
1IND

INJWNIOVNVIA
AHOWINW

sNg avi

¢ot
OVl
TVOISAHd

o0 SN TYNHALX3

AHJONAWN
TVYNGd1X3

091

sng

0S1
JHOVO

mm

ofld ANVH3d0 a3Y

SN MOVE31lIdM

eel abl 1>
4HS %
ads LY oNvY
mm_
m
- 8l

LINN JOV4a31NI

|

FN_.

6,035,386

Sheet 3 of 13

Mar. 7, 2000

U.S. Patent

08}

PLl

SNOILONYLSNI

¢ Il

3N3N0
31A9 OL

d0SS300NS

|

]

]

|

|

|

| 81

“ 0L1

l

i

" J- TOH1INOD JHOVD

_ OVv1

“ 3401 HV3INIT

|

" oF

T HO134

300030344 SS3HAAv

L1

b0 _.\ oF

Jd
13048V1

1041NOD
HONVHE

avi

U.S. Patent Mar. 7, 2000 Sheet 4 of 13 6,035,386

FROM -— —_ »10
BRANCH SEC DECODE PC BRANCH
242 — SECTION
IDECCNTL 230
CONTROL ROM 240 !
| SHARED
23 MROMS3 273 ﬂ NEo
O
- 5 o |
~ | ICOMMON3 263 oy
a- | LPC3
— & | —> ROP
FASTCONV3 253 DISP3
212
" MROM2 272 o~
. 0
ICOMMON2 262 i
' : 5
! | o .
FASTCONV2 272 I—' | DISP2
FROM -
A 211 MROM1 271 [
QUEUE é \‘ _ 5
| S —>{_| IicomMoNz261 > TY
| LPC1
_ o ————»ROP
| FASTCONV2 252 DISP
210 |
_ MROMO 270 o I |
&
Yo
ICOMMONO 260 > |_>
a; ' | LPCO
— aC — »ROP
FASTCONVO250 > DISPO

ETSHAF{ED
6

FIG. 3

m_m_on_.q 1ig-v

............:..__|||
|
|
|
_
“ Lct
|
|
_
_
_
:
_
:
_
_
_
_
|
_
|
|
|
|
_
|
|

6,035,386

—ss | L

e
o ' \
S /== ===
= _ _
Te 0ct " |
: S
= _ :
e _
_ _
_ _
_ _
:)
= _ “
= _ _
~ R D N _l |
r~)
R Ol ~ OOHLVIod o]
=
OID0TNVYIS 90¢ -
N3N0 14415
31A4 ¢0t

3IN3NO 119 anvA (0:1€) 3N3aND 2d VIONINDIS-NON

00

U.S. Patent

il e

Jd 13904V1

6,035,386

Sheet 6 of 13

Mar. 7, 2000

U.S. Patent

¥ "Old OL A3

q

v "Bid

SIAXNN 31vOOTIV HOLVdSId

_
_
_
_
_ IIIIIIIIII

N_.m ﬂ“““"___
d4ddyv 1ig-¥

~”_ma:_m‘-___==

- ____=—.

dv 9Did

20103135 AHHVYO

€-00d1 €-0AHYHVD (0:2)DdAa (:18)Ddd

U.S. Patent Mar. 7, 2000 Sheet 7 of 13

RESULT
2 RESULT

DEST

REG REORDER

ROP CBO%';;ESL REORDER BUFFER

CNTL

ki ARRAY 402
STATUS 400 A
RBO RB!1 RB2 RB3
A-RDPTR _
REORDER BUFFER

B-RDPTR OPERAND BUS DRIVER

404

FIG. 5

6,035,386

WRITEBACK

WRITE
POINTER

A OPERAND

A OP TAG

B OPERAND

B OP TAG

6,035,386

Sheet 8 of 13

Mar. 7, 2000

U.S. Patent

90

€1 SO €l dddd b dOdd | €10d1
¢l SO ¢l d4dd ¢t dOdd | 21Od1
L SO L1 H4dd 11 dO0dd | HOd1
01 SO 0l Hddd 0L dOdd | 010d7
6 SO 6 Hddd 6 dOd 60d1
850 8 H4dd 8 dO0d4 80d 1

=

vid
tld
¢ld
1%

Ld

ﬂ-
0.

td
cd

S1 11NS3Y
PL L1NS3Y
€l L'INS3Y
¢t 11NS3d
L L1NS3Y
O 11NS3d
6 L1NS34
8 L1NS3Y
L 11NS3Y
9 11NS3Y
§11NS34
¥ L1NS3Y
€ L'1NS3d
¢ 11NS3d
L L1NS3d
0 11NS34

\&
> o —— == — = “ T T~ ——— - ——————— e B e
3._..,, | E
T |
o |
<. _ 129
o 100 JuswaIou|
TOHINOD _mn_n_: uar)

Ill

o
y—
TR
O I _——— e dmle e mar e ey ol S et s s e R el e EEy e T R M ol o e e ms s o Ty S - el
-~ F
o 8@ 209
=
o p

Jd Usje] SNJelS 19b1e |
—
—~ uaxe | snielg 10b1e |
@\ |
- - 9%% -E-_!—-!- 10 0d -H
= ueye SNjeIS 19618
~
> i ﬁg— el 240 _!— 0m024 | oueg

usjel SNJejS 10b1e |

ik bk s .
I S S -
T BN el .

og| o

U.S. Patent

6,035,386

Sheet 10 of 13

Mar. 7, 2000

U.S. Patent

. b4

£ 'Ol4 O AN

d/ 9l
865 /4
(0:¢) (¥:1€)
Od 31NO3X3 0d 31NJ3X3
\ 143

U.S. Patent Mar. 7, 2000 Sheet 11 of 13 6,035,386

RESULT/ RETIRE/

FETCH ~ DECODE1 DECODE2 EXECUTE ' pog L
FETCH ' '
PC(31:0) [- - --
syTeQFLL | L /0
BYTEQ E : i
e | x|
DECODE | .0 | ...} .. 4= BN S S
DECODE § i [§ §
PC(31:0) -~ S e R | SRR R) R foeeee
RWPTRS || N G D S . D
ACCESSROB/ | i ’ ’ § §
REGF ENTRYS """E """""""" ot -;? ---------- SEEEEE SRR EEEEEE

ISSUE E § § _ § §
ROPS [" [i S A T CD(------ R (At deeon-s

RESULT § § § § N [
BUS ARB R I I Tt e ---E ______
ROB WRITE 5 5 ; N ‘ 5

RESULT “""E'"""“'“E'""' """E"“'" "“-?“ ey ol RERE

ROB TAG 5 ; ; 5 1

FORWARD [~ wir= oot oo b odi e o ; -----------
REGF WRITE/ § § § E : :

RETIRE [~~~ i N e
executepc | o L+ | b | X

6,035,386

Sheet 12 of 13

Mar. 7, 2000

U.S. Patent

(0:€)92N
J713 LAl

874

0

(0:€) N
=RENPN:]

)74

0

(0:€)90N
J731A8|

|1|L-_| B m- I
_ _

_
_ ——— R _

_ §3qav 18 ———
-—— uuuuuuu _

I
I
l
I
I
I
&L,
L
O
E '
-
o
I
I
e e e e e e e e — -
| — e ——— -
I
I
I
I
I
I

3IN3IND LIg AivA (0:1€) ININD 2d TVIONINDIS-NON

¢0L

d3LNIWIHONI F_.I

12274

V6 9l

6,035,386

Sheet 13 of 13

Mar. 7, 2000

U.S. Patent

6 "Old OL AIM

274

0

(0:€)gEN
J13LAG

474

| e o e e o o o e e e o o e o) e e md] W e e o A e e e e e e o I
AV 4 _______

m]. IIIIIIIIIIIIIIIII ““—-—__ llllllllllllll .—
| mm_8< 119-p

6 Ol

d6 Ol

€-00dd1 £-0AHHYD (0:9)9dq (t:1€)0da

- T 1

—mmwe] L]

HOLO313S AHHVO

...... » - O 8 SN I NS N SR A

6,035,386

1

PROGRAM COUNTER UPDATE
MECHANISM

This application 1s a continuation of application Ser. No.
08/716,764, filed Sep. 23, 1996, now U.S. Pat. No. 5,799,
162 which 1s a continuation of application Ser. No. 08/252,
030, filed Jun. 1, 1994, now U.S. Pat. No. 5,559,975, which

applications are mcorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates to microprocessors and
more particularly to a mechanism for updating a program
counter value of a microprocessor.

Microprocessors are processors which are implemented
on one or a very small number of semiconductor chips.
Semiconductor chip technology 1s ever increasing the circuit
densities and speeds within microprocessors; however, the
interconnection between the microprocessor and external
memory 1s constrained by packaging technology. Though
on-chip interconnections are extremely cheap, off-chip con-
nections are very expensive. Any technique intended to
Improve microprocessor performance must take advantage
of increasing circuit densities and speeds while remaining
within the constraints of packaging technology and the
physical separation between the processor and its external
memory. While 1ncreasing circuit densities provide a path to
evermore complex designs, the operation of the micropro-
cessor must remain simple and clear for users to understand
how to use the microprocessor.

While the majority of existing microprocessors are tar-
ogeted toward scalar computation, superscalar microproces-
sors are the next logical step 1n the evolution of micropro-
cessors. The term superscalar describes a computer
implementation that improves performance by a concurrent
execution of scalar instructions. Scalar instructions are the
type of instructions typically found in general purpose
microprocessors. Using today’s semiconductor processing
technology, a single processor chip can icorporate high
performance techniques that were once applicable only to
large-scale scientific processors. However, many of the
techniques applied to large scale processors are either 1nap-
propriate for scalar computation or too expensive to be
applied to microprocessors.

A microprocessor runs application programs. An applica-
flon program comprises a group ol instructions. In running
the application program, the processor fetches and executes
the 1nstructions 1n some sequence. There are several steps
involved 1n executing even a single instruction, mcluding
fetching the instruction, decoding 1t, assembling 1its
operands, performing the operations specilied by the
instruction, and writing the results of the instruction to
storage. The execution of instructions 1s controlled by a
periodic clock signal. The period of the clock signal 1s the
processor cycle time.

The time taken by a processor to complete a program 1s
determined by three factors: the number of instructions
required to execute the program; the average number of
processor cycles required to execute an instruction; and, the
processor cycle time. Processor performance 1s improved by
reducing the time taken by the processor to complete the

program, which dictates reducing one or more of these
factors.

One way to improve performance of the microprocessor
1s by overlapping the steps of different mstructions, using a
technique called pipelining. To pipeline instructions, the
various steps of instruction execution are performed by

5

10

15

20

25

30

35

40

45

50

55

60

65

2

independent units called pipeline stages. Pipeline stages are
separated by clocked registers. The steps of different istruc-
tions are executed independently 1n different pipeline stages.
Pipelining reduces the effective number of cycles required to
execute an instruction, though not the total amount of time
required to execute an instruction, by overlapping instruc-
tions and thus permitting the processor to handle more than
one 1nstruction at a time. This 1s done without increasing and
often decreasing the processor cycle time. Pipelining typi-
cally reduces the average number of cycles per instruction
by as much as a factor of three. However, when executing a
branch instruction, the pipeline may sometimes stall until
the result of the branch operation 1s known and the correct
instruction 1s fetched for execution. This delay 1s known as
the branch-delay penalty. Increasing the number of pipeline
stages also typically increases the branch-delay penalty
relative to the average number of cycles per instruction.

A typical microprocessor executes one 1nstruction on
every processor cycle. A superscalar processor reduces the
average number of cycles per instruction beyond what 1s
possible 1n a pipelined scalar processor by allowing concur-
rent execution of instructions 1n the same pipeline stage as
well as concurrent execution of instructions in different
pipeline stages. The term superscalar emphasizes multiple
concurrent operations on scalar quantities as distinguished
from multiple concurrent operations on vectors or arrays as
1s common 1n scientific computing.

While superscalar processors are conceptually simple,
there 1s more to achieving increased performance than
widening a processor’s pipeline. Widening the pipeline
makes 1t possible to execute more than one instruction per
cycle but there 1s no guarantee that any given sequence of
instructions can take advantage of this capability. Instruc-
tions are not independent of one another but are interrelated;
these 1nterrelationships prevent some 1nstructions from
occupying the same pipeline stage. Furthermore, the pro-
cessor’s mechanisms for decoding and executing instruc-
tions can make a big difference 1n 1ts ability to discover
instructions that can be executed simultaneously.

Superscalar techniques largely concern the processor
organization independent of the instruction set and other
architectural features. Thus, one of the attractions of super-
scalar techniques 1s the possibility of developing a processor
that 1s code compatible with an existing architecture. Many
superscalar techniques apply equally well to either reduced
instruction set computer (RISC) or complex instruction set
computer (CISC) architectures. However, because of the
regularity of many of the RISC architectures, superscalar
techniques have initially been applied to RISC processor
designs.

The Program counter (PC), also called an Instruction
Pointer (IP), preserves the memory address of instructions as
the mstructions are fetched from memory and executed. The
program counter mechanism for maintaining and updating
the program counter value, which 1s referred to as the
program counter, includes an incrementer, a selector and a
register. As each instruction 1s fetched and decoded, the
address of the next sequential instruction 1s formed by
adding the byte length of the current instruction to the
current value of the program counter using the incrementer
and placing this next sequential mstruction in the register.
When a branch 1s taken, the address of the target instruction
1s selected by the selector mstead of the incremented value
and this target address 1s placed 1 the register.

The program counter value serves two purposes. The
program counter value provides the memory address of the

6,035,386

3

next instruction to be fetched and executed. The program
counter value also identifies the address of an instruction
that encountered a problem which halted the execution of
the 1nstruction stream. This address may be used for debug-
oging purposes or for possible continuation of execution of
the 1nstruction stream after corrective action 1s taken.

When using a pipelining implementation 1n a
microprocessor, the program counter value 1s maintained at
the beginning of the pipeline where the value provides the
mstruction fetch address; this value 1s referred to as the fetch
PC value. This fetch PC value points to instructions entering
the pipeline. As instructions propagate along the pipeline
stages, subsequent 1nstructions are fetched and placed 1n the
pipeline. Accordingly, the fetch PC value does not corre-
spond to instructions which are 1n stages of the pipeline
other than the first stage. Because most problems that stop
the execution of an instruction stream tend to be detected
ncar or at the end of the pipeline, rather than at the
beginning, the program counter value for an mstruction must
be maintained during execution of the mstruction; this value
1s referred to as the execute PC value.

Two methods are known for maintaining the execute PC
value. A first method 1s for the PC value of an instruction to
accompany the instruction down the pipeline. With this
method each pipeline stage requires additional storage to
store the execution PC value. The amount of additional
storage required 1s proportional to the number of pipeline
stages. A second method duplicates the PC circuit at the end
of the pipeline. In this method, only the length information
of the instruction accompanies the instruction in the pipe-
line. As non-branch instructions complete, the length value
of the 1nstruction 1s added to the execute PC value to provide
the execute PC value for the next instruction. As branch
instructions complete, the target address for the branch,

rather than the incremented value, 1s provided as the execute
PC value.

SUMMARY OF THE INVENTION

It has been discovered that by providing a fetch program
counter circuit which provides less significant program
counter value bits separately and an execute program
counter circuit which generates an execute program counter
value using the less significant program counter value bits,
it 1s possible to quickly and efficiently generate execute
program counter values. It has also been discovered that by
providing an execute program counter circuit which receives
a plurality of less significant program counter bit values and
selects a single less significant program counter bit value, it
1s possible to easily generate execute program counter
values 1n a multiple pipeline processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are a block diagram of a microprocessor
in accordance the present invention.

FIG. 2 1s a block diagram of a linearly addressed instruc-
fion cache in accordance with the present invention.

FIG. 3 1s a block diagram of an instruction decoder in
accordance with the present invention.

FIG. 4 1s a block diagram of an instruction decoder
program counter circuit in accordance with the present
invention.

ter 1n accordance

FIG. 5 1s a block diagram of a reorder bu
with the present mnvention.

FIG. 6 1s a block diagram of a reorder buffer array in
accordance with the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 7A and 7B are a block diagram of a reorder bufler
program counter circuit in accordance with the present
invention.

FIG. 8 1s a timing diagram of the operation of the FIG. 1
microprocessor 1n accordance with the present invention.

FIGS. 9A and 9B are a block diagram of an alternate fetch

program counter circuit in accordance with the present
invention.

DETAILED DESCRIPTION

The following sets forth a detailed description of the best
contemplated mode for carrying out the invention. The
description 1s intended to be illustrative of the invention and
should not be taken to be limiting.

Referring to FIGS. 1A and 1B, the present invention can
be best understood 1n the context of superscalar X86 micro-
processor 100 which executes the X&86 1instruction sef.
Microprocessor 100 1s coupled to physically addressed
external memory 101 via a 486 XL bus or other conventional
microprocessor bus. Microprocessor 100 mcludes istruc-
tion cache 104 which is coupled to byte queue 106 which is
coupled to mstruction decoder 108. Instruction decoder 108
1s coupled to RISC core 110. RISC core 110 includes register
file 112 and reorder buifer 114 as well as a variety of

functional units such as and arithmetic logic units 131, 132
(ALUO and ALU1 & SHF), special register block 133

(SRB), load/store unit 134 (LSSEC), branch section 135
(BRNSEC), and floating point unit 136 (FPU).

Risc core 110 mcludes A and B operand buses 116, type
and dispatch (TAD) bus 118 and result bus 140 which are
coupled to the functional units as well as displacement and
instruction, load store (INLS) bus 119 (not shown) which is
coupled between 1nstruction decoder 108 and load/store unit
134. A and B operand buses 116 are also coupled to register
file 112 and reorder butfer 114. TAD bus 118 1s also coupled
to 1mstruction decoder 108. Result bus 1440 1s also coupled to
reorder buffer 114. Additionally, branch section 135 1is
coupled to reorder buifer 114, instruction decoder 108 and
instruction cache 104 via Xtarget bus 103. A and B operand
buses 116 1includes four parallel 41-bit wide A operand buses
and four parallel 41-bit wide B operand buses as well as four
parallel 12-bit wide A tag buses, four parallel 12-bit wide B
tag buses, a 12-bit wide A tag valid bus a 12-bit wide B tag
valid bus, four 4-bit wide destination tag buses and four 8-bit
wide opcode buses. Type and dispatch bus 118 includes four
3-bit wide type code buses and one 4-bit wide dispatch
buses. Displacement and INLS bus 119 includes two 32-bit
wide displacement buses and two 8-bit wide INLS buses.

In addition to instruction cache 104, microprocessor 100
also includes data cache 150 (DCACHE) and physical tag
circuit 162. Data cache 150 1s coupled to Load/store func-
tional unit 134 of the RISC core and with 1ntraprocessor
address and data (IAD) bus 102. Instruction cache 104 is
also coupled with IAD bus 102. Physical tag circuit 162
interacts with both instruction cache 104 and data cache 150
via the IAD bus. Instruction cache 104 and data cache 150
are both linearly addressable caches. Instruction cache 104
and data cache 150 are physically separate, however, both
caches are organized using the same architecture.

Microprocessor 100 also includes memory management
unit (MMU) 164 and bus interface unit 160 (BIU). Memory
management unit 164 i1s coupled with the IAD bus and
physical TAG circuit 162. Bus interface unit 160 1s coupled
to physical TAG circuit 162, data cache 150 and IAD bus
102 as well as an external microprocessor bus such as the
486 XL bus.

6,035,386

S

Microprocessor 100 executes computer programs which
include sequences of 1nstructions. Computer programs are
typically stored on a hard disk, floppy disk or other non-
volatile storage media which are located in the computer
system. When the program is run, the program 1s loaded
from the storage media mnto main memory 101. Once the
instructions of the program and associated data are in main
memory 101, individual instructions are prepared for execu-
tion and ultimately executed by microprocessor 100.

After being stored 1n main memory 101, the instructions
are passed via bus interface unit 160 to instruction cache
104, where the instructions are temporarily held. The x86
instructions are provided by instruction cache 104 via byte
queue 106 to mstruction decoder 108 using a fetch program
counter value which 1s generated by instruction cache 104.

Instruction decoder 108 examines the istructions and
determines the appropriate action to take. For example.,
decoder 108 may determine whether a particular instruction
i1s a PUSH, POP, LOAD, STORE, AND, OR, EX OR, ADD,
SUB, NOP, JUMP, JUMP on condition (BRANCH) or other
instruction. Depending on which particular instruction that
decoder 108 determines 1s present, the corresponding RISC
operation (ROP) or RISC operations (ROPs) are dispatched
to the appropriate functional unit of RISC core 110 and a
Decode PC value corresponding to each ROP or set of ROPs
1s generated. The decode PC value 1s generated asynchro-
nously of the fetch PC value.

The 1nstructions typically include multiple fields 1n the
following format: OP CODE, OPERAND A, OPERAND B
and DESTINATION. For example, the instruction ADD A,
B, C means add the contents of register A to the contents of
register B and place the result in register C. LOAD and
STORE operations use a slightly different format. For
example, the mnstruction LOAD A, B, C means place data
retrieved from an address on the result bus, where A, B and
C represent address components which are located on the A
operand bus, the B operand bus and the displacement bus,
these address components are combined to provide a logical
address which 1s combined with a segment base to provide
the linear address from which the data is retrieved. Also for
example, the mstruction STORE A, B, C means store data in
a location pointed to by an address, where A 1s the store data
located on the A operand bus and B and C represent address
components which are located on the B operand bus and the
displacement bus, these address components are combined
to form a logical address which 1s combined with a segment
base to provide the linear address to which the data 1s stored.

The OP CODESs are provided from instruction decoder.
108 to the functional units of RISC core 110 via an opcode
bus (now shown). Not only must the OP CODE for a
particular instruction be provided to the appropriate func-
fional unit, but also the designated OPERANDs for the
instruction must be retrieved and sent to the functional unait.
If the value of a particular operand has not yet been
calculated, then that value must be first calculated and
provided to the functional unit before the functional unit can
execute the mnstruction. For example, 1f a current instruction
1s dependent on a prior instruction, the result of the prior
instruction must be determined before the current instruction
can be executed. This situation 1s referred to as a depen-
dency.

The operands which are needed for a particular instruction
to be executed by a functional unit are provided by either
register file 112 or reorder builer 114 to the operand bus or
forwarded from a functional unit via result bus 140. The

operand bus conveys the operands to the appropriate func-

10

15

20

25

30

35

40

45

50

55

60

65

6

tional units. Once a functional unit receives the OP CODE,
OPERAND A, and OPERAND B, the functional unit
executes the instruction and places the result on a result bus
140, which 1s coupled to the outputs of all of the functional
units and to reorder buifer 114.

Reorder buffer 114 is managed as a first in first out (FIFO)
device. When an 1nstruction 1s decoded by instruction
decoder 108, a corresponding entry 1s allocated 1n reorder
buffer 114. The result value computed by the instruction 1s
then written 1nto the allocated entry when the execution of
the 1nstruction 1s completed. The result value 1s subsequently
written 1nto register file 112 and the instruction retired if
there are no exceptions associated with the instruction and 1f
no speculative branch 1s pending which affects the instruc-
tion. When the 1nstruction 1s retired, 1ts associated execute
program counter value 1s also stored in a program counter
register 1n register file 112. If the instruction 1s not complete
when 1ts associated entry reaches the head of the reorder
buffer 114, the advancement of reorder buffer 114 1s halted
until the instruction 1s completed. Additional entries,
however, can continue to be allocated.

Each functional unit includes respective reservation sta-
tion circuits (RS) 121-126 for storing OP CODEs from
instructions which are not yet complete because operands
for that instruction are not yet available to the functional
unit. Each reservation station circuit stores the instruction’s
OP CODE together with tags which reserve places for the
missing operands that will arrive at the reservation station
circuit later. This technique enhances performance by per-
mitting microprocessor 100 to continue executing other
instructions while the pending instruction 1s being
assembled with its operands at the reservation station.

Microprocessor 100 atfords out of order 1ssue by 1solating
decoder 108 from the functional units of RISC core 110.
More specifically, reorder buifer 114 and the reservation
stations of the functional units effectively establish a dis-
tributed instruction window. Accordingly, decoder 108 can
continue to decode 1nstructions even 1f the instructions can
not be immediately executed. The instruction window acts
as a pool of instructions from which the functional units
draw as they continue to go forward and execute instruc-
tions. The instruction window thus provides microprocessor
100 with a look ahead capability. When dependencies are
cleared and as operands become available, more instructions
in the window are executed by the functional units and the
decoder continues to {ill the window with yet more decoded
instructions.

Microprocessor 100 uses branch section 135 of the RISC
core to enhance 1ts performance. Because when a branch
occurs, the next instruction depends upon the result of the
branch, branches in the instruction stream of a program
hinder the capability of the microprocessor to fetch mstruc-
tions. Branch section 135 determines whether branches
should be taken. Additionally, instruction cache 104 includes
a branch target buffer to keep a running history of the
outcomes of prior branches. Based on this history, a decision
1s made during a particular fetched branch to determine
which branch the fetched branch instruction will take. If
there 1s an exception or branch misprediction based upon the
determination of branch section 135, then the contents of
reorder buffer 114 allocated subsequent to the mispredicted
branch 1nstruction are discarded.

FIG. 2 shows a block diagram of instruction cache 104.
The application entitled “Pre-Decoded Instruction Cache
and Method Therefor Particularly Suitable for Variable
Byte-Length Instructions” having a Ser. No. 08/145,905 and

6,035,386

7

a filing date of Oct. 29, 1993 1s incorporated by reference
and sets forth the structure and operation of instruction
cache 104 1n greater detail.

Instruction cache 104 1s a linearly addressed 16 Kbyte
4-way set associative cache. Each set includes 256 entries;
cach enftry includes a sixteen byte instruction block, a linear
address tag and next predicted executed branch information.
Instruction cache 104 includes cache controller 170, address
circuit 172, predecode circuit 174 and cache array 176.

Cache controller 170 provides control signals to orchestrate
the various operations of instruction cache 104. Address
circuit 172 generates a linear fetch program counter
(FETCH PC) based upon a logical target program counter
(TARGET PC) which is received from branch section 135 or
a linear tag from linear tag array 182 and corresponding
successor information from successor array 184; address
circuit 172 also provides address generation and X86 pro-
tection checking associated with pre-fetching instructions
from external memory. Address circuit 172 functions as a
translation circuit for translating between logical addresses
and linear addresses. Predecode circuit 174 receives pre-
fetched x86 1nstruction bytes via IAD bus 102, assigns
predecode bits for each x86 1nstruction byte and writes the
predecoded x86 struction bytes into cache array 176.
Cache array 176 stores 1nstructions received from predecode

circuit 174 and provides these 1nstructions to byte queue 106
when addressed by the linear FETCH PC signal.

Cache array 176 1s organized into three main arrays,
instruction cache store array 180, linear tag array 182 and
successor array 184. Instruction cache store array 180 stores
the 16 byte instructions. Linear tag array 182 stores the
linear address tags corresponding to the instructions. Suc-
cessor array 184 stores predicted branch information, which
1s used to support branch prediction, corresponding to the

instructions. Each of these arrays 1s addressed by the linear
FETCH PC address which 1s provided by address circuit
172.

Referring to FIG. 3, instruction decoder 108 1s a two-stage
pipelined decoder which receives pre-decoded x86 1nstruc-
fion bytes from byte queue 106, translates them 1nto respec-
five sequences of ROPs, and rapidly dispatches ROPs from
a plurality of dispatch positions. To maximize the opportu-
nity for multiple 1nstruction 1ssue, the translation 1s handled
in a hardwired fast conversion path for most simple mstruc-
tions. In the preferred embodiment, the hardwired {fast
conversion path applies to x86 1nstructions which map to
three ROPs or less. Instructions which require more than
three ROPs and infrequently used instructions are handled
by microcode sequences contained in microcode ROM.
Whenever an x86 instruction maps to microcode ROM, the
pre-decoded x86 instruction information i1s duplicated at
multiple dispatch positions to allow each dispatch position
to work independently and in parallel with other dispatch
positions.

In the first decode stage, mstruction decoder 108 deter-
mines whether ROPs for an x86 pre-decoded 1nstruction are
to be generated 1n the fastpath or the microcode ROM path.
Information for ROP sequences either 1s generated by fast-
path logic for up to four x86 1nstructions per cycle using up
to four ROPs, or 1s read from microcode ROM for one
pre-decoded x86 1nstruction. The information from the fast-
path and the microcode ROM path which 1s required to
ogenerate an ROP includes the type of functional unit to
which the ROP 1s designated to go, the specific simple
RISC-like 1nstruction to be executed at the functional unit,
source and destination pointers for the ROP, size informa-
tion of the ROP, addressing mode 11 a load or a store ROP,

5

10

15

20

25

30

35

40

45

50

55

60

65

3

and 1mmediate fields, if any, from the instruction for the
ROP. Preferably, microcode ROM accesses are not mixed
with fastpath decode functions, which avoids having to shift
microcode ROPs. In the second decode stage, instruction

decoder 108 selects and augments the ROP information from
cither the fastpath or the microcode ROM and furnishes
complete ROPs which are executed in the functional units

131-136.

Instruction decoder 108 also controls shifting of byte
queue 106, so that fully dispatched pre-decoded x86 1nstruc-
tions are shifted out of byte queue 106 and the next undis-
patched or partially dispatched pre-decoded x86 instruction
1s shifted to the “head of queue.” Instruction decoder 108
also detects problems 1n byte queue 106 and indirectly
redirects 1nstruction cache 104 as appropriate by forcing a
microcode entrypoint. Instruction decoder 108 also accepts
microcode ROM entry points initiated by cache refill logic
in 1nstruction cache 104, and by exception and microbranch
misprediction logic 1in branch section 135. Microcode entry
points generated by branch section 135 are communicated to
the 1nstruction decoder 108 over XTARGET bus 103.
Instruction decoder 108 also generates a decode program
counter value corresponding to each ROP.

Instruction decoder 108 mcludes ROP multiplexer 200,
four dispatch position circuits 210, 211, 212, 213, four ROP
selector circuits 220, 221, 222, 223 and an ROP shared
circuit 226 as well as mstruction decode control circuit 230,
ROM control 240 and decode program counter circuit 242.
ROP multiplexer 200 (ROPMUX) directs entries of byte
queue 106 to the four dispatch positions 210-213. Each
dispatch position includes respective fast converters 250,
251, 252, 253 (FASTCONVO, FASTCONVI1,
FASTCONV?2, and FASTCONV3, respectively), respective
common stages 260, 261, 262, 263 (ICONMONO,
[ICOMMONI1, ICOMMON2, and ICOMMONS3,
respectively) and respective microcode ROMs 270, 271,
272, 273 (MROMO, MROM1, MROM?2, and MROM3,
respectively). Microcode ROMs 270273 are controlled by
microcode RON 1nstruction decode controller 240
(IDECCNTL). ROP multiplexer 200, dispatch position cir-
cuits 210213, microcode ROM 1nstruction decode control-
ler 230 and decode program counter circuit 242 generally
form the first stage of the instruction decoder 108. The
second stage of the instruction decoder 108 generally is

implemented 1in ROP selector circuits 220-223
(ROPSELECTO, ROPSELECT1, ROPSELECT2, and

ROPSELECT3, respectively) and in ROP shared circuit 226
(ROPSRARED).

Instruction decoder 108 1s controlled by instruction
decode controller 230. Instruction decode controller 230
contains logic implemented 1n combinatorial logic or pro-
crammable array logic for providing general control func-
tfions such as furnishing instruction type information on the
TAD bus 118, predicting how many of the ROPs 1n the
current dispatch window can be accepted by the RISC core
110, informing instruction cache 104 how to shift byte queue
106 in view of the prediction, informing the ROP multi-
plexer 200 of the number of ROPs yet to be dispatched for
the pre-decoded x86 instruction at the head of byte queue
106, and accessing microcode and control ROM. To provide
these functions, instruction decode controller 230 receives
various information from the functional units 131-136 of the
RISC core 110 as well as from other units of the processor

100.

Each fast converter 250, 251, 252, and 253 performs a fast
conversion of many types of “simple” x86 instructions (i.e.

those which map to 3 or fewer ROPs) into ROPs. The fast

6,035,386

9

converter 1n each dispatch position converts the x86 mstruc-
tion to a respective one of a sequence of ROPs (a sequence
being one or more ROPs) needed to carry out the x86
instruction, and modifies the operation of the ROP for
certain prefixes and SIB bytes. Fast converters 250-253 are
implemented either as programmable array logic or as
combinatorial logic latched early in phase one of the second
decode stage.

Rarely used x86 1nstructions and x86 1nstructions requir-
ing ROP sequences of more than 3 ROPs to execute are
mapped to microcode ROM. Generally, the x86 nstructions
which map to more than three ROPs are complex interactive
instructions such as the CALL gate instruction, the STRING
move 1nstruction, and the transcendental floating point rou-
tines. In that event, ROM controller 240 1n the instruction
decoder 108 forms a microcode ROM address known as an
entrypoint, and based on the entrypoint, reads the ROP

sequence from the microcode ROM instructions stored in
the Microcode ROMs 270273 at four ROPs per cycle. Each

microcode ROM 270, 271, 272, and 273 1s a 1024x59 ROM
array for handling x86 1nstructions which are not convertible
in a fast converter.

Dispatch positions 210, 211, 212 and 213 also include
respective common stages 260, 261, 262, and 263. Each
common stage functions as a pipeline stage. Each common
stage 260, 261, 262, and 263 1s associated with a respective
fast converter and microcode ROM. Portions of x86 1nstruc-
fion conversion operations which can be effectively handled
in a particular way regardless of whether the 1nstruction 1s a
fastpath or microcode ROM instruction, and which do not
require generation 1n the microcode ROM are carried out
and pipelined, along with common data not requiring
conversion, through the respective common stage 1n step
with the processing of instruction portions in the various
stages the fast converter or microcode ROM. Each common
stage also keeps track of register pointers which are used for
performing mternal instruction decoder address calculations
used both by fastpath instructions and MROM 1nstructions.

Each selector circuit 220, 221, 222, and 223 selects either
the outputs of the fast converter and the pipeline stage or the
outputs of the microcode ROM and the pipeline stage and
generates dispatch information. Each selector circuit also
selects the immediate field constant values to drive 1imme-
diate address or constants to the functional units 131-136.
ROP shared unit 226 1s responsive to information from the
ROP select circuit 1in each of the dispatch positions 210-213
for generating dispatch mformation for resources that are
shared by all dispatch positions.

Decode program counter circuit 242 tracks the logical
program counter value of each of the x86 mstructions that 1s
sent from byte queue 106. Byte queue 106, upon detecting
a non-sequential fetch 1n the pre-fetch stream, indicates the
byte of the target and the new target address to decode
program counter circuit 242. Decode program counter cir-
cuit 242 then generates the decode program counter value
which 1s provided to branch section 135 as well as low order
bits and carry bits of the decode program counter value for

cach dispatched ROP. The LPC bits and the carry bits are
provided to reorder buifer 114 by instruction decoder 108.

Because the ROP decode program counter value, which 1s
maintained 1n a decode PC register in decode PC circuit 242
register, 15 maintained as a logical address i1n the x86
architecture, a conversion 1s necessary from the linear
addresses used to access mstruction cache 104 to the logical
address required for updating the decode PC register when
performing mtersegment branches. This 1s accomplished in

10

15

20

25

30

35

40

45

50

55

60

65

10

instruction cache 104 by first subtracting off the segment
base pointer from the linear address to get the logical
address. This 32-bit logical address 1s then driven to decode
program counter circuit 242 of instruction decoder 108
which then generates the ROP decode program counter
value. When not performing intersegment branches, the

decode PC value 1s updated with decode program counter
circuit 242.

For sequential instructions following branches, decode
program counter circuit 242 counts the number of x86 bytes
in the byte queue between start and end positions and adds
this onto the beginning logical decode program counter
value to generate the next decode program counter value.

Instruction decoder controller 230 1s any suitable state
machine for controlling the operation of the various units of
the 1nstruction decoder 108.

Referring to FIGS. 4A and 4B, decode program counter
generator circuit 242 includes queue 300, scan logic 302,
more significant portion program counter latch 304, less
significant portion program counter latch 306, more signifi-
cant porfion program counter generator circuit 308, less
significant portion program counter generator circuit 310,
and program counter value selector circuit 312.

Queue 300 holds the 32-bit non-sequential program
counter value as well as the valid bit value and provides bits
4:31 of the non-sequential program counter value to more
significant portion program counter latch 304. Queue 300
provides bits 0:3 of the non-sequential program counter
value to scan logic 302.

Scan logic 302 provides four 4-bit offset values corre-
sponding to the four ROPs which are being processed by
mnstruction decoder 108 to less significant program counter
ogenerator circuit 310. Each of the four offset values repre-
sents an offset between an X86 1nstruction stored within
queue 106 and the present decode program counter value
stored within queue 300. Each X86 instruction stored 1in
queue 106 may map to more than one ROP. Because the four
ROPs that are being processed by instruction decoder 108 1n
the same cycle may correspond to one X86 instruction, the
four offset values may all have the same value. These offset
values are generated by scan logic 302 selecting the start bit
for the 1nstruction at the head of queue 106 and the start bat
for the next imstruction within queue 106. The offset is
cumulative for the four ROPs that are being processed by
mstruction decoder 108 1n the same cycle, 1.¢., the offset 1s
equal to the number of bytes between the first ROP and the
ROP for which the offset 1s being generated, regardless of
how many ROPs are in between the two ROPs.

Less significant program counter generator circuit 310

includes adders 320-323 and multiplexer 326. Each adder
320, 321, 322, 323 receives one of the 4-bit offset values.
Adders 320-323 add these 4-bit offset values to bits 0:3 of

the present decode program counter value from latch 306 to
obtain the lower order bits, bits 0:3, of a potential next
program counter value. Each potential next program counter
value corresponds to an ROP to be dispatched. Bits 0:3 of
the potential next program counter value are provided to
multiplexer 326. Multiplexer 326 multiplexes these potential
next program counter values to provide the next program
counter value to decode program counter latch 306, based
upon which structions are removed from queue 300 as
their corresponding ROPs are dispatched by instruction
decoder 108. Latch 306 stores the multiplexed value as the
present decode program counter value for use 1n obtaining
the next decode program counter value.

Less significant program counter generator circuit 310
provides the carry bits from each adder to carry selector 334

6,035,386

11

of more significant program counter generator circuit 308.
Less significant program counter generator circuit 310 also
provides these carry bits to counter value selection circuit

312.

More significant program counter latch 304 provides bits
4:31 of the next program counter value to more significant
program counter generator circuit 308. More significant
program counter generator circuit includes address incre-
menter 330, multiplexer 332 and carry selector 334. Incre-

menter 330 receives the upper 28 bits of the present decode
PC value and provides an incremented decode PC value, 1.¢.,
a value 1 which the upper 28 bits are incremented by one.
This mcremented decode PC value 1s provided to multi-
plexer 332 which also receives the present decode PC value.
Multiplexer 332 provides one of these two values as the next
decode PC value under the control of carry selector circuit
334. Carry selector circuit 334 uses the carry bits from less
significant portion program counter generator circuit 310 to
determine which of the carry bits corresponds to the next
ROP to be dispatched and uses the value of this carry bit to
control multiplexer 332. If the carry bit of the next ROP to
be dispatched 1s active, mndicating a carry, then the incre-
mented decode PC value 1s used for the upper 28 bits of the
next decode PC value, otherwise, the upper 28 bits of the
present decode PC value are used for the upper 28 bits of the
next decode PC value.

Counter value selection circuit 312 includes multiplexer
336 and dispatch allocate multiplexers 338. Multiplexer 336
selects one of four potential lower order next program
counter values as bits :3 of the decode program counter
value (DPC) based upon which instructions are removed
from queue 300 as their corresponding ROPs are dispatched
by instruction decoder 108. Multiplexer 336 prov1des this
decode program counter value to reorder buifer 114. Dis-
patch allocate multiplexers 338 receive the lower order next

program counter values (LPC) and the carry values
(CARRY) and provide these values to reorder buffer 114 for

cach ROP that 1s dispatched.

More significant program counter generator circuit 308
provides bits 4:31 of the decode program counter value to
program counter value selection circuit 312. Program
counter value selection circuit 312 combines these bits with
the selected less significant bits 0:3 from multiplexer 336 to
provide the complete, 1.e., bits 0-31, decode program
counter (DPC) value.

Referring to FIG. 5, reorder buil

er 114 1s a circular first 1n
first out (FIFO) circuit which tracks the relative order of
speculatively executed ROPs. Reorder bufler storage loca-
fions are dynamically allocated, using head and tail queue
pointers, for sending retiring results to register file 112 and
for receiving mismatched ROPs from instruction decoder
108, respectively. When an 1nstruction 1s decoded, its result
value 1s allocated a location, or destination, 1n reorder buffer
114 and its destination register number 1s assoclated with
this location. For a subsequent instruction having no
dependencies, the associated A and B operand buses are
driven from register file 112. However, when a subsequent
instruction has a dependency and refers to the renamed
destination register to obtain the value considered to be
stored therein, an entry 1s accessed within reorder buffer 114.
If a result 1s available therein, it 1s placed on the operand bus.
If the result 1s unavailable, a tag i1dentifying this reorder
buifer entry 1s furnished on an operand tag bus of the A and
B operand tag buses 116. The result or tag 1s furnished to the
functional units over the operand buses or operand tag buses.
When results are obtained from completion of execution in
the functional units, the results and their respective result

10

15

20

25

30

35

40

45

50

55

60

65

12

tags are furnished to reorder buffer 114 as well as to the
reservation stations of the functional units over the five bus

wide result buses and five result tag buses 140.

Reorder buffer 114 uses a compact form of holding the
program counter value which 1s associated with the ROP for
updating the execute program counter register. This compact
form requires only the 4 least significant bytes and a bat
increment, 1.€., carry, indication. For sequential x86 bytes,
the number of bytes added can be no more than 15, and for
non-sequential fetches, the successful completion of a
branch drives the new branch target on the result bus, so
writing new branch locations mto reorder buifer 114 from
instruction decoder 108 does not need to occur.

Reorder buffer 114 includes reorder buffer control and
status circuit 400, reorder buliler array 402 and reorder buifer
operand bus driver 404. Reorder buffer array 402 1s a
temporary storage memory that 1s controlled by reorder
buifer control and status circuit 400. When instruction
decoder 108 dispatches ROPS, instruction decoder 108
places a signal on one of the destination pointer (DEST
REG) busses. Reorder buffer control and status circuit 400
then allocates an entry of reorder buffer array 402. Each
entry of reorder buffer array 402 1s allocated to provide a
temporary destination register into which a result 1s written
when the ROP 1s completed. The execute PC value, which
1s stored 1n an execute program counter register within
reorder buffer and status circuit 400, 1s updated when the
mnstruction 1s retired. Multiple reorder buifer entries can
correspond to a single register in register file 112, thereby
providing for temporary renaming ol registers. Reorder
buifer control and status circuit 400 determines when a
completed ROP can be retired to register 112. When the
mnstruction 1s retired, the execute program counter register 1s
updated.

Reorder buffer control and status circuit 400 receives A
and B operand pointers from instruction decoder 108. Reor-
der buifer control and status circuit 400 uses these pointers
to 1nterrogate entries 1n reorder builer array 402 to determine
whether an operand that 1s needed for execution of a
dispatched ROP 1is contained 1n reorder buifer array 402.

Referring to FIG. 6, reorder buffer array 402 includes
sixteen entries for temporarily storing forwarded operand
results to be written back to the register file when the result
1s no longer part of the Speculatwe state of the processor.
Each of the sixteen reorder buifer entries includes a 41-bat
result field (RESULT), a 9-bit destination pointer field (P),
a 4-bit lower program counter value field (LPC) as well as
an 11-bit floating point operation code field (FPOF), an
11-bit floating point flag register field (FPFR), and a 24-bit

control and status field (CS).

The result field stores result data from the functional unaits.
The 41-bit result field allows a floating point result to be

stored 1n two reorder buifer entries; integer results are stored
in 32 of the 41 bats.

The destination pointer field of each reorder buifer entry
designates a destination register address 1n register file 112
for the result from the execution of an instruction to be
written during write-back. Reorder bufler control and status
circuit 400 receives the destination pointer from instruction
decoder 108 via the destination register (DEST REG) busses
and loads the pointer into the destination pointer field of
reorder bufler array 402 to store 1t for when the ROP which
1s assoclated with the pointer 1s retired. When ROPs are
dispatched, reorder buifer 114 performs dependency check-
ing by scannming all destination pointer fields of reorder
buffer array 402 to determine whether a match exists

6,035,386

13

between a destination pointer and the A or B operands. A
match indicates a data dependency.

The floating point operation code field 1s set to a subset of
the bits of a floating point operation code allocated to a
reorder buffer entry. The floating point flag register field
stores the state of the floating pomt flags resulting from a
floating point operation. Floating point flags store 1nforma-
fion relating to precision, underflow, overflow, zero divide,
denormalized operand and invalid operand errors detected
by floating point functional unit 136. For integer operands,
a corresponding flag field 1s not necessary since flags
resulting from 1nteger operations are held 1n the upper order

bits of the 41-bit result field.

The status and control field includes bits which denote the
status of the ROP entry, for example, whether a reorder
buifer entry 1s allocated, a branch 1s incorrectly predicted or
performance of an instruction has caused an exception or
error condition. The status and control field also mcludes
bits which relate to generating the execute program counter
value. More specifically, the status and control field includes
the carry bit which 1s provided by the decode PC generator
circuit for each ROP, an exit bit, which indicates, when set,
that the ROP 1s the last ROP 1n the sequence of ROPs for a
particular x86 instruction, and a complete (or valid) bit,
which indicates that a result 1s valid, indicating that the
instruction 1s complete. The exit bit indicates when to update
the execute PC value stored within the execute program
counter register. The execute program counter value 1s only
updated when the ROP sequence for a particular x86 instruc-
fion completes.

Referring agaimn to FIG. §, a functional unit that executes
an ROP and generates a result directs that result to an
appropriate reorder buifer entry using a destination tag. At
dispatch, a destination tag i1s set on one of the four destina-
fion tag buses which connect to the functional units. The
functional unit places the result on one of the result busses
140 and the destination tag on the corresponding result tag
and status bus. Reorder bufler control and status circuit 400
receives the result tag on from the result tag bus and uses this
tag to address entries within reorder buifer array 402. The
signal on the one of the result busses corresponding to one
of the result tag and status busses 1s loaded into reorder
buffer array entry designated by the result tag value.

Reorder buffer control and status circuit 400 also checks
for data dependencies and, when unresolved dependencies
occur, tags operands using A and B operand tag busses
which are associated with the operand busses. The tag
1dentifies the result upon which the dependency 1s based for
use by the functional unit reservation stations. Reorder
buffer 114 overrides a register file read when a data depen-
dency 1s detected. When reorder buffer control and status
circuit 400 detects a data dependency at the dispatch, it
overrides the read operation of any dependent operand 1n an
entry of reorder buffer array 402 by setting bits of the
override bus that are applied to reorder bufler operand bus
driver 404. The override bus includes override signals for
cach operand bus.

If reorder buffer 114 determines that source operand data
are not dependent on unavailable data and are available from
register file 112 or reorder builer 114, the operand data are
sent via operand busses 116 to the functional unit reservation
stations. Data are addressed in reorder buifer 114 when the
register address of the read pointer matches the destination
pointer address of an entry. The read pointer of the A or B
operand read pointers (A-RDPTR or B-RDPTR) addresses

reorder buffer array 402 through the reorder bufler control

10

15

20

25

30

35

40

45

50

55

60

65

14

and status circuit 400, to apply operand data to reorder bufler
operand bus driver 404. Reorder builer operand bus driver
404 drives operand data onto the A and B operand buses 116.

An ROP 1s retired as reorder buffer control and status
circuit 400 writes the result from reorder buifer array 402 to
register file 112, placing the result on one of the writeback
busses and writing the destination pointer to the write
pointer corresponding to the writeback bus. The write
pointer designates the register address within register file
112 to receive the retired result. When the ROP 1s retired
reorder buifer operand bus driver 404 generates an execute
program counter value using the LPC field of reorder bufler

array 402.

Reorder buffer status and control circuit 400 detects
various conditions of reorder buffer 114 and relays condition
signals to various circuits in processor 100 using a reorder
condition bus. A signal of reorder condition bus is received
by register file 112 for each of the four A and B operand and
indicates when reorder buifer 114 1s providing a forwarded
operand for execution. Other signals on the reorder buifer
condition bus, which reflect full, empty or single entry

reorder buffer conditions, are received by instruction
decoder 108.

Referring to FIGS. 7A and 7B, execute program counter
generator circuit $98, which 1s included within ROB control
and status circuit 400, mcludes less significant program
counter generator 600, more significant program counter
ogenerator 602 and execute program counter controller 604.
Less significant program counter generator 600 includes
entry multiplexer 610, branch multiplexer 612 and register
614. Entry multiplexer 610 receives the less significant 4-bit
portions of the program counter values for the four instruc-
tions which are stored 1n four oldest reorder builer entries
402. Entry multiplexer 610 provides one of these less
significant program counter values to branch multiplexer
612 which also receives the less significant bits of a branch
program counter value. Branch multiplexer 612 provides a
4-bit less significant execute program counter value to
register 614, which provides this value as the next execute
program counter value. Entry multiplexer 610, branch mul-
tiplexer 612 and register 614 are controlled by execute
program counter control circuit 604.

More significant program counter generator 602 includes
entry multiplexer 620, branch multiplexer 622, generate
more significant increment circuit 624, adder circuit 626 and
register 628. Entry multiplexer 620 receives branch target
values from the four instructions which are stored 1n four
least significant reorder buffer entries and provides one of
these entries as the next branch target under control of
execute program counter control circuit 604. The next
branch target value includes a 28-bit more significant branch
target value and a 4-bit lower branch target value. The more
significant branch target value i1s provided to branch multi-
plexer 622; branch multiplexer 622 also receives the 28 bit
more significant execute program counter value from reg-
ister 628. Branch multiplexer 622 provides a multiplexed
preliminary more significant execute program counter value
to adder circuit 626 which also receives an increment signal
from generate more significant increment circuit 621. Adder
circuit 626 provides the more significant execute program
counter value to register circuit 628 based upon this addi-
tion. Register circuit 628 provides a clocked more signifi-
cant execute program counter value under control of control
circuit 604.

Controller 604 receives control information from each of
the four least significant reorder bufler entries. This control

6,035,386

15

information includes a branch taken signal for each entry
and an update program counter signal from each entry as
well as a valid signal and an update execute program counter
signal for each entry. Based upon this control information,
execute program counter controller 604 controls the genera-
tion of the more significant and less significant execute
program counter values. The branch taken signal indicates
whether a branch 1s taken and 1s active when the branch was

taken, thus indicating that the branch address should be
used. The valid signal indicates that the result of the ROP 1s
returned from the functional units, 1.e., that there 1s a valid
result, and 1s active when the branch result 1s returned. The
update execute program counter value signal indicates when
to update the execute program counter value and is active
when the ROP 1s retired.

Because less significant program counter generator 600
uses a multiplexer to generate a new lower execute program
counter value, 1t 1s possible to generate execute program
counter values for larger pipelines merely by widening the
multiplexer into which the less significant program counter
values are provided.

Referring to FIG. 8, the timing of processor 100 executing,
a sequential stream of x86 bytes 1s shown. In this example,
the predicted executed path 1s actually taken and 1s available
directly from instruction cache 104. During operation, there
are five pipeline stages of effective execution of the micro-
processor pipeline.

The fetch cycle 1s the first stage of execution. The fetch
clock cycle 1s spent 1n mstruction cache 104. Instruction
cache 104 forms a new fetch program counter value during
PH1 of the clock cycle and then accesses cache arrays 180,
182 1n the PH2 of the fetch clock cycle. The fetch program
counter value (FPC(31:0)) accesses the linear instruction
cache tag arrays in parallel with the store arrays. Late in PH2
of the fetch cycle, a determination 1s made whether the linear
tags match the fetch program counter linecar address. If a
match occurs, the predicted executed bytes are forwarded to
byte queue 106.

In addition to accessing the tag and store arrays, the fetch
program counter value also accesses branch prediction array
184 of instruction cache 104. Branch prediction array 184
1dentifies which of the X86 bytes are predicted executed, and
whether the next block predicted executed 1s sequential or
non-sequential. This information, which 1s also accessed 1n
PH?2 of the fetch cycle, determines which of the bytes of the
currently fetched block are driven as valid bytes into byte
queue 106.

Additionally, during the fetch clock cycle, byte queue 186
may be holding X86 bytes that were previously fetched, but
not yet 1ssued to functional units. If so, then a byte filling
position 1s indicted to instruction cache 104 to shift the first
predicted byte of the present cycle over by an amount equal
to the number of bytes that byte queue 106 1s holding to fill
the presently fetched bytes behind the held x86 bytes.

Because branch prediction information occurs in PH2 of
the fetch cycle, the next block to be pre-fetched can either
be sequential or non-sequential. In either case there 1s one
clock cycle to access the arrays again. Thus, the branch
prediction arrays allow a branch out of a block to have the

same relative performance as accessing the next sequential
block.

During the beginning of the first decode cycle, the bytes
that were pre-fetched and predicted executed are driven to
byte queue 106 at the designated {ill position. This 1s shown
in FIG. 8 as byte queue {ill occurring 1n PH1 of the first
decode cycle. These bytes are then merged with any pending
bytes 1 byte queue 106.

10

15

20

25

30

35

40

45

50

55

60

65

16

Byte queue 106 contains the five bits of pre-decode state
plus the raw x86 bytes to show where instruction boundaries
are. The head of the byte queue 1s always the beginning of
the next predicted executed x86 instruction. In the middle of
PH1 of the first decode stage, byte queue 106 merges the
next stream of bytes from instruction cache 104 with the
existing bytes 1n byte queue 106 and presents the merged
strcam of bytes to instruction decoder 108. Instruction
decoder 108 determines the number of ROPs each instruc-
tion takes and the position of the opcode and aligns these
opcodes to the corresponding ROP issue positions 0 to 3 (0
being the next ROP to issue).

Instruction decoder 108 maintains a decode program
counter value for the ROP or ROPs corresponding to each of
the x86 1nstructions 1n byte queue 108 by counting the
number of bytes between instruction boundaries or detecting
a branch within istruction cache 104 and attaching the
program counter value to the first x86 byte fetched from that
location. Using the opcode and ROP positioning
information, as well as the immediate fields stored in byte
queue 106, instruction decoder 108 statically determines the
decode PC values during PH?2 of the first decode cycle and
PH1 of the second decode cycle. By the end of PH1 of the
second decode cycle, all the register read and write pointers
are resolved and the operation 1s determined. This 1s shown
in FIG. 8 as the assertion of the read write pointer values.

Additionally, timing during PH1 of the second decode
cycle 1s allocating reorder buifer entries for the correspond-
ing ROPs that may 1ssue in the next clock phase. Thus, up
to four additional ROPs are each allocated one of the 16
entries 1n reorder buitfer 114 during PH1. During PH2, the
source read pointers for all the allocated ROPs are read from
register file 112 while simultaneously accessing the queue of
speculative ROPs 1n reorder buffer 114.

This simultaneous access of both arrays allows the late
selection of whether to use the actual register file value or to
forward either the operand or the tag from reorder buifer
114. By first allocating the four ROP entries in PH1 and then
scanning reorder buifer 114 in PH2, read dependencies
within the current ROPs being dispatched may be simulta-
neously examined with all previous ROPs that are still 1n a

speculative state. This 1s shown in the timing diagram by the
REGEF/ROB access and the check on tags.

The execute cycle 1s analogous to the execute cycle on a
standard scalar processor. ROPs are issued via dedicated
opcode buses as well as the read operand buses discussed
above. These operand buses can be seen on the timing
diagram discharging in PH1 of the execute cycle. This is
shown 1n the signals A/B read operand buses.

In late PH1 of the execute cycle, the functional units
determine which ROPs have been 1ssued to them, and
whether they have any pending ROPs ready to 1ssue from
their local reservation stations. Within a functional unit’s
reservation station, a FIFO 1s always maintained to insure
that the oldest 1nstructions execute first. If an instruction 1s
ready to execute within a functional unit, then the functional

unit begins executing in late PH1 and continues to execute
though PH2. This timing relates to ALU 122.

At the end of PH2, for all functional units of latency 1, the
result 1s ready and the functional unit arbitrates for one of the
five result buses. This 1s shown on the time diagram as the
assertion of the Result Bus Arbitration signal. If access 1s
cranted 1n PH2 of the execute cycle, the functional unit that
was granted access drives the allocated result bus in PH1 of
the result cycle.

The result cycle 1s analogous to write on a RISC four-
stage pipeline. The result cycle forwards values directly to

6,035,386

17

other functional units for execution much like ALU forward-
ing 1 a RISC system. Microprocessor 100 includes both a
result cycle and a retire cycle because of the speculative
nature of the ROPs that are 1ssuing, writing directly to the
register file cannot occur until the instruction 1s the next
instruction to retire. Reorder buifer 114 and result bus 140
forwarding make this cycle transparent to any executing
program and no stall occurs for the overhead of writing to
reorder buifer 114. In PH1 of the result cycle, the location of
the speculative ROP in reorder buifer 114 1s written with the
destination result as well as any status. This entry 1n reorder
buffer 114 1s then set to indicate that the entry 1s valid as well
as allocated. Accordingly, when this entry 1s requested,
instead of forwarding a tag to a requested read access,
reorder buffer 114 directly forwards the data.

In PH2 of the result cycle, the newly allocated tag can be
detected by subsequent ROPs that require 1t to be one of its
source operands. This 1s shown on the timing diagram as the
direct forwarding of the result via a ROB tag forward onto
the source A/B operand buses using the read and write
pointers.

The retire cycle 1s the last stage of the pipeline. This 1s the
cycle where the execute program counter value 1s stored 1n
the execute program counter register. In PH1 of the retire
cycle, the result of the operation 1s written to the register file
and the execute program counter value 1n the execute
program counter register 1s updated to point the next instruc-
fion to be retired. In PH1 of the retire cycle, the entry 1n
reorder buifer 114 1s de-allocated and 1s written from reorder
buffer 114. Because the entry 1s de-allocated, subsequent
references to the result induce 1n a read from register file 112
rather than a speculative read from reorder buifer 114. Reads
from register file 112 indicate the actual state of processor

100.

Accordingly, microprocessor 100 includes a five stage
pipeline which uses a plurality of program counter values at
different stages of the pipeline. Using these program counter
values with such a pipeline allows microprocessor 100 to
1ssue up to 4 simple x86 structions per clock cycle.

Other Embodiments

Other embodiments are within the following claims.

For example, referring to FIGS. 9A and 9B, other circuits
may be used for generating the fetch program counter value
as long as these circuits provide a less significant program
counter value along with carry information. More
specifically, alternate fetch program counter circuit 700,
includes queue 702, more significant portion program
counter latch 704, less significant portion program counter
latch 706, more significant portion program counter genera-
tor circuit 708, less significant portion program counter
generator circuit 710, and program counter value selector
circuit 712.

Queue 702 holds the 32-bit non-sequential program
counter value as well as the valid bit value and provides bits
4:31 of the non-sequential program counter value to more
significant portion program counter generator circuit 708
and bits 0:3 of the non-sequential program counter value to
less significant portion program counter generator circuit
710. The non-sequential program counter value 1s also
provided to less significant portion program counter latch

706.

Less significant program counter latch provides bits 00:3 of
the next program counter value to less significant program
counter generator circuit 710. More significant program
counter latch 704 provides bits 4:31 of the next program

10

15

20

25

30

35

40

45

50

55

60

65

138

counter value to more significant program counter generator
circuit 708. Less significant program counter generator
circuit 710 provides carry bits to more significant program
counter generator circuit 708 as well as program counter
value selection circuit 712. More significant program
counter generator circuit 712 provides bits 4:31 of the
program counter value to program counter value selection
circuit 712.

Less significant program counter generator circuit 710
includes adders 720-723, multiplexers 730-733 and multi-
plexers 740-743 as well as multiplexer 750. The combina-
tion of one of the adders 720723, one of the multiplexers
730-733 and one of the multiplexers 740—-743 provide the
least significant four bits of a potential next decode program
counter value. Each potential next decode program counter
value corresponds to an ROP from queue 702. Multiplexers
730-733 provide one of the inputs to respective adders
720723 based upon whether or not a previous decode PC
value was a branch. Multiplexers 740-743 provide the other
input to respective adders 720-723 based upon the byte
length of the X&86 instruction and to how many ROPs
correspond to an X86 instruction. Each adder 720-723
provides the least significant four bits of a potential next
decode PC value as well as a carry bit. The potential next
decode PC values are provided to multiplexer 750, which
provides one of these values as the next decode PC value,
and to program counter value selection circuit 712, which
provides these values to reorder buffer 114.

More significant program counter generator circuit 712
includes incrementer 760, multiplexer 761, incrementer 762
and carry selector 764. Incrementer 760 increments the more
significant portion of the present decode PC value which 1s
stored 1n PC latch 704 and provides this incremented value
to multiplexer 761 which also receives the non-sequential
PC value from queue 702. Multiplexer 761 provides one of
these values to incrementer 762 based upon whether or not
a branch was taken. Incrementer 762 receives this value and
provides this value to PC latch 704. Incrementers 760 and
762 increment based upon the carry bit that 1s provided by
carry selector 764. Carry selector 764 provides the carry bit
of the last instruction to be dispatched to reorder bufier 114.
Incrementer 760 provides bits 4:31 of the next decode PC
value to branch section 135.

What 1s claimed 1s:

1. A method for generating an execute program counter
value, comprising;:

generating a current first program counter value using a
first program counter coupled to at least one of a
plurality of instruction pipelines 1n a microprocessor,
the current first program counter value having a current
more significant first program counter portion and a
current less significant first program counter portion
and representing a program count value of a fetched
mnstruction;

storing the current first program counter value;

cgenerating a plurality of next less significant first program
counter portions and corresponding next carry signals
in a plurality of adders, each of the next less significant
current first program counter portions and correspond-
ing next carry signals, corresponding to separate
mstructions;

generating an mncremented current more significant pro-
gram counter portion;

selecting one of the incremented current more significant
program counter portion and the current more signifi-
cant program counter portion as a next more significant

6,035,386
19 20)

program counter portion based on one of the corre- 4. The method as recited in claim 1 further comprising;:

sponding next carry signals; and ogenerating the next less significant first program counter

portions and corresponding next carry signals by add-

5 ing an 1nstruction length value corresponding to each
separate 1nstruction to a current less significant pro-
gram counter portion.

providing the next less significant first program counter
portions and corresponding next carry signals to an
execute program counter circuit.

2. method as recited 1n claim 1 further comprising

selecting the one of the corresponding next carry signals

according to which of the separate instructions is S. The method as recited 1n claim 4 wherein the separate
dispatched for execution. instructions are reduced instruction set computer (RISC)
3. The method as recited in claim 1 further comprising: 10" instructions and wherein the instruction length values are
generating an execute program counter value using a determined according to a start of a next complex instruction
selected one of the next less significant first program set computer (CISC) instruction.

counter portions and a selected one of the correspond-
Ing next carry signals. %k sk %k ok

il L L L R

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO.) 6,035,386
SSUE DATE : March 7, 2000
NVENTOR(S) : Christie, David S.;: Goddard, Michael D.: White, Scott A.

It is certified that error appears in the above-identified patent and that said Letters
Patent is hereby corrected as shown below:

Column 3, line 61; please delete “Fig. 4 1s” and insert --Figs. 4A and 4B are--.

Signed and Sealed this
Eighth Day of May, 2001

Aoty P o

NICHOLAS P. GODICI

Attesting Oﬁi‘é’-” Acting Director of the United Stares Paitenr and Trademark Offrcee

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

