US006026438A
United States Patent .9 111] Patent Number: 6,026,438
Piazza et al. 451 Date of Patent: Keb. 15, 2000
[54] DYNAMIC WORKSTATION 5,612,898  3/1997 Huckins ......ccceevveevvinenrnnnnn. 364/514 R
CONFIGURATION PROCESSOR 5,666,534  9/1997 Gilbert et al. ....cocueveveneennne. 395/651
5,671,363  9/1997 Cristofich et al. .
(75] Inventors: Frank Piazza, Medford; David g,,;gjjigé gﬁggz ?and?rs t] 3953/52%23
, 764, 1 urpin et al. ...
Olhasso, Somerset, both of N.J. 5765144 6/1998 Larche et al. |
: _ . 5,781,654  7/1998 Carney .
[73]  Assignee: Merrill Lynch & Co., Inc., New York, 5.819.042 10/1998 HANSEN werveeveeveeveeveereerrsrann 395/200.52
N.Y. 5826.243 10/1998 Musmanno et al. .
5,832,503 11/1998 Malik et al. ...cooviiininiiinnnnnnne, 707/104
[21] Appl. No.: 08/962,306 5,838,907 11/1998 Hansen ........cceeceevvveveervennnnn, 395/200.5
- _ 5,845,078 12/1998 Tezuka et al. ..................... 395/200.52
22]  Filed: Oct. 31, 1997 5,860,012 1/1999 LUU ..oorvvererrerrrreereseensiaeeeeennns 305/712
- 5,890,141  3/1999 C t al. .
SI] It CL7 oo GOGF 15/177 890, / arney et a
52] US.CL e, 70972215 709/220 OTHER PUBLICAITONS
58 Field of Search ..................... 707/200, 395/20051, Two—page excerpt describing an Install System distributed
395/200.52, 200.53, 200.54, 200.55; 705/35, by IBM for its AIX System, dated 1995.
38; 709/220, 221, 222; 713/1, 100
Primary FExaminer—Paul Kulik
[56] References Cited Attorney, Agent, or Firm—HopGood, Calimatde, Kalil &
Judl LLP
U.S. PATENT DOCUMENTS RO
# |57] ABSTRACT
4,346,442  8/1982 Musmanno .
4,376,978~ 3/1983 Musmanno . A system and protocol for implementing large scale instal-
4,097,046 6/1986 Mulsmanno Tt al. . lation of operating and user configuration data in essentially
j’%g’gg;‘ 18?32; Ez Helfl SS? zt.a.l unattended fashion. The enhanced system design allows for
A T74 663 O /1988 Mugs ot ef Al oreatly simplified system configuration, including protocols
5970970 12 /;:993 Higgins . - to msure user mobility between configured systems.
5,297,032 3/1994 Trojan et al. .
5,475,819 12/1995 Miller et al. .....cevvvevreennnnne, 395/200.03 14 Claims, 8 Drawing Sheets

TGAINST

LOAD: TGAINST

900

CHECK

UPSTREAM
?

AVAILABLE

930

PAUSE: COMMAND LINE

10

920

UNAVAILABLE

950~ )

COPY: PROFILER. TXT

L e
ERROR CODE

970

USE
ORIGINAL
CURVER

Vo

\ DIFF. CURVERS |

USE
UPDATE
CURVER

1000

APPLY CURVERS

1010



U.S. Patent Feb. 15, 2000 Sheet 1 of 8 6,026,438

o0 55 60 65

FIG. 1



U.S. Patent Feb. 15, 2000 Sheet 2 of 8 6,026,438

CoTART

110 100

‘ LOAD: NT
NO

140
LOAD YES 150
App (1)
? DISCOVER:APP(N,1)

NO 160

INSTALL APP (N)

170
DISCOVER APP (N,2)
|
DIFF. APP (N,1) 180

APP (N,2)
APP(N).Dif

SAVE APP (N).Dif 185

N® LasT APP 7 YES
__ 200
190 COMBINE: *.dif

RUN: SORT/MERGE 210
220
RUN: MANUAL INTV.|
SAVE:CURVERS 222

BUILD:CD 224
230
YES
250
BUILD NETVIEW NO
PACKAGE

240
SYSTEM
255 BUILD
DISTRIBUTE:OPERATIONS
((EnD FIG. 2

260




6,026,438

Sheet 3 of 8

Feb. 15, 2000

U.S. Patent

Ve OI 4

g4 441d 40

0Lt SNOILD3S

HLIM S3
S31gVIHVA = J19YINVA

d31140dd
Ol

SdVA dav SdA I

¢ SHVAVOL
ON S 19VIHVA

MAN 40V'id3dd

0ce

0c¢

¢ 9l4 33S oLe

SS300dd ONIOVYHOVd
NOILVOI'lddV AHO1314d04d 00¢

S$349 ddyv

ObC

ANY

ddV ANO d04 3114 4414 139

NOILYOIl1ddV 4dAODSId

ATIVANVIN NOILVOl 1ddV TIVLSNI

NOILVHOILINI N3LSAS WOdHA
SININOdWOD B SOI41D03dS
TIVLSNI NOILLVO! 1ddV JAIFJ0dY |

—_——




6,026,438

Sheet 4 of 8

Feb. 15, 2000

U.S. Patent

dc O 14

08v

SYIAHND Ad01ISOddd

d41SVIA ad1ing

ONIOVAIVd OL
S3I4VNIF AdOD

09y 0GP

NOILVHANOIANOD MH HOV3 d04
J 11
21d NI NOILIIS SOI4103dS NOILVININTTdNI
ddV dANINA 130

MH HOV3 A4IAQON / AaV

OCY Ocv
3104 HOV3 404
3114 4413 NI NOILD3S
3704 HOV3 A4IdOW / AaY SOI4103dS NOILVLINIWI1d NI

ddV ANINAG3130

0¥

SNOISSINY3d

3114 ANV
ALIdMD4S Aayv

ON

ddvO

Ovy advo JIN

SdA

ON

Ol dOLdV

1 OVdWNI
3104

SdA




P Ol4
¥IAYIS NOYU 3113MSIA
NI®VL ST D14103dS

JaVMUAGVH

A_” — ] @H
dS + LN
Gl

Q3ANdLLVYNN 440 MO

6,026,433

S31ld TIVLSNI

o_& dS + LN
—

> o
- LSNIVOL
1)
g
= GEL
¢ p
IN
= 3714 1X3L
3 37140¥d
. SYIAUND
o
5
2 G0/

AHOLISOdHdH 411404 d
0000000

.. 0000
00 D =

¢ + 0 AVA - INIHOVIN @T1INg - NOILYH3dO NdJ

U.S. Patent



G Old

6,026,438

-

-

&

o

3

i —

& »

~

—

—

a\

.

1 —

IS dil1ones JBAYD L= d]
e [sessalppy\IaARS\INIHOVIN TVD0T1 AIMH]

anxal JeavoL=ql
[XTN\INIHOVIN TvO0O1 AINH]

TV
dOISIAP®

340439 FT714 IX3L SHIAEND

U.S. Patent

T
\ ISNIXVOL _

80L°LL9L OL=Ld
[S9SSBUPPYIBAISS\INIHOVIN T¥I0T AINHI

- REEE]
[XTNIANIHOVYW 1vD01 AINHI
MY

dOISIqDP®
CIVNLEIA) 3114 IX3L SHIAEND

0c8 0l8

0¢8

80L L 191 0L = dIL1oAIBG
LN = AIXT

3114 1Xd1 d31140dd




U.S. Patent Feb. 15, 2000 Sheet 7 of 8 6,026,438

TGAINST

910
LOAD: TGAINST

92
PAUSE: COMMAND LINE

CHECK

UPSTREAM
?

AVAILABLE ERROR CODE

COPY: PROFILER. TXT

960
YES 970
DIFF. CURVERS
NO

' USE
B0 ~_ USE UPDATE
CURVER

0

930 UNAVAILABLE

940

950
NS

ORIGINAL
CURVER

1000
APPLY CURVERS

980

1010

FI1G.6



U.S. Patent Feb. 15, 2000 Sheet 8 of 8 6,026,438

TGAINST

@ 1100
1110
LOAD: TGAINST

1120
PAUSE: COMMAND LINE
CHECK UNAVAILABLE 1140

130 UPSTREAM

l?

' ERROR CODE
AVAILABLE

COPY: PROFILER. TXT

1160
@ YES 1170
* DIFF. CURVERS
NO

1180
USE ORIGINAL CURVER USE UPDATE CURVER

1220 1180

APPLY PCURVER: EXCEPT REGISTRY

UNATTACH: USER. USR

1150

1230

1240

1250

1260

1270

1280
NEXT USER
1290
1300

FIG. 7



6,026,438

1

DYNAMIC WORKSTATION
CONFIGURATION PROCESSOR

FIELD OF THE INVENTION

The present invention generally relates to computer sys-
tems and processing methods for controlled installation and
upgrade of highly specialized computer workstations,
servers, and their environment 1in an automated fashion.
More particularly, the present invention relates to a speciiic
computer install control system, established protocols and
the governing programming that 1s capable of automated
configuration of many individual computer workstations and
servers creating a network environment having a broad
collection of user profiles, proprietary/3rd party
applications, and operating system characteristics.

BACKGROUND OF THE INVENTION

The advent of the personal computer has revolutionized
the working environment in the last ten years by giving
individuals unprecedented ability to process data and per-
form sophisticated analysis. In recent years, the capabilities
and power of the PC on the desktop has been amplified
several orders of magnitude by the development of advanced
networking techniques that link together computers into
rings of shared information and communication. Together,
these developments have changed the way business 1s done.

To take advantage of these new capabilities, companies
have hired large stafls of computer experts to implement and
maintain the new systems that are sprouting up 1n
headquarters, regional offices, and home oifices. Desktop
computers are complicated devices with a wide range of
device requirements, operating system attributes, and appli-
cation settings that must be configured to insure proper
performance. Indeed, most computers today are linked
together 1nto a network that demands select communication
protocols, organizational structures, passwords, and the like
for successtul operation. In addition, desktop computers
include connections to printers, scanners, modems, data
cards, etc. each of which implicates a range of specialized
system settings to allow operation. Added to this 1s the
collection of individual software applications that typically
populate most workstations—such as word processors,
spreadsheets, and database tools. And, of course, some
companies rely on select proprietary soiftware installed on
cach machine. See, specifically, U.S. Pat. No. 5,878,258,

incorporated herein by reference.

The foregoing discussion delineates multiple computers
at a site, each of which represents a complex mix of software
and hardware from a variety of vendors. Under these
circumstances, 1t 1s not surprising to find that most comput-
ers take significant time to set up in the first place—often
requiring the services of a highly skilled PC expert. For
example, 1t 1s difficult to install a new application onto a PC
workstation 1n under 20 minutes. Assuming twenty separate
applications, install time will often extend beyond six hours.
Thereafter, as the system 1s upgraded to mclude new soft-
ware or hardware, the delicate balance 1n the 1nitial setup 1s
at some risk.

The above efforts of system setup and upgrade are mag-
nified for offices with multiple workstations. Indeed, by the
time the PC expert finishes configuring all the workstations
in a typical office, the original PC 1s likely obsolete and the
applications 1nitially installed all need upgrading. This
would be an enormous chore.

Recognizing these issues, there have been several efforts
to automate the install process and to provide homogenous

10

15

20

25

30

35

40

45

50

55

60

65

2

creation of workstation platforms 1n an automated fashion.
Some of these are commercially available, such as the
WinStall product distributed by Seagate. Others reflect pro-
prictary efforts that have not been disclosed to the public or
commerclally distributed. This includes the prior PRISM
system used by Merrill Lynch for 1ts DOS based worksta-
tions during the past decade. In general, these systems
provided an enhanced capability to create the requisite

workstation platform with minimal customized support for
cach 1nstallation. This, of course, translated to substantial
savings when multiplied by the number of new systems that
must be brought to operating status 1 a given year.

Recent operating system advances and increases 1n net-
work communication capabilities has established a pressing
neced for greater automated configuration and installation
facilities. This 1s particularly true 1n the Windows NT
environment which 1s now growing in 1importance. Its now
becoming particularly common to have branch offices uti-
lizing a local area network—IAN—to support data distri-
bution amongst the various employees and activities under-
taken at the local office. In this arrangement, depicted
ographically in FIG. 1, the branch office LAN includes at least
two servers and a plurality of separate but interconnected
workstations. In addition, this arrangement 1s linked via per
se well-known communications bridge to a separate wide
arca network—WAN—ci1ther privately supported
(“intranet™) or part of a public access network, such as the
Internet. As depicted 1in FIG. 1, a number of separate LANSs,
for each branch office, are placed in the WAN and configured
to be 1n communication with other members of their net-
work.

These networks are supported by separate network oper-
ating system—NOS— and support services. To insure
proper conflguration and enhanced maintenance, it 1s Impor-
tant to have each of the nodes (workstations) on the network
conform to one of a small set of hardware specifications, and
configure each 1 a uniform manner. Using the same hard-
ware components for each workstation 1nsures that once 1t 1s
debuggeed, the workstation configuration will be repeated
without problems to i1dentical hardware.

The foregoing system demands have created a difficult
situation where expansions and upgrades to computer sys-
tems require enormous commitment of time and effort of
skilled PC experts, simply to configure the new arrange-
ments to 1sure proper operation. It was with this under-
standing of the problems of the prior art that formed the
impetus to create the present invention.

OBIJECTS AND SUMMARY OF THE PRESENT
INVENTION

It 1s, therefore, an object of the present invention to
provide a data processing system to automate the creation of
the software platform for the custom configuration of
workstations, servers, and users.

It 1s a further object of the present invention to provide an
integrated program controlled system for implementing
remote and automated configuration of servers,
workstations, and users in accordance with pre-set criteria.

It 1s still another object of the present invention to provide
a stored program known as the “profiler” which 1s capable
of establishing the appropriate settings for both the operating
system and applications for a LAN of plural workstation
platforms.

It 1s still another object of the present invention to provide
system programming and operating logic to the process of
upgrading one or more PC workstations with newer versions
of software.




6,026,438

3

It 1s another object of the present invention to provide
User profile information accessible to the workstation plat-
form 1n accordance with the specific User parameters for the
user logged on to operate that particular workstation.

It 1s another object of the present invention to create and
update mndividual User profile information independently of
the User’s workstation.

The above and other objects of the present mnvention are
realized 1in an integrated computer system for managing the
installation and upgrading of multiple PC based
workstations, servers, and users. In this context, the system
provides the controlling logic commands and 1implementa-
fions to install a full software operating system and select
applications onto a factory fresh computer; this 1s accom-
plished 1n essentially unattended fashion. In addition, the
system performs operating system and application
updates—also 1n essentially unattended fashion. This 1s
supplemented by the use of a dedicated centralized facility
for storing individual workstation, server, and user param-
cters.

The system has, as a first property, a module to perform
the 1nitial Server’s workstation build. This involves the local
use of a special boot disk and the interconnection to a
specific 1nstall support computer that has stored thereon for
select use an application known as the Profiler. The boot disk
1s customized for the particular hardware environment that
needs to be configured mto a select workstation platform.
The boot disk also performs the necessary programming
steps to permit installation of the operating system with a
pre-defined set of operating system control parameters. The
use of multiple custom boot disks permits the use of several
different hardware platforms including servers and laptops.

The profiler application tool (profiler exe) operates to
build the directory structure and creates individual files
representing user, server, and workstation specific data.

Once the operating system 1s 1n position, a custom profile
of applications are implemented to complete the istall of
the user’s system. This 1s accomplished by taking a master
configuration file, known as a “Curvers” file, and 1mple-
menting this file 1 conjunction with stored system data to
create the new local environment. (Multiple curver files are
used, each with a targeted objective.)

In accordance with the varying aspects of the present
invention, the system permits upgrades in combination with
new 1nstalls, using a before/after driving logic. In particular,
the system characterizing files for operating workstations
and servers are recorded creating an initial configuration
“snapshot” of the computer and then stored on that computer
as a Curvers {ile. For an update, an updated version of this
system 1s then created on one machine and a new curvers file
of the salient system characterizing data 1s created. This
curvers file 1s then transferred to the workstation and then
compared with the stored existing curvers file, and 1mple-
ments the differences between these two curvers files.

The foregoing features of the present invention will
become better understood by review of the following
detailed description of a specific illustrative embodiment

thereof, taken 1n conjunction with the appended figures, of
which:

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 provides a functional block diagram for an exem-
plary network system;

FIG. 2 provides a logical flow chart diagram of the Install
support creation system and related process;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 3A and 3B provide a logical flow chart regarding
the system creation process, proprietary applications;

FIG. 4 provides a system schematic depicting the present
mvention;

FIG. 5 provides a schematic on the system implementa-
tion of curver files;

FIG. 6 provides a logic flow diagram of TGAINST and
TGASINST; and

FIG. 7 provides a logic flow diagram of TGAPINST.

DETAILED DESCRIPTION OF THE
INVENTION

First briefly 1n overview, the present invention 1s funda-
mentally directed to providing network creation, recovering,
and updating as an unattended IS (Information Services)
function. Accordingly, two separate but highly interrelated
processes have been developed. The first process 1s directed
to 1implementing system creation. This 1nvolves creating
select media, interconnected associated hardware, and run-

ning a program that drives a custom install for all compo-
nents within a network environment.

The second process of interest 1s directed to system
modifications. The exemplary modifications include the
updating of applications on the system, the change to new
hardware or role, the movement of users between
workstations, and the recovery from a system failure.

To accomplish these objectives, the inventive system
provides several modes of operation each of which 1s guided
by a fundamental operative philosophy. In particular, the
invention applies “state” theory wherein ultimate operating
characteristics are a function of the attributes of their current
state, but independent of the path taken to achieve this state.
Specifically, two workstations may take completely different
paths to a final configuration, but once there, will be gov-
erned by the same environmental settings. Application of
these principles mvolve use of a programmed controlled
system and a set of software tools, the core features of which
permit the unattended creation and upgrading of the select
network properties.

With the foregoing overview 1n mind, attention 1s first
directed to the series of figures delineating system structure
as 1t relates to these various modes of operation. The first
mode of operation 1involves creating the initial state for the
system. This will reflect the current selection of operating
system, proprietary applications, and third party (shrink
wrap) applications. It will also include select user profile
information that will govern that user’s interaction on the
resulting network—including access codes for select levels
of security.

The environment of concern 1s generally depicted in FIG.
1 and includes two (or more) separate local area networks
(LANSs) interconnected by a wide area network (WAN). In
particular and with reference to FIG. 1, the generic LAN 10
1s one of many existing or new network branch offices within
the set domain. In the example presented here, the operating
system for the network 1s a Microsoft Windows NT envi-
ronment with the domain set established under the NT
parameters. Accordingly, the various branch offices have
select 1dentifying protocols to allow domain wide adminis-
tration.

LLAN 10 1s one of many LANs on the WAN each linked
by known communication bridges and further linked to the
administration LAN 70. In addition, the admainistration
network 1ncludes a management server 80, with a propri-
ctary application known as the Profiler. The profiler data




6,026,438

S

store 85 includes custom files having extensions of the form
file. uxt and {file.txt containing select environment data for
nodes and branches within the governed domain. These files
are much like the “1m” {files typically found mn a Windows
system environment, wherein select control parameters are
separately stored for access during run time. The profiler
also encapsulates the functionality otherwise found in cer-
tain tools typically incorporated with NT, such as USER
Manager and Server Manager. Please see Microsoft Win-
dows NT Resource Kit, for Windows NT Workstation, and
Windows NT Server, Ver. 3.5, 2nd Ed. (1995), published by
Microsoft Press, One Microsoft Way, Redmond, Wash., a
program guilde which 1s incorporated by reference, as if
restated in full. A sample profiler data store (in directory
format) is presented below:

TABLE 1

PROFILER DATA STORE

WKTMPL (Share)

LOAO0O1 (Branch)

——WO0L.TXT (Workstation)

—RO01.TXT (Remote Workstation)

——DEFA.TXT (Branch Settings)

——S001.TXT (Server)

——DAVE.UXT (User)

[LOAOO2Z

Within LAN (1) itself, a plurality of separate and inter-
connected workstations, W(12), 30 and W(12), 35 reside,
with the number often extending into the hundreds. Each
workstation has a separate name, such as LOAOO1WO0O1 and
is associated with local servers S(11), 20 S(12), 25, respec-
fively. The governing server will have name LLOAO01S001.
Under this labeling, the first six characters reflect the branch
code, and the following four characters i1dentily the node.
The foregoing 1s applicable 1n a number of different com-
munication regimes, and 1s exemplified here under a TCP/IP
(transmission control protocol/Internet protocol) regimen.

Creation of a new LAN 1s accomplished remote from the
actual office, as the separate computers are configured
utilizing special configuration software and data. In
particular, the main LAN server 1s configured, which 1s then
used to program the individual workstations. Accordingly,
the server 1s provided with the necessary tools and applica-
fions to separately build the workstations and these 1nclude
the files (application executables), the curver files (explained
in detail below), the NT install package, and the service pack
for N'T. These applications are provided to the server on the
distribution CD (compact disk) pre-configured in accor-
dance with the process depicted in FIG. 2 below. In addition,
the branch server supporting the LAN build 1s provided the
source install data for all nodes (1.e., servers, workstations,
and users) from the CD and specifically, the SRINST and
WSINST directories on the CD. These two directories are
copied from the CD onto the server.

These directories include all source files to install N'T and
all files specified 1n the CURVER files. Two directories are
used to separate workstation files from server files.

10

15

20

25

30

35

40

45

50

55

60

65

6

TABLE 2

BUILD DIRECTORY

Server Drivd

SRINST

WSINST

The actual system 1nstall 1s accomplished using the fol-
lowing steps. First the server 1s programmed by using the
data from the distribution CD. Server install parallels that
described below for the workstation, with the exception that
DHCP 1s not used, the operating system (here NT) is directly
taken off the distribution CD and the contents of the distri-
bution CD are copied into the above two directories,

SRINST and WSINST.

Thereafter the workstations are connected to the Server
and rebooted with a special boot disk (floppy). This boot
disk 1s particular to the hardware, such as the network cards,
ctc. For example, 1f the workstation 1s a Pentium® class
computer with a Maxtor® hard drive and a Number Nine®
video card, parameters corresponding to the build of this
hardware configuration are part of the boot disk files. It will
also mclude the necessary boot files such as command.com
and 10.sys, typically found in a MS-DOS® system.

To 1nstall, the boot disk 1s “booted” and the “install”
command entered on the command line with the workstation
name as the argument. The system then loads the DOS
network client and obtains a DHCP TCP/IP address;
(dynamic host configuration protocol), and connects to the
proiile server to access the data control file specific to this
workstation.

Next, the system copies the data control file (e.g.,
WO001.TXT) to profile.txt file containing the requisite build
information and then builds an NT “answer” file. The NT
answer flle contains the default values to instruct N'T on 1ts
install from the server to the workstation—without user
intervention. In particular, the answer file includes the
necessary parameters taken from the profile.txt file and the
hardware specifications from the boot disk to guide the N'T
install program. The actual build of NT on the workstation
1s accomplished by starting a standard N'T unattended install

from the WSINST Directory on the Server.

Thus, the server 1s first built by accessing the requisite file
from the system CD, while the actual workstations are built
from the files stored on the now constructed server. This
becomes the pattern for building LANs within a single NT
domain.

The packaging process for generating the above-noted
distribution CD 1s generally depicted in FIG. 2 1n logic
flowchart form. This process involves the actual nstallation
of individual applications and examination of the system
before and after each install. Logic conceptually begins at
Start block 100 and continues to test 110 which determines
if the operating system 1s needed. If an 1mitial operating

system build 1s required, a positive response to test 110
branches logic to block 120.

The system then supports the discover process for char-
acterizing machine state. In particular, freezes the key con-
figuration settings (e.g., the registry files, any ini files, and
the like). This snapshot is then stored as *.dis, and used as
the 1nitial “state” for any subsequent changes.




6,026,438

7

The discover files have a unique format, wherein infor-
mation 1S sectioned and the overall structure retlects a

particular hierarchy. provided below:

EXAMPLE OF DISCOVER FILE

@@Registry <group level>
| key] <section>
value = data <leaf>

Thus, the discover tool of the present invention converts the
system snapshot 1nto the foregoing file with groups com-
prising liles, 1ni1, services, and registry.

The tool, Diff.exe contrasts the elements of the system
configuration data before and after the install. This 1s accom-
plished by taking the before and after “snapshots,” in the
form of *.dis files and calculating the difference therebe-

tween. This 1s exemplified 1n the following table showing
the before install discover file, A.dis. and the after install

discover file B.dis.

Example—Diif.exe

A.DIS B.DIS AB.DIF
(@(afiles (@files (@(files
[ci\Dave] |[ci\Dave] [ci\Dave]
AAexe =V, AAcexe =V, AA.exe =V,
AB.exe = X ABexe = X --AC.exe--
ACexe=Y AD.exe = Z AE.exe = Q
AD.exe = £ AE.exe = Q

Focusing on the “files” group, the difference 1n applica-
tions 1S recorded 1n the AB.dif file, which notes both the
addition of the new file, AE.exe and the removal of an old

file, AC.exe.

Continuing with FIG. 2, at test 140 the first of the
applications 1s considered for inclusion in the build. As
stated earlier, 1t 1s expected that dozens of separate appli-
cations will be included with each build. Each of these must
be assessed to determine the configuration settings needed to
implement the application installation. This 1s accomplished
incrementally, via test 140. A positive response triggers the
sequence depicted 1n blocks 150185, wherein the specifics
of the current machine state are discovered at block 150 and
stored as APP(N,I). At block 160, the new application is
installed and a second discovery file generated, block 170,
recording the system configuration files that result from the
installation process. This second discover file is APP(N,2).
Thereafter, the system determines the system differences
after the application installation by contrasting the APP(IN,I)
file with APP(IN,2); this resulting in what is called a Diff file,
block 180. This 1s saved as APP(N).dif at block 185. This 1s
repeated for each application, at test 190. The system creates
all of the discover and diff files, for each one of N
applications, and then creates a single Curvers file by
aggregating the individual diff files, through block 200 into
the controlling curvers file.

This curvers file 1s, however, incomplete and needs sev-
eral alterations betfore final use. The curver file differs from
the discover files 1n that the curver files include the above
oroup level and two additional levels—hardware ID and
role:

10

15

20

25

30

35

40

45

50

55

60

65

Base Curver Format

(@@ @@ role
(@ @@ hardware ID

@@ files

The resulting curvers file 1s then sorted, block 210 and
several manual 1nterventions mtroduced at block 220. This
Curver file 1n combination with the actual executables of the
application becomes the predicate for the initial installation
or update as determined by test 230. At this juncture, the
Curver files will be used in conjunction with the NET-
VIEW® software for system upgrades, block 250, or used in
initial system builds via CD, block 240.

The foregoing tlow 1mplicates several important consid-
crations 1n 1mplementation. To begin with, the process
depends significantly on whether the application was
designed 1n house with close conformation to standards for
internal use, or 1f the application 1s a shrink wrap version of
commercial product—this latter circumstance creating
potential install concerns. The system design and implemen-
tations to address these issues are delincated in the next
sequence ol Figures.

Turning now to FIG. 3, the foregoing logic 1s expanded to
express system operation on proprietary applications, begin-
ning with the new application identified for addition to the
workstation platform, block 300 and installed at 310. The
resulting system file changes are then discovered, 320, by

taking a snapshot of the new files, which 1s stored as a Dift
file, block 330.

At test 340, the system determines whether there are any
variables within the Diff files. In this context, the variables
are listed as TGA__ VAR although the nomenclature 1s not
critical. If variables exist, the correspondmg TGA_VARS
arc manually added into the Diff file, block 350.

Continuing with FIG. 3A, test 360 determines if new
variables have been added to the Diff file, 1.e., variables not
part of the profiler. If so, these variables are then added to the
proiiler, block 380. At block 370, all manual section entries
are added to the Diff file. This includes the GRES, PROC,
and Attrib components. PROC comprises the parameters
that support spawning another program (as identified) during
the 1nstall process. For example, this section will permait
spawning the unattended install for Microsoft® SQL
Server®. The Attrib sets the file level attributes, e.g., “read
only,” “hidden,” and “system”. The GRES section includes
those parameters necessary to replace variables 1n an unfor-
matted text based file.

One aspect of the system build i1s the role that the
computer will have—is it a laptop, desktop, etc.; many
applications don’t care about the role and thus their instal-
lation 1s transparent to this segment of the curver file. To the
extent the application 1s impacted by “role,” the configura-
tion data 1s stored in this level. At test 410, the system
determines 1f the new application will impact the role
section of the Diff file. If so, the system measures this

impact, block 420, and then modifies the role section of the
Diff file, block 430.

Similarly, the hardware impact 1s tested at 440. This
includes the different hardware types such as network cards
and sound cards. In parallel with the 10 above, the applica-
tion on the hardware section of the Diff file 1s measured,

block 450 and then used to modity this section of the Diif
file, block 460.




6,026,438

9

The final segment of this process for each discover 1s the
addition of any NT security control parameters, block 470
with all binaries copied to the packaging repository, block
480. The final step involves building the master curvers file
from the above manipulations.

Curver files are generally used to configure workstations.
An exemplary master curver lile 1s presented below:

EXAMPLE 1—CURVER FILE

#I'TI'LE = Example Base Curver File

@@@@ALL

@@@ALL
@@FILES

[C:AWINNT4]
[sUninst.exe = 314368,1997\3\24,17:42:56,5.00.200.0
uninst.exe = 299008,1996\1115,16:13:22,2.20.920.0

10

(here N'T) from the server 710, via transfer of these specific
files (including service paks) via path 740.

Once the operating system 1s 1n place, an 1install tool
called TGAINST 1s applied to connect the proiile data, 7085,
and the curvers file, 715, for that system 1nto the controlling,
confliguration for that workstation. In particular, TGAINST
creates the local registry, 1m files, security, services, etc.
directly from the curvers and profile data, and loads these
entries on the workstation. In addition, TGAINST transfers

| CAWINNT4\Profiles\All Users\Start Menu\Programs\Accessories\Hyperterminal |

HyperTerminal.Ink = 592,1997\8\8,13:37:32,
@@GRES

| Copy]
EAServices\AOST \SetTime.bat

(@@INI

@@PROC

|FULL]

a = E\Services\AOST\SetTime.bat

@@REGISTRY

|[HKEY_CURRENT _USER\Software\Microsoft\Windows}
CurrentVersion\Telephony\Cards |

“NextID” = dword:00000017

“NumEntries” = dword:00000017
|[HKEY_CURRENT__USER\Software\Microsoft\Windows\
CurrentVersion\Telephony\Cards\CardQ |

“Flags™ = dword:00000001

“ID” = dword:00000000

“International Rule” =
“LDRule” =«
“LocalRule” = «”
“Name” = “None (Direct Dial)”
“Pin” = *”

(@@SERVICES

| MSSQLServer|

e

272,3,1,E:\Services\SQLOO\BINN\SQLSERVR.EXE, LocalSystem ,MSSQLServer

| SQLExecutive]

16,3,1,E:\Services\SQLOO\BINN\SQLEXEC.EXE,,LocalSystem,SQLExecutive

@W@WSHARE
|BMS]
Print = E:\Services\BMS\Print

The foregoing process reflected the install of conforming,
(in-house) applications. Not all “shrink wrapped” applica-
fions conform to these specifications, and these will require
a different approach. An example of one such application 1s
Microsoft® SQL Server® which creates a custom database
at 1nstall time and 1s thus not a valid candidate for this
system. To resolve these stallation issues, the system
invokes a manual engineering effort that may require cre-

ation of select script files and the like.

The above discussion focused on the install creation
process, 1.€., the creation of the software configuration codes
on CD to allow unintended LAN system installation, starting
with 1nitial server configuration. Implementation of this
process on a workstation level may be better understood by
reference to FIG. 4, recognizing that the server install 1s
analogous to this process.

In FIG. 4, the process of building a fresh workstation, 720,
(or updating an existing workstation with new software) is
depicted. In this scenario, the network server for the branch
office, 710, is connected to the remote central server, 700 (70
in FIG. 1). For an initial install, the workstation is booted
with the kick-off disk, 725, for loading the operating system

45

50

55

60

65

the actual application executable files, 735, from their
repository on the branch server (i.e., WSINST directory),
710, and places these onto the workstation at the appropriate
hard drive location.

If the workstation 1s undergoing an update, the TGAINST
program merely contrasts the old existing WCURVER file
with the new WCURVER that was created reflecting the
configuration parameters for the update. TGAINST then
applies the changes between the two WCURVER files to the
machine.

FIG. 4 provides a general representation of the operation
of the install program, TGAINST. In fact, there are three
separate install programs, each applied to a separate type of
curvers file all generically referred to as TGAXINST. These,

however, include server install, TGASINST, user 1nstall
TGAPINST, and workstation 1nstall TGAINST.

Use of TGAXINST applied to a curvers file comprising,
variable entries, TGA__VARS, 1s depicted in FIG. 5. In this
example, the variables are:

1. ILXID=TGAVAR__ILXID
2. SERVER1IP=TGAVAR _ServerllIP



6,026,438

11

These variables are replaced during the install by the values
stored 1n the Profiler Text file, 810, via TGAXINST, 800, on
the curvers file, 820. The resulting curvers file (virtual; the
file is actually processed line-by-line) is found at 830.

Importantly, the system applies NT networking support
and specifically the use of a home directory and NT Profile
for each system user 1n the domain. The generic structure for
this directory which resides on one server 1n each branch, 1s
depicted below:

TABLE 3

GENERIC HOME DIRECTORY

E:/—/

Home

— USERI]

USER2

Profile

— USER.USR

Within the Home directory for each user in the domain,
USERI1, the system retains important configuration files
relevant to the USER1 preferences and the like, and 1nde-
pendent of any particular workstation. This will document
personal templates, address book, contact list, and other
personal data. Specifically, under Profile in the home

directory, file USER.USR (in NT 4.0, this file is called
NTUSER.DAT) stores all USER specific registry entries
which 1s defined as HKEY__CURRENT__USER whenever a
user logs onto a workstation.

Traditionally, USER.USR data was only entered onto the
workstation while a USER was logged on and then uploaded
by NT to the home directory when the USER logged off. The
difficulty with this method 1s that 1t requires actual individual
USERS to log on to each workstation to load software and
configure USER.USR. This 1s unacceptable for unattended
updates mnvolving more than a handiul of machines at a time.

The present 1mnvention avoids this problem by treating
USERs as separate nodes (similar to workstations) which
breaks the requirement that the USER 1s configured during
a software 1nstall on a workstation. This 1s accomplished by
applying TGAPINST to the PCURVER f{ile on the server
which contains the home directory.

Specifically, TGAPINST operates on the branch server,
containing the home directory, by attaching each USER’s
USER.USR file to the server’s registry and then applying the
registry entries from the PCURVER file to the attached
USER.USR file. TGAPINST also creates the USER’s
default home directory, including files, 1n1, etc. and sets
permission allowing the USER and only the USER access.
PCURVERS file 1s created by removing all references to
HKEY_ CURRENT__USER and all references to the home
directory from the previously generated workstation Dift
files.

Significant flexibility results from this arrangement. For
example, because USER data 1s not created during work-
station 1nstall, each workstation remains generic and avail-
able to all USERS; this allows for a mismatch between the
number of USERS and workstations.

Turning now to FIG. 6, the logic for the TGAINST
TGASINST processes are depicted. After start block 900,

10

15

20

25

30

35

40

45

50

55

60

65

12

the system loads the executable TGAINST, block 910 and
parses 1ts command line for run time arguments, block 920.
These may include location of SRINST directory, name of
install server, logging value, debug value, etc.

At test 930, the system confirms all requisite resources are
available, e.g., resources allowing access to remote servers
and the like. If available, logic continues to block 950 which
copies the Profile.txt onto the machine from the profile
SErver.

At test 960, the system determines whether a Daifl
(between old, current, and new Curvers files) is needed. If
yes, logic branches to block 970, and the two Curvers files
are dynamically contrasted (Diff) and the output Curver file
captured. If no Diff required (“No” to test 960), then the new
Curver file 1s captured. At block 1000, the captured Curver
file 1s applied and logic terminates at block 1010.

Turning now to FIG. 7, the logic governing the TGAP-
INST operation 1s depicted. After start block 1100, the
sequence replicates that presented 1n blocks 900 to 990 of
FIG. 6 with the same procedure. Starting at block 1220,
however, TGAPINST departs from that depicted 1n FIG. 6,
as the system obtains the branch USER list (i.e., identified
by the first six characters identifying the branch).

At block 1230, the processing loop 1s initiated for each
USER(I), taken incrementally, and at block 1240, the USE-
R.USR 1s taken from the Profiler server and the variables
theremn cached 1n system memory. At block 1250, the
USER.USR 1s attached to the server registry. This 1s accom-
plished via an API call delineating the file attachment to the
registry.

At this point, the registry entries from the PCURVERS
file are applied to the attached USER.USR file, block 1260.
At block 1270, the remainder of the PCURVERS entries are
applied to the USER’S home directory (stored on the
server). The last step is decoupling the USER.USR file from
the registry and indexing to the next USER 1n the loop.

After completing all USER’S, process terminates.
Although the 1nvention has been described in detail for the
purpose of 1llustration, it 1s to be understood that such detail
1s solely for that purpose and that variations can be made
theren by those skilled 1n the art without departing from the
spirit and scope of the invention.

What 1s claimed 1s:

1. A method for building a configuration control file for a
computer system comprising the steps of:

a. placing an operating system onto an existing computer;

b. iteratively installing individual applications and creat-
ing a discovery file for each application comprising
machine state information after application install;

c. iteratively creating a curver lile by ageregating plural
application diff files formed by contrasting information
stored 1n successive discover files;

d. sorting and/or merging said curver file and correcting
errors 1n curver file entries; and

¢. storing said curver file 1n a storage medium.

2. The method of claim 1 further comprising the use of
variables, TGA_ VAR entries, within one or more diff files.

3. The method of claim 1 wherein said curver file includes
a “Role” section delineating use of the machine.

4. The method of claim 1 further comprising a manual
intervention step for entering installation instructions for
select applications.

5. In combination with a system for controlling an install
process for configuring plural computer platforms wherein
said configuration includes operating characteristic files for
server and/or workstation operation, comprising: means for



6,026,438

13

establishing baseline configuration data for multiple
platforms, including the creation of one or more curver files
containing configuration data delineating system state
wherein said system applies curver files using data from a
central profile repository; means for taking configuration file
data from a single install operation and establishing a basic
install protocol for configuring plural other computers in
accordance with said configuration file data, wherein said
install process 1s path independent; and means for imple-
menting the install of said configuration data corresponding
to mdividualized USER profiles on said plural platforms.

6. A computer software installation and updating system
for operation 1n a network environment, comprising;

a. means for running a profile executable to act on a
profiler data store;

b. means to configure a central server with operating
system and applications, including placing workstation
install programs on a server directory;

c. means to configure a plurality of workstations con-
nected to said server including collectively treating
workstations and USERS as separate nodes within said
network; and

d. means for iteratively creating state specific curver files
for each workstation.

7. The system of claim 6 wherein said means for running
a prolile executable includes said data store of select envi-
ronmental data for network nodes and branches within the
governed domain.

8. The system of claim 7 wherein communication between
said server and plural workstations include a TCP/IP regi-
men.

10

15

20

25

30

14

9. The system of claim 8 wherein said means to configure
a central server 1ncludes creation of a NT Answer f{ile.

10. The system of claim 8 wherein separate install appli-
cations govern workstation, server, and USER profile data
installation.

11. The system of claim 6 mcludes means for creating an
install or update file by iteratively creating interim install
state diff files.

12. In a data processing system for controlling and
maintaining a network that includes workstations, servers,
and 1individual USERs, said system comprising:

a. a configuration state processor for creating a configu-
ration state curver file for each of said workstations,
servers, and USERS, collectively considered “nodes”™;

b. a conflguration compare processor for contrasting a
current confliguration state curver file with a curver file
for said nodes; and

c. application update processor for adding or updating
applications to said nodes and reconfiguring said nodes
in accordance with an updated curver file, wherein
USER specific data 1s created separate from said work-
station 1nstall or update.

13. The system of claim 12 wherein diff files are 1itera-
tively created capturing the impact on configuration for
successive application installs or system updates.

14. The system of claim 13 wherein said dif
aggregated 1n one or more curver files.

™

- files are




	Front Page
	Drawings
	Specification
	Claims

