United States Patent

Quaeler-Bock et al.

[19]

US006023271A
Patent Number:
Date of Patent:

[11]

6,023,271

45] Feb. 8, 2000

[54] FRAMEWORK FOR BINDING DATA
VIEWERS/DATA MANIPULATION WITH
ONE TO MANY OBJECTS THROUGH
INTROSPECTION
|75] Inventors: Loki Der Quaeler-Bock; Raymond J.
Ryan; Keith Bernstein, all of San
Francisco, Calif.
73] Assignee: Sun Microsystems, Inc., Palo Alto,
Calif.
[21] Appl. No.: 09/097,108
[22] Filed: Jun. 11, 1998
51] Int. CL7 e, GO6k 3/14
52] US.Cl o, 345/335; 345/333; 345/339;
709/300; 709/303
58] Field of Search ... 345/333, 334,
345/335, 339; 709/300, 301, 302, 303,
304, 305
[56] References Cited
U.S. PATENT DOCUMENTS
5,721,848 2/1998 Joseph ...cccovvvvirrinninrinieneeneenennns 345/339
5,761,656 6/1998 Ben-Shacharccoovuuneenen. 345/335 X
5,768,158 6/1998 Alder et al.ccccevvvviiinnnnennn, 345/333 X
5,872,973 2/1999 Mitchell et al.ooneevveeennnn.e. 709/303

OTHER PUBLICAITONS

Kieth Short, Developing w/Business objects, Object Maga-
zine, Mar.—Apr. 1995, pp. 6672

J. Adamczyk et al., Trading Ofl: Inheritance vs Reuse,
Object Magzaine, Sep. 1995, pp. 56-59.

Ted Shelton, A primer on Business Objects, Object Maga-
zine, Jun. 1995, pp. 20-22.

Primary Fxaminer—Raymond J. Bayerl

Assistant Examiner—C. A. Jackson
Attorney, Agent, or Firm—Pennie & Edmonds LLP

Customer GUI Object

57] ABSTRACT

Systems and methods for programming applications with
GUIs 1n accordance that do not require time-consuming and
error-prone custom coding of GUI/internal variable synchro-
nization routines, in general, and GUI/BO synchronization
routines, 1n particular. An embodiment includes a plurality
of classes for associating and synchronizing GUI compo-
nents and BO attributes. The classes include: an inspector
class, a selection class and a plurality of editor classes. The
mspector class mcludes methods and data structures that
enable a client application to bind a set of GUI components
to the attributes of at least one business object. As a first step
in associating and synchronizing GUI components and BO
attributes a client application constructs an instance of the
inspector class. The client application then passes the
inspector 1nstance a selection class instance that includes the
business object(s) whose properties are to be synchronized
with the GUI components. The client application also passes
the 1mnspector instance a mapping between BO attributes and
GUI components. The present mvention can be imple-
mented 1n the Java™ programming language or any other
object-oriented language. When the BOs are implemented as
JavaBeans™ Objects, their properties are discovered using,
the JavaBeans™ property of introspection.

6 Claims, 11 Drawing Sheets

= focus
CUSTOMER 231-1 | Listener
Last Name //f 136-2
; f i
230-1 .- 231 2E ~chion
First Name \ TListener |
231-3 | 136-3
230-2 \ ——— —
. .
work N [,
N 136-4
Area Phone N
N
2304 | {230-5 .
(3.4)
3.2) (3.3) -
Flinspector - - FIEforTextField «——
13214 | > 260.1 (3.1)
(3.7) ¢ (3.6) other editors . . . ~
FiSelection | &) FIEditors
1324 | 132.2
e
~ change
Customer BO - 43'3) Listener
1301 S A 136-1
public class CustomerBO {
public void setLastName (String value) ; 240
public String getLastName (} ; 242
public void setFirstName (String value} ; 244
public String getFirstName () ; 246
public void setGender (char value) ; 248
public char getGender {) ; 250
public void setAreaCode (String value) ; 252
public String getAreaCode {) ; 254
public setTelNumber (String value) ; 256
public String getTelNumber () ; 258
}

U.S. Patent

Processor
102

Memory 106

Operating System
Executables

Application Objects
GUI Objects
Business Objects
Bus. Obj. Providers
Inspector Framework
Inspector
changeQueue
supporterAffinity
Editors
Selection
Filters135
Listeners
Prop Change Listnrs
Focus Listeners
Action Listeners
Notification Listeners
Supporters

Data

Flinspector Class
FIEditor Classes
Filter Classes
FISelection Class
Supporter Classes

SupporterAftinity
FIPropertyChangeQueue

Feb. 8, 2000

Sheet 1 of 11

6,023,271

Hard Disk
104

12
12

-

N

—
N
S

—
N
&)

—t
NO
Co

—
QO
-

l_..
— IR

T
o OO
Qo [N
—r |-t

—
L | p L
N

—_— |k
L [
N I
o IDO

13

&)

annads
W
O

—
N
-

—i
=
-

—
o
N

.
B
I

—
.
N

—
N
&)

-y
O
o0

syl
o)
-

FIG. 1A

Display 110

Visuals 11

EeX-N
/| W\

'

U.S. Patent Feb. 8, 2000 Sheet 2 of 11

Supporter Classes 156

GUI Component Supporters
JComboBox Supporter
JLabel Supponrter
JList Supporter
JTextField Supporter
JTextComponent Supporter
JToggleButton Supporter
JButtonGroup Supporter
JTable Supporter

Fllnspector Interface
setSelection
addPropertySupport
addEditor
queuePropertyChange
firePropertyChange

FlIEditor Interfaces
addNotificationlistener
getProperty
setEnabled
setMultiValued
setValue

FISelection Interfaces
setElements
setPropertiestoValues
setPropertytoValue

FIG. 1B

a—
~J
o

-
-.q
AY

=t
~J
LN

-
~J
)

S N
~J
o0

-
Qo
-

—
oo
N

-2
Q0
H

-3
oo
)

-
i
-

-
H
-
-

-
I
-
Oy,

-
H
O
D

—
D
-
On

-
£
-
o)

—
AN
N

-
S
N
-

N
N
N
N

-
LN
M
W

-
H
N
D

|

-
D
N
N

-t
N
Q)

-
N
O
-k

—
D
)
)

ll

-
o
o)
8)

|

6,023,271

U.S. Patent Feb. 8, 2000 Sheet 3 of 11 6,023,271

Customer GUI Object
126-1

CUSTOMER
Last Name (JTF)

230-1

First Name (JTF)

230-2

M or F (JCB)
O O 230-3

Area (JTF) Phone (JTF)

2

Customer Business Object
130-1

Inspector

Framework
132

public class CustomerBO {

public void setLastName (String value) ; 240
public String getLastName () ; 242
public void setFirstName (String value) ; 244
public String getFirstName () ; 246
public void setGender (char value) ; 248
public char getGender () ; 250
public void setAreaCode (String vaiue) ; 252
public String getAreaCode () ; 254
public setTelNumber (String value) ; 256
public String getTelNumber () ; 258
private String LastName; 260
private String FirstName,; 262
private char Gender; 264
private String AreaCode: 266
private String TelNumber; 268

FIG. 2

U.S. Patent Feb. 8, 2000 Sheet 4 of 11 6,023,271
Customer GUI Object
126-1
focus
CUSTOMER 231-1 Listener
Last Name
230-1 231-2
First Name \ istener |
\ 231-3 136-3
202 N
M orF) O L:sotcelrj'uir
O O 230-3 N 1364
Area Phone \
230-4 | |230-5 *
(3.4) \
F||nspector (32) (33) FIEforTextField
132.1 260.1 (3.1)
3.6 ..
(3.7) _ other editors . . .
FiSelection (3.5) FlEditors
132.4 132.2
~ change
Customer BO > ~£3'8) Listener
130-1 h 136-1
public class CustomerBO {
public void setLastName (String value) ; 240
public String getLastName () ; 242
public void setFirstName (String value) 244
public String getFirstName () ; 246
public void setGender (char value) ; 248
public char getGender () ; 250
public void setAreaCode (String value) ; 252
public String getAreaCode () ; 254
public setTelNumber (String value) ; 256
FIG. 3 public String getTelNumber () ; 258

6,023,271

Sheet 5 of 11

Feb. 8, 2000

U.S. Patent

- - - T =/ T/ /Y _ K- - - - =/ = = = _
| sjusuodwod | SI0)ipd
s e I —
82¢ ¢l mm.mm_
uoneluawadu) uoiejuaws|dw
UONOB|BS \/ LO991BS I ISTTUORIRISS ~&5 vee
)4 0L 1SITUONRD8IeS|4
80¢
Jabeuepopun | 48M14enjealonp3|4
1abeuepopun 1081qQ.8}|148neA > 141
A fuyispoddng Ry - bums 0 uoeuaweldw
1'8€ 1 ~— | ananpabueynAuadoidld :ananpabuey?d Auadoid
Qe 226
uonejuawadwy v,
868 —/ \/
90t JauajsIquond It
J0}09dsu|I4 St OOV r
Obl S10)Ipa
19)j14]USLB|JUOLIIB|SSSED ¢ ctl
18}|141UBLWA|TUONIB[D \/ \/
O e HIdiuswa|Juonds|esd | Moddngny
244 20E 02€

oo —7

6,023,271

Sheet 6 of 11

Feb. 8, 2000

U.S. Patent

O Uofejuswajdw

¥or

uoyngeibboy Jo)3(4
¢ot
Pleldixa110j3|4
09¢
Juauodwonixs 110}314
8GE
uoyngysnd.1o3|
96t JEETIES) [KT To
1SI043|
woos L , e
joqeTi0i4|4
¢St
\/ \/
X0goquwionNioj3|4
0S¢

| Jausjsimuawnaog

\/ A

19UBJSIWA)| s10lp3bUIMG |

| Jousisiuonosjag)s!

8he ovt

6,023,271

Sheet 7 of 11

Feb. 8, 2000

_
eCLy ()1ausisijuoiedlloNppe
iy
I
dn paismod [A] (Jio)p3ppe
(Ji8usisriuonoyppe Vi
GV ,
XIBIE] 10108dsui [1] c_m:o%:.w%w ([, Jusuodwion, eAer e AjeaidAy]
o1t | 108lq0 ‘eweNAuadoid)uoddngAtiadoi4ppe
| .80V
(uo1jo8}BS14)10108dsu| |4 mau
10 (UOND9I8S|4)uoi}ovlesloes
90Y
(poyiaw Jey sjuawajdwi
LOIUM Juswa|a yoes 10})
()1susjsinabueynAuadoidppe
YOV
(10]08A)UOINDB[BG |4 MBU
10 (JOJ09 A)SIUBLWIBY)OS
.00V
101p314 Anuiyyiauoddng Jojoedsuy|4 uolo8|es|d uoneoddy
. 10)IPd ‘Anuyjyieuoddns :10)oedsut :U01}09]9S Jusi
~ 2z A ~ 12el ~yzel Syl
uonesin 10)0adsuyj

uonessn 10)oadsuj e Jo 8d.I | JUSAT

U.S. Patent
\

U.S. Patent Feb. 8, 2000 Sheet 8 of 11 6,023,271

Event Trace of a User Changing a Component Value
User Changes Value In Inspector
(s0 selected objects need to update to show new state)
452: 132.4 132.1
}Jser changes a value eFitor: 136a ™~ ins;gctor:
in Inspector Pane FIEditor ?FIEditorValueFilter? Flinspector
[1]inspector... (B 4=4. |
45{1' notification(evt}
actionPerformed() “EditorChanged"
Powered Up 458;
getProperty()
4133 460:
413 filterGetValue()
464
getBoundObjectValue()

?7ClassName? indicates
optional functionality

FIG. 7A FIG. 78 —>

U.S. Patent Feb. 8, 2000 Sheet 9 of 11 6,023,271

— 450

Event Trace of a User Changing a Component Value
User Changes Value In Inspector

(S0 selected objects need to update to show new state)
1921 1324 —

| | 150
inspector: selection: 7
Flinspector FISelection 7UndoManager?
462:
queuePropertyChange()
-
466
firePropertyQueue()
PR
468:
setPropertiesToValues() |470:
newCompoundEdit()
P
472
addEdit()
Loops Over all
selected elements
474
newStateEdit()
P
476 478:
' Bean
setPropertyToValue() ﬁl?ﬁ)ss::gtaioﬁzng
D the property name,
480: to set the value of
stateEdit.end() the mode! object
-
482
addEdit()
Loop Ends
484
compoundEdit.end()

?ClassName? indicates
optional functionality

< FIG. 7A FIG. 7B

U.S. Patent Feb. 8, 2000 Sheet 10 of 11 6,023,271

4 200
Event Trace of a User Changing the Selection
User Changes Selection or Selected Object's Property Changes
(S0 widgets need to update to show state of selection)
124 — 132.4 — 1441
Client selection: FiSelectionElement
5044 \ Application FISelection Filter?
User selects some object(s)
508:
setElements(Vector)
510:
addPropertyChange
Listener()
(for each element which |
implements that method) | 12
notification(evt)
Or Or (“SelectionChanged") f
S0t 090 516
) propertyChannel canSetProperty
A currently selected object is 518

modified by external means ,
(i.e., not by the Fllnspector)... filterElement
e.g., user powers off a 504

Workstation. getProperty()
(Uses Java Bean's
Introspection and
the property name,
to get the value
of the model object

520:
filterElement

7ClassName? indicates
optional functionality

FIG. 8A FIG. 88 —>

U.S. Patent Feb. 8, 2000 Sheet 11 of 11 6,023,271

o 500
Event Trace of a User Changing the Selection

User Changes Selection or Selected Object's Property Changes

132 1 (so widgets need to update to show state of selection)
N 132.2 —

Inspector: editors: 1362 N\

Flinspector FlIEditors ?FIEditorValueFilter?

] inspector... []EI]

Powered Up

Loops Over all
owned FIEditors W98 413
530:
setEnabled()
514:
getProperty()
520:; 532:
setEnabled() setSelected()
522:
setMultiValued()

528:
setValue()

534:
filterSetValue()

7ClassName? indicates
optional functionality

< FIG. 8A FIG. 8B

6,023,271

1

FRAMEWORK FOR BINDING DATA
VIEWERS/DATA MANIPULATION WITH
ONE TO MANY OBJECTS THROUGH
INTROSPECTION

The present invention relates generally to applications
with graphical user mterfaces and, particularly, to systems
and methods for synchronizing the values of graphical user
interface components and application variables.

A portion of the disclosure of this patent document
contains materials to which a claim of copyright protection
1s made. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosure, but reserves all other rights whatso-
ever.

BACKGROUND OF THE INVENTION

Today, most end user applications employ a graphical user
interface (GUI) that simplifies the manner in which a user
interacts with an application. Typical graphical user inter-
face components include:

icons that trigger features of the application when selected
by a user;

text fields that can be filled in by a user;

radio buttons presenting a choice of options, only one of
which can be selected by a user;

combo boxes presenting a list of options, one of which
can be selected by a user, as well as a field that can be filled
in by a user;

check boxes presenting a choice of options, many of
which can be simultaneously selected by a user;

lists presenting a list of options, one of which can be
selected by a user; and

trees displaying hierarchical relationships of a set of
objects.

In a typical GUI implementation, each GUI component
ogenerates GUI events to indicate changes 1n its value and/or
the occurrence of user actions related to that GUI compo-
nent. The type of GUI events generated depends on the type
of the associated GUI component. For example, a text field
component can generate focus events (when a user moves
their mouse 1nto the area on the screen corresponding to the
text field) or action events (when a user hits the “enter” key
or clicks a mouse button to enter a value into the field).

An application with a GUI 1s programmed so that any
change 1n the value of a GUI component 1s reflected by a
corresponding change in the value of an internal variable (or
variables) mapped to that GUI component. In the prior art,
the application code that accomplishes this mapping of GUI
component values to imternal variable values i1s crafted
manually. For example, 1f an application includes a telNum-
ber variable associated with a GUI telephone number text
field, the application programmer would need to create a
synchronization routine that:

1) detects GUI events associated with the GUI telephone
number field;

2) accepts a new telephone number value entered in the
GUI field;

3) converts it from the GUI representation (e.g., an array
of ASCII values) to the internal representation (e.g., an
integer); and

4) stores the resulting integer value in the telNumber
variable.

The programmer would also need to write synchronization
routines enabling any change in the value of an internal

10

15

20

25

30

35

40

45

50

55

60

65

2

variable to be reflected 1n the value of the GUI component
(or components) mapped to that internal variable. This need
arises, €.g., when a search engine returns a result that needs
to be displayed on a GUI screen.

Many object-oriented computer languages, such as the
Java™ programming language (Java and all Java-based
trademarks and logos are trademarks or registered trade-
marks of Sun Microsystems, Inc. 1in the United States and
other countries), provide features that streamline some
aspects of defining the interfaces between application and
GUI code. For example, Java™ and other object-oriented
languages support the use of business objects (BO), where
a business object 1s an object used to transfer data between
a client application (such as a database program) and a GUI
screen for displaying/modifying the client data; typically the
business objects are created by the client application.
Typically, each business object includes a set of attributes
assoclated with one type of enfity. For example, in an
clectronic commerce application, business objects might
exist for customer information (with attributes for last name,
first name, address, phone number, etc.), order information
(with attributes for item no., item color, quantity) and
inventory information (with attributes for item no., item
color, number available). These business objects conve-
niently package data for use by other objects; however,
programmers using the Java™ programming language still
need to write the routines that synchronize associated GUI
component values and BO attribute values.

The Java™ programming language provides a class of
objects, called listeners, that facilitates the coding of appli-
cation GUIs. There are many different types of listeners,
cach of which 1s configured to detect a different type of GUI
event. For example, 1n the case of a text field component, the
application would need to employ focus and action listeners
to detect focus and change events associated with that
component. Moreover, each GUI component to be moni-
tored by an application needs to have its own listener(s). For
example, to 1nteract with a customer GUI having two text
field components (e.g., a customers last name and telephone
number), an application would need respective pairs of
focus and action listeners. Each event provides the name of
the affected component, 1ts old value and 1ts new value.

Other types of listeners, called property change listeners,
listen for change events generated by a BO whenever the
values of one or more of 1ts attributes change. Each change
in a BO attribute leads to the generation of a respective
change event that indicates the name and old and new values
of the changed attribute. A BO can register several property
change listeners. Whenever an attribute value changes, each
of the listeners 1s nofified with the change event and 1is
responsible for identifying the changed attribute from the
name included 1n the change event.

Applications configured to work with GUI and BO lis-
teners receive notification of events detected by the listeners
and synchronize the GUI components and BO attributes as
appropriate. For example, an application that registered
lastName and telNumber action listeners to a customer GUI
would be notified whenever the GUI’s last name and tele-
phone number text field components were changed. The
application could then call custom-coded synchronization
routines to update corresponding lastName and telNumber
attributes of a customer BO. In a similar vein, an application
that registered property change listeners to lastName and
teINumber attributes of the customer BO would receive
notification of change events whenever the values of BO’s
last name and telephone number attributes were updated.
The application would then call custom synchronization

6,023,271

3

routines as a prelude to displaying the new values on the
corresponding GUI components. Even with listeners, 1t 1s
tedious to produce the application code needed for synchro-
nization and the resulting code 1s likely to include errors.

Therefore, there 1s a need for a system and method for
programming applications with GUIs that does not require
the time-consuming and error-prone custom coding of GUI/
internal variable synchronization routines, in general, and
GUI/BO synchronization routines, in particular.

SUMMARY OF THE INVENTION

Systems and methods for programming applications with
GUIs 1n accordance with the present invention do not
require the time-consuming and error-prone custom coding
of GUlI/internal variable synchronization routines, 1n
general, and GUI/BO synchronization routines, in particular.

An embodiment of the present invention includes a plu-
rality of classes for associating and synchronizing GUI
components and BO attributes. The classes include: an
inspector class, a selection class and a plurality of editor
classes. The inspector class includes methods and data
structures that enable a client application to bind a set of
GUI components to the attributes of at least one business
object. As a first step 1n associating and synchronizing GUI
components and BO attributes a client application constructs
an 1stance of the 1inspector class. The client application then
passes the 1nspector instance a selection class instance that
includes the business object(s) whose properties are to be
synchronized with the GUI components. The client appli-
cation also passes the mspector instance a mapping between
BO attributes and GUI components. It 1s not a requirement
that all of the BOs 1n the selection have the same attributes.
The present mvention can be implemented 1n the Java™
programming language or any other object-oriented lan-
oguage.

Using this mmformation on BO attributes and GUI com-
ponents the ispector istance constructs a plurality of editor
instances to interact with/edit respective GUI components.
The 1nspector mstance configures each editor to report to 1t
all changes to 1ts associated GUI component. Similarly, the
selection 1nstance 1s configured to report to the inspector all
changes to the attributes of its associated business objects. In
this way the 1nspector instance 1s able track all changes to its
assoclated selection of business objects and GUI compo-
nents and, using methods of the editors and selection
instance, to update the BO attributes and GUI components
accordingly.

In one embodiment each of the editors 1s configured to
interact with a particular type of GUI component and, where
appropriate, to register to components of that type an appro-
priate set of listeners. For example, in one embodiment there
are specialized editor classes that work with text field, list,
radio button and table components. Each component editor
includes methods and data structures for interacting with its
respective GUI component. Among other things the methods
are used to write new values mnto a GUI component, to
monitor events reported by listeners associated with the GUI
component and to get values of the GUI component to be
reported to the mspector instance.

In another embodiment of the present invention the selec-
fion class provides methods and data structures for interact-
ing with business objects providing data that 1s to be shown
on a GUI. These methods allow an application to define a
vector of business objects to be processed by the 1nspector,
report changes 1n the selected business objects, reports
changes 1n the values of the BO attributes, and update the

10

15

20

25

30

35

40

45

50

55

60

65

4

values of the BO attributes to reflect changes 1n the mapped
GUI components.

Based on this infrastructure, the inspector framework
synchronizes the attributes and the components 1n response
to events reported by the selection and editor instances so
that:

1) a change in the value of any of the attributes is reflected
in a corresponding change in the value(s) of the component
(s) mapped to that attribute, and

2) a change in the value of any of the components is
reflected in a corresponding change in the value(s) of the
attribute(s) mapped to that component.

In yet another embodiment of the present invention the
business objects are JavaBeans™ objects, where a Java-
Beans™ object includes variables whose values are written
and read using methods with names predictably derived
from the variable names. For example, all variables with
name “vName” can be read with a method entitled
“oetVName” and can be written with a method entitled
“setVName”. In this embodiment, each of the BO attributes
1s associated with respective Get and Set methods. The
selection 1nstance leverages this naming scheme by gener-
ating Get and Set calls to read and write the BO attribute
values as required.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the mvention will be
more readily apparent from the following detailed descrip-
tion and appended claims when taken 1n conjunction with
the drawings, 1n which:

FIG. 1A 1s a block diagram of a computer in which an
embodiment of the present invention 1s implemented;

FIG. 1B 1s a block diagram showing additional details of
the data structures and methods employed by the inspector
framework FIG. 1A;

FIG. 2 1s a block diagram showing how an embodiment
of the imspector framework links a hypothetical customer
GUI and a corresponding customer BO;

FIG. 3 1s a block diagram showing additional details of an
embodiment of the 1nspector framework;

FIG. 4 1s an object model of an embodiment of the
inspector framework;

FIG. 5 1s an object model of some of the GUI editor types
that can be employed 1n the embodiment of FIG. 3;

FIG. 6 1s an object transition diagram 1llustrating the order
of events accompanying the creation of a new inspector
instance and an infrastructure for synchronizing a selected
BO with a set of GUI components;

FIG. 7 1s an object transition diagram illustrating the order
of events through which the inspector framework updates a
selected BO 1n response to a change 1n value of a GUI
component; and

FIG. 8 1s an object transition diagram 1llustrating the order
of events through which the inspector framework updates a
GUI component value 1n response to a change 1n a selected
BO or a change 1n value of a BO property.

DESCRIPTION OF EMBODIMENTS

Referring to FIG. 1A, there 1s shown a diagram of a
computer system 100 in which the present invention can be
implemented. The computer system 100 includes a proces-
sor 102; a slow, secondary memory, such as a hard disk 104;
a fast, primary memory, such as a semiconductor random
access memory (RAM) 106; a display 110; and user input

6,023,271

S

devices, such as a keyboard 112 and mouse 114. Information
1s 1n part conveyed to a user as visuals 116 on the display

110.

The computer system 100 operates according to well-
known principles. The hard disk 104 permanently stores an
operating system 120, programs 122 and data 150 that are
loaded 1nto the primary memory 106 for use by the processor

102 as needed. The processor 102 executes the programs
122 under control of the operating system 120, which also
provides the programs 122 with access to system resources,
such as the hard disk 104, the display 110 and the user input
devices 112, 114. The executables 122 include application
objects 124, GUI objects 126, business objects (BO) 128, an
inspector framework 132 and listeners 136. Data 150 used
by the inspector framework 132 includes an Fllnspector
interface 140, FIEditor interfaces 142, Filter interfaces 144,
an FISelection interface 146 and Supporter classes 156. An
interface 1s a Java™ programming language construct that
defines a list of methods. Any class that implements all of the
interface’s methods 1s said to be an implementation of that
interface. A class can implement more than one interface.
The present mvention employs interfaces 1n this matter to
provide flexibility; however, similar functionality can be
provided with classes. For more background information on
interfaces, refer to Patrick Niemeyer & Joshua Peck,
“Exploring Java,” (2nd ed. 1997), which is entirely incor-
porated herein by reference.

The application objects 124, GUI objects 126 and busi-
ness objects (BO) 128 correspond respectively to application
code; 1nternal representations of the application GUIs; and
business objects (BO) used to transfer information between
GUI objects and application objects, as described in the
background. The inspector framework 132, which embodies
many of the present invention’s teachings, links and syn-
chronizes business objects 128 and GUI objects 126. The
inspector framework 132 includes inspector objects 132.1,
cditor objects 132.2 and selection objects 132.4, which
respectively implement the FlInspector interface 140, FIEdi-
tor interfaces 142 and FISelection interface 146. Filter
objects 135 used by the inspector framework 132 implement
the Filter interface 144. These objects are also referred to
herein as implementations or 1nstances.

The inspector interface 140 imncludes methods that can be
invoked by application objects 124 to specily a mapping
between the BO attributes and GUI components to be
synchronized. In accordance with the defined mapping,
other methods of the inspector interface 140 build the
necessary infrastructure for synchronizing the BO attributes
and GUI components. This infrastructure includes imple-
mentations 132.2 of the editor interfaces 142 that are con-
figured to mteract with respective GUI components. Among
other things, the editor interfaces 142 provide methods for
reporting changes 1n or updating the value of a GUI com-
ponent. Preferably, each editor interface 142 1s adapted to a
particular type of GUI component; €.g., the editor interfaces
142 1nclude interfaces that are specialized to work with a
text field, check box, text vector and list GUI components.
The infrastructure also includes an implementation 132.4 of
the selection interface 146 that includes one or more BOs
whose attributes are to be synchronized with the GUI. The
selection mnterface 146 includes methods that can be used by
an application 124 to defined the selected BOs and also
includes methods that report changes 1n the values of the
selected BO’s properties. The editors 132.2 and selection
instance 132.4 report changes to an mspector implementa-
tion 132.1 that coordinates their actions. The inspector
implementation 132.1 accordingly invokes appropriate edi-

10

15

20

25

30

35

40

45

50

55

60

65

6

tor or selection methods to synchronize BO/GUI values or
change an 1ndication of the selected BO.

In one embodiment the selection 1nterface 144 includes a
method that sets up property change listeners to report on
changes 1n the values of attributes of any combination of the
selected BOs. Similarly, each editor interface 142 includes a
method that registers appropriate listeners to an associated
GUI component. These methods are not invoked by an
application 124, but by respective implementations 132.2,
132.4 of the editor and selection interfaces 142, 146 as
necessary.

The editor filter interface 144 provides methods that
perform a filtering function on values reported by or used to
update a respective editor. This filtering function can include
any combination of transforming, decoding, or filtering
values between a BO representation and a GUI representa-
tion. The methods of the editor filter interface 144 are called
by the editors 132.2 as necessary.

The data 150 includes elements of the aforementioned
linker infrastructure. These elements include the inspector
interfaces 140-144, which have been described, and the
supporter classes 156. The supporter classes 156 encapsulate
the methods and data structures needed to setup listeners and
values in different types of GUI objects (e.g., Java Text
Fields, Java Lists, Java Labels, etc.). These tasks can be
performed using conventional GUI programming tech-
niques. However, supporters 156 are advantageous as they
allow new types of GUI components to be added to an
application (e.g., the inspector framework 132) without
requiring the application to be recoded. These aspects of
supporters are described 1n detail in a co-pending patent
application (SUPPORTERS PROVIDING EXTENSIBLE
CLASSES WITHOUT RECODING FOR OBIECT-
ORIENTED APPLICATIONS) by Alejandro Abdelnur,
which 1s entirely incorporated herein by reference. Addi-

tional details of the supporter classes 156 and the
Fllnspector, FIEditor and FISelection interfaces 140, 142,

146 are shown 1in FIG. 1B.

Referring to FIG. 1B, there 1s shown a block diagram of
the supporters 156. The supporters 156 include GUI com-
ponent supporters 170. The GUI component supporters 170
include supporters for whatever types of GUI components
need to be accessed by the application objects 124. For
example, a set of supporters 170 for a Java™ application
whose GUI includes combo boxes, labels, lists, text fields,
text components, togele buttons, button groups and tables
implemented as Java™ Swing components (JComboBox,
JLabel, JList, JTextField, JTextComponent, JToggle Button,
JButtonGroup and JTable, respectively) would include:
JComboBox supporter 172, JLabel supporter 174, JList
supporter 176, J1lextField supporter 178, JTextComponent
supporter 180, JToggleButton supporter 182, JButtonGroup
supporter 184 and JTable supporter 186. For more back-
cround 1nformation on the Swing component set, refer to
Mark Andrews, “Introducing Swing,” available at http://
www.javasolt.com/jfc/swingdoc-static/what__1s__
swing.html; and Amy Fowler, “An Overview of Swing
Architecture,” available at http://www.javasoft.com/jfc/
swingdoc-static/swing_arch.html, each of which 1s entirely
incorporated herein by reference.

FIG. 1B also shows the methods that compose the FlIn-
spector 140, FIEditor interfaces 142 and FISelection inter-
face 146. The 1llustrated methods do not include the con-
structor method that 1s included 1n all classes and which 1s
used to return an mstance of its associated class. A construc-
tor method has the same name as 1ts associated class and 1s

6,023,271

7

invoked with the “new” prefix. For example, an application
124 needing a new 1nstance of the Fllnspector class would
issue the following message: “new Flinspector()”.

The methods of the Fllnspector interface 140 include:
setSelection 140.1,

addPropertySupport 140.3,

addEditor 140.4,

queuePropertyChange 140.5,

firePropertyQueue 140.6.

The methods of the FIEditor interfaces 142 include:
addNotificationlListener 142.1,

getProperty 142.2,

sctEnabled 142.3,

setMultiValued 142 4,

setValue 142.5.

The methods of the FISelection interface 146 include:
setElements 146.1,

new FISelection 146.2,

setPropertiestoValues 146.3,

setPropertytoValue 146.6.

These classes can invoke public methods of other classes.
For example, FISelection interface methods make use of
public CompoundEdit and new StateEdit methods, which
are constructors, respectively, for CompoundEdit and State-
Edit objects used by FISelection instances to keep track of
edit operations.

These methods and other methods of the Fllnspector,
FIEditor and FISelection interfaces 140, 142, 146 are
described below, in reference to FIGS. 6-8. Java™ pro-
cramming language versions of these interfaces are shown
in the Appendices A, B and D, respectively. Note that the
editors 132.2 employed 1n the present invention are imple-
mentors of the basic FIEditor interface; therefore, these
editors implement all of the FIEditor interface’s methods.
The editors 132.2 are, however, specialized to interact with
particular types of GUI components. For 1llustration
purposes, Appendix C shows a Java™ programming lan-
cguage version of the methods of a FIEforTextField interface,
which defines the editor methods for use with TextField
components.

Referring to FIG. 2, there 1s shown a block diagram
illustrating a hypothetical Customer GUI object 126-1 and a
corresponding Customer Business Object 130-1 linked
together by the inspector framework 132. The Customer
GUI object 126-1 1s a representation of a visual 116 on
which a customer information GUI 1s displayed. There are
many, well-known ways to represent GUI components. For
example, 1 the Java™ programming language, each GUI
component (or widget) 1s internally represented as an
instance of a particular class (e.g., a textField or checkBox
class) that defines the widget’s visual behavior and charac-
teristic values. The present mvention 1s not limited to any
particular GUI representation. Therefore, for the purposes of
the present application, the GUI objects 126 are shown only
generically.

The Customer GUI 126-1 includes a last name text field
230-1, a first name field 230-2, male (M) and female (F)

check boxes 230-3, an arca code text field 230-4 and a phone
text field 230-5. In the illustrated embodiment, which 1s
implemented 1n the Java™ programming language, the
fields 230-1, 230-2, 230-4 and 230-4 are 1instances of a Java
textField (abbreviated JTF) and the checkboxes 230-3 are
instances of a Java checkBox (JCB).

10

15

20

25

30

35

40

45

50

55

60

65

3

The corresponding Customer Business Object 130-1
includes attributes mapped to the GUI components 230. The
mapping can be 1 to 1, where each component 230 is
mapped to a corresponding BO attribute, 1 to many or many
to 1. The situation shown in FIG. 2 presumes a 1 to 1
mapping. Therefore, the Customer BO 130-1 includes Last-
Name 260, FirstName 262, Gender 264, ArcaCode 266 and
TelNumber 268 attributes that correspond, respectively, to

the last name field 230-1, first name field 230-2, male (M)
and female (F) check boxes 230-3, area code field 230-4 and
phone field 230-5 of the Customer GUI 126-1. In this
example the LastName, FirstName, AreaCode and TelNum-
ber attributes are strings and the Gender attribute 1s a
character (char).

In the 1illustrated embodiment, each BO 130 1s imple-
mented as a JavaBeans™ object. Among other things, for
cach of 1ts attributes a JavaBeans™ object has a pair of get
and set routines used, respectively, to read and write the
value of that attribute. All JavaBeans™ objects share a
naming convention whereby the get and set routines asso-
clated with a particular attribute with identifier “Attr” are
respectively named “getAttr” and “setAttr”. By ensuring
that BOs 130 are implemented as JavaBeans™ objects,
orven that the inspector framework 132 knows the 1dentifiers
of all of a BO’s attributes, the inspector framework 132 is
able to generate set and get calls as needed to synchronize
those attributes with the corresponding GUI components.
For example, 1f the inspector framework 132 1s notified of a
change to the last name field 230-1, it updates the value of
the LastName attribute using the setlLastName method 240.
Similarly, when notified of a change to the LastName
attribute 260 the inspector framework 132 (or a listener) can
retrieve the new value using the getlLastName method 242.
For more information on JavaBeans™, refer to “How to
Program JavaBeans,” Ziff-Davis Press, ISBN 1-56276-
521-3 or Patrick Niemeyer & Joshua Peck, “Exploring
Java,” (2nd ed. 1997), each of which is entirely incorporated
herein by reference.

The mspector framework 132 has two phases of opera-
fion. In an 1nitialization phase, in response to commands
from an application 124 the inspector framework 132 scans
a business object 130, 1dentifies its attributes, maps the BO
attributes to the GUI components and registers appropriate
listeners 136 to the corresponding GUI object 126 and BO
130. In a synchronization phase the inspector framework
132 synchronizes the GUI object 126 and the corresponding,
business object 130 based on events reported by the listeners
136 and the mapping information. Additional details of the
inspector framework 132 are shown i FIG. 3.

Referring to FIG. 3, there 1s shown a block diagram
illustrating additional details of the inspector framework 132
and the way 1n which the framework’s components interact
with the customer GUI object 126-1 and the corresponding
customer BO 130-1 from FIG. 2. As already described, the
inspector framework 132 includes an inspector implemen-
tation 132.1, a plurality of editors 132.2 and a selection
implementation 132.4. Each editor 132.2 interacts with a
respective GUI component 230 directly (when there is a
need to update the GUI component) or indirectly, via an
appropriate set of listeners 136 (when the editor is being
notified of changes to the GUI component 130). The editors
132.2 are implementations of whichever editor interface 142
matches the type of the editor’s associated GUI component.

For example, the Last Name GUI component 230-1 1s
coupled to an editor 260.1 that 1s an implementation of
“FIlEforTextField”, which 1s an editor interface customized

for text fields. The FlEforTextField editor 260.1 1s notified

6,023,271

9

of events mvolving the Last Name text field 230.1 via the
action and focus listeners 136-2, 136-3 (3.1). The FIEfor-

TextField editor 260.1 then notifies the inspector implemen-
tation 132.1 of events reported by 1ts associated listeners
136-2, 136-3 (3.2). The FIEforTextField editor 260.1
updates its associated GUI component 230-1 directly (3.4)
based on information provided by the inspector interface

(3.3).

The selection implementation 132.4 interacts with a BO
130 directly (when it needs to update one or more BO
attribute) or indirectly (when the selection 132.4 is being
notified of changes to one or more BO attribute), sometimes
via a property change listener 136.1. One selection 1mple-

mentation 132.4 manages interactions between the 1nspector
132.1 and all of the selected BOs 130.

For example, FIG. 3 shows an implementation 132.4 of
the FISelection interface that manages interactions between
the 1nspector 132.1 and a representative Customer BO
130-1. Note that 1f there were two selected Customer BOs
130-1 (e.g., one per customer object returned by a database
application 124), then the selection implementation 132.4
would manage 1nspector interactions for both BOs 130-1.
The FISelection implementation 132.4 1s notified by the
property change listener 136-1 whenever any of the Cus-
tomer BO 130-1 attributes are changed (3.5). The FISelec-
fion implementation 132.4 then notifies the inspector imple-
mentation 132.1 of events reported by 1ts associated listener
136-1 (3.6). The FISelection implementation 132.4 updates
its associated GUI component 230-1 directly (3.8) based on
information provided by the inspector interface (3.7). The
interrelationships between the inspector framework inter-
faces 140, 142, 146 and their implementations 132.1, 132 .2,

132.4 are more thoroughly described in reference to FIGS.
4 and 5.

Referring to FIG. 4, there 1s shown an object model 300
of one embodiment of the ispector framework. This model
uses a symbolic notation that 1s well-known 1n object-
oriented design. In this notation a first box connected to
another box with a connector terminated with a filled-in
circle (e.g., 336) touching the first box indicates a many to
one relationship between the objects represented by the first
box and the other box. Additionally, a first box connected to
another box with a connector on which an open triangle with
a point directed to the first box (e.g., 338) 1s superimposed
indicates that the other box 1s an implantation of or other-
wise Inherits methods/data structures from the first box. The
model 300 represents the relationships between the
Fllnspector, FIEditor, Filters and FISelection interfaces 140,
142, 144, 146; ancillary classes, such as Supportors 156,
ActionListener 304, UndoManager 306, and FISelectionList
310; and implementations 320, 322, 324, 326, 328 of
selected interfaces. The object model 300 1s mostly seli-
explanatory. However, for clarity, 1t 1s now briefly described.

The central interface 1s Fllnspector 140, which receives
inputs from and manages: a FISelectionElementFilter 144.1;
an 1mplementation 328 of the FlSelection interface 146; an
implementation of 324 the FISelectionlList interface 310 and
one or more editors 132.2, each of which 1s an extension of
a top level FIEditor interface 142. The inspector implemen-
tation 326 (corresponding to the mspector 132.1 of FIG. 1A)
includes a changeQueue 138.1, which 1s an instance of a
FIPropertyChangeQueue class. The changeQueue 138.1 is
where the mspector 326 records all changes that need to be
cifected on theirr respective GUI components and BO
attributes by the editors 132.2 and selection implementation
328. The inspector 326 adds entries to the changeQueue
138.1 based on events reported by the editors 132.2 and the

10

15

20

25

30

35

40

45

50

55

60

65

10

selection 328. The changeQueue 138.1 1s implemented as a
dictionary, each entry of which has a key and a value. In one
embodiment the key 1s the name of the property to be
updated and the value 1s the new value of that property.
Alternative 1implementations of the changeQueue 138.1 are
possible as long as the required property and new value
information 1s conveyed. The inspector 326 fires the changes
set out in the changeQueue 138.1 either immediately (as
soon as they are entered) or delayed (at some later time
designated by an application 124). The “delayed” mode is
uselul for situations where a user might wish to modify a set
of program options and then implement the entire set of

changes simultaneously (e.g., by hitting an OK button) or
not at all (e.g., by hitting a CANCEL button).

The 1nspector 326 also includes a supporterAtfinity 138.1,
which 1s an 1nstance of an SupporterAffinity class 158. The
SupporterAtfinity class 158, which 1s described 1n depth in
the co-pending patent application (SUPPORTERS PRO-
VIDING EXTENSIBLE CLASSES WITHOUT RECOD-
ING FOR OBJECT-ORIENTED APPLICATIONS), pro-
vides methods for managing a group of supporters 156 (¢.g.,
AUSupport 302) employed by an application and encapsu-
lates the group of supporters 1t manages.

As already described, each implementation 322 of the
FIEditor class 142 1s associated with a particular GUI
component that GUI component’s listeners. In FIG. 4 the
implementation 322 1s associated with a component 330
whose value 1s stored as a string and an action listener 304
that reports changes 1n the value of that component 330 to
the editor. The editor implementation 322 1s also associated
with a FIEditor ValueFilter 144 .2, which transforms values to
and from the string format required by the component 330,
and an implemention 320 of a supporter (AUSupport) 302
for that component type 330. The supporter 302 also pro-
vides methods used by the FIEditor interface 142. As already
mentioned, all editors 132.2 reports change events to the
Fllnspector implementation 326, which adds updates neces-
sitated by the changes to the changeQueue 138.1.

The FISelection implementation 328 1s the interface

between the Fllnspector implementation 326 and the
selected Business objects 130. One or more FlISelection

objects, each including a collection of selected business
objects 130, can be returned by an implemention 324 of the
FISelectionList interface 310. The implementation 324 pro-
vides the Fllnspector implementation 326 with all of the
BOs that need to be inspected following a change 1n any BO
attribute value or changes to the selection of BOs. When it
needs to update particular BO attributes, the Fllnspector
implemention 326 invokes appropriate methods of the FISe-
lection 1implementation 328. The Fllnspector implementa-
tion 326 has access to a FlISelectionElementFilter 144.1,
which provides methods to translate values into whatever
format 1s required by any BO attributes to be updated.

Referring to FIG. 5, there 1s shown 1s an object model of
GUI editor types that can be employed 1n the embodiment of
FIG. 3. The editors 132.2 for use 1n an embodiment wherein
the components are Java™ Swing components are called
Swing editors 340. These editors 132.2 and the types of
Swing components they are configured to work with
include:

6,023,271

11

Editor Type Swing Component

FIEforComboBox 350 combo box
FIEforLabel 352 label
FIEforList 354 list
FIEforPushButton 356 push button
FIEforTextComponent 358 text component
FIEforTextField 360 text field
FIEforToggle Button 362 toggle button

Each editor is configured to work with the listener type(s)
136 that 1s used by 1its respective component type. For
example, the FIEforTextComponent and FIEforTextField
work with listeners that are instances of the FocusListener
type 344. This 1s necessary as a focus listener when a user
moves a cursor or other selection indicator inside the bou-

daries of a text object. Other associations between editors
132.2 and listeners 136 include:

Listener Class Used by
ListSelectionlistener 346 FIEforList editor 354
[temListener 348 FIEforComboBox 350
DocumentlListener 342 FIEforTextComponent 342

The wvarious listeners 136 are conventional and are not
described herein. The two phases of operation (initialization

and synchronization) are now described in reference to
FIGS. 6-8.

Referring to FIG. 6, there 1s shown an object transition
diagram 400 illustrating the order of events accompanying

the creation of a new mspector instance and an inirastructure
for synchronizing a selection of BOs with a set of GUI
components. Object transition diagrams are well-known 1n
the art. Briefly, each of these figures sets out the objects (and
their associated classes/interfaces) that are involved in a
particular operation along the top of the chart and indicates
from top to bottom the order in which the various class
methods are 1nvoked as the operation proceeds. Each
method invocation 1s indicated with a label on an arrow
directed to the class whose method 1s being invoked. For
example, the first step 402 1 FIG. 6 1s the mvocation of the
setElements method of the selection object 132.4, which 1s
an mstance/implementation of the FISelection interface 146.
In the following descriptions, each step label 1s enclosed 1n
parentheses.

FIG. 6 and FIGS. 7, 8 are directed to an example where
an application defines a link between an inspector GUI panel
413 that indicates/determines with a single CheckBox com-
ponent (“Powered Up”) 413a whether one or more work-
stations 1s powered up, and a selection of BOs representing
the status information of a respective workstation. FIG. 6
shows how a client application 124 1nitializes the 1nspector
framework 132. FIG. 7 shows how the mspector framework
132 updates the BOs of the selection based on a change
made by a user on the inspector pane 413. FIG. 8 shows how
the mspector framework 132 updates the inspector pane 413
based on a change of selection 415 or a change to a BO
attribute value made by a user.

Referring again to FIG. 6, an application 124 mnitializing
the inspector framework 132 first invokes (402) the
“setElements(Vector)” or “new FISelection(Vector)” meth-
ods of the FISelection class 146, where “Vector” 1s a vector
of BOs composing the application’s selection 132.4.
Typically, these BOs have similar attributes; e.g., a selection

10

15

20

25

30

35

40

45

50

55

60

65

12

of BOs representing status of similar work stations or a
collection of customer records from a database application.
The “setElements” method 1s invoked when the application
124 needs to change the vector of an existing selection 132 .4
and the “new FISelection” method 1s invoked when the
application 124 needs to construct a new selection 132 4.
The updated/new selection 132.4 then calls (404) the
“addPropertyChangelListener” method of each BO 130 that
implements this method. In response, the BOs that imple-
ment the “addPropertyChangelistener” method construct a
respective property change listener that reports changes to
that BO’s attributes to the selection 132.4. If a BO 130 does
not implement this method the selection must have alternate
methods to determine when the BO attributes have been
changed.

The client application 124 then invokes (406) the
setSelection(FISelection) or new FlInspector(FISelection)
methods of the Fllnspector class 140, where “FISelection”
1s the selection 132.4 created or updated in the previous step
(402). The setSelection method is invoked when the appli-
cation 124 needs to change the selection 132.4 of an existing
Fllnspector implementation 132.1 and the new Fllnspector
method 1s 1nvoked when the application 124 needs to
construct a new FlInspector implementation (hereinafter, the
inspector) 132.1. The application 124 then invokes (408) the
addPropertySupport(propertyName, Object) method of the
Fllnspector implementation 132.1 for each attribute of the
BOs 1n the selection 132.4. In this method, “propertyName”
1s the name of a BO attribute and “Object” 1s the GUI
component to which it 1s to be mapped.

The addPropertySupport method of the FlInspector 132.1
calls (410) the getSupporter() method of its SupporterAffin-
ity 158, which returns a supporter of the appropriate type for

managing 1nteractions with the “Object”. The co-pending
application incorporated herein (SUPPORTERS PROVID-

ING EXTENSIBLE CLASSES WITHOUT RECODING
FOR OBJECT-ORIENTED APPLICATIONS) describes in
detail operations of the SupporterAfhinity 158. The addProp-
ertySupport method then calls (414) the addEditor method
of the FlInspector 132.1, which allocates an editor 132.2 that
1s adapted to interact with the type of the “Object”. The
addPropertySupport method employs the Supporter returned
by the getSupporter() method (410) to return a created
instance on an FISelection subclass. The FlInspector imple-
mentation 132.1 then invokes the addNotificationListener()
method of the newly added editor 132.2, which adds to the
editor 132.2 a notification listener that will notify the 1mnspec-
tor 132.1 of changes to the editor’s associated component.
This method actually involves the inspector 132.1 adding
itself as a listener of nofifications from the editor 132.2
(416).

As part of 1ts 1nitialization the editor 132.2 also invokes
(412) the add ActionListener() or other similar method of its
associlated component. This method actually involves the
editor adding itself as an action listener to the GUI compo-
nent with which 1t 1s associated during the initial construc-
tion of the editor instance. FIG. 6 shows the use of an action
listener because that 1s the type of listener associated with a
check box GUI component on the inspector GUI panel 413.
Once the steps of FIG. 6 have been completed, the inira-
structure for synchronizing the BO attributes and GUI
components 1s 1n place. Two different synchronization
operations are now described in reference to FIGS. 7 and 8.

Referring to FIG. 7, there 1s shown an object transition
diagram 450 1illustrating the order of events through which
the imspector framework 132 updates a selected BO 1in
response to a change 1n an associlated GUI component. In

6,023,271

13

this example a user has just changed (452) a value of a
component 413a (e.g., the “Powered Up” check box) in the
inspector GUI panel 413. In response to the user-initiated
change, the actionlListener 136 registered to the updated
component 126 returns (454) an “actionPerformed()” mes-
sage to the FIEditor implementation 132.1; this message
indicates to the FIEditor implementation 132.2 that an action
was performed on the editor’s associated GUI component
126. The FIEditor implementation 132.2 then returns (456)
to the Fllnspector implementation 132.1 a “notification
(evt)” message, where “evt” is a string that indicates the type
of change to the component (e.g., “evt”’="“Editor Changed”
indicates that the change was an event 1ssued by a GUI
component listener notified by an editor). Generally, notifi-
cations can originate from an editor instance 132.2; for
example, when an editor 132.2 receives an action listener
notification, 1t fires 1ts own notification, which the inspector
132.1 receives. Nofifications can also originate from a
selection 132.4; for example, when the vector of BOs 1n the
selection 132.4 changes, the selection 132.4 fires a notifi-
cation which the inspector 132.1 receives. In response to the
notification (456) the Fllnspector implementation invokes
(458) the getProperty method of the FIEditor implementa-
tion 132.2. This method returns a string to the Fllnspector
implementation 132.1 that indicates the attribute(s) to which
the changed component 1s bound. If the optional EditorVal-
ucFilter 144.2 1s implemented, the FIEditor implementation
132.2 1nvokes the filterGetValue method of the associated
EditorValueFilter implementation; this method returns the
new component value, transformed in an appropriate man-
ner from the GUI component representation to the repre-
sentation used by the corresponding BO attribute(s). The
Fllnspector implementation 132.1 then adds a property
change entry to the changeQueue using 1ts queueProperty-
Change method (462). This property change entry indicates
the property/attribute to be changed as well as the new value
of the property/attribute. The Fllnspector implementation
132.1 obtains the new value from the FIEditor implemen-
tation 132.2 by invoking (464) that object’s getBoundOb-
jectValue method.

Upon completing the property change entry, the Fllnspec-
tor implementation 132.1 executes (466) its
“firePropertyQueue()" method, which attempts to execute
all uncompleted property change entries included therein.
For each of the uncompleted property change entries the
Fllnspector implementation 132.1 1nvokes the
“setPropertiesToValues()” method of the FISelection imple-
mentation 132.4, which invokes the private “new
CompoundEdit()” method. This method 132.4 creates a new
instance of a CompoundEdit class that manages the edits
that are to be performed on the selected BOs. If the optional
UndoManager capability 308 1s implemented, the FISelec-
tion implementation 132.4 then invokes (472) the “addEdit(
)” method of the UndoManager 308. This method adds the
current state of the BO to the UndoManager so that the
change can be undone 1f necessary.

The CompoundEdit class provides a wrapper for many
single edit instances. For example, 1n an application with a
palette 1n which there are several selected shapes, drageing
those selected shapes to another location conceptually
requires each graphic to undergo its own move. Therefore,
assuming there are N graphical objects being moved, then N
edits are required—one for each graphical object that moves.
From a user perspective 1t 1s desirable that each of the N
moved objects be moved back to its initial position follow-
ing a single Undo operation. However, if the N edits were
not bundled 1in some way, following an Undo only one of the

10

15

20

25

30

35

40

45

50

55

60

65

14

N edits would be undone. The CompoundEdit objects can
wrap all of the N edits so that, after passing the Compound-
Edit object to the UndoManager 308, a single Undo opera-
tion will Undo all of the edits contained 1n the Compound-
Edit object.

The FISelection implementation 132.4 then begins a loop
on all of the selected BOs (elements) to determine which the
attributes of the selected elements can be updated 1n light of
the pending change. This loop involves the FISelection
implementation 132.4 performing the following steps for
cach of the selected elements:

(1) Creating (474) a new instance of a StateEdit class by
invoking the private “new StateEdit()” method. A StateEdit
instance records the state of all of the variables 1n a class
before and after an event. In the above example of dragging
a graphical object, the application 124 would create a
StateEdit instance, record the location and other variables
assoclated with a graphical object, perform the move, and
then take a shapshot of the location and other variables of
that graphic. One 1nstance of the StateEdit class 1s the edit
for the move of one graphical object.

(2) Invoking (476) the private “setPropertytoValue()”
method, which sets to the new value the property of the
currently selected BO that 1s most similar to the property
provided by the FIEditor implementation 1n response to the
“getProperty()” message (458) (Note; setting the values of
BO attributes involves mvoking the “set” method associated
with the property name of each BO attribute to be updated—
this process relies on the mtrospection capabilities of Java-
Beans™ objects).

(3) Closing (480) the StateEdit instance once all like
properties have been updated with the new value.

Once the loop on all of the selected BOs has completed, the
FISelection implementation 132.4 calls the end() method of
the newly created CompoundEdit.

Referring to FIG. 8, there 1s shown an object transition
diagram 1llustrating the order of events through which the
inspector framework updates a GUI component value in
response to a change 1n a selected BO or a change in value
of a BO property. The need to update a GUI component that
1s bound to attributes of one or more BO can be triggered by
two types of event. In one case, a user selects from an
application window 415 one or more objects to be added to
a selection 132.4 (504a). The client application 124 with
which the application window 4135 1s associated responds to
this event by invoking the “setElements(Vector)” method of
the current selection 132.4. The “Vector” in this case
includes the set of objects just selected by the user on the
window 415. The selection 132.4 then calls (510) the
“addPropertyChangelListener” method of each BO 130 that
implements this method. In response, those BOs construct a
respective property change listener that reports to the selec-
tion 132.4 changes in that BO’s attributes.

In a second case, a currently selected object 1s modified by
external means, by which 1t 1s meant that the change 1s not
caused by the mspector 132.1. An example of such a change
1s when a user powers off a workstation represented by one
of the selected business objects 130 (504H). When this
occurs the property change listener 126 associated with that
business object 130 sends a “propertyChanged()” message
to the selection 132.4 (506b). This message includes the
name ol the changed attribute and that attribute’s old and
new values. E.g., 1n the illustrated example the changed
attribute might be “powerStatus” and the old and new values
ON and OFFE, respectively. The selection 132.4 issues a
“notification(evt)” message to the inspector 132.1, where
“evt” 1s a string set to “Selection Changed”, which indicates

6,023,271

15

to the mspector 132.1 that the selection 132.4 has changed
and needs to be 1mspected.

The remaining steps are common to both cases. In these
remaining steps the inspector 132.1 updates the GUI com-
ponents. The inspector 132.1 performs these operations 1n a
loop over all of 1ts associated editors 132.2.

As a first step 1n the loop the 1nspector 132.1 invokes each
editor’s “getProperty()” method (514). The “getProperty”
method returns the name of the property/BO attribute that
the GUI component managed by that editor 132.2 1s bound
to. For example, an editor 132.2 associated with the “Pow-
ered Up” check box in the mspector GUI panel 413 might
return the string “powerStatus”. The mspector 132.1 then
calls the “canSetProperty(arg)” method of the selection
132 .4., where arg 1s a string set to the property returned by
the editor’s getProperty() method. The “canSetProperty
(arg)” method returns a boolean indicating whether or not
the selection 132.4 can set the attribute whose name 1s
provided 1 “arg”. This method accomplishes this by tra-
versing the vector of selected BOs and determining whether
any BO can set the specified property. The “canSetProperty”™
method does this by looking for a JavaBeans™ method
name for the specified property. “Arg” can also include a
“selectionElementFilter”, which 1s an instance of the FISe-
lectionElementFilter 144.1. All methods that take a “selec-
tionElementFilter” argument will give the selection filter an
opportunity to filter each element/business object in the
selection 132.4 (518). Filters examine each element of the
selection 132.4 and return:

1) The same element if it is to be inspected.

2) Some other object (e.g., a proxy) or sub-object that
should be used for 1nspection purposes. This option allows
more complex value setting/eetting than simple calls to the
methods of a JavaBeans™ object. For example, 1f an 1nspec-
tor 132.1 needs to do something complex to get/set the value
of a field, 1t can return 1itself as the selected business object.

3) “Null” if this object should not be inspected.

Based on the return value the mspector 132.1 invokes the
“getProperty()” method of the selection 132.1 with an
arcument that indicates, among other things, the name of the
property to be set (524). The argument can also include a
selectionElementFilter, which performs the same actions
described above (526). The “getProperty” method uses the
introspection capabilities of JavaBeans™ and the property
name to “get” the value of the specified property. Also based
on the routine value of the canSetProperty() method, the
inspector 134-1 invokes the setEnabled() method of each of
the editors 132.2 with a boolean argument that indicates
whether the editor 1s enabled to set the value of their
corresponding GUI component 1n response to a subsequent
setValue message (520). The inspector 134-1 also invokes
the “setMultiValued()” method of each of the editors
associated with the GUI components with a boolean argu-
ment that indicates whether there are multiple values for the
property name in the selection (522). This is necessary in
situations where one or more selected BOs indicated to the
inspector 132.1 that they have different values for that
property. This would be expected 1n situations where the
selected BOs have similar attributes. For example, consider
the situation where a client appliction 124 performs a
database search for customers with the last name, “Smaith”.
This search might return multiple Customer BOs, corre-
sponding to the different customers (with different first
names) whose last name is “Smith”. It would be the respon-
sibility of the editor 132.2 that manages the First Name GUI
component of a database query viewer GUI to indicate in
some manner all of the different first names of the selected
customer BOs.

10

15

20

25

30

35

40

45

50

55

60

65

16

In response to the setEnabled message 520, the editor
132.2 1ssues a setEnabled message to its associated compo-
nent (530). This message has a boolean argument that
indicates whether the corresponding field 1s off (i.e., unavail-
able for input or display) or on. The editor 132.2 issues this
message when the properties 1n the selection are not related
to the property to which the component 1s bound. For
example, 1f a editor’s GUI component reflects income and
the collection of BOs has nothing to do with income, the
editor 132.2 would set the component to off.

Once 1t has received the “get” value from each of the BOs
able to set the specified property, the inspector 132.1 updates
the values of components bound to the specified property via
cach components editor 132.2. If there are multiple values
for the editor’s component, the inspector 132.1 has two
options. First, the imnspector 132.1 can mmvoke a special
method of the editor 132.2 that 1s able to handle the display
of multiple values. These special methods can be 1mple-
mented 1n any manner. Alternatively, the inspector can force
all values of a heterogenous set of properties to the same
value by calling the editor’s setValue() method. The set-
Value method either sets the value of the bound component
directly or, 1f an editorValueFilter class instance 1s set, the
editor 132.2 sets the value of the component to the filtered
value returned by that editorValueFilter instance.

The “setValue()” method performs the following actions:

1) Sets the editor’s “ismultiValued” attribute to “false”
since, 1f the value 1s set to a single value, then the editor
cannot be “multiValued”.

2) Filters the value if an optional “valueFilter” object has
been set (534) (a “valueFilter” object is set by the client
application 124 using the setValueFilter method of the
FIEditor class; the argument passed by the application 124
to the setValueFitler method 1s a filter object that implements
the FIEditorValueFilter interface).

3) Calls this interface’s “setBoundObjectValue()”
method to set the bound GUI component’s value. If a
“valueFilter” had been set, then the value returned by that
filterObject 1s the object passed to the
“setBOundObjectValue()” method.

If optional instances of the FISelectionElementFilter
144.1 are employed, objects returned by the selection 132 .4
are filtered in steps (518) and (526). The instances of the
filter 144.1 perform filtering when their filterElement()
method 1s invoked by the selection 132.4. The operation of
the FISelectionElementFilter 144.1 has already been
described above.

As the last step 1n this operation, in response to the value
(filtered or not) conveyed by the setValue message (528), the
cditor 132.2 sets the state of its “Powered Up” checkbox
413a using the setSelected() method of the checkbox
component 413a (532). With this method the editor 132.2

causes the checkbox to be selected (checked) or deselected
(empty).

While the present invention has been described with
reference to a few specific embodiments, the description is
illustrative of the mvention and 1s not to be construed as
limiting the mmvention. Various modifications may occur to
those skilled 1n the art without departing from the true spirit
and scope of the invention as defined by the appended
claims.

What 1s claimed 1s:

1. A framework for binding data viewers with one to many
objects, comprising;:

a plurality of classes for associating and synchronizing

GUI components and business object (BO) attributes,
including:

6,023,271

17

an 1nspector class;
a selection class; and
a plurality of editor classes; wherein:
the 1nspector class includes mspector methods and
data structures that enable a set of GUI compo-
nents to be bound to the attributes of a selection of
at least one business object (BO);
the editor classes mclude editor methods and data
structures that interact with the GUI components
and an 1nspector class 1nstance, each of the editor
classes being configured to work with GUI com-
ponents of a respective component type; and
the selection class includes selection methods and
data structures that interact with the selection and
the 1nspector class instance;

such that an instance of the selection class communicates
events 1volving the selection to the inspector class
instance, which responsively trigeers instances of the
editors to update the GUI components accordingly; and

the 1nstances of the editor classes communicate events

involving the GUI components to the inspector class

instance, which responsively triggers the selection class
instance to update the selection accordingly.

2. The system of claim 1, wherein the business objects are

JavaBeans™ objects, further comprising the selection class

10

15

20

138

instance determining the attributes of the business objects
using JavaBeans™ property of introspection.

3. The system of claim 2, wherein the selection class
instance writes new values provided by the inspector class
instance 1nto the BO attributes using JavaBeans™ Set calls
and reads values of the BO attributes using JavaBeans™ Get
calls.

4. The system of claim 1, wherein each of the editor class
instances 1s associlated with a respective GUI component.

5. The system of claim 1, wherein each of the editor class
instances mcludes knowledge of the BO attributes to which
its associlated GUI component 1s mapped.

6. The system of claim 1, further comprising;:

a client application that constructs the imspector class
mstance;

the client application passing the inspector instance a
selection class instance that includes the selection of
business object(s) whose attributes are to be synchro-
nized with the GUI components; and

the client application also passing the inspector class
instance a mapping between the BO attributes and the
GUI components.

	Front Page
	Drawings
	Specification
	Claims

