United States Patent
Mahoney et al.

[19]

US006020972A
(11] Patent Number: 6,020,972
45] Date of Patent: Feb. 1, 2000

[54] SYSTEM FOR PERFORMING COLLECTIVE
SYMBOL-BASED COMPRESSION OF A
CORPUS OF DOCUMENT IMAGES

|75] Inventors: James V. Mahoney, Los Angeles;

William J. Rucklidge, Mountain View,
both of Calif.

73] Assignee: Xerox Corporation, Stamford, Conn.

21] Appl. No.: 08/970,970

22] Filed: Nov. 14, 1997

51] Imt. CL7 e, G061 15/00; GO5B 11/00

52] UKS.CL o, 358/1.14; 358/1.2; 358/1.1

58] Field of Search ..................................... 395/114, 111,

395/101, 102, 112, 113, 115, 116, 358/1.14,
1.02, 1.1, 1.17, 1.15, 1.16, 467; 382/290,
292: 707/101, 514, 515, 516, 907
[56] References Cited

U.S. PATENT DOCUMENTS
5,303,313  4/1994 Mark et al. .oovveevvvnnrieenneeennnnee 382/56
5,305,433  4/1994 ORNO .cuuevvvvvniiirivieievieenn, 395/150
5,321,770  6/1994 Huttenlocher et al. ................... 382/22
5,331,556  7/1994 Black, Jr. et al. ................. 364/419.08
5,504,843  4/1996 Catapano et al. ....................... 395/115
5,539,841 7/1996 Huttenlocher et al. ................. 382/218
5,778,361  7/1998 Nanjo et al. ..c.coveerieniinaeen, 707/5
5,884,014 3/1999 Huttenlocher et al. ................. 395/114
5,911,140  6/1999 Tukey et al. ..c.ceeeeeiieeineeanninnnnenee. 707/5
5,940,822  8/1999 Haderle et al. ...eeenvvveeennnnnnnnnn. 707/3

OTHER PUBLICAITTONS

U.S. Patent Application No. 08/575,305, entitled “Classifi-
cation of Scanned Symbols mto Equivalence Classes,” to
Daniel Davies, filed Dec. 20, 1995.

U.S. Patent Application No. 08/575,313, entitled “Consoli-
dation Of Equivalence Classes Of Scanned Symbols,” to
Daniel Davies, filed Dec. 20, 1995.

U.S. Patent Application No. 08/652,864 enfitled “Fontless
Structured Document Image Representations for Efficient

Rendering,” to Daniel R. Huttenlocher et al., filed May 23,
1996.

U.S. Patent Application No. 08/655,546 entitled “Method
and Apparatus for Comparing Symbols Extracted from

Binary Images of Text” William J. Rucklidge et al., filed
May 30, 1996.

U.S. Patent Application No. 08/752,497, enfitled “Using
Fontless Structured Document Image Representations To
Render Displayed And Printed Documents At Preferred
Resolutions,” to Daniel R. Huttenlocher et al., filed Nov. §,
1996.

Primary Examiner—Jerome Grant, 11
Assistant Examiner—Douglas Tran

57 ABSTRACT

A method and apparatus for compressing a corpus of docu-
ment 1mages 1nto a collective tokenized representation.
Initially, documents 1n the corpus are individually com-
pressed mto a document tokenized format. A document
image 1n the document tokenized format is represented using
a symbol table and a table of positions. Each symbol 1n the
symbol table 1s a shape 1n the original document 1mage. The
positions 1n the table of positions indicates where the
symbols in the symbol table are placed to form the document
image. Subsequently, the 1individual symbol tables of each
document 1n the corpus are assembled to form clusters of
similar shapes. These clusters are then analyzed to identily
the degree of interrelationship between the symbols 1n the
individual symbol tables. Individual document symbol
tables with a large number of recurring symbols are grouped
together. For each of the groups of symbol tables, a collec-
tive symbol table 1s computed. The collective symbol table
improves the compression ratio of a corpus by eliminating
redundant shapes appearing i1n the individual document
symbol tables. Also, the collective symbol table advanta-
cgeously 1dentifies groupings of documents in the corpus
which are related because a significant number of similar
shapes are used 1n each of the documents.

17 Claims, 9 Drawing Sheets

/-5{."-'{}

Assemble Symbol Tables
Of Documents In The Corpus

l

//EEF?

Form Clusters Of Similar Shapes Using
The Symbeols In The Assembled Symbols Tables

|

504
/

Identify Cross-Clustering Relationships
Between Documents

In The Corpus Using The Clusters Of Similar Shapes

:

506
/’

Group The Assembled Symbol
Tables Forming Each Cross-Clustering
Relationship Which Have Significant
Number Of Recurring Symbols

l

/*Eﬂﬁ

Compute A Collective Symbol Table For Each
Group Of Symbol Tables Formed At Step 506

:

510
/-r’

Update The Position Tables Of Each
Of The Assembled Symbol Tables

To Correspond With Collective Symbaol
Table Computed At Step 308




U.S. Patent Feb. 1, 2000 Sheet 1 of 9 6,020,972

Operating System Applications (for
Software document creation)

Document Corpus
Tokenizing Tokenizing
Compressor Compressor
165 166

Hardware 120

129
**LOCAL AREA NETWORK**
141

106
Userl/0 | 125
_ Memory
Network 1/0

Persistent | 108
105 110 storage

GENERAL-PURPOSE COMPUTER

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FIG. 1



U.S. Patent Feb. 1, 2000 Sheet 2 of 9 6,020,972

211

this 1s a
simple example

\201

|______> (1, 10, 20)

(2, 20, 30) 212

(token index, X, Y)

FIG. 2

(Prior Art)
302
300
TN\ 304
Document Symbol Table
306
* 308
Residual Symbol Table For Page 1
- 310
Position Block For Page 1
306
Page Header For Page 2
. 308
Residual Symbol Table For Page 2
- 310
Position Block For Page 2
— 306
Page Header For Page N
_ 308
Residual Symbol Table For Page N
- 310
Position Block For Page N

FIG. 3
(Prior Art)



U.S. Patent Feb. 1, 2000 Sheet 3 of 9 6,020,972

400 402

Read Bitmap Image(s) Read Structured Document
Representation (e.q., PDL)

404

Render It Into Bitmap Image(s)

406
Identify Shapes In
Bitmap Images(s)

408

Classifty Shapes
410

Encode Shape Dictionary,

Position Information,
and Extensions

412

Write Tokenized Representation

FIG. 4
(Prior Art)



U.S. Patent Feb. 1, 2000 Sheet 4 of 9 6,020,972

000

Assemble Symbol Tables
Of Documents In The Corpus
502
Form Clusters Of Similar Shapes Using
The Symbols In The Assembled Symbols Tables

004

Identify Cross-Clustering Relationships
Between Documents

In The Corpus Using The Clusters Of Similar Shapes

206

Group The Assembled Symbol
Tables Forming Each Cross-Clustering
Relationship Which Have Significant
Number Of Recurring Symbols

508
Compute A Collective Symbol Table For Each
Group Of Symbol Tables Formed At Step 506
510

Update The Position Tables Of Each
Of The Assembled Symbol Tables

To Correspond With Collective Symbol
Table Computed At Step 508

FIG. S



U.S. Patent

Feb. 1, 2000 Sheet 5 of 9

Document 3
Symbol Table

Document 2
Symbol Table

Document 1
Symbol Table

SESEERE FU YRS (ELEL LR LY |

nnnnnnnnnnnnnnnnnnnnnnnn

,'IIIII.IIII‘ f‘l"l'llll=

Ssnsnnnasew. Wescaenesd B W Memwescmsesasy EEREEERRSES B K wasvmssasedt Nsgsssacay

Document 1: 'a*'b\ C o \ =

| : 1 ] : % | || ] .
l N ...: ] i - | Teruvsvassan I I | wasasnaaed
aay pan - | messensas
v : v P o : P g :
. v S S | | S : ! :
Document2:| \ia:, “ibi, U
I 7 \ i - Sed | i
NSmeererered \ Serenened, . /
Ny - L Ny
- ~ v o .  w——
: . | . :
Document 3: 5 : \
d b : i C ) Vi
: S eemeeneat SR . Ve
\
“ #,

6,020,972

oversevsneny
' : :
| § X a
i :

| R rcranest



6,020,972

Sheet 6 of 9

Feb. 1, 2000

U.S. Patent

902

900

Group 2

Group 1

FIG. 9

1002

Collective

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Collective
Symbol Table 1

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

FIG. 10



U.S. Patent Feb. 1, 2000 Sheet 7 of 9 6,020,972

1102
f

1106
Group Header
1108
Group Symbol Table

1110

Header For Document 1
1112

Pointer To Document 1
1110

Header For Document 2
1112

Pointer To Document 2

1110

Header For Document N
1112

Pointer To Document N

—~—
—~—
~a
SN

Document Header

: _ 1116
,r 1118
11 T
| e |
1118
T
', Residual Symbol Table For Page 2 1199
; 1118
---- Residual Symbol Table For Page N 1199

Position Block For Page N

FIG. 11



6,020,972

Sheet 8 of 9

Feb. 1, 2000

U.S. Patent

s Yo} <] o yonen s i
‘ojop abibw passaiduio) “ indino yJomisN _s___“__. e____._E_H
Ado) afirsin A.__.mu“.NF Houwg
| bYT 0
Apydsip [DNSIA <----=------ 19M3IA ssaidalg Japoots
|
Adoa pipy A..R.mﬁ: (101) Jeiunig [ 18MIaS JUlld
| 0E¢}
" eck Alowaw pup
!
Nd)
Ado> piny Am ............... o PIDOQUO LiiM
suoiajas yuiadAy E Jajuud ylomjap
‘ojop abowy passasdwor — 0771
ot o poos <———]|_o00IO WSy
HENF (uoissazdwodap)
ojop abpwy passaidiio Jajndwo)
“ 17| as0ding [pDJauaq
Ad S LI d
07 PIDY <« “ Jajund |07 01z
144

Anjdsip |ONSIA <---=------ Jojuow Apjdsi(]

00}

08/

181

(uoissaidwo))
1Rindwo)
asoding-|DJauaq

14

* *¥“ OE z
VAV V)0 1.



U.S. Patent Feb. 1, 2000 Sheet 9 of 9 6,020,972

1302

Receive Request To Render Document(s)

1303

Receive Input Tokenized Representation

1304 1316

whatts Next? || Done

1306 1308

1307 1309

Read Group Symbol Read Residual Symbol
Table Into Memory Table For Document

Into Memory

1310

Read Residual Symbol
Table For Page
Into Memory

1311

1312
Read Position Block
1313

Render All Tokens Into A Page

Image (bitmap) With Information
From Symbol Table And
Position Block

1314

Render Residuals
Into Page Image

Output Page Image

1315

FIG. 13



6,020,972

1

SYSTEM FOR PERFORMING COLLECTIVE
SYMBOL-BASED COMPRESSION OF A
CORPUS OF DOCUMENT IMAGLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

Cross-reference 1s made to U.S. patent applications Ser.
No. 08/652,864, entitled “Fontless Structured Document
Image Representations For Efficient Rendering” (now U.S.
Pat. No. 5,884,014), and Ser. No. 08/752,497, entitled
“Using Fontless Structured Document Image Representa-
fions To Render Displayed And Printed Documents At
Preferred Resolutions”, which are assigned to the same
assignee as the present mvention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present i1nvention relates generally to 1mage
compression, and more particularly, to a method and appa-
ratus for compressing a corpus of document 1mages using
structured tokenized representations that are resolution-
dependent.

2. Description of Related Art

Structured document representations provide digital rep-
resentations for documents that are organized at a higher,
more abstract level than merely an array of pixels. Known
structured document representation techniques pose a
tradeoil between the speed with which a document can be
rendered (i.€., converted to a displayable or printable output)
and the expressiveness with which 1t can be represented.
One high-level resolution-independent structured document
representation is a page description language (PDL), such as
PostScript®. PDLs tend to be high-level structure document
representations because they contain expressions which
include a great deal of information about document struc-
ture. In contrast, purely textual representations of a docu-
ment that 1s encoded in ASCII (American Standard code for
Information Interchange) has no formatting information.
Because of 1ts simplicity, an ASCII encoded document
generally requires less time to render than a PDL document
with formatting information.

In contrast to resolution-independent document
representations, documents represented 1n a DigiPaper file
format are resolution-dependent. The DigiPaper file format
1s a token-based structured document representation that is

both highly expressive and fast to render. The DigiPaper
structure document format i1s described 1 detail in U.S.
patent application Ser. Nos. 08/652,864 and 08/752,497. In
the DigiPaper format, pages of a document are represented
using a “dictionary” of tokens or symbols that appear 1n the
document. In addition to the dictionary of tokens, each page
includes position information specitying where tokens on
the page appear. Each token 1n the dictionary of tokens 1s a
portion of a document 1mage such as a bitmap of a character.

In addition to being resolution-dependent, the DigiPaper
file format achieves some degree of lossless data compres-
sion. Unlike prior symbol-based token matching which have
been used only for lossy 1mage compression, a DigiPaper
representation of a document 1mage can be used to achieve
lossless compression of original document 1mages produced
from structured document representations. The DigiPaper
file format achieves high compression ratios because each
symbol 1s stored just once per document in the dictionary of
tokens, rather than once for each occurrence 1n a document.
Further compression 1s achieved by encoding the sequence

10

15

20

25

30

35

40

45

50

55

60

65

2

of positions of tokens 1n the dictionary using for example
Huffman coding.

In general, the DigiPaper file format described in U.S.
patent application Ser. Nos. 08/652,864 and 08/752,497 can
be used in any environment where quick, high-quality
document rendering 1s required. For example 1n production
printing, the compression achieved using the DigiPaper file
format enables documents to be rendered 1n one location and
printed 1n another location. In addition to being compact, the
DigiPaper file format i1s easy to decode thereby enabling
other applications such as prepress viewing, desktop
publishing, document management systems, and distributed
printing applications, as well as fax communications. This
aspect of the DigiPaper file format guarantees document
fidelity during prepress viewing, without requiring the
development of special prepress viewers.

A large number of documents are represented on the
World Wide Web using HI'ML (HyperText Markup
Language). Generally, HTML allows markup of the struc-
ture of a document, but not markup of the layout of a
document. For example, a block of text can be specified as
a “first-level” heading with no font or justification.
Consequently, the manner in which an HIML document 1s
rendered depends on a user’s particular browser or com-
puter. In contrast, documents represented 1n the DigiPaper
file format can be rendered with fidelity comparable to print
media, because of 1ts tokenized file format. In particular,
with the emergence of standard programmable viewers (i.c.,
Java enabled internet browsers), the DigiPaper file format
can be used to define self-rendering documents. That 1s, a
Java applet can be used to perform the rendering of a
document 1 a DigiPaper file format independent of the
particular 1nternet browser or computer. In addition, docu-
ments encoded in the DigiPaper file format can be rendered
at speeds of under one second per page for text and graphics.
This means fewer unwanted delays for users downloading
documents from remote servers on the internet.

Because of the ease with which documents can be
accessed using an internet browser such as Netscape’s
Navigator or Microsoit’s Explorer, more and more docu-
ments are being stored on the internet and on intranets.
These documents may 1n some 1nstances form a part of a
large corpus of heterogenous documents. Users browsing a
large corpus of documents on the internet and on intranets
have the propensity for browsing or retrieving more than one
document from the corpus during a single session. For
example, a user searching a corpus of documents tends to
examine several documents before identifying one or more
of interest to be printed or retrieved. In the event the
documents 1n the corpus are encoded in the DigiPaper file
format, it would be desirable to have a compression tech-
nique that more efficiently compresses a corpus of docu-
ments where each document 1n the corpus 1s individually
encoded 1n the DigiPaper file format. More generally, 1t
would be desirable to have a compression technique which
maximizes compression for a collection of heterogenous
document 1mages.

SUMMARY OF THE INVENTION

In accordance with the invention there 1s provided a
system, and method and article of manufacture therefor, for
compressing a corpus of document images stored 1n a
memory of a computer system. In compressing the corpus of
document images, each document i1mage stored in the
memory 1s converted into a tokenized representation that
includes a document symbol table and a document position



6,020,972

3

table. Symbol tables of the tokenized representations of
document 1mages are then arranged into groups of symbol
tables with recurring symbols. For each grouping of symbol
tables, a collective symbol table 1s computed. The computed
collective symbol tables compress the tokenized represen-
tations of document 1mages stored 1in the memory by sharing
recurring symbols across the document 1mages in the cor-
pus.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the invention will become
apparent from the following description read in conjunction
with the accompanying drawings wherein the same refer-
ence numerals have been applied to like parts and in which:

FIG. 1 1llustrates hardware and software components of
an exemplary system suitable for practicing the present
mvention;

FIG. 2 1illustrates the concepts of tokens and positions
through a highly simplified example with a one-page 1nput
document 1mage;

FIG. 3 1llustrates a tokenized representation of a multi-
page document 1mage;

FIG. 4 shows a sequence of steps for compiling a struc-
tured representation or a bitmap representation of a docu-
ment 1nto a tokenized representation of a document;

FIG. 5 1s a flow diagram which sets forth the steps for
compressing a corpus of documents in the tokenized file
format;

FIG. 6 illustrates an example where three symbol tables
(or token dictionaries) are assembled from a corpus of
documents;

FIG. 7 1llustrates a table which organizes the symbols of
cach document symbol table shown m FIG. 6 into rows;

FIG. 8 1llustrates a cross-clustering relationship for the
clusters shown in FIG. 7 using a Venn diagram;

FIG. 9 illustrates two groupings which are defined using
the cross-clustering relationship shown m FIG. §;

FIG. 10 1llustrates the formation of collective symbol
tables from the groupings shown in FIG. 9;

FIG. 11 1s a block diagram which 1llustrates a collection
of documents compressed 1n the tokenized file format;

FIG. 12 illustrates a system environment 1in which various
system components can be used to render tokenized repre-
sentations of documents; and

FIG. 13 1s a flow diagram of the steps for rendering a
tokenized representation of a collection of documents.

DETAILED DESCRIPTION

A. System Overview

Referring now to the drawings where the showings are for
the purpose of describing the invention and not for limiting
same, FIG. 1 1llustrates hardware and software components
of an exemplary system suitable for practicing the present
invention. The system of FIG. 1 includes a general-purpose
computer 100 connected by one or more communication
pathways, such as connection 129, to a local-area network
(LAN) 140 and also to a wide-area network, here illustrated
as the Internet 180. Through LAN 140, computer 100 can
communicate with other local computers, such as a file
server 141. Through the Internet 180, computer 100 can
communicate with other computers, both local and remote,
such as World Wide Web server 181. As will be appreciated,
the connection from computer 100 to Internet 180 can be
made 1n various ways, ¢.g., directly via connection 129, or
through local-area network 140, or by modem (not shown).

10

15

20

25

30

35

40

45

50

55

60

65

4

Computer 100 1s a personal or office computer that can be,
for example, a workstation, personal computer, or other
single-user or multi-user computer system. For purposes of
exposition, computer 100 can be conveniently divided into
hardware components 101 and software components 102. It
will be appreciated by those skilled 1n the art that the line
between a host computer and its attached peripherals 1s not
exact, and that components that are considered peripherals
of some computers are considered integral parts of other
computers. Thus, for example, user I/O 120 can include a
keyboard, a mouse, and a display monitor, each of which can
be considered either a peripheral device or part of the
computer itself, and can further include a local printer,
which 1s typically considered to be a peripheral. As another
example, persistent storage 108 can include a CD-ROM
(compact disc read-only memory) unit, which can be either
peripheral or built into the computer.

The hardware components 101 of computer 100 include a
processor (CPU) 105, memory 106, persistent storage 108,
user I/O 120, and network interface 125. Processor 105 can
be, for example, a microprocessor or a collection of micro-
processors configured for multiprocessing. In some embodi-
ments computer 100 may be part of a distributed environ-
ment; 1n such embodiments, the functionality of computer
100 1n the system of FIG. 1 1s taken on by a combination of
computers, and the processing capabilities of processor 105
are provided by the combined processors of the multiple
computers. Memory 106 can include read-only memory
(ROM), random-access memory (RAM), virtual memory, or
other memory technologies, singly or 1n combination. Per-
sistent storage 108 can include, for example, a magnetic
hard disk, a floppy disk, or other persistent read-write data
storage technologies, singly or in combination. It can further
include mass or archival storage, such as can be provided by
CD-ROM or other large-capacity storage technology. (Note
that file server 141 provides additional storage capability
that processor 105 can use.) User I/O (input/output) hard-
ware 120 typically includes a visual display monitor such as
a CRT or flat-panel display, an alphanumeric keyboard, and
a mouse or other pointing device, and optionally can further
include a printer, an optical scanner, or other devices for user
input and output. Network I/O hardware 125 provides an
interface between computer 100 and networks 140 and 180.
More specifically, network I/0O 125 lets processor 105 com-
municate via connection 129 with other processors and
devices through LAN 140 and through the Internet 180.

Software components 102 include an operating system
150 and a set of tasks under control of operating system 150,
such as an application program 160, document tokenizing
compressor 165, and corpus tokenizing compressor 166. In
onc embodiment the tokenizing compressors 165 and 166
may be associated with an article of manufacture that is
packaged as a software product 1n a portable storage
medium (not shown) which can be read by the computer
system 100 through a user I/O device 120 such as a CD
ROM reader. The storage medium may, for example, be a
magnetic medium such as floppy disk or an optical medium
such as a CD ROM, or any other appropriate medium for
storing data.

In operation, operating system 150 allows processor 105
to control various devices such as persistent storage 108,
user [/O 120, and network interface 125. Processor 105
executes the software of operating system 150 and its tasks
160, 165, and 166 1n conjunction with memory 106 and
other components of computer system 100. The function
performed by document tokenizing compressors 165 and
corpus tokenizing compressor 166 can be divided up among




6,020,972

S

operating system 150 and its tasks as may be appropriate to
the particular circumstances. In general, the document
tokenizing compressor 165 carries out a tokenizing compi-
lation of input PDL or mput raster documents, whereas the
corpus tokenizing compressor 166 carries out tokenizing
compilation of a corpus of tokenized documents. The 1nput
documents can be provided from any number of sources. In
particular, the mput PDL documents can be generated as
output by application program 160, retriecved from persistent
storage 108 or file server 141, or downloaded from the
Internet 180, e.g., from Web server 181.

B. DigiPaper Tokenized Representation of A Document

More specifically, the document tokenizing compressor
165 shown m FIG. 1 generates highly compressed docu-
ments from both scanned documents (i.€., raster images) and
RIPped documents (i.e., PDL documents rendered to page
images). The format in which the highly compressed docu-
ments are represented by the compressor 165 1s defined
herein as “DigiPaper.” Briefly, mn the DigiPaper format,
images of a document are represented using a dictionary of
tokens (or a table of symbols) that appear in the document.
In addition to the dictionary of tokens, each 1mage includes
a table of positions which records position iformation
specifying where ecach token appears. Each token in the
dictionary of tokens 1s a portion of a document 1mage such
as a bitmap of a character. The DigiPaper file format for a
single document 1mage 1s described 1n detail i U.S. patent
application Ser. Nos. 08/652,864 and 08/752,497, which are
incorporated herein by reference.

FIG. 2 1illustrates the concepts of tokens and positions
through a highly simplified example with one-page 1nput
document 1mage 200 which includes text 201. Using the
document tokenizing compressor 163, a tokenized represen-
tation 210 1s generated from the input image 200. The
tokenized representation 210 includes a dictionary of tokens
211 (also referred to herein as a symbol table) and a table of
positions 212. Each of the tokens 1n dictionary 211 repre-
sents a shape that occurs somewhere 1n the input 1mage 200.
Each shape 1s stored as a bitmap in the dictionary 211. Each
of the positions 1n table 212 represents where one of the
tokens 1s to be placed. That 1s, positions 1n table 212 indicate
where a token’s shape occurs in the input image. For
example, the shape “t,” which 1s associated with the first
token, appears at a position whose (X, Y) coordinates are
given by the ordered pair (10, 20). The shape “h,” which is
assoclated with the second token, appears at a position
whose (X, Y) coordinates are given by the ordered pair (20,
30). In general, each of the positions 212 includes a token
index, that i1s, an index indicating a particular one of the
tokens in dictionary 211, together with an (X,Y) coordinate
pair that tells where the indicated token’s shape occurs 1n the
document.

To generate the tokenized representation 210 from the
document image 200, a computer detects the different shapes
that appear 1n the document image and notes where they
appear. For example, scanning from left to right beginning
with the first line of text 201, the computer first finds the
shape “t”, then the shape “h”, then the shape “1”, then the
shape “s.” The computer records each of these shapes as
tokens 1n dictionary 211, and records their respective posi-
fions as positions 212. Continuing rightward, the computer
next finds another “17”; since this shape 1s already in the
dictionary, the computer need only record its position. The
computer continues this procedure until the entire document
image has been scanned. In short, the computer tokenizes
the 1mage by finding each shape in turn, determining
whether that shape 1s already 1n the token dictionary, adding,

10

15

20

25

30

35

40

45

50

55

60

65

6

it to the dictionary if not and, 1n any case, storing 1ts position
in the table of positions.

Note that the dictionary of tokens 211 1s not a font. The
DigiPaper tokenized representation of a document 1ncludes
no notions of semantic labeling or of character sets, no
encoding or mapping of sets of character codes to sets of
character names. The shapes “t”, “h”, “1” and so forth are
treated as just shapes, that 1s, particular bitmaps, and not as
letters of an alphabet or members of a larger set of character
codes. The shapes appear in the dictionary in an arbitrary
order for example based on their sizes rather some fixed
order such as an ordering based on their symbolic meaning.
The shapes that appear 1n the document dictate what will be
in the dictionary, and not the reverse. Also note that shapes
which occur repeatedly 1n the document can be used as token
shapes, 1including shapes that have no symbolic meaning at
all. The shapes that make up text 201 1n document 1mage 200
happen to be recognizable to English-speaking humans as
alphabetic characters, but they could just as well be cunei-
form characters or meaningless squiggles, and the compres-
sor 165 would process them 1n the same way. Conversely, a
orven letter of the alphabet that 1s to be rendered as two
distinct shapes (e.g., at two different sizes or in two different
typefaces) will be assigned two different tokens, one for
cach distinct shape 1n which that letter appears.

To reconstruct the 1image 200 from the tokenized repre-
sentation 210, a computer, executing commands from a
document tokenizing decompressor (shown in FIG. 12 and
discussed in more detail below in Section D), reads sequen-
tially through the positions 212 and, for each position,
transfer the shape of the token whose 1ndex 1s listed to the
listed (X,Y) coordinate. Thus, in reconstructing the image
200, a computer reuses the first token (the shape “T”) once,
the second token (shape “h”) once, the third token (shape
“17) three times, the fourth token (shape “s”) three times, etc.
Generally, the more often a token’s shape appears 1n a
document, the greater the compression ratio obtainable
through the tokenized representation.

For a one-page document image such as image 200, it 1s
not necessary to encode page mformation in the tokenized
representation. For multi-page 1images of longer documents,
a tokemized representation 300 1s defined that includes
information about which token shapes appear on which
pages 1n a document, as illustrated 1n FIG. 3. The tokenized
representation 300 includes a document header 302 and a
document symbol table 304. Specific to each page 1 a
document, the tokenized representation 300 includes a page
header 306, a residual symbol table 308, and a position block
310. Each residual symbol table 308 includes those symbols
that are unique to a particular page of a document. Typically
with tokenized representations, higher compression ratios
are obtained for multi-page documents, because the longer
the document, the more often each token can be reused. Each
position block 310 specifies the positions of symbols for a
page, which symbols can be found 1n either the document
symbol table 304 or the residual symbol table 308.

FIG. 4 shows a sequence of steps for compiling a struc-
tured representation or a bitmap representation of a docu-
ment 1mmto a tokenized representation of a document. A
structured document representation, such as a PDL file, 1s
read 1nto working memory at step 402 and 1s rendered into
a set of bitmap 1mages, one per page, at step 404, by a
conventional PDL decomposer. Thereafter, tokenizing com-
pression 1s performed at steps 406, 408, and 410, by the
compressor of either a bitmap 1mage rendered at step 404 or
an original bitmap 1mage read into memory at step 400. At
step 406, the bitmap 1mages are analyzed to identity the




6,020,972

7

shapes therein. Next, these shapes are classified, so that
multiple occurrences of the same shape can be assigned to
the same token, at step 408. Thereafter, the token dictionary,
position information, and residual document elements are
encoded, at step 410, together with any extensions, such as
hypertext links or embedded non-binary image components.
This completes the construction of the tokenized com-
pressed representation, which 1s then output and recorded in
memory, at step 412.

More specifically, the step 406 of 1dentifying shapes can
be performed using a connected components analysis,
although any other suitable technique can be used (e.g.,
segmentation). Also in the case that a PDL document is
rendered 1nto a bitmap 1mage at step 404, the step 408 of
classifying shapes 1s performed using a very simple, lossless
classifier which considers two shapes to match one another
if and only 1f they are bitwise i1dentical. Bitwise matching
works well 1n the case of a document 1mage that 1s tokenized
from an 1mage that 1s generated directly from a PDL or other
structured document description because such bitmap
images are inherently free from noise, losses, distortions,
scanning artifacts, and the like. In instance scanned 1images
are compiled into a tokenized representation at step 400 and
406, the step 408 of classitying shapes 1s performed using
approximate or heuristic classifiers as 1s done 1n known
methods of tokenizing scanned documents.

C. DigiPaper Tokenized Representation of A Corpus of
Documents

Once a set of documents (whether PDL representations or
scanned images) are individually compressed into a Digi-
Paper file format by compressor 165, the set of documents
1s further compressed by corpus tokenizing compressor 166.
In accordance with the mvention, corpus tokenizing com-
pressor 166 improves compression of individually tokenized
documents by developing token dictionaries which span
typeface-homogenous portions of a document corpus.
Briefly, a corpus of documents in the document tokenized
(or DigiPaper file) format are further compressed by corpus
compressor 166 after performing two sets of operations.
During the initial set of operations, the compressor 166
divides the corpus into relatively typeface-homogenous sub-
sets of tokens or symbols. During a subsequent set of
operations, a group dictionary 1s defined for each of the
typeface-homogenous subsets of tokens. To the degree that
a corpus contains typeface homogeneity, compressor 166
improves the overall compression ratio of a corpus of
documents where each document 1s individually compressed
in the DigiPaper file format. Advantageously, the costs
incurred 1n storing or transmitting multiple documents 1n the
corpus of documents 1s reduced by sharing a group dictio-
nary across multiple documents.

FIG. 5 1s a flow diagram which sets forth the steps for
compressing a corpus of documents 1n the DigiPaper file
format. In general, a file 1n a DigiPaper file format includes
a document token dictionary (or symbol table) 211 and a
table of positions 212 (see FIG. 2). It will be appreciated by
those skilled in the art that the DigiPaper file format 1s just
one example of a tokenized file format which can be used to
perform the present mvention. In describing the steps set
forth in FIG. 5, reference 1s intermittently made to an
example corpus of three documents 1n FIGS. 6—10 to 1llus-
frate operations performed at each step shown 1 FIG. 5. It
will be understood by those skilled 1n the art that the
example shown 1n FIGS. 6—10 1s highly simplified, and that
in reality a document corpus may contain significantly more
than three document images, each of which may include one
Or MOore page 1mages.

10

15

20

25

30

35

40

45

50

55

60

65

3

At step 500, the symbol tables (or token dictionary) 211
of each document in a corpus of documents stored for
example on file server 141 or web server 181 1s assembled
(or collected) by corpus tokenizing compressor 166 (shown
in FIG. 1). For example, FIG. 6 illustrates three symbol
tables 600, 602, and 604 that arc assembled from a corpus
of documents with three document images (not shown). As

set forth above, the three symbol tables 600, 602, and 604
are generated by document tokenizing compressor 1635.

At step 502, the corpus tokenizing compressor forms
clusters of symbols with similar shapes from the symbols in
the tables assembled at step S500. Generally, shapes are
defined herein to be similar 1if their salient features match
cach other within some predefined tolerance level. For
example, one predefined tolerance level 1s an acceptable
ratio of pixels 1n one shape lying inside some dilated
representation of the other shape, and vice versa. As set forth
above, a symbol need not be a character from a font but
instead can be any type of i1mage clement. In one
embodiment, symbols from a set of assembled symbol tables
are clustered mto one or more equivalence classes. Each of
the equivalence classes 1s formed using a Hausdorii-like
method by determining whether at least two symbols {it
within some tolerance into dilated representations of each
other. An example of a method and apparatus which uses a
Hausdortf-like method to form equivalence classes 1s dis-
closed 1n U.S. patent application Ser. No. 08/655,546,
enfitled “Method and Apparatus For Comparing Symbols
Extracted From Binary Images of Text,” which 1s incorpo-
rated herein by reference.

For example, FIG. 7 1llustrates a table which organizes the
symbols of each document symbol table into rows. Each
column of the table 1n FIG. 7 includes those symbols 1n the
assembled symbol tables 600, 602, and 604 having some
degree of equivalence. However, only those symbols 1in each
of the clusters 700, 702, 704 and 706 arc sufficiently
equivalent to be labeled as similar. For example, the “a”
symbols from documents one and two are sufliciently simi-
lar to define the cluster of symbols 700. Whereas the “a”
symbol from document 3 has enough differences compared
to the other “a” symbols to be excluded from the equivalence
class defined by the cluster of symbols 700.

At step 504, one or more cross-clustering relationships are
identified between the assembled symbol tables. More
specifically, 1 1dentifying cross-clustering relationships,
cach cluster of symbols formed at step 502 1s represented
using a composite symbol. In one embodiment, the com-
posite symbol 1s specified by randomly selecting one of the
symbols 1n the cluster of symbols. In an alternate
embodiment, the composite symbol 1s specified by comput-
ing an average symbol that most closely represents a major-
ity of the symbols 1n a cluster. It should be noted that a
corpus can have one or more cross-clustering relationships.
In effect, a cross-clustering relationship 1s created from each
of those document symbol tables with at least one symbol
that has been clustered with symbols from other documents.

FIG. 8 illustrates a cross-clustering relationship 800 for
the clusters shown in FIG. 7 using a Venn diagram. In
overlapping regions of the Venn diagram 800 are a single
symbol which 1s selected from the cluster of symbols shown
in FIG. 7. For example, overlapping region 808 includes a
symbol from only cluster 706, whereas overlapping region
806 includes a symbol from each of the clusters 700, 702,
and 704. The non-overlapping regions 802, 804, and 810
correspond to symbols 1n a document symbol table which
did not form part of any of the clusters formed in FIG. 7.

At step 506, document symbol tables forming parts of the
cross-clustering relationships 1dentified at step 504 are




6,020,972

9

ogrouped together by the compressor 166 when there exits a
significant number of recurring symbols between docu-
ments. The exact number of recurring symbols required
before grouping symbol tables of documents together
involves a tradeoff between the number of groupings created
for a corpus and the compression ratio of any one group. In
one embodiment, documents are grouped together 1f at least
a majority of symbols recur between two symbol tables. In
alternate embodiments, documents are grouped together
when less than a majority of symbols recur between two
symbol tables. Single groupings of symbol tables are formed
when an insufficient number of symbols or no symbols
overlap with other document dictionaries 1n the corpus.

FIG. 9 illustrates two groupings 900 and 902 which are
defined using the cross-clustering relationship 800 shown 1n
FIG. 8. As illustrated 1n the Venn diagram in FIG. 8, the
overlapping regions 806 and 808 between the symbols found
in tables 600 and 602 are sufficient to define the grouping
900. In contrast, the overlapping region 808 contains an
insufficient number of symbols to form a grouping; this
results 1n a grouping 902 to be formed with only one symbol
table 604.

For each of the groupings formed at step 506, a collective
symbol table 1s computed at step S08. In computing a
collective symbol table for a grouping of document
dictionaries, a group symbol table and residual document
symbol tables are defined. In the event there 1s only one
document symbol table 1n a grouping, the document symbol
table 1s simply assigned to be the collective symbol table for
that document. In the event there 1s only one document
symbol table 1n a grouping, the compression ratio of the
corpus 1s not improved. Finally at step 510, the table of
positions 212 associated with each document symbol table
211 are updated to reflect the collective symbol table com-
puted at step 508. However, 1n the event document symbol
table groupings have only one symbol table, as shown for
example by the grouping 902 in FI1G. 9, the table of positions
associated with such a document symbol table need not be
updated.

FIG. 10 illustrates the formation of collective symbol
tables 1002 and 1004 from the groupings 900 and 902 shown
in FIG. 9, respectively. The collective symbol table 1002,
which 1s formed from the grouping of document dictionaries
600 and 602, includes a group symbol table 1006 and two
residual document symbol tables 1008 and 1010. In the
embodiment shown 1n FIG. 10, the group symbol table 1006
1s a root node and residual document symbol tables 1008 and
1010 are leaf nodes of a hierarchical structure. The symbols
in each of the nodes can be determined from the Venn
diagram shown in FIG. 8. Specifically, those symbols 1n the
overlapping regions 806 and 808 arc included as part of the
group symbol table 1006, while symbols 1n non-overlapping
regions 802 and 804 are assigned to residual document
symbol tables 1008 and 1010, respectively. In addition,
those symbols 1n document symbol table 604 are used form
the collective symbol table 1004.

FIG. 11 1s a block diagram which 1illustrates a collection
of documents compressed in the DigiPaper file format (or
tokenized file format). Generally, the tokenized representa-
fion has a collective symbol table that includes a group
section and unique document sections, which are indicated
by reference numbers 1102 and 1104, respectively. The
ogroup section 1102 begins with a group header 1106 which
may for example 1dentily those documents 1n the corpus
which form part of the group. In addition, the group section
1102 1ncludes a group symbol table 1108, that has recorded
therein any symbols which repeat in documents of the group.

10

15

20

25

30

35

40

45

50

55

60

65

10

Also, for each document 1n the group, the group section 1102
includes a document header 1110 and a pointer 1112 to a
header 1114 of a unique document section 1104. Each
unique document section 1104 includes a residual document
symbol table 1116. Each residual document symbol table
1116 has recorded therein those symbols which repeat
between page 1mages but do not repeat between document
images 1n the group. For each document page, each unique
document section mncludes a page header 1118, a residual
page symbol table 1120 (which includes those symbols that
repeat on the page), and a table of positions 1122 (also
referred to herein as a position block).

Because of the hierarchical structure of the collective
representation of documents in FIG. 11, a single document
image can be efliciently extracted from the collective rep-
resentation. For example, when a document 1image 1s trans-
mitted to another location on the Internet, the collective
representation 1s reduced to the group header 1108 and a
single unique document section 1104 that corresponds to the
selected document 1mage. Also, 1t can be seen from the
representation of documents in FIG. 11 how a collection of
documents which share a collective symbol table can be
ciiciently browsed over the Internet. For example, an inter-
net browser 1nitially retrieving a first document will receive
the group section 1102 and one unique document section
1104. Any subsequent document retrieved by the Internet
browser requires transmission of only the unique document
section 1104 corresponding to the newly requested docu-
ment.

Once the steps enumerated 1n FIG. 5 are carried out to
formulate collective symbol tables for a corpus of
documents, an additional document can be added to the
corpus by identifying an existing collective symbol table
with a sufficient number of recurring symbols. That 1s, an
additional symbol table can be added if an existing collec-
five symbol table in the corpus has symbols which are
sufliciently equivalent to the symbols 1n the symbol table of
the additional document (as set forth above at step 502 in
FIG. 5). In the event no group symbol table is found with a
sufliciently large enough number of matching symbols, the
symbol table of the additional document 1s added to the
document corpus as a new collective symbol table as shown
above for document 3 1n the example illustrated in FIGS.
6—10. Table 1, which follows, sets forth pseudo code for
adding a document 1mage “d” to an existing corpus of
documents having “m” collective symbol tables. In an
alternate embodiment, the pseudo code 1s repeated for each
document 1n a corpus of documents without ever performing
the steps set forth i FIG. §.

TABLE 1

compress document 1mage d on its own to produce a new
temporary symbol table t,

compare cach symbol 1n the temporary symbol table t to each of
m collective symbol tables making up the corpus of documents;
if a large fraction k of ts symbols match those of one of the m
collective symbol tables then add the matching symbols to the
collective symbol table;

else initialize a new collective symbol table using the temporary
symbol table t;

D. Image Decompression

FIG. 12 1llustrates a system environment in which various
system components 1200 can be used to render tokenized
representations of documents compressed by compressors
165 and 166. During operation of each of components 1200
of the system 1n FIG. 12, one or more documents that have
been previously converted to a tokenized representation



6,020,972

11

using compressors 165 and 166 are decompressed. Compo-
nents 1200 include a second general purpose computer
1210, a network printer 1220, a print server 1230, and a
“smart” multifunction device 1240. Each of these compo-
nents 1s assumed to include communications software
enabling the processor to obtain a tokenized representation
of documents form a corpus of documents, and decompres-
sion soltware enabling the processor to turn that tokenized
representation into 1mage data suitable for a particular form
of output. The decompression software can be resident 1n a
particular component, or can be downloaded along with the
tokenized representation from LAN 140 or the Internet 180
via connection 1229.

D.1 System Environment For Performing Image Decom-
pression

Computer 1210 can be a general-purpose computer with
characteristics and hardware components similar to those of
computer 100. Also like computer 100, computer 1210 has
software that includes an operating system controlling one
or more tasks. However, whereas computer 100 has com-
pression software, computer 1210 has decompression soft-
ware. That 1s, the software of computer 1210 includes
software that itself renders the processor of computer 1210
capable of decompressing the tokenized representation, or
else includes network client software that the processor can
execute to download the decompression software, which 1n
turn can be executed to decompress the tokenized represen-
tation. (Note that a computer can, of course, have both
compression and decompression software loaded mto its
memory, and that 1n some cases, a single computer can act
as both compression computer 100 and decompression com-
puter 1210.)

Computer 1210 1s shown connected to a display monitor
1211, a local printer 1212, a modem 1213, a persistent
storage device 1214, and network output hardware 12185.
Computer 1210 can control these devices and, 1n particular,
can run decompression software appropriate for each of
them. For example, by executing decompression software
appropriate for display monitor 1211, the processor of
computer 1210 can cause a tokenized representation to be
decompressed 1nto a form that display monitor 1211 can
display. Thus computer 1210 and display monitor 1211
together serve as a rendering engine for visual display.
Similarly, computer 1210 and local printer 1212 can render
the tokenized representation of the document as hardcopy
output. Local printer 1212 can be a “dumb” printer, with
little or no on-board computing hardware, since computer
1210 does the work of decompression.

Further, computer 1210 can render the document image(s)
in forms not immediately readable by a human being, but
uselul nonetheless. Computer 1210 can run decompression
software that outputs image data in unstructured (e.g.,
CCITT Group-4) compressed format, which can be trans-
mitted across telephone lines by modem 1213. Computer
1210 can also output uncompressed or compressed 1mage
data to persistent storage 1214 for later retrieval, and can
output uncompressed or compressed 1mage data to network
output device 1215 for transmission elsewhere (e.g., to
another computer in LAN 140 or the Internet 180). If the
decompressed document includes hypertext links or other
annotations computer 1210 can interpret a user’s indicated
selections of such annotations and can transmit these selec-
fions across the network along with the 1mage data.

Network printer 1220 1s a printer that has its own
on-board computing hardware, including a CPU and
memory. Therefore, unlike local printer 1212, network
printer 1220 can perform 1ts own decompression without the

10

15

20

25

30

35

40

45

50

55

60

65

12

aid of a host computer or server. Network printer 1220 1s
thus a full-fledged rendering engine, capable of turning
tokenized 1nput {iles into hardcopy output. Print server 1230
1s a computer that can control “dumb” printers and that can
be used for temporary storage of files to be printed by such
printers. Whereas general-purpose computer 1210 1is
assumed to be a computer that 1s used interactively by a
human user, print server 1230 1s a computer used primarily
for controlling printers and print jobs. Its processor executes
decompression software to produce 1images that can be sent
to 10T 1231 for immediate printout, sent to a prepress
viewer 1232 for preliminary inspection prior to printing, or
spooled (temporarily stored) in persistent storage of print
server 1230 for later printing or prepress viewing.

Multifunction devices are a class of standalone devices
that offer a combination of printing, copying, scanning, and
facsimile functions. Multifunction device 1240 1s assumed
to be a “smart” device, having 1ts own processor and
memory, with suflicient computing power to decompress its
own tokenized files without assistance from a host computer
or server. Here, it 1s shown providing output to the network
via network output device 1242; i1f a multifunction device
1240 has software to support a paper user interface, the
output data can include hypertext link selections or other
information i1n addition to the image data. Multifunction
device 1240 1s also shown providing compressed 1image data
to a facsimile machine 1241. For example, multifunction
device 1240 can contact facsimile machine 1241 by ordinary
telephone, and send 1t compressed 1mage data in CCITT
Group-4 format. Facsimile machine 1241 receives the fax
transmission from multifunction device 1240 as 1t would any
other fax transmission, and prints out a copy of the docu-
ment.
D.2 Details of Image Decompression

FIG. 13 1s a flow diagram of the steps for rendering a
tokenized representation of a collection of documents. Ini-
fially at step 1302 an mput request 1s received by one of the
components 1200 shown 1n FIG. 12. The input request may
specily that one or more document 1images are to be ren-
dered. In addition at step 1303, one of the components 1200
receives and reads into memory an input tokenized repre-
sentation similar to the tokenized representation illustrated
in FIG. 11. Subsequently at step 1304, a loop begins as a
decompressor, which 1s operating on the components 1200,
reads through the blocks of the tokenized representation to
identify one of three different headers. If the next block 1s a
group symbol table header 1106 at step 1306, the group
symbol table 1108 1s read into memory at step 1307.
Whereas if the next block 1s a document header 1110/1114
at step 1308, the residual document symbol table 1116 1s
read into memory at step 1309. Alternatively, 1f the next
block 1s a page header 1118 at step 1310, the residual page
symbol table 1120 1s read into memory at step 1311.

After reading the requisite symbols 1n memory for the
ogroup, document, and page at steps 1307, 1309, and 1311,
respectively, the decompressor reads the position block 1122
for a page 1nto memory at step 1312. It will be understood
by those skilled in the art that a document image may
compress 1n such a way that there exists only symbols 1n the
ogroup symbol table 1108 and none i1n the residual document
or page symbol tables 1116 and 1120. Alternatively, a
document 1mage may compress 1n such a way that there
exists only symbols in the group and residual document
symbol tables 1108 and 1116, and none in the residual page
symbol table 1120. At step 1313, the decompressor renders
all tokens 1mnto a page 1mage using the symbol table and
position block loaded 1n memory. In completing step 1313,




6,020,972

13

the residual symbol table 1120 and the position block 1122
of the completed page 1image are deleted from memory. In

addition, 1f the last page 1image of a document 1mage 1s
completed at step 1113, the residual document symbol table
1116 1s deleted from memory as well. At step 1314, residual
document elements are rendered, and their resulting bitmaps
are transferred into a rendered page 1mage. The completed
page 1mage 1s output at step 1315 to one of a display screen,
10T, persistent storage, network, fax, or other output mecha-
nism. The loop continues at step 1304 until 1t terminates at
step 1316 when each document 1n the tokenized represen-
tation of a collection of documents has been processed.

E. Conclusion

To recapitulate, document 1mages 1n a corpus are com-
pressed mto a tokenized file format. The tokenized f{ile
format reduces each document to a symbol table and a
position table. Subsequently, the symbol tables of the docu-
ments 1n the corpus are divided into relatively typeface-
homogenecous groups. For the symbol tables 1n each group,
a collective symbol table 1s generated. The advantage of this
document corpus compression format i1s that the overall
storage requirement of a corpus of documents 1s reduced.
Another advantage of storing documents using collective
symbol tables 1s that documents 1 the corpus are stored
according to their relationship with other documents in the
corpus. This implies that related documents 1n a corpus may
share a collective symbol table. A further advantage of this
corpus compression format 1s that the amount of processing
required to perform OCR (Optical Character Recognition)
on documents 1n the corpus 1s reduced because symbol
tables are shared across the corpus. Yet a further advantage
of this corpus compression format 1s realized when several
documents are transmitted between client and server.

The compression/decompression system may be readily
implemented 1n software using software development envi-
ronments that provide portable source code that can be used
on a variety of hardware platforms. Alternatively, the dis-
closed system may be implemented partially or fully in
hardware using standard or custom logic circuits. Whether
software or hardware 1s used to implement the system varies
depending on the speed and efficiency requirements of the
system and also the particular function and the particular
software or hardware systems and the particular micropro-
cessor or microcomputer systems being utilized. The
system, however, can be readily developed by those skilled
in the applicable arts without undue experimentation from
the functional description provided herein together with a
ogeneral knowledge of the computer arts.

The mvention has been described with reference to a
particular embodiment. Modifications and alterations will
occur to others upon reading and understanding this speci-
fication taken together with the drawings. The embodiments
arc but examples, and various alternatives, modifications,
variations or improvements may be made by those skilled in
the art from this teaching which are intended to be encom-
passed by the following claims.

We claim:

1. A method for compressing a corpus of documents
stored 1n a memory of a computer system, comprising the
steps of:

converting each document in the corpus of documents
stored 1n the memory 1nto a tokenized representation
that includes a document symbol table and a document
position table;

arranging 1n the memory the document symbol tables of
the documents 1n the corpus of documents 1nto groups
of symbol tables with recurring symbols; and

10

15

20

25

30

35

40

45

50

55

60

65

14

computing a collective symbol table for each group of
document symbol tables arranged 1n the memory; said
computing step compressing the tokenized representa-
tions of the documents stored in the memory by sharing,
recurring symbols across the documents in the corpus
of documents;

wherein said computing step hierarchically arranges each
computed collective symbol table mto a group symbol
table, a residual document symbol table, and a residual
page symbol table.
2. The method according to claim 1, wherein said con-
verting step further comprises the steps of:

1dentifying shapes 1n page images of each document; and

assigning a single shape to represent multiple occurrences

of similar shapes 1dentified by said 1dentifying step.

3. The method according to claim 1, wherein said arrang-
ing step arranges a {irst document symbol table and a second
document symbol table 1into a group of symbol tables when
a fraction of the symbols 1n the first document symbol table
recur 1n the second document symbol table.

4. The method according to claim 1, further comprising,
the step of rendering a page description language of page
images of the documents 1n the corpus into bitmap 1images.

5. The method according to claim 1, further comprising
the step of assembling the document symbol table of each
document in the corpus of documents before performing
said arranging step.

6. The method according to claim 35, further comprising
the steps of:

forming clusters of similar shapes with symbols in the
assembled document symbol tables; and

1dentifying cross-clustering relationships between docu-
ments 1n the corpus of documents with the clusters of
similar shapes.

7. The method according to claim 1, wherein said com-
puting step further comprises the step of updating the
document position table of each document to correspond
with the collective symbol tables computed at said comput-
Ing step.

8. The method according to claim 7, further comprising,
the step of decompressing page images 1n the corpus of
documents by rendering page 1images with information from
the collective symbol tables and the updated document
position tables.

9. A program storage device readable by a server
workstation, embodying a program of 1nstructions execut-
able by the server workstation to perform method steps for
compressing a corpus of documents stored 1n a memory of
a computer system, said method steps comprising;:

converting each document 1n the corpus of documents
stored 1n the memory into a tokenized representation
that mncludes a document symbol table and a document
position table;

arranging 1n the memory the document symbol tables of
the documents 1n the corpus of documents 1nto groups
of symbol tables with recurring symbols; and

computing a collective symbol table for each group of
document symbol tables arranged 1n the memory; said
computing step compressing the tokenized representa-
tions of documents stored in the memory by sharing
recurring symbols across the documents 1n the corpus
of documents;

wherein said computing step hierarchically arranges each
computed collective symbol table mto a group symbol
table, a residual document symbol table, and a residual
page symbol table.




6,020,972

15

10. The program storage device as recited 1 claim 9,
wherein said computing step of said method steps further
comprises the step of assembling the document symbol table
of each document 1n the corpus of documents before per-
forming said arranging step.

11. The program storage device as recited 1n claim 10,
wherein said method steps further comprises the steps of:

forming clusters of similar shapes with symbols 1n the
assembled document symbol tables; and

1dentifying cross-clustering relationships between docu-
ments 1n the corpus of documents with the clusters of
similar shapes.

12. The program storage device as recited 1n claim 9,
wherein said method steps further comprises the step of
updating the document position table of each document to
correspond with the collective symbol tables computed at
said computing step.

13. An apparatus for compressing a corpus of documents
stored 1n a memory of a computer system, comprising:

means for converting each document in the corpus of
documents stored 1n the memory into a tokenized
representation that includes a document symbol table
and a document position table;

means for arranging 1n the memory the document symbol
tables of the documents 1n the corpus of documents 1nto
groups of symbol tables with recurring symbols; and

means for computing a collective symbol table for each
group ol document symbol tables arranged in the
memory; sald computing means compressing the

10

15

20

25

16

tokenized representations of the documents stored 1n
the memory by sharing recurring symbols across the
documents in the corpus of documents;

wherein said computing means hierarchically arranges
cach computed collective symbol table mto a group
symbol table, a residual document symbol table, and a
residual page symbol table.

14. The apparatus according to claim 13, further com-
prising means for assembling the document symbol table of
cach document 1n the corpus of documents.

15. The apparatus according to claim 14, further com-
prising:

means for forming clusters of similar shapes with symbols

in the assembled document symbol tables; and

means for 1dentifying cross-clustering relationships
between documents 1n the corpus of documents with
the clusters of similar shapes.

16. The apparatus according to claim 13, wherein said
computing means further comprises means for updating the
document position table of each document to correspond
with the collective symbol tables computed by said com-
puting means.

17. The apparatus according to claim 16, further com-
prising means for decompressing page 1mages in the corpus
of documents by rendering page 1images with information
from the collective symbol tables and the updated document
position tables.



	Front Page
	Drawings
	Specification
	Claims

