US006006273A

United States Patent .9 111] Patent Number: 6,006,273
Ostrover et al. 451 Date of Patent: Dec. 21, 1999
[54] METHOD FOR INTERLEAVING DATA FOR 58] Field of Search 386/125; 369/56,
SEAMLESS PLAYBACK OF MULTIPLE 369/64, 128, 275.3, 280; 360/39; 395/277,;
PROGRAM VERSIONS HAVING COMMON 7097247
MATERIAL
[56] References Cited
|75] Inventors: Lewis 8. Ostrover, Los Angeles; U.S. PATENT DOCUMENTS
Gregory B. Thagard, Redondo Beach, o
both of Cahf, JOSEph E. Wﬂll, III, 5?878?387 3/1999 Oshikirt et al. ..coeveevvnennnnnaneene. 7047207
London, United Kingdom; Christopher Primary Fxaminer—Thomas R. Peeso
J. Cookson, Los Angeles, Calif. Attorney, Agent, or Firm—Gottlieb, Rackman & Reisman,
P.C.
| 73] Assignee: Time Warner Entertainment Co. L.P., (57) ABSTRACT
Burbank, Calif.
A method for formatting digital data on an optical disk that
21] Appl. No.: 08/730,328 represents at least two versions of the same program. Data
. o sequences which are unique to each version and data
22] Filed: Oct. 15, 1996 sequences which are common to the two of them are
Y interleaved 1n a single data stream. In order to achieve
Related U.5. Application Data scamless play of both versions on a player that 1s compatible
(63] Continuation of application No. 08/604,303, Feb. 21, 1996, ~ With the disk format but has limited buifer storage, data
Pat. No. 5,644.507. which would otherwise be common to both versions 1s
-) placed redundantly 1n the data sequences which are unique
:51: Int. CL° ., HO4N 01/413 to both versions.
52] US.Cl oo, 709/247; 369/56; 369/64;

369/128; 300/39

8 Claims, 9 Drawing Sheets

VIDEO 99 i

GRAPHICS
—— GENERATOR

SYNC

GENERATOR
AND D/A
CONVERTER

AR

073 61 63
N/ DATAOUT 25 f £ AMPLIFIER
A em—a) GATE DEMULTIPLEXER 53
3 h— 47, [

RATE HEAD BLOCK NUMBER/ AUDIO AUDIO _
CONTROL | POSITION POINTER BUFFERS PROCESSOR | /1
29 CONTROL ANALYZER | DECODER

PROCESSOR 26 PARENTAL 55 L B
DISK DRIVE _ LOCK VIDEO + 1 67
N 8 1 41 DECODER
27 + / [57 - 69
MICRO- - 93 DIGITAL
49 PROCESSOR AN SCAN VIDEO
43 MASTER BUFEER
CONTROLLER
PAN SCAN 87
PROCFSSOR/
85\ T VERTICAL
51 | SUBTITLE SCALER
BUFFER
LUSER 59
INTEREACE MASTER VIDEC 89
CLOCK FRAME STORE,

INTERLACE
AND 3:2
PULLDOWN
CIRCIAT

U.S. Patent Dec. 21, 1999 Sheet 1 of 9 6,006,273

FIG. 1

VERSION A

VERSION B

U.S. Patent Dec. 21, 1999 Sheet 2 of 9 6,006,273
JUMP OVER B JUMP OVER A
(TO ANOTHER A) (TO ANOTHER B}
01 (P} 01 (P)
00__.~ 00
A B
JUMP OVERB JUMP OVER A_~"
01 (P) 01 (P)
NEXT NEXT
00 00
NEXT NEXT
10 [P] 11 [P]
JUMP OVER B JUMP OVER A
11 (P) C 10 (P)
NEXT ‘ JUMP OVER B
FI1G. 2A 00 ' 11 (P)
JUMP OVER A " LEGEND
10 (P .
0P 1 Use Pointer P
se Pointer
cope | 1(P),
00 = Continue to next block 0[P
01 = Jump to same version or common, one pointer - [P: } lgnore Pointer P
10 = Branch from common: | |
Next block is an A, pointeristoaBoraC
(if version A is being played, continue to next block)
(if version B is being played, jump to block identified by pointer)
11 = Branch from common:
Next block is a B, pointeristoan AoraC
(if version A is being played, jump to block identified by pointer)
(if version B is being played, continue to next block)
PLAYB —3 01(P) 01(P) 11{P] 00 00 11[P] O1(P)

] V[TWDI WDWWW\ V[

A T
BIA A|B A C B AlC

PLAYA =2 00 01(P) 00 00 10[P] 00 11(P) 11(P)

6,006,273

Sheet 3 of 9

Dec. 21, 1999

U.S. Patent

LINDAID
NMOATINd
C-¢ NV
1OV T4 LN
TAOLS WV
QO4dIA

68

dITVOS
TVIILLIIA
f40OS5SID0YUd

8 NVIS NVd

Od1dIA

1VLIOIA Lo

41d0I31d

9| 030

G6

d1a024d
d0S5100dd

L. OIGNY

AT TdANY

L

4ILIIANOD R
v/Q ANV
OLVIINID
JOIVIINID e
VA 86 AT YIATI Ve
66 OIAIA OO
NERES A FOVAYALNI
63 DG ENe
¥144N4
A 1LILES 11N4 ¥344N4 S
L6 | G8
VIVA/ANVWWOD 4ITI0YINOD
¥344N4 - 4I1SYW e
NVDS NVd ¥OSSIDOUI -
- -OUDIW
69 LS / /2
v | i 1 R
¥344N4 TO¥LNOD ¥ITTOYINOD
OIAIA DO IARIQA MSIA
I~ GG WINTIvd |94 " MOSSIDOU
v -OUDIW
S. JIZATVNY 62
T0YINOD
S¥344Nd oh ¥3LNIOJ NOILIsO4 | TodNoD FHE
] N R ST AN
5 §IXI1ILINWAC JLVD e <
)) Go LNO VIVQ
€9 19 EC wWoy¥ ad

6,006,273

Sheet 4 of 9

Dec. 21, 1999

U.S. Patent

9 "OH <

aa

g NOISdIA

Y NOISddA

d NOISdIA

Y NOISIIA

U.S. Patent Dec. 21, 1999 Sheet 5 of 9 6,006,273

FIG. 7

C1C2C3C4

C1C2C3C4

U.S. Patent Dec. 21, 1999 Sheet 6 of 9 6,006,273

FIG. 10

FIG. 11A
B(ot)

FIG. 11B
B(o)

U.S. Patent Dec. 21, 1999

104
A

COMMON DIGITAL
SOURCE MATERIAL

106

A

VERSION — A
DIGITAL SOURCE
MATERIAL

108

0

VERSION - B
DIGITAL SOURCE
MATERIAL

Sheet 7 of 9 6,006,273

RECORDING
DEVICE

EDIT DECISION LIST

C A | B
1202
250 120
615
1240
825
100 IN GOPs)
N (
CONTROLLER
R(A) || R(B) {| R{C)

NEXT AVAILABLE DATA LISTS

U.S. Patent Dec. 21, 1999 Sheet 8 of 9 6,006,273

START

51
FIG. 13A i

R(C)=[DATA FOR FIRST C SEGMENT]

52— L (C)=R(C)
FORMAT L(C)
R(C)=0

R(A)=R(A)+R(C)+[DATA FOR NEXT A SEGMENT]
R(B)=R(B)+R(C)+[DATA FOR NEXT B SEGMENT]
R(C)=[DATA FOR NEXT C SEGMENT]

33
STOP
ASSUMPTION: R(B) =2 R(A);
IF OTHERWISE, SWITCH A & B
NOTATION IN WHAT FOLLOWS
6 MAX
N
L(A)=R(A) 7
L(B)=R(B) YES °
L(C)=R(C)
FORMAT L(A)
FORMAT L(B)
FORMAT L(C)
R(A)= 0 L(B(u)MAX
R(B)= 0 FORMAT L(B)
R(C)= 0 R(B) = R(B)-L(B)
FROM
FIG. 138

TO FIG. 13B

U.S. Patent Dec. 21, 1999 Sheet 9 of 9 6,006,273

TO
Flg?_’;A FIG' 13B FIG 13A
FROM FIG. 13A
513
NO
YES
514\ B
=L(A)-R(A)
R(A)=R(A)+A
R(B)=R(B)+A
R(C)=R(C)-A

YES

S16 ~
u]

S17

FORMAT L(A)
FORMAT L(B)
R(A)=R(A)-L(A)
R(B)=R(B)-L(B}

520
AN

FORMAT L(C)
R{C)=0

YES

6,006,273

1

METHOD FOR INTERLEAVING DATA FOR
SEAMLESS PLAYBACK OF MULTIPLE

PROGRAM VERSIONS HAVING COMMON
MATERIAL

This 1s a continuation of application Ser. No. 08/604,303,
filed Feb. 21, 1996, now U.S. Pat. No. 5,644,507.

This invention relates to the play of software (e.g.,
motion picture) carriers, and more particularly to a method
for 1interleaving data on a carrier that allows both versions of
the same program having common material to be played
scamlessly.

BACKGROUND OF THE INVENTION

In U.S. Pat. No. 5,463,565, entitled “Data Block Format
for Software Carrier and Player Therefor,” granted on Oct.
31, 1995 1n the names of Cookson and Ostrover, which
patent 1s hereby incorporated by reference and hereinafter
referred to as the “’565 patent,” there 1s disclosed an optical
disk player that 1s capable of playing either of two versions
of the same motion picture. The motion picture i1s repre-
sented on the disk as “compressed video” 1n the form of
successive data blocks 1n a single track, with each block
possibly containing video information, audio information,
subtitle information, and the like. The 565 patent explains
how a huge quantity of data can be represented on a disk no
larger than the present-day audio CD. Not only 1is 1t possible
to 1nclude sound tracks 1n multiple languages, but 1t 1s even
possible to store two versions of the same motion picture,
¢.2., R-rated and PG-rated.

Two versions of the same motion picture usually contain
a great deal of common material. This 1s especially true of
R-rated and PG-rated versions of the same program, but the
same thing applies to other examples of multiple versions (at
least two) of the same program material. For example, the
same disk might include teaching and testing materials, with
common subject matter being included 1n both “versions.”
To minimize redundant storage of data, three types of data
blocks are provided i1n the same track, 1n an interleaved
fashion—blocks which contain material unique to one
version, blocks which contain material unique to the other,
and blocks which contain material common to both. A series
of codes and pointers included 1n each block allow play of
common blocks when either version 1s being played, and
play of blocks of only one of the two other types depending,
on which version has been selected; blocks which contain
data unmique to the unselected version are skipped over.

When more than one version of a program 1s to be derived
from a digital optical disk system, there may be instances
where mechanical and buffer management limitations would
otherwise prevent secamless derivation of the alternate ver-
sions. The term “seamless play” refers to sufficient data
always being available 1n the necessary buflers to allow
continuous play, with no apparent interruptions, even though
the player read head has to skip over unselected data blocks.
While the player read head 1s skipping over an unselected
sequence of data blocks, data for the version being played 1s
furnished by buifers which were replenished prior to the start
of the jump. But 1f a sequence of data blocks that must be
skipped 1s very long, then the read head may not be able to
reposition 1itself 1 time to reacquire data for a particular
buffer (video, audio, etc.) which has been emptied during the
jump. In such,a case, by the time the read head repositions
itself and starts to replenish the empty buffer(s), the screen
may have gone blank or the soundtrack may have stopped.

The larger the buffers, of course, the greater the amount
of data that can be stored in them, and the longer the

10

15

20

25

30

35

40

45

50

55

60

65

2

allowable time for a jump without the buifers becoming,
depleted. But there are practical limits to the sizes of the
buffers. For example, consider a motion picture where, after
common material, the play branches to either a ten-minute
secgment for one version or a twelve-minute segment for
another, following which both versions would 1include some
more common material. Of four successive block sequences
stored on the disk, the first and last might represent common
material, and the two middle sequences might represent
respective versions. During play of the disk, the read head
must skip over a block sequence representing either ten
minutes or twelve minutes. Such a large jump may require
a longer time than one or more of the buifers can sustain. In
such a case, the play will not be seamless. It 1s not practical
to avoid this problem by saying that the buifers should be
larger because the additional memory may add significantly
to the cost of the player and, within practical limits, there
will always be some multiple version disks which just
cannot be played seamlessly.

SUMMARY OF THE INVENTION

The present invention 1s a method for laying out, or
formatting, data blocks on a disk for achieving seamless play
of both versions of a program with common material. If a
portion of the program to be skipped 1s too long, 1.€., if the
distance (measured in time or length) along the track over
which the read head must skip 1s so large that the read head
cannot reposition itself 1 time to reacquire data for the
relevant buffer(s), then successive data blocks representing
the two versions are chopped up 1nto pieces and interleaved
in the track. In this way, for example, when version B 1s
being played and the A blocks have to be jumped over, the
A blocks are all short enough such that when the read head
exits a B block, the buffers all have enough data to allow
continuous secamless play without any buffer being depleted

by the time the read head positions itself at the start of the
next B block.

The problem with this simple approach is that the A data
blocks may be so few or so short that they just cannot
replenish the buffers sufficiently to allow jumps over the
respective imterleaved B blocks. Worse still 1s the possibility
that there are no A blocks at all. In other words, between two
successive blocks or sequences of blocks containing com-
mon (C) material, there may be a B segment but no A
secgment. When playing version A, the read head must jump
over the data blocks representing the entire B segment, and
it just may not be possible to accomplish seamless play from
one common sequence to the next common sequence when
version A 1s being played and the B material must be skipped
OVET.

The basic principle of our mvention 1n such a case 1s to
take the common material otherwise following the A mate-
rial and to use 1t, in the example just described, for A-version
data blocks. When the A version 1s being played, therefore,
there 1s material that the read head can access prior to the
jump over each succeeding sequence of version-B data
blocks. But if common material 1s advanced 1n this way and
stored 1nterleaved with the version-B data blocks, this com-
mon material will be played as part of version A before the
read head even reaches the common material, and to play the
common material from 1ts start would result in a repeat of
what was just seen. For this reason, the material at the start
of the common segment which 1s advanced and used as
blocks for the A version 1s duplicated 1n blocks representing
the B version, and deleted from the common material. In this
way, the read head will reach the start of the remaining
common material that has not yet been played no matter

6,006,273

3

which version 1s in progress. There,1s necessarily a certain
data redundancy built mto the disk formatting because
common material, which really has to be stored only once 1n
a common segment, 1s 1n fact not stored there and 1s 1nstead
stored twice—once 1n each of the two versions. But the
slight redundancy (which does translate into a small loss in
overall storage capacity) allows for seamless play of both
versions no matter how long a segment of material has to be
skipped during play of either version. An algorithm for
controlling this “data advance” 1s described below. It 1is
designed to mimimize the degree of redundancy.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the mnvention
will become apparent upon consideration of the following
detailed description in conjunction with the drawing, in
which:

FIG. 1 depicts symbolically the kinds of jumps that are
required when two versions of the same program having
common material are stored in a single track;

FIGS. 2A and 2B are the same as respective FIGS. 7A and
7B 1n the above-identified 565 patent, with FIG. 2A being

a state diagram and legend that characterizes the manner 1n
which a disk player reads only those data blocks on a disk
track that are required for the play of a selected version of
a motion picture or other video presentation, and with FIG.
2B depicting the way 1in which one of two alternate versions

can be played by following the rules illustrated by the state
diagram of FIG. 2A;

FIG. 3 1s the same as FIG. 2 1n the above-identified 565
patent and 1s a block diagram depiction of a disk player
(including the several buffers whose understanding is
required for an appreciation of the present invention);

FIG. 4 1s a simplified diagram along the lines of FIG. 2B,
and shows two cases 1n which buffer capacity does not pose

a problem;

FIG. § 1s a diagram similar to that of FIG. 5 but, with
relatively simple changes, illustrates how long segments can
orve rise to play that 1s not seamless;

FIG. 6 illustrates the 1nterleaving method of our invention
where there 1s sufficient program material in both of the A
and B segments between two common (C) segments;

FIG. 7 1s an extension of FIG. 6 but illustrates the
interleaving method of our mmvention when one of the two
segments does not have enough material to allow the nec-
essary 1nterleaving;

FIG. 8 1s yet a further extension of the pattern of FIG. 7
and 1llustrates an extreme case 1n which common material 1s
redundantly encoded just to allow jumps over other redun-
dantly encoded common material;

FIG. 9 illustrates a still further extension of the interleav-
ing method of our invention and depicts an extreme case 1n
which all of the common material in a common segment 1s
redundantly encoded 1n data blocks representing the two
different versions;

FIG. 10 illustrates the block segments represented by the
terms o and P(a) as used in the flow charts depicting the
method of the invention;

FIGS. 11A and 11B 1llustrate two alternative mathemati-
cal relationships between the variables a and P(a);

FIG. 12 1illustrates a system which can implement the
method of the present invention and further shows several
lists and source materials to be described in detail below;
and

FIGS. 13A and 13B 1illustrate the preferred method for
redundantly encoding common material to achieve seamless
play of two versions of the same material.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTION OF THE
ILLUSTRATIVE EMBODIMENT OF THE
INVENTION

The Problem Addressed By the Present Invention

FIG. 1 illustrates symbolically successive program seg-
ments that may have to be played when a selected one of two
different versions of the same program material 1s to be
played. As shown, there are five (C)ommon segments, all of
which have to be played no matter which of the A and B
versions 1s selected. The upper row, labeled VERSION A,
shows three segments that are unique to version A. The
secgments that are played in sequence for this version are
CACACCAC. Version B, on the other hand, requires the
play of different unique segments, as depicted in the row
labeled VERSION B. In this case, the correct sequence 1s
CBCCBCBC. In both cases, the arrows show the flow from
secgment to segment. The C segments are common to both
versions. It 1s the use of the common sections that greatly
reduces the amount of storage that would otherwise be
required for two different versions.

Although the various segments (each of which may be
represented by many successive data blocks) are shown in
three rows 1n FIG. 1, typically all segments are recorded in
a single track of an optical disk or any other equivalent
storage medium. The segments, or data blocks, are not
stored 1n parallel even though for the sake of clarity they are
shown this way mn FIG. 1. Thus when there are alternate
secgments A and B between two successive C segments, as
1llustrated at the left end of FIG. 1 and also the right end, 1t
1s necessary to store both of the A and B segments between
the two C segments. Either of the A or B segments can be
stored first, as long as the A data blocks are skipped when the
B version 1s being played, and the B version data blocks are
skipped when the A version 1s being played. This 1s 1llus-
trated most clearly n FIG. 2B, a copy of FIG. 7B of the
above-identified 565 patent.

FIG. 2B shows a portion of the track with successive data
blocks being labelled A, B or C. It will be understood that
in practice there may be thousands of data blocks in suc-
cession of the same type, with most of the data blocks on the
disk being of type C. However, to 1llustrate the way 1n which
the system jumps over data blocks that are not required, FIG.
2B shows at most only two blocks of the same type in
succession. There are two sequences shown 1n FIG. 2B, one
at the top for playing version B, and the other at the bottom
for playing version A. If it 1s version B that 1s selected, and
it 15 assumed that somehow the B block on the left 1s being
played, 1t 1s apparent that the next two A blocks must be
jumped over 1n order to go to the fourth block, a B block.
After this block 1s played, the next A block must be jumped
over. Two common C blocks are then played, after which a
jump must be made over an A block to another C. The next
block, a B, 1s then played, followed by B, C and B blocks.
Finally, a jump 1s made over an A block to the last block
shown m FIG. 2B, a C block.

If version A 1s being played, on the other hand, two
successive A blocks are played, there 1s then a jump over a
B block, the next five blocks—ACCAC—are played, there
1s next a jump over two B blocks to a C block, and finally
there 1s a jump over another B block to an A and a following
C. The pattern which emerges 1s that there are three kinds of
transitions from one block to another. First, there 1s the play
of a block immediately following play of the preceding
block. There are seven examples of this shown in FIG.
2B—AA, BB, CC, CA, CB, AC and BC. The two possi-
bilities which are excluded are AB and BA, since blocks
unique to the two versions will never be read during the

6,006,273

S

same disk play, much less one after the other. While there are
seven kinds of transitions from block type to block type,
there are really just three basic operations—going from one
block of any type to the next adjacent block of that type; a
jump from either an A to an A or C, or from a B to a B or
C; or a branch from a C block either to an adjacent A or B,
or to a B or A somewhere down the line. Most transitions are
of the first type. The second type occurs when an A 1s
followed by a B (which two blocks can never be played in
succession); a jump must be made from the A to either
another A or to a C. Similar remarks apply to a B followed
by an A. The third type occurs at the end of the play of a C
block, when there 1s no longer any common material to be
played and a switch must be made to one version or the
other; the next block 1s played if it 1s part of the version
selected, or some blocks will have to be jumped over it the
branch 1s to a block 1n the other version.

FIG. 2A shows the state diagram which defines how and
when transitions are made from one block to another. Every
data block includes a two-bit pointer flag, possibly followed
by a field which contains a 20-bit pointer. (When a pointer
1s present, 1t always points to the serial block number of
another data block.) Referring to the code given in FIG. 2A,
if the two-bit pointer flag 1s 00, it 1s an indication that the
processing should continue with the next block; 1n this case,
there 1s no need for a pointer. If the two-bit pointer flag 1s a
01 code, 1t 1s an 1ndication that a jump should be made to a
block 1n the same version some distance away, or to a C
block some distance away. In either case, a pointer 1s
necessary.

The codes 10 and 11 are used when a branch 1s to be taken
from a common C block. Which code 1s used depends on
whether the next block 1s an A or B. If the block after the C
1s an A, code 10 1s used and the pointer 1s to a B or a C
further down the line. If the code 1s 11, 1t means that the next
block 1s a B, and the pointer 1s to an A or a C further along,
the track. The operating system knows which version 1is
being played. If version A 1s being played and the current
block has a 10 pointer flag, 1t means that the next block, an
A, should be played after the present one. There 1s no need
for the pointer. The pointer 1s necessary in case version B 1s
being played. In this case, since the next block 1s an A, 1t
should not be played. The player should jump to the block
identified by the pointer—either another C, or a B unique to
version B being played.

Similarly, if version A 1s being played and the current
block 1s a C with code 11 for its pointer flag, 1t means that
the next block 1s a B. Since version A 1s being played, the
next block should not be played after the current one.
Instead, a jump 1s made to the A or C block 1dentified by the
pointer. On the other hand, if version B 1s being played, the
system simply continues to the next block. The legend on
FIG. 2A shows whether or not the pointer 1s used when 10
and 11 pointer tlags are found 1n a C block. The represen-
tation 10(P) 1s an indication that the pointer should be used,
and a representation 10]P] is an indication that the pointer
should be 1gnored. It will be recalled that the 10 code 1s used
for a C block when the next block 1s an A. If version A 1s
being played, the pointer 1s not needed. That 1s why a
transition from the C block to the succeeding block, an A, 1s
shown by the symbol 10| P]. On the other hand, if version B
1s being played, since the next block 1s an A it cannot be
played after the current C. Instead, there must be a jump to
the block identified by the pointer and thus use of the
representation 10(P)—the pointer points to either an A Block
or another C. Similar remarks apply to the representations

11(P) and 11[P]. In both cases, it is a C block which is being

5

10

15

20

25

30

35

40

45

50

55

60

65

6

played and the next block 1s a B. If version A1s being played,
the next block should not be played and thus the symbol
11(P) is required to show a state transition. On the other
hand, 1f version B is being played, 1t 1s the succeeding B
block which should be played, and thus the symbol 11| P] is
appropriate.

The four codes, as well as the usages (P) and [P], are
depicted 1n FIG. 2B. Referring to the PLAY B transition
sequence, the first transition shown is 01(P). It will be
recalled that the 01 code represents a jump from a block of
one version to a block of the same version or to a common
block, and a pointer 1s required. The first transition shown 1s
01(P), a jump from a B block to another B block. The next
transition on the PLAY B line is 10(P), a jump from a B to
a C. Next 1s an example of the most common transition of
all, 00, the orderly play of the next block after the current
block.

The fourth transition 1in the PLAY B line 1s represented by
a 10(P) symbol. The 10 code represents a branch from a C
block when the next block 1s an A, the example 1llustrated
in FIG. 2B. In such a case, as indicated in FIG. 2A, 1if 1t 1s
version B which 1s being played a jump 1s made to the block
identified by the pointer—in this case, the next C.

The 11 code 1s used to 1dentify a branch from a C block
when the next block 1s a B. If version B 1s being played, the
case under consideration, the pomnter 1s not necessary
because the next block 1s to be played. That 1s why the next
code shown is 11]P]. There follow two 00 codes that
represent obvious transitions to adjacent blocks, followed by
a 11/ P] code, a branch from a C block to the succeeding
block which 1s a B. Finally, a jump 1s made from this B block
over the next A block to a C block. This requires a 01(P)
code, the code used to jump from a block of either version
to a block of the same version or a common block.

The PLAY A sequence in FIG. 2B assumes that it 1s
version A that 1s being played. The first four codes represent
transitions to adjacent blocks, or a jump from a block of one
version to a block in the same version. The next code, 10[P,
1s used to show a branch from a C block to an adjacent A
block. The pointer 1s not used since version A 1s being
played, and code 10 1s employed because the next block 1s
an A block. The next 00 code symbolizes the transition from
the A block to a succeeding C block.

Next 1s a jump from a C block to another C block,
skipping over two B blocks. The 11 code 1s used because this
1s the code employed when a B block follows a C block. The
symbol used i1s 11(P), not 11[P], because the pointer is
required 1in going from one C block to a C block further
down the line. Similarly, the next code is again a 11(P) code
to symbolize a branch from a C block to an A block further
down the line. The sequence 1n FIG. 2B ends with a
transition from an A block to the next block which 1s a C, for
which the code 00 1s used.

The state diagram of FIG. 2A summarizes all possibilities.
Consider first the state in which an A block 1s being
processed, represented by the circle with an A 1n 1t at the
upper left. The two-bit pointer flag 1n an A block 1s 00 1f,the
next block is also an A (shown by the transition from A back
to A). If the next block is a B, on the other hand, then it
clearly should not be played. There must be a jump from the
A block over the B, either to another A or to a C. In either
case, the code is 10(P). The drawing shows both a jump over
B (to another A), and a jump over B to a C. The only other
transition from an A block 1s to the next block 1if it 1s a C.
This 1s shown by the code 00.

There are four similar transitions shown for state B, 1.e.,
when a data block 1n version B 1s being read. The 00 code

6,006,273

7

is used if the next block is a B or a C. The 01(P) code is used
when the next block 1s an A, and 1t 1s jumped over so that
the system can next read another B or a C.

Transitions from a C block are more complicated because
there are seven of them, rather than only four as for each of
the A and B blocks. If the next block 1s also a C, the code
1s a stmple 00—read the next block. If the next block 1s an
A and a jump must be made to another C, the code 10(P)
controls the jump over the A. Similarly, the code 11(P)
controls a jump over a B to another C. It will be recalled that
these two codes are used to control branches from a C block,
depending on whether the next block 1s an A or B. In either
case, if the next block is not to be read, it (and blocks like
it) must be jumped over to the next C.

However, after reading a C block, it 1s also possible to
read an A or a B. To read an A, one of the codes 11(P) or
10[P]1s used. The 11 code is employed when the next block
1s a B, 1n which case the pointer 1s required. The 10 code 1s
used when the,next block 1s an A, 1n which case the pointer
1s not used. Similarly, to read a B block next, either the code
10(P) or 11|P] is used. The former is employed when the
next block on the disk 1s an A, and the pointer 1s required
because this block must be jumped over. On the other hand,
if the next block 1s a B, the code 11 tells the system to go on
to this next block, and 1n the process to 1gnore the pointer
because 1t 1s not needed.

Perhaps the most important point to recognize 1S one
which 1s not apparent from the drawings, and that 1s that
most blocks will contain 00 pointer flags and no pointers.
(The 00 code i1s the only one without a following pointer
field.) That is because once a frame of either version is being
displayed, or once a frame of the common material 1s being
displayed, 1t 1s most likely that the next frame will be of the
same type. Consequently, a 00 code alone does the job. The
net result 1s that two versions of the same motion picture can
be stored on the disk, with the user having the option of
playing either (provided that it is allowed by any applicable
parental lock), and only a tiny fraction of the total disk real
estate 1s “wasted” by housekeeping bits that control transi-
tions from one block to the next block which is to be read
after 1t. This 1s 1n line with the underlying design philosophy
of providing maximum flexibility and as many options as
possible, without unduly wasting bits 1n the process.

The present invention 1s not concerned with the codes and
pointers that are required to jump from a data block of one
type to a data block of another. It 1s assumed that the
necessary pointers are placed in the data blocks or in an
appropriate table stored elsewhere. The present invention
concerns how A-type and B-type data blocks are laid down
(i.e., formatted) on the disk. In the earlier work it was
assumed that i1t 1s always possible to jump from one data
block to another without any interruption in the program
material being seen or heard. It turns out, however, that
scamless play 1s not always possible. To understand why this
1s the case, reference must be made to the elements of a
typical player. The player of FIG. 3 1s the same as that of
FIG. 2 of the earlier patent.

For a full description of the player, reference should be
made to the 565 patent. It 1s sufficient at this point to
appreciate that information read from the data blocks i1s
placed 1n respective bullers 53, 55, 57 and 59. The infor-
mation 1s read out of the buflers at the time that 1t 1s actually
processed for display or sound. Jumps over A or B data
blocks are possible because, even though the read head 1s not
reading any data while the jump 1s taking place, there is
sufficient data 1n all of the buffers to allow program material
to continue to be furnished. As long as the jump has

5

10

15

20

25

30

35

40

45

50

55

60

65

3

concluded and the read head has settled on the proper track
position before any buifer has been depleted, seamless play
1s possible.

FIG. 4 illustrates symbolically two simple cases for which
scamless play 1s no problem. In one case, between two
common segments there 1s an A segment (one or more data
blocks) to be played, but no B segment. This means that in
order to play version A, the three groups of data blocks are
a played continuously one after the other. (A rectangle
labeled A, B or C in any of the drawings represents a
program material segment without reference to the actual
coding, or a single data block of the particular type, or a
oroup of successive data blocks of the particular type,
depending on the context.) To play version B, a jump is
made over the A data blocks. As long as the A data blocks
are short, the buffers are not depleted by the time the read
head leaves the first C block and enters the second. The
drawing on the right side of FIG. 4 shows the track layout
when one of two different segments must be played depend-
ing on the version i1n progress. The two groups of data
blocks, A and B, are stored 1n succession between the two
common blocks. Depending on the version being played,
cither the A data blocks are skipped or the B data blocks are
skipped. Once again, as long as each sequence 1s short, there
1s no problem 1n achieving seamless play.

The problem arises 1n the two cases shown 1n FIG. 5. The
only difference between the comparable cases shown 1n FIG.
4 1s that here the A segment 1n the first case, and the A and
B segments 1n the second, are all much longer. It may not be
possible to jump over such long segments without depleting
the buffers. How long a segment can actually be jumped
over without the play being interrupted depends on mechani-
cal considerations and the buffer management system
employed. For an understanding of the present invention, it
1s suflicient to appreciate that there 1s some maximum length
segment which can be jumped over without an interruption
in play resulting. That value necessarily depends on the
players for which disks are to be formatted. The present
invention assumes that there 1s such a maximum length, as
will be defined below, and the method of the 1nvention
entails use of that value.

The Methodology For Achieving Seamless Play

The basic approach to achieving seamless play 1s shown
in FIG. 6, although 1t will become clear that 1n many cases
the technique shown 1n FIG. 6 1s not sufficient by itself. The
methodology is to take the A and B material (which can be
thought of as program material or data blocks) between two
successive common blocks, and to chop them up into
smaller interleaved sections. In this way, it 1s never neces-
sary to jump over a section that 1s so long that one or more
buffers may be depleted.

The upper part of FIG. 6 shows three tracks A, B and C.
Of course, there 1s only one track on the disk. Thus what 1s
shown 1n the upper part of FIG. 6 should be treated as a
time-line diagram. When playing version A, the first C block
1s played, then the A block, and finally the second C block.
Similarly, when playing version B, the first C block 1is
played, then the B block and finally the second C block.
What gets stored in the single track, however, 1s not the
sequence CABC. Instead, the A and B segments are divided
up into many smaller segments. This 1s shown symbolically
by the arrows 1n FIG. 6. The two C blocks are laid down,
continuously, and between them there can be many alter-
nating A and B blocks. The middle part of FIG. 6 1s a
time-line diagram comparable to that shown at the top, but
with the material unique to the A and B versions shown
divided up into smaller segments and interleaved. The final

6,006,273

9

track lay-out 1s shown at the bottom of the drawing, and 1t
1s apparent that there are several alternating A and B data
blocks between the two C blocks. (Again, it 1s to be
understood that while individual “blocks™ are referred to in
the above description, the description applies equally to
multiple data blocks. Even each of the A and B chopped-up
blocks can be multiple data blocks. What 1s important 1s that
cach of the A and B “rectangles” include a sufficiently small
amount of information, be 1t measured in data blocks,
inches, seconds, or any other convenient parameter, that
allows a jump over the block without an apparent interrup-
tion in play as the result of buffer depletion.)

The B segment 1s slightly longer than the A segment. This
means that there may be a little piece of B-version material

left over. That small section 1s simply placed in the track
after the four A blocks. There are thus five “little” B blocks

and only four “little” A blocks. The first block laid down on
the track 1s a B block so that the four A blocks can be
interleaved with the five B blocks.

The obvious problem with the simple approach of FIG. 6
1s that there may not be both an A version segment and a B
version segment between the two common blocks. If there
1s only an A segment, then there 1s no B material to
intersperse between A blocks after the A segment 1s chopped
up. Conversely, 1f there 1s only B material, and it 1s long,
there 1s no apparent way to break up that B material with
A-version blocks so that the buffers can be replenished when
the A version 1s being played and the B material 1s being
skipped over. The solution to the problem 1s shown 1n FIG.
7, which 1illustrates the basic methodology of our invention.

What 1s shown here 1s a B segment that 1s longer than an
A segment. Obviously, the technique shown 1n FIG. 6 works
satisfactorily even 1if the A and B segments are unequal in
length, as long as one is not significantly longer than the
other. The block lengths 1n FIG. 7 are not drawn to scale, and
it 1s not 1ntended to show typical dimensions in the draw-
ings. The reason for this 1s that a very short segment of one
type may provide enough data for the buffers to allow a very
long jump over a segment of the other type, and there 1s no
way to illustrate this 1n a practical way 1n a drawing. Thus
when looking at the several figures, 1t must be understood
that the block lengths are not “real” even 1 relative terms.

As shown 1n FIG. 7, the A segment 1s divided 1nto four
blocks, and they are interleaved with four comparable
blocks derived from the longer B segment. But instead of the
B segment being just a little bit longer than the A segment
as 1 FIG. 6, with the “left over” B material following the
last A block, the B material 1s much longer in the case of
FIG. 7. A fifth B block is placed on the track after the four
A blocks, this block being labeled BS in the drawing. It 1s
assumed that all of the blocks are as long as possible. In
other words, all of the blocks shown on FIGS. 6 and 7 are
maximum length 1n the sense that anything longer will result
in play that 1s not seamless. As shown 1n the drawing there
1s a bit more B material left over, but 1t cannot be stored as
part of block BS because this would result 1 a total length
which cannot be jumped over without possible depletion of
one or more buffers.

The remaining material 1in the B segment 1s laid down in
the track as shown by block B6. But 1n order for block Bé
to be skipped over after block BS when version A 1s being
played, there must be some A-type material stored 1n an A
block between blocks BS and B6. This material 1s necessary
for the read head to read 1n order to replenish the buifers
prior to the jump over block B6. The problem 1s that there
1s no A material left because it has all been used up 1n laying
down the four blocks at the beginning of the interleaved
sequence.

10

15

20

25

30

35

40

45

50

55

60

65

10

For this reason, what 1s placed between blocks BS and B6
for reading during play of version A 1s a block of material C1
taken from the beginning of the common material on the
rigcht side of the drawing. This common material must be
read during play of both versions, so there 1s no problem 1in
advancing 1t and placing 1t after the A blocks before the
common material 1s actually reached. The material 1s stmply
picked up by the read head when the A version 1s being
played before the common material would otherwise be
reached.

However, if common material C1 1s advanced and placed
between blocks BS and B6, and this material 1s read during
play of the A version before the common segment 1s reached,
it should not be read again in the C segment because that
would result in duplicate play of the same maternal.
Therefore, material C1 has to be deleted from the common
material. But if 1t 1s deleted from the common material, then
it will not be read when the B version i1s being played
because the B version still requires that all of the common
material be read. The solution 1s to take the material desig-
nated C1 and to advance 1t not just once, but twice. The
material 1s placed 1n the block sequence that 1s read during
play of the A version, as just described, and also 1n the block
sequence that 1s unique to version B. That 1s why the C1
block 1s shown immediately after block B6 1n the data block
sequence that 1s unique for version B. In this way, the C1
material 1s read as part of the umique A sequence and the
unique B sequence. Since 1t 1s read 1n both of the unique
seguences, 1t 1s no longer necessary to include 1t in the
common material that 1s formatted on the disk. For this
reason, as shown at the bottom right of FIG. 7, the last part
of the overall track segment 1llustrated 1s the “remainder” so
the common material—the original C segment, less C1.

In a sense, the invention can be thought of as introducing
“lily pads” on which the read head can “land” but immedi-
ately leave at the beginning of the jump to the next lily pad.
Block C1 1n the A-block sequence 1s such a lily pad. It can
be very short 1n that 1t must provide only enough data for the
buffers to allow a jump over the succeeding block in the B
version. Each lily pad should be as short as possible because,
since 1t 15 “borrowed” from the next common material and
oets deleted from 1t, 1t must be duplicated in the material that
1s unique to the other version, and 1t 1s desired to keen the
redundancy to a minimum.

The underlying assumption i FIG. 7 1s that the C1
material which 1s added to the material unique to version B
following block B6 is so short that B6 and C1 together do
not exceed the maximum block length which, if exceeded,
will prevent a scamless jump when version A is being played
and the read head jumps over the B6,C1 block. FIG. 8
depicts a case (a “continuation” of FIG. 7) in which the B
segment 18 so much longer than the A segment that many
pieces of the C material must be advanced to serve as lily
pads 1n the block sequence that 1s unique to version A. This,
in turn, means that they must also be included 1n the blocks
that are unique to version B, since any time common
material 1s advanced 1t necessarily results 1n redundant
recording. What remains after BS in FIG. 7 1s so long 1n FIG.
8 that, together with all of the advanced C blocks, the
resulting B material exceeds the maximum length.

Another way of looking at the situation 1s that while 1n
FIG. 7 block B6 was at the end of the material unique to
version B and block C1 could be tacked on to 1t, this 1s not
possible 1n the case of FIG. 8. Here, the B segment 1s so long
that a maximum-size block B6 1s required just for B-version
material. Since all of the B segment material (including B7
and B8) must be played before the common material, it is not

6,006,273

11

possible to tack block C1 on to the end of block B6. And
once block B6 1s recorded 1n the final track, another lily pad
1s required for play of version A. This lily pad 1s shown as
(C2, and 1t 1s placed 1n the final track immediately after block
B6. The next part of the segment unique to version B 1s
shown as B7, and this material 1s recorded on the final track
immediately after lily pad C2. Still another lily pad C3,
derived from the common material, 1s required before the
last part of the B material, block B8, 1s laid down.

As discussed above, whatever material 1s advanced from
the common segment and used in data blocks unique to
version A must also be stored 1n the data blocks unique to
version B. Material C1 should come immediately after
material B8 when version B 1s played. This 1s shown 1n FIG.
8. Similarly, C2 must follow C1, and C2 could be part of the
data block which includes B8 and C1, except that C2 cannot
be tacked on to the block which mcludes B8 and C1 because
to do so would give a combined block greater than the
maximum length which will permit secamless play. In order
to lay down material C2 (and C3) in the blocks unique to
version B, 1t 1s actually necessary to introduce a fourth lily
pad 1n the material unique to version A, material once again
taken from the common material. This 1s shown by the small
block C4. But because C4 1s now advanced from the
common material, the last data block for version B includes
C4 following C2 and C3. Finally, the common material, less
blocks C1-C4, 1s recorded for reading during play of both
Versions.

The interesting thing about the sequence of FIG. 8 1s that
common material C4 1s recorded twice 1n each unique data
block sequence only because it 1s necessary to include one
last lily pad 1n the sequence for version A just in order to be
able to record common material C2 and C3 in the material
that 1s unique to version B. But the method of the mnvention
does not concern itself with why common material 1s being
taken out of a common segment and duplicated 1n the two
unique versions. The system simply advances material
whenever 1t 1s required 1n order to lay down a lily pad that
will permit another jump. And anything recorded for one
version must be recorded for the other.

The last case to consider 1s that shown 1n FIG. 9. It was
assumed 1n FIG. 8 that there was unlimited common mate-
rial which could be advanced to serve as lily pads for one or
both of the two versions. The last such segment in FIG. 8
was C4. But in the example of FIG. 9, the common material
1s much shorter and segment C4 does not even equal the
minimum length required for a data block. While thus far
reference has been made to the maximum length (the length
beyond which a seamless jump may not be made), there is
also a minimum length. Some finite time, or length, must be
allowed for the data in a sequence of data blocks to at least
partially load the buffers before a jump is made. [In actual
practice, very small lengths may allow jumps, but the jumps
may be too small to be practical. In the illustrative flow chart
to be described below, the minimum length used to test
“remainder” C4 1s one defined as «,, even though 1t 1s not
the absolute minimum that could be used.] It is just not
feasible to lay down too short a data block 1if it 1s to serve as
a lily pad. Consequently, if the remaining C4 material 1s too
short to function as a self-contained data block for version
A, something else must be done with 1t. And the required
lily-pad material must come from somewhere. What 1s done
1s shown 1 FIG. 9.

Following the common material of which C4 is the last
piece, there is another A segment (which may have no data),
another B segment (which may have no data, although at
least one of the A and B segments has data), and a following

5

10

15

20

25

30

35

40

45

50

55

60

65

12

C segment. The remaining piece C4 of the first common
block 1s simply transferred to both of unique sequences A
and B, and the next common material 1s used as the source
for any other lily pads that are required.

Referring to FIG. 9, the sequence in progress (as shown,
for example in FIG. 8) has no more A material left; it will
be recalled that the C material 1s being used for each lily pad
that 1s required 1n data blocks for version A. So the remain-
ing C4 material which 1s common to both versions 1s simply
added to the start of the next A material since 1t must be
played before the next A material. This 1s shown at the
bottom of FIG. 9 where C4 1s placed before the next A
material. (What is shown in FIG. 9 is not how the last three
secgments A, B and C are laid down on the disk, but rather
how they are re-formulated before the interleaving method-
ology of FIGS. 6—8 is next employed.)

The same C4 material 1s not similarly laid down at the
start of the next B segment. The reason for this 1s that there
1s still some B material in the segment being processed that
has not yet been laid down on the disk. The B material which
still must be processed 1s the tail end of the B segment which
was being laid down, blocks C1-C3 which have to follow it
and have not yet been laid down, then the little piece C4
which must be read after blocks C1-C3, and finally the next
B segment. Thus what the system has to “work with” are
three new upcoming segments—the next A segment with C4
at 1t start; a B segment which consists of B8, followed by
C1-C4 and the next full B segment; and the following C
secgment. In effect, the next three segments are reconstructed
not 1n the sense that the material 1s laxd down on the disk as
it 1s shown 1n FIG. 9, but rather in the sense that this 1s the
material which 1s available for the subsequent processing of
the type shown 1n FIGS. 6-8.

In summary, the C4 material cannot be formatted on the
disk by itself because it 1s too short. It 1s apparent that 1t
belongs at the start of the next A segment because the
common material 1n the current segment 1s almost finished
being processed and there 1s just this one last piece to
include with the material that must be played for version A.
As for version B, 1t 1s still necessary to process block B8 and
it has already been determined that after B8 there should
follow C1, C2 and C3. It 1s for this reason that the new
“supply” for the B version, as shown on FIG. 9, consists of
B8, followed by C1-C4 and finally the next B segment.
What FIG. 9 1s intended to show i1s that any material that 1s
advanced from a common segment for recording in data
blocks unique to version A (or version B, as the case may be)
must be reserved for recording 1n the data block sequence
that 1s unique to the other version, but 1t cannot be so
recorded until the material remaining for that version 1is
recorded along with the earlier advanced common data
blocks.

As processing continues, eventually a point 1s reached at
which recording of the type shown 1n FIG. 6 1s possible and
no further redundancy must be 1ntroduced. This will become
apparent when the flow chart 1s analyzed.

Optimal and Maximum Block Lengths

Before proceeding with the flow chart that sets forth steps
for actually controlling formatting of the track, the symbols
c. and 3 shown 1n FIG. 10 must be understood. The symbol
a. represents what has been called a lily pad. The symbol 3
represents a block that has to be skipped 1n one version and,
by reading the data contained in block o (in the version
being played), there is material in the buffers available for
play as the read head skips over section 8. (Terms such as
secgments, blocks and sections are used interchangeably
since a segment or section may be one or many blocks.)

6,006,273

13

While o and 3 are simply two successive lengths, the
symbol () represents the maximum length 3 over which
a seamless jump may be made after reading a block of length
c.. Referring to FIG. 11A, if the relationship 1s linear, it 1s
apparent that the longer section ¢, the longer the succeeding
section P can be because there 1s more data available 1n the
bufifers as a result of reading more a data. However, even as
a grows, [3 does not grow 1ndefinitely. That 1s because there
1s a limit to how much data can be contained in the buffers.
Once they are full, that determines the longest p segment
that can be jumped over. That 1s why 1n FIG. 11 A there 1s a
maximum value for f(c) no matter how large o becomes.
Once the buffers are full, by the time the read head leaves
section ¢ the length of the maximum seamless jump 1is
determined by the capacity of the buifers.

If o 1s redundant material advanced from a C segment,
there 1s no reason to increase o beyond the value at the knee
of the graph which gives rise to the maximum f(c), the
value of the ordinate along the horizontal line of the graph.
The lowest value of o which gives rise to the maximum
value of f(a) 1s a a,,,. When creating a lily pad whose sole
purpose 1s to allow a jump over the succeeding data blocks
when the version containing the pad i1s being played, there
is no reason to use a lily pad which is longer than o, ,,. Every
lily pad introduced from common material results in
redundancy, and redundancy should be minimized.

It should be noted that the maximum value of pP(a) is
actually shown as o . The reason for this 1s that it the
maximum value of P(c) represents the longest segment
which can be recorded on the track for seamless play, then
that same maximum length applies to either of two succes-
sive sections. Every data block of one type precedes a data
block of the other type 1n the interleaved sequence, so that
cach section 1s both an 60 and a p. Consequently, the
maximum length of a block sequence can be referred to as
a. ., 1.e., no data block sequence unique to one version
should exceed . 1n length.

Assuming a linear relationship between . and f3, a typical
transfer characteristic 1s shown 1n FIG. 11A. As the length o
of a data block (or data blocks) increases, the maximum
length of the succeeding data block P(ct) which can be
jumped over increases. However, every data block 1s limited
in length to &, __. Suppose, for example, that there 1s much
more B material that has to be placed on the track than A
material before the next common material. In such a case,
the goal of the interleaving 1s to have small A data blocks and
large B data blocks. Every small A data block whose length
1s o allows a longer B data block to be recorded, the length
of the B data block being p(c). The optimal length for each
A data block is that which gives the largest ratio of B(a)/c.
The optimal value of a—a.,,—1s that which provides the
maximum ratio and 1t 1s labelled in FIG. 11A. In the case of
a non-linear relationship, as depicted in FIG. 11B, the value
of o, may not necessarily be at the knee of the curve. In
both cases the goal 1s to use successive a and {3 lengths that
maximize the ratio f(a.,), Laying down the data blocks
using these lengths uses up the longer version material as
fast as possible while minimizing the amount of common
material which may have to be advanced in order to the
derive the o segments.

The Applicable Lists Used by the Hardware

FIG. 12 illustrates how the method of our invention may
be 1mplemented. A controller 100, typically a
microprocessor, directly controls a recording device 102.
The 1nput information furnished to the controller 1s a stan-
dard Edit Decision List which specifies the sequence
(usually in Groups of Pictures, or GOPs), in unit lengths, of

10

15

20

25

30

35

40

45

50

55

60

65

14

the series of segments required for the two versions as
shown 1n FIG. 1. The actual digital source material for the

three kinds of segments (version-A, version-B and
Common) are in three digital stores 104, 106 and 108. The

controller causes one of the three sources to output material
to be recorded thorough the respective gate 110, 112 or 114,
also under control of controller 100, for extension to record-
ing device 102.

The controller maintains three lists which identify the
next available data for each source. The lists are identified by
the symbols R(A), R(B), and R(C). Each list 1s nothing more
than the representation of a respective one of the upcoming
A, B and C segments, as discussed for example, in connec-
tion with the segments shown at the bottom of FIG. 9. As
will be discussed 1n connection with the flow chart, the three
lists are updated during successive iterations. Each list at all
times represents upcoming information for one of the three
kinds of data that must be recorded. List R(C) includes all
common material in the segment being processed, from the
next material to be laid down until the end of the segment.
If the system is processing A and B segments, R(C) repre-
sents the full following ¢ segment, pieces of which may have
to be “borrowed” (advanced, as discussed above). Lists
R(A) and R(B) represent A and B segments being processed.
If a C segment is being processed by itself, R(A) and R(B)
arec empty—they are updated at the end of the C segment
processing when new A and B segments are reached. The
controller uses the information on the Edit Decision List to
update the “Next Available Data” lists R(A), R(B) and R(C).
Each list identifies in the respective digital source material
what data should be read out to complete recording of the
segment being processed.

The Flow Chart of FIGS. 13A and 13B
FIGS. 13A and 13B depict the flow chart that implements

the formatting discussed in connection with FIGS. 6-9.
Referring to FIG. 1, at the start of any two-version motion
picture, their 1s almost always a common segment—the title
1s the same 1n all cases. Thus, 1nitially there 1s only common
material with which the system has to work. The three

functions R(A) R(B) and R(C), as discussed in connection
with FIG. 12, represent lists of data that are 1mmediately
available. By “immediately available” 1s meant the data that
next has to be formatted on the disk. The R(C) list includes
all of the remaining data in the common segment being,
processed that has not yet been formatted on the disk, or the
entire common segment that follows A and B segments that
arc now being formatted if processing of the preceding
common segment has already been completed. There must
always be a “supply” of common material that can be
advanced 1n case lily pads are required, and toward this end
the system keeps track in list R(C) of all or part of one
common segment.

The R(A) and R(B) lists, on the other hand, can be empty.
If a common segment 1s being laid out on the disk, there 1s
no A and B material that has to be processed. It 1s only at the
end of the processing of a common segment that new A and
B segments become available (one of which may be non-
existent, 1n which case 1its list 1s empty—symbolized, for
example, by the notation R(A)=0). There is no need to
maintain a list of the next A and B segments that must be
processed until they are actually reached. There 1s a need to
maintain an R(C) list at all times, however, even when only
A and B segments are being formatted on the disk, because
it may be necessary to use a piece of the following common
material as a lily pad.

In step S1, since 1nitially there 1s only common material
to be processed, R(A) and R(B) are both set to zero. At the
same time, R(C) is set equal to the data for the first common
segment.

6,006,273

15

The variable [(X) where X=A, B or C, represents the data
which actually will be laid down on the disk in the current
iteration. (All references to laying down data on the disk can
include an intermediate step of storing the formatted data on
tape or in memory, and then—at a later time—actually
creating a master from which copies can be made.) There are
limits to how much data can be laid down; the basic premise
of our 1invention 1s that for seamless play there 1s a limit to
the length of any segment over which a jump may be
necessary. But there 1s no limit to the length of a common
segment since no jump 1s required over such a segment.
Consequently, in step S2, [(C) 1s made equal to R(C)—
everything that 1s 1n the first common segment 1s placed 1n
list I(C), L(C) representing the data that is to be put on the
disk 1n the current cycle. (The data itself is derived from one
of the digital sources 104, 106, 108 on FIG. 12, the three
respective lists simply pointing to the material which 1s to be
processed.)

The next sub-step in step S2 1s to format L(C). This
simply means that the data represented in L(C) is retrieved
from the respective source and placed on the disk.

Since R(C) initially represented the entire first common
segment and it is all now on the disk, R(C) must be reset to
0. Thais 1s done 1n the last sub-step. At the end of step S2, all
three lists are empty. The first two steps boil down to nothing
more than formatting the first common segment, 1.¢., placing
all of the data representing the first common segment of a
motion picture on the disk using whatever codes, pointers,
data block formatting, etc. 1s employed 1n the particular
system under consideration.

With the three lists now empty, they must be replenished
from the Edit Decision List (see FIG. 12). In step S3, the last
sub-step 1s the easiest to understand. With processing of a
common segment having just been concluding, R(C) is
replenished with data for the next common segment. But
there are preceding A and B segments as well. While the first
fime step S3 1s executed there 1s no prior “history” to take
into account, this 1s not always the case. This complicates
what gets stored in R(A) and R(B).

Referring to FIG. 9, at the bottom 1s shown how the next
available data lists are developed. There may be a little piece
of R(C) (C4 in FIG. 9) that remains from the current C
segment being processed. This piece has to be added to the
R(A) and R(B) lists. Only then does the next A segment get
added to R(A) and the next B segment get added to R(B).
Thus, as shown 1n step S3, whenever the lists are updated by
bringing in new segments of the program material, R(A) has
added to its then “content” both the “left over” R(C) and the
new material. Similar remarks apply to R(B). As for R(C),
since 1t 1s now “losing” whatever was left over 1n 1t, 1t 1s
simply set equal to the next C segment.

In step S4, a check 1s made whether there 1s any more data
to be processed. If there 1s no more data, then processing
stops—all of the data representing both versions of a two-
hour motion picture, for example, have been placed on the
disk (or, as mentioned above, in intermediate storage in the
proper format and sequence). Of course, the answer to the
question 1n step S4 will be 1n the negative the first time 1t 1s
asked, but this step 1s executed just after the start of each of
the succeeding iterations. Eventually, there will be no A, B
and C segments left, and the processing will come to an end.

As 1ndicated on the flow chart between steps S4 and S35,
the remainder of the flow chart assumes that R(B) is greater
than R(A). In other words, of two segments in different
versions being processed simultaneously, 1t 1s assumed that
the segment of version B 1s larger than that of segment A. If
the reverse 1s true, the notation in the flow chart should be

10

15

20

25

30

35

40

45

50

55

60

65

16

reversed. It 1s easier to comprehend the methodology by
assuming that there 1s more B data than A data for the two
corresponding segments 1n the different versions than 1t 1s to
explain the methodology 1n more general terms. All that 1s
required 1n actual practice 1s, after initial updating of the
three lists, to include a test as to which of R(A) and R(B) is
larger, and to treat the larger as R(B) in the flow chart and
the smaller as R(A).

No matter what the relative lengths of R(A) and R(B),
since R(B) is longer it would appear that the maximum
amount of data for the B segment should be laid down at the
start of each iteration. There may be so much B material that
the required jumps may not allow seamless play without
introducing lily pads with the concomitant redundancy, so at
the start of each iteration it certainly makes sense to “get rid
of” as much B material as possible. As discussed above 1n
connection with FIGS. 10 and 11, the maximum length of a
sequence of data blocks is the maximum value of f(a),
which can be written as (), and is the same thing as
Q... Accordingly, this much data from the R(B) list may be
placed in L(B) for immediate lay-down. In fact, the entire
segment represented in R(B) can be laid down if it does not
exceed o, . This is determined in step SS. If R(B) 1s small

FLei X"

enough to be formatted in its entirety, so is R(A) which is
smaller. [(A) and I[(B) are sct respectively to R(A) and
R(B). After they are formatted on the disc, the next common
segment represented by R(C) can be laid down, so L(C) is
set equal to R(C). All three segments are then formatted and
the three lists are nulled. A return 1s then made to step S3
where the lists are replenished.

Sooner or later, three new segments will be processed for
which the simple lay-downs of step S6 are not possible
because R(B) is greater than f3(ct), ... At this point inter-
leaving must be employed. It makes sense to format a 3
block first, and of maximum length, 1n order to decrease any
imbalance in R(A) and R(B). But if a large B block is laid
down, and there is then insufficient material in R(A) for an
A block, the interleaving cannot even begin. So 1n step S7 a
test 1s performed to see 1f there 1s enough material available
for an A block.

The question 1s how much material should be laid down
in each block of version A. As explained above, when the B
secgment 1s much larger than the corresponding A segment,
during every iteration some of the material in the next
common segment is transferred to R(A) so that a lily pad can
be placed on the disk for reading during play of version A.
To minimize the resulting redundancy (since the lily pad gets
repeated in the blocks unique to version B), as much R(B)
material should be processed for as little R(A) material that
has to be “borrowed.” The ideal R(B)/R(A) ratio is (a,,,,)/
Q,,.» Called “Q” 1n the Hlow chart as will become apparent,
so a.,,,, should be available, 1f needed, for an A block. Thus
before the first B block of length 3(ct) is formatted, a check
1s made that enough material will be available for an A block
of length a,, that will follow the first B block of length
p(t),,... and will precede the next B block of length (e,).
[It should be noted that if the f(ca) function is linear as in
FIG. 11A, the first block of length p(a),, .. is of the same
length f(c.,,,) as the others.] The question is how much
material 1s 1n fact available for the next A block. Referring
to FIGS. 7-9, what 1s available for an A block 1s what 1s left
in list R(A) plus whatever can be advanced (borrowed) from
R(C). So 1n step S7, the sum 1s compared with the amount
of data which will be required for an A block—a.,, . It there
1s 1nsuthicient data, not even the first B block 1s laid down.
Instead, a return 1s made to step S3 so that all three lists can

be changed—R(A) and R(B) are both increased by the small

6,006,273

17

amount of data available for the next common segment, and
then they each have their next respective segments added.
Since the A and B segments have been extended, R(C) is
simply set equal to the next C segment.

On the other hand, if 1n step S7 1t 1s determined that
enough material is available (the sum of R(A) and R(C) is
not less than o), in step S8 the first B block—of maximum
length—is finally laid down, and R(B) is reduced by the
amount of data thus processed.

Starting 1n step S9, successive iterations begin, during,
which A,B block pairs of optimal lengths a.,,, f(c,,,) can
be laid down. But the optimal ratio 1s not always what 1s
needed, as will now be explained.

A test 1s performed 1n step S10 to determine whether the
current ratio R(B)/R(A) 1s less than or equal to Q. Since
division by 0 1s not possible, in step S9 a check 1s made to
see whether R(A) 1s 0. If it is, it is an indication that there
1s B material that has to be processed with no corresponding
A material, and 1n such a case the goal 1s to lay down as
much B material as possible while keeping the lily pads—
which represent redundancy when there 1s no corresponding,
A material—to a minimum. In step S11, L(A) is set equal
., and I(B) is set equal to (a,,,). Referring to FIG. T1A,
when a lily pad has a length of o, () is equal to the
maximum value. In other words, by using ¢, as the length
of a lily pad, the following section (containing B data) can
be the longest possible relative to the length of the A section.
The idea is to maximize the ratio f(a)/a so that as much B
material can be used up while using as little A material as
possible.

In step S10, assuming that R(A) is not equal to 0, the ratio
of the data remaining in the two lists R(B) and R(A) is
formed, and 1t 1s compared with Q. Q 1s the 1deal 3/ ratio,
B(c,,)/ ., and represents the largest data that can be laid
out for the least “expense” in redundancy if any R(C)
material has to be borrowed. If the ratio R(B)/R(A) is less
than or equal to Q, 1t means that the A and B material can
be laid down without borrowing any more lily pads from the
following C segment—there 1s enough A material to do the
job. As shown 1n step S12, the next A data that 1s laid out,
[(A), is set equal to aopt and the next B material that is laid
down, L(B), is sct equal to the same length o, multiplied
by the ratio of the remaining data in the two lists. In this way,
as the process continues, ., is always taken from list R(A)
for placement on the disk followed by an amount of data
taken from list R(B) that is less than $(c.,,,) but which will
result in the B list being depleted at the same time that the
A list 1s depleted. The difference between steps S11 and S12
is that while the data I.(A) placed on the disk for the shorter
version 1s always set equal to o, the data taken from the
longer list for L(B) may not be the maximum that could be
used for a seamless jump. If there 1s a great deal of B data,
then L(B)=p(c,,,). But if there is less, then less data is taken
from list R(B) as shown in step S12.

By the time step S13 1s reached, the system has deter-
mined the values for L(A) and L(B). The length of L(A) is

always made equal to a,,, and the data 1s taken from the
R(A) list; L(A) is set without even checking that there is any
data available in the R(A) list because in step S7 it was
determined that, if needed, R(C) has enough data. In step
S13, a check 1s made to see if there is enough data in R(A)
by itself to fulfill the L(A) requirement. The test in step S13
checks whether the data remaining in R(A) is at least equal

to . If there is enough data i R(A) to fulfill the L(A)
requirement, then step S14 1s skipped. Otherwise, step S14
1s executed. It 1s 1n this step that material from the next C

segment 1s advanced and treated as data unique to version A

10

15

20

25

30

35

40

45

50

55

60

65

138

for being laid down as a lily pad in the data block sequence
that 1s read during play of version A. For the reasons
discussed 1n connection with FIGS. 7-9, it 1s also necessary
to take the same material derived from the next C segment
and include 1t 1n the material that 1s unique for version
B—the basic operating principle of the invention 1s that
whenever material 1s advanced from a C section for use as
an A-material lily pad, that same material must be included
in the data that 1s unique to version B. After the check is
made in step S13 whether R(A) 1s empty or, even if it has
some data, does not have enough to fill the L(A)
requirement, the difference A between R(A) and [(A) is
formed. In the second sub-step, A is added to R(A) so that
R(A) now has enough data to satisfy the L(A) requirement.
Next, the same amount of data taken from the R(C) list is
added to the R(B) list because it must be included in the
material unique to version B. Finally, the material advanced
from the C segment is deleted from the R(C) list because it
will have already being laid down—twice—during process-

ing of the A and B data.

The sub-steps of step S14 are symbolized 1in FIGS. 7 and
8 which show C material being advanced and included in the
unique sequence for each version. This 1s were the redun-
dancy comes 1n—a section of common material 1s deleted,
but 1t 1s recorded twice instead. That i1s the price that must
be paid for deriving a lily pad which would otherwise not
exist, the lily pad serving as a jumping off point for the skip
over the following data block that 1s unique to version B.

Thus 1n steps S13 and S14 it 1s determined whether there
is enough material in R(A) to support L(A) if there 1s not,
then R(A) is increased (along with R(B)) in step S14, and at
the same time R(C) 1s decreased. A different kind of check
and possible correction is required for L(B). The amount of
data to be placed on the disk 1n a block unique to version B
1s determined 1n step S11 or S12. In step S15, a check 1s
made to see whether there is enough data in the R(B) list to
support [(B). If there is, a jump 1s made to step S17. On the
other hand, if R(B) is less than [.(B), then there is not enough
data left in the B segment being processed to support the last
block, represented by L(B) which 1s supposed to be placed
on the disk. However, there 1s no need for R(B) to be
increased in such a case. L(B) is simply made shorter in step
S16; L(B) is set equal to R(B), the data remaining for the
current B segment being processed. Any practical system
has a minimum block length. When 1t comes to the block
length for the version having less data in the A,B segment
pair being processed, a length equal to o, 1s always used,
as explained in connection with steps S11 and S12. That
length will necessarily exceed the mimimum length, the
minimum length being seen on FIG. 11A to be less than o,
But there 1s no need for a minimum length for the last block
that 1s unique to version B. That i1s because this block 1is
placed on the track immediately before the following com-
mon data. The read head when playing version B, jumps to
the start of the last short B data block, and reads through this
block and continues on to the next C block. And when
version A 1s being played, the jump 1s made to the start of
the common material, just after the short B block. Since a
jump 1s not taken from the last B block, there 1s no minimum
length requirement. Consequently, instead of increasing
R(B) 1n step S16 to accommodate L(B), which would be
analogous to what 1s done 1n step S14 for the A version, L(B)
1s stmply reduced 1n step S16 to equal the remaining data in
the R(B) list.

By the time seep S17 is reached, R(A) has been increased,
if necessary, 1n step S14 by a little bit of C data, and the two
data blocks to now be placed on the disk, [.(A) and L(B),

6,006,273

19

have also been determined. In step S17, R(A) and R(B) are
both reduced by the respective amounts of data that are
being placed on the disk, and the data in IL(A) and the data
in L(B) are formatted.

The easiest way to understand the processing from this
point 1s to consider the usual case 1n which there are
alternate segments A and B to be processed. If B starts off
much larger than A, L(A) and I(B) are set in step S11 to
maximize the amount of B material that 1s placed on the disk
relative to the A material 1n the preceding block. In this way,
the ratio R(B)/R(A) keeps decreasing. Eventually, if the
inequality 1n step S10 1s satisfied, then in step S12 [(B) is
set to a lesser value than it 1s in step S11 during the
remaining processing of the A and B segments under con-
sideration. The ratio used in setting [.(B) in step S12 is
designed so that the R(A) and R(B) lists are depleted
simultaneously. In that case, in step S18, R(A) and R(B) will
both be depleted during the same iteration. On the other
hand, if B starts off so much larger than A—{for example,
there may be no A segment corresponding to a B segment—
then even maximizing the ratio of the data laid out for the
3,a pair in step S11 may not result in R(A) and R(B) both
becoming nulled in the same 1teration. What happens in such
a case is that R(A) gets reduced to 0, assuming that it did not
start there 1n the first place with the processing of a B
segment that has no corresponding A segment, and 1t takes
longer for R(B) to be depleted to the point where there 1s no
data left in the list (represented by R(B)=0 in step S18).
Thus, R(A) is always depleted either during the same
iteration with R(B) or an earlier iteration, but never during
an iteration following the depletion of R(B).

Let us first consider the case in which R(A) is depleted
first. It will be recalled that R(A) is increased in each
iteration during step S14 so that there 1s enough data in the
list to fill the I.(A) requirement. But in the same step R(A)
1s depleted once again as the data 1s stored on the disk. In
such a case, the system must continue to lay down chunks
of the B data while borrowing from the C segment for the A
lily pads (and also adding the borrowed material to the R(B)
list that must be processed). While every execution of seep
S18 reveals that R(A)=0, since R(B) is not 0 a branch 1is
made to step S19. At this point in the processing, there 1s still
B material that must be taken care of, and possibly A
material as well. But before the next iteration can begin, it
must be ensured that there 1s enough C material left 1n the
R(C) list to satisfy the next L(A) requirement. In other
words, 1 an A block has to be placed on the disk and the
material for the lily pad has to come at least partially from
the C segment then being processed, there must be enough
data left in the C segment for this to be accomplished. The
test in step S19 1s thus the same as the test 1n step S7. If there
is enough material left in R(C) to satisty the a,
requirement, i.¢., the sum of R(A)+R(C) is not less than a.
then a return 1s made to step S9. Since there 1s enough

available data, the iteration continues with steps S9-S12,
and the derivation of IL(A) and L (B).

On the other hand, suppose that R(A)+R(C) 1s less than
., This means that there is not enough data in R(C) to
allow borrowing of an amount which when added to R(A)
will equal o, , during step S14. A return is made to the start
of the main processing loop, step S3, which implements
what 1s shown 1n FIG. 9. The last bit of the C material, C4
in FIG. 9, 1s added to the end of the preceding A and B
material left to be processed. This can be done because the
preceding C material (C1, C2 and C3 in FIG. 9) has already
been placed at the tail end of the preceding A and B segments
being processed. Even 1n the case of the B segment which

10

15

20

25

30

35

40

45

50

55

60

65

20

has not been fully laid down, all that is necessary 1s to place
the last bit of the C segment at the end of what 1s already 1n
the R(B) list. Placing C4 at the end of the current R(A) and
R(B) is tantamount to merging the current A segment (if
anything 1s left in 1t) with the following A segment, and the
current B segment with the following B segment, since all
of the C material separating them will have already been
accounted for. So as shown 1n FIG. 9, C4 1s added at the
beginning of the next A segment, and 1t 1s added at the end
of the current B segment (R(B), which includes the preced-
ing R(C) blocks C1-C3 that were added to R(B)), following
which the next B segment is added to R(B). Finally, R(C)
simply becomes the next C segment.

The processing continues with outer-loop returns to step
S3 and inner-loop returns to step S9. Eventually the pro-
cessing ceases when 1n step S4 it 1s determined that there 1s
no more data.

The mvention has been described 1n terms of an 1llustra-
tive embodiment having only two versions of a program. But
the method of the imvention has much more widespread
utility. For example, consider a multimedia disc whose
subject 1s American Presidencies and, following play of a
segment on wars 1n general, a branch may be made to a
secgment on any President in whose administration America
was at war. The segments on Roosevelt and Truman may
contain common subject matters at their beginnings and
clsewhere and both segments may be far away from the
secgment from which the branch 1s being taken. Common
material may be recorded redundantly as described above to
create lily pads for seamless jumps to these two video
scgments, while the same thing 1s done for still other
paired-President video segments. There 1s no reason to
restrict jumps over only two kinds of materials—there may
be dozens or even hundreds, and 1n both directions, if
extensive branching based on user selections are allowed.
Similarly, three or more video segments which share com-
mon material may have that common material recorded
three or more times 1n lily pads associated with the three or
more 1ndividual video segments if necessary to allow for
scamless branching. The common denominator in all cases
1s that material which 1s common to at least two programs or
two program segments 1s redundantly recorded—at the
expense of “real estate”—in order to allow seamless play to
take place.

While the focus herein has been on reducing redundancy
to a minimum, some slack i1s allowable. It 1s not necessary
to squeeze out every possible millimeter of bit capacity.
Thus, while the invention has been described with reference
to a particular embodiment, 1t 1s to be understood that this
embodiment 1s merely illustrative of the application of the
principles of the mvention. Numerous modifications may be
made therein and other arrangements may be devised with-
out departing from the spirit and scope of the invention.

What 1s claimed 1s:

1. A method for interleaving data on a recording medium
for scamless play of at least two program versions A and B
of source material, the medium being playable on a player
having a predefined data buffer management system; the
data representing A-type segments of A-version source
material, B-type segments of B-version source material, and
C-type segments of source material common to both of said
at least two versions; and wherein data 1s to be mnterleaved
on said medium to represent A-type and B-type paired
secgments disposed between successive C-type segments,
with data representing C-type segments being read no matter
which version of the source material 1s being played and data
representing only A-type or only B-type segments being

6,006,273

21

read depending on which version of the source material 1s
being played; comprising the steps of:
(a) dividing data representing each A-type segment and

cach B-type segment 1n a pair 1nto two series of data
blocks;

(b) interleaving in a single series the data blocks in the
two series of step (a);

(¢c) following the interleaved A-type and B-type data
blocks of step (b) for a pair of A-type and B-type
segments by data blocks representing just the following
C-type segment; and

(d) limiting the lengths of the individual A-type and
B-type data blocks to allow the player on which the
medium 1s played to skip over A-type data blocks
without interruptions when version B of the source
material 1s played, and to skip over B-type data blocks
without interruptions when version A of the source
material 1s played.

2. A method 1n accordance with claim 1 wherein a series
of interleaved data blocks begins and ends with a data block
representing the longer of the two segments 1n the respective
pair.

3. A method for interleaving data on a recording medium
for secamless play of at least two program versions A and B
of source material, the medium being playable on a player
having a predefined data buffer management system; the
data representing A-type segments of A-version source
material, B-type segments of B-version source material, and
C-type segments of source material common to both of said
at least two versions; and wherein data 1s to be interleaved
on said medium to represent A-type and B-type paired
secgments disposed between successive C-type segments,
with data representing C-type segments being read no matter
which version of the source material 1s being played and data
representing only A-type or only B-type segments being
read depending on which version of the source material 1s
being played; comprising the steps of:

(a) dividing data representing each A-type segment and
cach B-type segment 1n a pair into a single series of
interleaved data blocks;

(b) limiting the lengths of the individual A-type and
B-type data blocks to allow the player on which the
medium 1s played to skip over A-type data blocks
without interruptions when version B of the source
material 1s played and to skip over B-type data blocks
without interruptions when version A of the source
material 1s played; and

(c) following the interleaved A-type and B-type data
blocks by data blocks representing just the following,
C-type segment.

4. A method 1 accordance with claim 3 wherein a series
of interleaved data blocks begins and ends with a data block
representing the longer of the two segments 1n the respective
pair.

5. A medium for representing at least two program ver-
sions A and B of source material, the medium being playable
on a player having a predefined data buifer management
system,;

10

15

20

25

30

35

40

45

50

55

22

(a) the data on the medium representing A-type segments
of A-version source material, B-type segments of
B-version source material, and C-type segments of
source material common to both of said at least two
versions, with the medium being adapted to be played
on a player which reads data representing C-type
segments no matter which version of the source mate-
rial 1s being played and data representing only A-type
or only B-type segments depending on which version
of the source material 1s being played;

(b) data being interleaved on said medium to represent
A-type and B-type paired segments disposed between
successive (C-type segments, with data representing
cach A-type segment and each B-type segment 1n a pair
being divided into a single series of interleaved data
blocks with the lengths of the individual A-type and
B-type data blocks being limited to allow the player on
which the medium 1s played to skip over A-type data
blocks without interruptions when version B of the
source material 1s played and to skip over B-type data
blocks without imterruptions when version A of the
source material 1s played;

(c) with each series of interleaved A-type and B-type data
blocks being followed by data blocks representing just
the following C-type segment.

6. A medium 1 accordance with claim § wherein a series
of interleaved data blocks begins and ends with a data block
representing the longer of the two segments 1n the respective
pair.

7. A method for formatting on a playable medium digital
data representing at least two versions of a program com-
prising the steps of:

(a) interleaving in a single data stream data sequences
which are unique to each version and data sequences
which are common to the two of them; and

(b) 1n order to achieve seamless play of both versions on
a player that 1s compatible with the medium but has
limited buffer storage, limiting the lengths of the data
segments which are unique to each version to allow the
player on which the medium is played to skip over the
data sequences unique to the other version without
interruptions.

8. A playable medium formatted with digital data repre-

senting at least two versions of a program comprising:

(a) a single data stream containing interleaved data
sequences which are unique to each version and data
sequences which are common to the two of them; and

(b) 1n order to achieve seamless play of both versions on
a player that 1s compatible with the medium but has
limited buffer storage, the lengths of the data sequences
which are unique to each version are limited to allow
the slaver on which the medium 1s played to skip over
the data sequences unique to the other version without
interruption.

	Front Page
	Drawings
	Specification
	Claims

