US005996086 A
United States Patent .9 111] Patent Number: 5,996,086
Delaney et al. 45] Date of Patent: Nov. 30, 1999
[54] CONTEXT-BASED FAILOVER 5504.863 1/1997 SHIES cvovevvevereerereerereererrernnn, 395/182.13
ARCHITECTURE FOR REDUNDANT 5,621,884 4/1997 Beshears et al. 364/282.1
SERVERS 5,634,052 571997 MOITIS ceevvveeeerrrreeereieeeererneeennenns 714/4
5,652,833 7/1997 Takizawa et al. ...coovvvvnvvvvvnnennnnnn. 714/4
: NE . . 5,675,723 10/1997 Ekrot et al. ...c.oovveeeiiiininnininnnns 714/17
['75] Inventors: William P. Delaney; Gerald J. Fredin; SO #
Andrew J. Spry, all of Wichits, Kans 582479 101997 NeWhall il v 39520072
: _ : : o 5,748,873 5/1998 Ohguro et al. ..ccocoeveveevereerenennnne 714/2
[73] Assignee: LSI Logic Corporation, Milpitas, 5,787,070 7/1998 Gupta et al. w.oooereeerrrerrrrrseeeernnen 714/7
Calif. 5.790.775 8/1998 Marks et al. woeoveoveoveererevrrrren 714/7
5,812,751 9/1998 Ekrot et al. ..coevvvvvnvvenniiiiennnnnen. 714/13
211 Appl. No.: 06/349,678 Primary Examiner—Ly V. Hua
22] Filed: Oct. 14, 1997 Assistant Examiner—Wasseem Hamdan
51] INte CLE oo GO6F 15/16 [57] ABSTRACT
52 US.CL o, 714/4; 714/3; 714/2; 714/22; In a redundant server network system, failover services for
714/6; 709/225 a failed server are provided by a survivor server belonging,
[58] Field of Search ..ol 714/22, 2, 3, 4, to 2 common failover group. At startup of a local server
714/6; 709/225; 710/15 process running on the survivor server, a context 1s created
_ for the local server and for each remote server belonging to
[56] Relferences Cited the same failover group as the local server. At startup the
US. PATENT DOCUMENTS context C{f the 1%6&1 Szrver 1s also activate;l. Thf]i{ loiial Server
rocess 1s configured to operate on and make decisions
}gg}gg ;‘ﬁ gzs Eateﬁbet 31- l ---------------------------- ggjﬁ ;83 Eased upon activ%ted contexrt)s. Each context includes server
,835, 1 ushby et al.cooovivinnnnnne - * * -
5.117.352 5/1992 FaleK wovmommmmooooooooooo 305/575 :Efj;fgr Z(;I;fegrugﬁstn igfi dC:IE:E;vt;sziigs: 'fggegiigg
5134712 7/1992 Yamamotooooeorreerveoonns 395/800 bt P e h
5327553 7/1994 Tewett et al. wovevevvevevereerrerernnnn, 395/575 Server belonging to 1ts same lailover group, the context
5,426,774 6/1995 Banerjee et al. c..oveereeereerenn. 395/575 corresponding to the failed remote server is activated.
5,513,314 4/1996 Kandasamy et al. 395/182.04
5,566,297 10/1996 Devarakonda et al. 395/182.13 15 Claims, 5 Drawing Sheets
100 708 | NETWORK
PROCESSING
NODE
106 7110
NETWORK 117 NETWORK
PROCESSING PROCESSING
NODE . NODE
NETWORK 104 NETWORK 102
PROCESSING PROCESSING
NODE NODE
CSERVER Y ™}-724 122

STORAGE

716
STORAGE

} 9l

5,996,086

J9VHO1S 49VH01S
9/ 8l

\f)
=
g bAA A
7 340N 340N
INISSIDONd INISSIDOYd
A MYOML3N r0/ MHYOMLIN
)
=
ol
o
2 JAON . JAON
ONISSIDONd ONISSID0Yd
MYOMLIN AY MYOMLIN
0/} 90/
3A0N
INISSIDOHd
AHOMIAN 20/ 001

U.S. Patent

5,996,086

Sheet 2 of 5

Nov. 30, 1999

U.S. Patent

¢ Il

2.4 NOILYWHO NI
082 NOILYHNOIANOD

JOIAJ0 40VH0LS

c9c

NOILYINGOANI

097 NOILYHNOIANOD
39IA3a IOVHOLS
Ve A A
J140d oo l 140d WOD l
180d 0/ 1¥0d O/
77T~ 1¥od ol L40d O/l 7, o 1¥0d Of1 Y

¢ez N | NOILYWHOANI ¢;zN [NOILYWIOAN]

NOILVOId1LNIal NOILYDI41LN3al

J9YHOLS 9VHOLS

oy 74 F1LVIOA-NON o0z IRYLENT:IS C77 31 LV TOA-NON 207

HIAYIS 3dVl SEINER

4/ 14N 4/ 134N
- I

$0c
00c

U.S. Patent Nov. 30, 1999 Sheet 3 of 5 5,996,086

EACH SERVER INITIALIZES OWN CONFIGURATION
INFORMATION, CREATES/INITIALIZES CONTEXTS,
ACTIVATES LOCAL CONTEXT, AND STARTS UP
CONTEXT-DUMB, CONTEXT-SPECIFIC AND
CONTEXT-AWARE PROCESSES

302

304

FAILED

SERVER
7

YES

SERVER PROCESS OF FAILED 306
SERVER SHUT DOWN

SURVIVOR SERVER ACQUIRES OWNERSHIP
OF REMOTE SERVER'S STORAGE DEVICE,
READS REMOTE SERVER'S
CONFIGURATION INFORMATION

306

SURVIVOR SERVER COMPLETES
INITIALIZATION OF FAILOVER CONTEXT

BASED ON FAILED SERVER'S 310
CONFIGURATION INFORMATION AND
ACTIVATES FAILOVER CONTEXT

SURVIVOR SERVER STARTS UP
CONTEXT-SPECIFIC FAILOVER PROCESSES
FOR FAILOVER CONTEXT

312

SURVIVOR SERVER EXECUTES
FAILOVER CONTEXT-DUMB, CONTEXT-SPECIFIC, R 374

AND CONTEXT-AWARE PROCESSES

FIG. 3

U.S. Patent Nov. 30, 1999 Sheet 4 of 5 5,996,086

IDENTIFICATION INFORMATION

SERVER_ID

CONFIG_LOCATION
INITIALIZED_?7_FLAG

#CONTEXTS
BOOTDISK

FIG. 4

CONFIGURATION INFORMATION BLOCK

CLIENTS_INFO
USERS_INFO

BACKUP_INFO
ERROR_LOG_ILOCATION

FIG. 5

CONTEXT RECORD

CONTEXT_ID
OP_MODE

FIG. 6

U.S. Patent Nov. 30, 1999 Sheet 5 of 5 5,996,086

FO_MODE_NORMAL
FO_MODE_START .

FO_MODE_STOP

FIG. 7

FO MODE UNKNOW ‘
FO MODE NORMA

2%
ara
‘.[

FO_MODE_FAILOVER

FIG. &

3,996,086

1

CONTEXT-BASED FAILOVER
ARCHITECTURE FOR REDUNDANT
SERVERS

FIELD OF THE INVENTION

The present invention relates generally to the field of
network systems, and more particularly to a system and
method for efficiently providing failover support services in
a redundant server environment.

BACKGROUND OF THE INVENTION

The advent of networked computer systems, heremafter
termed network systems, has made possible advances 1 the
capabilities of information processing and software engi-
neering. Network systems are widely used in business,
industry and engineering as a valuable tool for retrieving,
storing, and handling information.

As known by those familiar with network systems, a
network system includes two or more network processing
nodes (e.g., a computer system or a stand-alone storage
device), each under the control of an independent operating
system and joined together by a communication network.
One of the main advantages of a network system 1s 1its ability
to allow network processing nodes to share files. Access to
shared files 1s coordinated by a set of protocols implemented
in the operating system of each network processing node
that 1s configured to share the file. A network processing
node that provides access for other network processing
nodes 1n the network system to a shared file 1s known as a
file-server, hereinafter termed “server”, and 1s said to
“serve” the shared file. A server executes a “server process”
that provides network and shared {file access services. A
network processing node that requires access to a shared file
that 1s served by another network processing node 1s known
as, and 1s termed herein, a “client”.

Network systems may have more than one server if
different network processing nodes in the network system
independently provide access to different shared files.
Accordingly, any network processing node 1n a network
system may act concurrently as both a server and a client 1f
it both serves a shared file and also requires access to a
different shared file served by a different server.

As just described, clients rely on servers to access shared
files. Accordingly, if a server fails for any reason, the shared
files that the failed server serves will generally be 1nacces-
sible to its clients unless a method for providing the func-
fionality of the failed server is in place. Network access
services which provide the functionality of failed servers are
known 1n the art as faillover services. In present day network
systems, failover services are created manually by system
administrators and are based on explicit failover configura-
tion information that 1s typically stored in configuration files
on local storage of each server. The configuration 1nforma-
fion specifies the actions to be performed by a surviving
server assigned to the same failover group, hereinafter
termed “survivor’, when another server belonging to the
same failover group fails. The services provided by these
failover services, such as file and print serving, are generally
identical to services provided by the survivor for its normal
service environment. However, the processes are instanti-
ated differently for faillover services than for the survivor’s
normal environment because the failed server’s authorized
clients and exported resources are different than those of the
survivor. Consequently, for any given potential survivor, a
special “failover” version of the survivor’s server process
software must be created for each other server belonging to

10

15

20

25

30

35

40

45

50

55

60

65

2

the same failover group. Each of these special “failover”
versions may be started up and executed concurrently with
the survivor’s normal server process by the survivor when
the server i1t was created to perform failover services for
fails. The present day approach to providing failover ser-
vices 1n a redundant server environment requires a signifi-
cant amount of memory space where duplicated code
resides. In addition, 1t 1nvolves significant software com-
plexity associated with creating special versions of server
process software and 1n 1nitiating new server processes on
the survivor as specified by faillover configuration files.

Accordingly, a need exists for an improved method for
providing failover services for failed servers in a redundant
server network system.

SUMMARY OF THE INVENTION

The present invention provides such an improved method
for providing failover services for a failed server in a
redundant server network system 1n such a way as to require
little or no 1ntervention by the network system administrator
and minimal additional software development effort or
expense. According to the invention, when a failed server
belonging to the same fallover group as a survivor server 1s
detected, the survivor server acquires the storage device of
the failed server on which the failed server’s configuration
information 1s stored. The survivor server activates a
fallover context for the failed server which includes the
failled server’s configuration information. The survivor
server process 1s context-aware 1n that it 1s implemented to
operate on and make decisions based upon multiple con-
texts. In a preferred embodiment the survivor server process
1s 1implemented with a plurality of threads, each of which
may be either context-aware, context-specific, or context-
dumb. When a failover context 1s activated, any context-
aware threads which get started up by the server process
operate on the failover context as well as the survivor
server’s local context. By acquiring a failed server’s storage
device, reading 1ts conifiguration information, creating a
fallover context based on that configuration information,
activating the failover context, and executing a server pro-
cess that operates on active contexts, the invention simplifies
the provision of faillover services by removing the necessity
of system administrator intervention and by eliminating the
neced to create special versions of software for processes
which make decisions based on different configuration infor-
mation.

BRIEF DESCRIPTIONS OF THE DRAWINGS

The objects and advantages of the invention will become
more apparent and more readily appreciated from the fol-
lowing detailed description of the presently preferred exem-
plary embodiment of the mmvention taken 1n conjunction with
the accompanying drawings, of which:

FIG. 1 1s a block diagram of a redundant server network
system.

FIG. 2 1s a block diagram of a portion of a redundant
server network system with full path redundancy.

FIG. 3 1s a flowchart 1llustrating the method of operation
of the invention.

FIG. 4 1s an example implementation of the type of
identification information that may be stored in the non-
volatile storage of each redundant server in a redundant
server network system.

FIG. § 1s an example implementation of the type of
information that may be included as configuration informa-
tion for each redundant server 1n a redundant server network

system.

3,996,086

3

FIG. 6 1s an example implementation of the type of
information that may be included as part of a context record
in the mvention.

FIG. 7 1s a state diagram of one embodiment of the
invention of the possible operational state transitions of a
local server.

FIG. 8 1s a state diagram of one embodiment of the
invention of the possible operational state transitions of a
remote Server.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

This invention presumes familiarity with basic network
system terminology, including certain well-known operating
system terminologies. However, 1n order to facilitate an
understanding of the present invention, a glossary of terms
specific to the present invention 1s 1included herein below.

Glossary

Failover Group—A group of servers, each of which may
provide failover services for any other 1if 1t fails.

Local Server—The server executing a local server pro-
cess. The local server 1s always the physical network pro-
cessing node executing the local server process.

Remote Server—A different physical network processing
node on which an independent server process 1s executing.
A remote server 1s always a network processing node
communicating with the local server over the communica-
fions network.

Server ID—A unique integer identifying each server
assigned to the same failover group in the network system.
The server ID defines inter-network processing node
addresses and precedence of control information between
network processing nodes during system 1nitialization.

Context—The union of all server specific control and
coniliguration data and files. The context for each server is
identified by an imteger ID.

[ocal Context—The context of the local server.
Remote Context—The context of a remote server.

FIG. 1 1s a block diagram of a redundant server network
system. The network system, shown generally at 100,
includes a plurality of network processing nodes 102-110
interconnected by a communications network 112. Commu-
nications network 112 may be implemented using any
conventional implementation (e.g., an Ethernet, which is
well-known 1n the art). Network processing nodes 102—-110
communicate with one another using a communications
protocol, such as Network File Server (NFS) manufactured

by Sun Microsystems, which runs either on UDP/IP or
TCP/IP.

At least two of network processing nodes 102—110 oper-
ate as servers. In FIG. 1, network processing nodes 102 and
104 operate as servers and any or all of network processing
nodes 102-110 operate as clients. As 1s to be understood,
cither or both of network processing nodes 102 and 104 may
operate as both server and client, but will be hereinafter
referred to as server 102 and server 104. Server 102 serves
shared files located on a first storage device 116 for all of its
clients 1n the network system 100, and network processing
node 104 serves shared files located on a second storage
device 118 for all of 1ts clients in the network system 100.
Accordingly, all access requests to shared files located on
storage device 116 are served by a server process 122
executing on server 102, and all access requests to shared

10

15

20

25

30

35

40

45

50

55

60

65

4

files on storage device 118 are serviced by a server process
124 executing on server 104. If either server 102 or 104 fails,
the survivor server provides failover services for the failed
server, which include serving the shared files normally
served by the failed server.

FIG. 2 1s a portion of a redundant server network system
200 with full path redundancy included herein to 1illustrate
the principles and operation of the invention. As shown 1n
FIG. 2, the network system 200 1ncludes a pair of redundant
servers, shown respectively at 202 and 204. Each server 202,
204, includes respective network interfaces 224, 244 which
are both coupled to a first communications network 2035, and
respective second network interfaces 222, 242 both coupled
to a second communications network 206. Additional com-
munication ports, shown respectively at 227 and 247, may
be provided 1n each respective server 202 and 204 to provide
a dedicated communication link between servers 202 and
204 for exchanging failover and system synchronization
messages. Additionally, each server 202, 204 includes a
respective 1/0 port 228, 248 which 1s coupled to both a first
storage device 260 and a second storage device 280. The
embodiment of FIG. 2 shows two storage devices 260, 280
for convenience of 1illustration of the invention. However,
those skilled 1n the art will appreciate that additional storage
devices may be supported. Typically, one server will operate
as a primary server for files located on a given storage
device. A primary server 1s said to “own” the storage device
it serves. If a primary server fails, however, the redundant
server, or “secondary” server, may operate to serve the
shared files located on the storage device owned by the
primary server. Thus, each server 202, 204 has access to data
stored on either or both 1n FIG. 2, servers 202, 204 may also
include an I/0 port 226, 246 such as a SCSI port 1n order to
access an external storage device 250 such as a tape library.
Since full path redundancy exists between servers 202 and
204, if one server fails, the survivor server will have the
ability to access the disks owned by the failed server and
accordingly serve the shared files owned by the failed server.
Each server 202, 204 also respectively includes non-volatile
storage 225, 245, such as an electronically erasable read
only memory (EEPROM) or a battery powered random
access memory (RAM).

In the present invention, the non-volatile storage 225, 245
of each server 202, 204 1s respectively used to store 1den-
tification information 215 and 235, specific to its local server
(i.c., the physical server ID, number of servers in the failover
oroup, and location of where the server’s coniiguration
information resides). The identification information of each
server, shown respectively at 215 and 235, 1dentifies the
location of 1ts respective server’s conflguration information,
262 and 282, which i1s preferably stored on respective
storage devices 260 and 280. In the preferred embodiment,
confliguration information 260, 280 is stored as a structure of
server-specific environment variables and configuration
files. These environment variables and files include data
information necessary to boot up the server and execute
thereafter. For example, typical environment variables might
include the server’s network node address, I/O port
addresses and IDs, and backup states and schedules, and
typical configuration files might include currently mounted
clients, security information, user access information, user
oroups, and error logs. The configuration information 262,
282 may be operated upon or used by the server process to
make decisions. Accordingly, the configuration information
262, 282 1s essential not only to a local server process
running on a given server, but also to any process that
provides failover services for the server if it fails.

3,996,086

S

Accordingly, the present invention implements a context-
based failover architecture 1n which a server process may
operate on or make decisions differently depending on the
context that it 1s currently in. At bootup of a server, space 1s
allocated for a local context of the server itself and for a
remote context for each other server belonging to the local
server’s same failover group. Preferably at the end of the
bootup process, the local context 1s fully imitialized and
activated. Each remote context may be fully or partially
initialized during the bootup process, but under normal
operation 1s not activated. After the bootup process 1is
complete, the local server process cycles through each active
context. Under normal operation typically only the local
context will be active. Occasionally, however, the local
server may be required to provide failover services for a
remote server 1n 1ts same failover group. It this occurs, the
local server (i.e., the survivor server) acquires the storage
device containing the configuration information of the
remote (i.e., failed) server, completes any additional initial-
1zation of the remote context allocated by the local server for
the failed server, and activates the remote context. The local
server process executes, cycling through each active context,
which now includes the remote context of the failed server.
Accordingly, the local server provides failover services for

the remote server.

As just described, the present invention implements a
server process which cycles through a number of active
contexts and may operate on or make decisions based upon
the confliguration 1information associated with each context
differently.

It will be appreciated by those skilled in the art that server
processes are typically implemented as a plurality of threads.
Each thread typically performs a particular function and has
a lifetime only long enough to execute and complete 1its
particular function. Those skilled 1n the art will also appre-
clate that not every function performed by a server process
thread requires the use of configuration mformation to
perform 1ts particular function. In fact, server process
threads may be categorized generally into three different
groups—namely, “context-aware”, “context-specific”’, and
“context-dumb” threads.

A context-aware thread 1s a thread that operates on
multiple contexts during its lifetime. A context-aware thread
makes explicit decisions about the context upon which 1t 1s
operating.

A context-specific thread 1s a thread that operates on one
and only one context throughout its entire lifetime. Multiple
instances of a given context-specific thread may be created,
one for each active context.

A context dumb thread 1s a thread that 1s not aware of
communication module contexts. It may or may not operate
on context specific data. It may or may not operate on
multiple threads throughout 1ts lifetime. The existence of
multiple contexts 1s transparent to the thread, and any and all
changes of context that occur during the thread’s operation
arc done without the knowledge, awareness, or explicit
intervention of the thread. If 1t does operate on context
specific data or on multiple contexts, that operation 1s done
outside the normal processing.

In the preferred embodiment implementation of the server
process, cach thread 1s implemented as either a context-
aware, context-specific, or context-dumb thread according
to the functionality of the thread and according to perfor-
mance versus space requirement (1.€., optimization) consid-
erations.

If a remote server fails, a local survivor server accesses
the configuration information stored in the remote failed

10

15

20

25

30

35

40

45

50

55

60

65

6

server’s storage device. As described 1n more detail
heremnafter, the survivor server utilizes the configuration
information of the remote failed server to activate the failed
server’'s context. As described 1n the glossary of terms, a
context includes the communications-module-specific con-
trol and configuration data and files. The survivor server
activates a failover context for the failed server and starts

any required context-speciiic processes for the failed server,
as discussed hereinafter.

FIG. 3 1s a flowchart 1llustrating the method of operation
of the invention. As shown 1n FIG. 3, the method, shown at
300, includes a step 302 where each server belonging to the
same failover group 1nitializes its respective configuration
information, creates 1ts local context and remote contexts for
cach remote server that 1s a member of the same failover
group, activates its local context, and starts up all context-
dumb and context-aware processes, and any context-speciiic
Processes.

In a step 304 a health monitor process running on each
server 1n the same failover group monitors the status of the
servers to determine 1f any server has failed. This may occur
in one or more ways. For example, the respective health
monitor process may detect a failure 1n its local server. If this
1s the case, the health monitor process may send a message
indicating that 1ts local server has failed to a remote health
monitor process running on a remote survivor server. In the
alternative, a local survivor server may determine that a
remote server has failed without receiving a specific mes-
sage from the failed server. This may occur, for example, 1t
a catastrophic failure of the remote server has occurred. A
catastrophic failure may occur for a variety of reasons,
including a network interface failure, a disk I/O path failure,
a server process crash, or any other type of hardware failure

Once a survivor server becomes aware of the status of the
failed server, the server process on the failed server 1s shut
down 1n a step 306 1f 1t has not already shut down.

In step 308, the survivor server acquires ownership of the
failed server’s storage device and reads the remote server’s
conflguration information.

In step 310, the survivor server completes any necessary
context 1nitialization based on the failed server’s configu-
ration information for the failed server’s context as seen by
the survivor server (hereinafter termed “failover context™),
and then activates the faillover context.

In step 312, the survivor server then starts up any context
specific failover processes for the failover context.

Finally, in step 314, the survivor server executes the
fallover context-dumb, context-specific, and context-aware
processes until the failed server i1s restored to a normal
operative state.

FIG. 4 1s an example implementation of the 1dentification
information 215 and 235 that 1s stored 1n the non-volatile
storage 225 and 245 of each respective server 202 and 204
in the redundant server network system of FIG. 2. As shown,
the 1dentification information 215, 235 each preferably
includes a server identifier SERVER__ID that 1s unique
across the failover group. The 1dentification information also
preferably includes a variable CONFIG__LOCATION
which 1ndicates where the configuration information 1s
stored. The configuration information may be stored on a
disk local to the server or may be distributed across several
storage devices located throughout the network system. In a
preferred embodiment, each server 202, 204 owns a different
one of the storage devices 260, 280, and respective configu-
ration 1nformation files 262 and 282 are stored beginning at
the same locations on each respective storage devices 260

3,996,086

7

and 280. In a redundant server network system each server
in the same failover group has the ability to acquire control
of the storage device or devices on which the configuration
information for each other server 1s stored. As shown 1n FIG.
4, the 1denfification information block also preferably
includes a flag INIT which indicates whether the identifi-
cation information block has been initialized. The INIT flag
1s 1important for indicating whether or not the configuration
information of a failed server 1s valid. The identification

information block may also include a variable #CONTEXTS

which 1ndicates the number of contexts currently in use by
the server (1.e., the number of servers in the failover group).
Another variable, BOOTDISK, may also be included 1n the
identification mformation block to indicate where the local
server 1s to be booted from.

FIG. 5 1s an example configuration information block that
contains the configuration information necessary to start up
a Tailover server process 1if the local server fails. As shown
in FIG. 5, the configuration information block preferably
includes a list of client records, CLIENT INFO, which
includes a client record for each mounted client of the server.
Preferably, each client record includes the network node
addresses, communications ports ID’s, and other necessary
information. Another variable, USER__INFO, may provide
a list of authorized user records, each containing the user ID,
corresponding passwords, and user configurations. Another
variable, BACKUP__INFO, may be included to provide
necessary backup state mformation and schedules for the
local server. An error log location variable, ERROR__1.OG__
LOCATION, may also be stored 1n the configuration infor-
mation block. The ERROR__1.LOG__ LOCATION preferably
contains a pointer to an error log generated by the local
server, which may be helpful 1n troubleshooting local server
and overall network system problems. As will be appreci-
ated by those skilled in the art, the scope and type of
conilguration 1information may vary from system to system
and 1s 1ncluded herein by way of example only and not
limitation.

FIG. 6 illustrates an example of the type of information
included 1n a single context record that 1s allocated, created
and 1nitialized during bootup. As shown 1n FIG. 6, a context
record preferably includes a context identifier CONTEXT
ID for i1dentifying a specific server’s context in any data
structure containing multiple elements for server speciific
state or data. The context 1dentifier CONTEXT__ID 1s not
cequivalent to the server identifier SERVER__ID. The server
identifier SERVER__ID 1s fixed and unique across the net-
work system. Context identifiers are determined when the
server 1S booted and are only unique within a single server.

In a preferred embodiment, the context record includes a
variable OP__MODE which indicates the operational state
and execution location of its associated server process. In the
embodiment shown i FIG. 6, operational state variable
OP_MODE may take on one of the following wvalues:

FO_MODE__START, FO_ MODE_UNKNOWN,
FO_MODE_NORMAL, FO_MODE__FAILED,
FO__MODE_ FAIL_OVER, and FO_MODE_STOP. An
operational state OP_ MODE value of FO_MODE__
START indicates that the local or remote server 1s starting
up, typically at bootup. An operational state OP_ MODE
value of FO_ MODE__UNKNOWN indicates that the
operational state of the remote server is unknown (i.e.,
communication could not be established with the remote
server). An operational state OP__MODE value of

FO MODE NORMAL. indicates that the local or remote

10

15

20

25

30

35

40

45

50

55

60

65

3

server 1s operating normally. An operational state value of
FO__MODE__FAILED indicates that the remote server has
failed and its network services are being provided by another
remote server. An operational state value of FO_ MODE__
FAIL__OVER indicates that the remote server has failed and
its network services are being provided by the local server.
An operational state value of FO_ MODE__STOP indicates
that the local server i1s shutting down normally or going
off-line due to a hardware failure.

The valid operational state values and transitions differ for
local and remote contexts. FIG. 7 1llustrates a state diagram
of the operational state transitions for a local server (i.e., the
local server associated with the context). As shown, a local
server may assume fail-over operational state values of
FO_MODE_START, FO_ MODE_NORMAL, and
FO__MODE__STOP. The operational state transitions and
transition conditions for each state are presented below 1n
tabular format.

ILocal Context Transitions

New Local

Context Mode: On Condition:

From FO__ MODE_START Mode:

FO_MODE_NORMAIL When local server is providing its
own file services.
When the local server 1s shutting

down or has failed.
From FO__MODE_NORMAIL Mode:

FO__MODE__STOP

FO_MODE__STOP When the local server is shutting

down or has failed.
When the remote server sends a
reboot or halt message to the local
server indicating 1t 1s ending
normal operations.

From FO__MODE__STOP Mode:

When the local server 1s reset or
rebooted.

When the local server receives a
synchronization message from a
remote server that has completed a
reboot at the completion of a
reboot, halt, or resume operation.

FO_NODE_ START

FO_MODE__NORMAL

The transition between the FO__MODE_NORMAL
FO__MODE_STOP are initiated by reboot, halt, and syn-
chronization messages. All other transitions to the

FO MODE STOP state are the result of conditions on the

local server such as a detected failure or an operator
requested reboot or halt. The transition between the
FO_MODE_STOP and FO_MODE__START 1s the

implicit transition that occurs on system startup. All transi-
tions from the FO__ MODE__START are predicated on the
state of the local and remote servers at the time of system
startup.

FIG. 8 1llustrates a state diagram of the operational state
transitions for a remote server (1.€., a remote server associ-
ated with the context). As shown, a remote context may

assume operational state OP_MODE values of
FO_MODE_START, FO_MODE_UNKNOWN,

FO_MODE_ NORMAL, FO__MODE_ FAILED,
FO__MODE_ FAIL__OVER, and FO_MODE__STOP. The

operational state transitions and transition conditions for
cach state are presented below in tabular format.

3,996,086

Remote Contect Transitions

New Remote

Context Mode: On Conditions:

From FO__MODE__START Mode:

FO__MODE__ NORMAL When remote server 1s providing its

own file services.

When another remote server 1s
providing fail-over services for the
falled remote server.

When the local server 1s providing
fail-over services for the failed
remote server.

When the local and remote server are

unable to establish communications.
From FO__MODE_NORMAIL Mode:

FO__MODE_ FAILED

FO_MODE_ FAILOVER

FO__MODE__UNKNOWN

When another remote server initiates
fail-over services for a failing
remote server.

When the local server initiates
fail-over services for a failing
remote server.

When the local server 1s shutting
down or has failed.

When the remote server sends a
reboot or halt message to the local
server indicating it 1s ending
normal operations.

From FO_MODE__FAILED Mode:

FO_MODE_ FAILED

FO__MODE_ FAILOVER

FO_MODE_ STOP

When another remote server
terminates fail-over services for a
repaired remote server.

When the local server 1s shutting

down or has failed.
From FO MODE FAILOVER Mode:

FO_MODE_NORMAL

FO_MODE_ STOP

When the local server terminates
fail-over services for a repaired
remote server.

When the local server 1s shutting
down or has failed.

From FO__MODE_UNKNOWN Mode:

FO_MODE__NORMAL

FO_MODE_ STOP

When the local and remote server
establish communications.

When another remote server initiates
fail-over services for a failing
remote server.

When the local server initiates
fail-over services for a failing
remote server.

When the local server 1s shutting

down or has failed.
From FO__MODE_STOP Mode:

FO_MODE__NORMAL

FO_MODE_ FAILED

FO_MODE_ FAILOVER

FO_MODE__STOP

When the local server 1s reset or
rebooted.

When the local server receives a
synchronization message from a
remote server that has completed a
reboot at the completion of a
reboot, halt, or resume operation.

FO_MODE__START

FO__MODE__NORMAL

The transitions between the FO__MODE NORMAL,
FO_MODE_ FAILED, FO_MODE__FAILOVER, and
FO__MODE UNKNOWN states are 1nitiated upon the

receipt of failed, fail-over, and resume messages. The tran-
sition between the FO__ MODE_NORMAL FO__MODE__
STOP are mitiated by reboot, halt, and synchronization
messages. All other transitions to the FO_ MODE__ STOP
state are the result of conditions on the local server such as

a detected failure or an operator requested reboot or halt. The
transition between the FO_MODE__STOP and

FO__MODE__START 1s the implicit transition that occurs

10

15

20

25

30

35

40

45

50

55

60

65

10

on system startup. All transitions from the FO_ MODE__
START are predicated on the state of the local and remote
servers at the time of system startup. In the current
embodiment, only the transition between FO__MODE__
UNKNOWN and FO_MODE_ FAILOVER 1s imple-
mented. A simplification for a two server environment

eliminates the FO MODE FAILED state.

It will be appreciated from the above discussion that one
distinct advantage of the method of the present invention 1s
its ability to provide failover services in a redundant server
network system by modifying only a minmimal amount of
existing server code. As described previously, a server
process 1s typically implemented with a plurality of threads
that each perform particular functions. In a typical server
process, a vast majority of server threads perform functions
that do not require knowledge of, or awareness of, different
contexts of the server. Accordingly, these types of threads
are preferably implemented as context-dumb threads which
ogenerally require no code modification at all. An illustrative
example of threads that may be implemented as context-
dumb are all of the NFS file serving processes performed at
the network layer by Sun Microsystem’s commonly used
Network File Server (NFS) communications protocol. In
this system, I/O requests are received at the transport layer,
which 1s implemented using either a transport control pro-
tocol (TCP/IP) or a user datagram protocol (UDP/IP). An
identifier for the I/O request 1s set at this layer, based on the
requesting client and requested server, at the time the request
1s received. The I/0 request 1dentifier indicates which con-
text the server process must be 1n to perform the request. The
I/0O request and associated 1dentifier are handed off to NFS
threads executing at the network layer which perform the
data access functions. Each NFES thread performs its par-
ticular data access function using the 1/O request 1dentifier
without being aware of the context that the server processor
must operate 1n to perform the I/O request. Because the NEFS
file server threads are unaware of contexts, they are prefer-
ably implemented as context-dumb processes and thus the
existing NFS code may remain unchanged.

Context-aware 1mplementation 1s only required for
threads that access resources with specific usage constraints.
An 1llustrative example of such a thread 1s a thread that maps
ports 1n a system that implements the transport layer using
a UDP/IP communications protocol. As known by those
skilled 1n the art, an attempt to bind more than one process
to a single UDP port 1s 1llegal under UDP/IP. Accordingly,
this thread 1s required to be context-aware.

Some types of functions require a thread to have knowl-
cdge of the context the server process 1s operating in. These
functions may be implemented as either context-aware or
context-specific threads. The decision on whether or not to
modify the implementation of a particular thread 1s a tradeoft
between performance and memory utilization. Accordingly,
when performance 1s critical, a thread that utilizes configu-
ration information may be implemented as a context-speciiic
or context-dumb thread rather than a context-aware thread.
[llustrative examples of context-specific threads may be a
failover thread that activates a failover context for a remote
falled server, initialization threads that are executed at
bootup, and backup scheduling processes for systems in
which different servers share a common backup storage
device and thus require the different servers to communicate
with each other to negotiate scheduling conflicts.

3,996,086

11

From the above discussion, it 1s clear that to afford as little
modification to existing server process code as possible,
most threads are preferably implemented as either context-
dumb or context-specific threads.

As will be appreciated from the description of the mnven-
fion presented herein, an improved method for providing
fallover services 1n a redundant server network system may
be achieved using a context-based failover architecture.
While 1llustrative and presently preferred embodiments of
the invention have been described 1n detail herein, 1t 1s to be
understood that the inventive concepts may be otherwise
variously embodied and employed and that the appended
claims are intended to be construed to 1nclude such varia-
fions except 1nsofar as limited by the prior art.

What 1s claimed 1s:

1. In a redundant server network system comprising a
local server and a remote server belonging to a common
failover group, a method for providing failover services for
sald remote server if said remote server fails, said method
comprising the steps of:

creating and initializing a local server context based on
local server configuration information associated with
said local server that 1s stored on a first storage device;

activating said local server context;
becoming aware of a failure of said remote server;
acquiring a second storage device;

reading remote server configuration information associ-
ated with said remote server that i1s stored on said
second storage device;

creating and 1nitializing a failover context based on said
remote server conflguration information read from said
second storage device;

activating said failover context; and

executing a server process on said local server which
operates on, and makes decisions based upon, activated
ones of said local server context and said failover
context.

2. The method of claim 1, wheren:

said server process comprises a context-aware process
coniigured to switch between each of said activated
ones of said local server context and said failover
context.

3. The method of claim 1, further comprising the step of:

starting up a failover context-specific process for said
fallover context on said survivor server when said
fallover context 1s activated, said failover context-
specific process configured to operate on said failover
context.

4. The method of claim 1, wherein:

said server process comprises a context-dumb process
configured to be unaware of said plurality of contexts.
5. The method of claim 1, comprising the step of:

reading from a non-volatile storage device a location in
said second storage device from which to read said
failed server specific configuration information.
6. A network system for providing failover services for
redundant servers, comprising:

a remote server coupled to a first storage device which
stores remote server specific configuration information
assoclated with said remote server;

a local server coupled to a first storage device which
stores local server specific configuration nformation
assoclated with said local server, said local server
having ability to acquire said first storage device and to
read said remote server configuration information;

10

15

20

25

30

35

40

45

50

55

60

65

12

a local server process comprising:
an 1nitialization process for creating a local context
based on said local server configuration information
and a remote context based on said remote server
configuration information, and for activating said
local server context; and
a failover process for acquiring said first storage device,
reading said remote server specific configuration
information, creating and initializing a failover
context, and activating said failover context when
said local server 1s to provide failover services for
said remote server;
said local server process executing on said local server
by operating on, and making decisions based upon,
activated ones of said local server context and said
fallover context activated ones of said local context
and said remote context.
7. The system of claim 6, comprising:

a non-volatile storage device comprising a first variable
which indicates a location of said remote server specific
conflguration information on said first storage device.

8. The system of claim 7, wherein:

said non-volatile storage device comprises a second vari-
able which indicates a location of said local server
specific configuration information on said second stor-
age device.

9. The system of claim 6, wherein:

said remote server serves shared files on said first storage
device; and

said failover process 1s configured to cause said shared
files to be served by said local server.
10. The system of claim 9, wherein:

said failover process starts up a failover context-specific
process for said remote context on said local server,
said failover context-specific process confligured to
operate on said remote context.

11. The system of claim 6, wherein:

said server process comprises a context-dumb process,
said failover context-dumb process being configured to
be unaware of said local context or said remote context.
12. A server process for providing failover services 1 a
redundant server network system, said network system
comprising a local server and a remote server belonging to
a common failover group, said local server coupled to a first
storage device which stores local server specific configura-
tion information and said remote server coupled to a second
storate device which stores remote server specific configu-
ration 1nformation, said server process executing locally on
said local server, said server process comprising;:

an 1nitialization process for creating a a local server
context based on said local server speciiic configuration
information stored on said first storage device, and for
activating said local server context; and

a failover process for acquiring said second storage
device, reading said remote server specific configura-
tion information from said second storage device, cre-
ating and 1nitializing a failover context based on said
remote server specific configuration information, and
activating said failover context when said local server
1s to provide failover services for said remote server;
and

and execution process which cycles through, operates on,
and makes decisions based upon, activated ones of said
local server context and said failover context.

13. The server process of claim 12, wherein:

said failover process starts up a failover context-specific
process for said remote context on said local server,

3,996,086
13 14

said failover context-specific process configured to 15. The server process of claim 12, further comprising;:
operate on said f3119ver context. . a context-dumb process configured to be unaware of said
14. The system of claim 13, further comprising: local context and said faillover context.

a context-dumb process configured to be unaware of said
local context and said faillover context. £ % % k%

	Front Page
	Drawings
	Specification
	Claims

