US005995999A
United States Patent .9 111] Patent Number: 5,995,999
Bharadhwaj 45] Date of Patent: Nov. 30, 1999
[54] NAMING SYSTEM FOR HIERARCHICALLY pertinent pp. 180-192.
NAMED COMPUTER ACCESSIBLE | _ _
OBJECTS Brent Welch et al., “Prefix Tables: A Simple Mechanism for
Locating Files 1n a Distributed System,” Internat. Conf. on
[75] Inventor: Rajeev Bharadhwaj, Aurora, Colo. Dist. Comp. Sys., IEEE, May 19-23, 1986, pp. 184—189,
tinent pp. 184-186.
| 73] Assignee: Fujitsu Limited, Japan pEHIELE PP

21] Appl. No.: 08/815,748

22| Filed: Mar. 12, 1997

51] Int. CLO o, GoO6k 13/14
52] US.Cl o, 709/200; 709/303; 710/120
58] Field of Search 395/200.3, 683,
395/300; 709/200, 303; 710/120

[56] References Cited

U.S. PATENT DOCUMENTS
5,325,524 6/1994 Black et al.cccceeveeirnnnnnene 395/600
5,408,619 4/1995 Oran et al. .ccuveeeeeveeeeinnnnnnnene. 395/325
5,577,252 11/1996 Nelson et al. ..cccovvvvvveeernnnnn.n. 395/670
5,701,484 12/1997 AILSY ceeeeeeieeirieeneneeneeneeneeeeees 395/683
5,727,145 3/1998 Nessett et al.cceeeeeeeeernnnnene. 395/186
5,822,569 10/1998 McPartlan et al. 395/500
5,826,010 10/1998 Joseph et al. ..cccoovvevrvvrveeveennnens 395/186
FOREIGN PATENT DOCUMENTS

0661652 7/1995 European Pat. Off. GOol 17/30

OTHER PUBLICAITTONS

Brent Welch, “A Comparison of Three Distributed File
System Architectures: Vnode, Sprite, and Plan 97, Comput-
ing Systems, vol. 7, No. 2, Jan. 1, 1994, pp. 175-199,

Primary Examiner—/arn1 Maung,

Assistant Examiner—Saleh Najjar
Attorney, Ageni, or Firm—Carr & Ferrell LLP

[57] ABSTRACT

A naming system for resolution of hierarchically named
computer accessible objects to respective object identifiers.
The naming system includes a global namer module which
1s 1nstantiated on multiple systems. Resolution of a hierar-
chical name begins at a first instance of the global namer
module. The first instance resolves one or more successive
portions of the hierarchical name to a respective object
identifier(s). If the hierarchical name cannot be completely
resolved at the first instance, the hierarhcial name 1s for-
warded to a second instance which 1s referenced by an object
identifier 1dentified by the {first mstance. Resolution then
continues at the second 1nstance, and possibly at additional
instances of the global namer module, until the last portion
of the hierarchical name 1s resolved to an object identifier.
The object 1dentifier 1s then returned as that of the entire
hierarchical name.

21 Claims, 12 Drawing Sheets

Hierarchical Name Get name, access _1d 10 be resolved
to Object
Resolution Processing]IKU-;/ 1104 ¢
Name, access_id \Y
in Name Cache? /
1106

~ >

Resolve names in Name Map until hierarchical name
is resolved or an external Global Namer is identified

1108 l
Name \ l . Add Client_id to object in
Resolved? / Y Client Map
5 R

1110

1126
External \ N {
\Z Global Namer? / ERRDR)’\
1114 lY 1112
k’\

Add preccding Global Namer, succeeding Global Namer,
and Object-path to the External Namer Map

1118 l
Update node-path and forward the hierarchical name
and the poinl of continued resolution tn the

hierarchical name 1o the external Global Namer

ST

Return node-path and object identifier to client program

S

l
(END)

Add hierarchical object name and node-path:
object 1dentifier to the Name Cache

5,995,999

Sheet 1 of 12

Nov. 30, 1999

U.S. Patent

}¢01

WAISAG
I2WeN

[EQO[D

—
2011

Jualfo 01 p1122lqo EEE@

4y/3/ JO UOIIN{OSAT PANUIIU0D J0) 15a0bay @

WIISAQ
9L

—

WISAQ
JU9l[)

U/3/1/9/p/ JO UOIIN[0OS3I PAaNULIUOD IO] ;@sgm@

-— — U/3/1/2/p/2/q/:® }O UOIIN[OS3T 10] ;msgme
WAISAQ —
1 JouweN wayskg “\./U.Wo— wa1sAs |
o~ 124019 | JusL[) ®00) —~—
a0t | _
W _ Q@mﬂ\ W cO0L}
WaISAS \./\
Euﬂ_./\. 19AIAG Wwa)skg
| 1owepN
A% [2qO]D)
4/3/1/3/P/3/q/® 0¢| W3ISAQ
10210q0 19A13¢
WI)SAS JIAIIG —
WIISAG
V0 | U310
SUOI}22UU0Y \/\0
YI0MIAU-13)U] 10l @
090 | ¢
L~/
801 WaSAG
i ual)
\H\.
290 '

U.S. Patent Nov. 30, 1999 Sheet 2 of 12 5,995,999

110
-~
Global Namer System
206
Name Map
Client Map A
. . 210
Global Object Description Table
Namer 119
Module Address Zone Map
| | 214
202 Pending Cache Flush Map
External Namer Map 210
I B . _
Fig. 2
302
Hierarchical object name, access_1d Node-path: object 1dentifier

Name Cache

Fig. 3

U.S. Patent Nov. 30, 1999 Sheet 3 of 12 5,995,999

206

“

{namel, object identifier}), [name2], access_id Object 1dentifier

I

— |

Name Map

Fig. 4

208

d

Object 1dentifier Client 1dentifier list

|—-—— N
~ Client Map

Fig. 5

U.S. Patent Nov. 30, 1999 Sheet 4 of 12 5,995,999

210

.

Object identifier Object Attributes

e

~[Object Description Table

Fig. ©

212

,/

Address Range Node Name

Address Zone
Map

e

Fig. 7/

U.S. Patent Nov. 30, 1999 Sheet 5 of 12 5,995,999

214

Client Node

Pending :I ,

T Cache Flush Map

Fig. 8

216
Object /
[dnetifier Preceding Namer Succeeding Namer Object Path List

|]

&

External Namer Map

I R

¢

Fig. 9

U.S. Patent Nov. 30, 1999 Sheet 6 of 12 5,995,999

Add Object

Processing

vy

. f . | l 1002
I Input name of object and list of associated access_1ds

. | 1004
Create unique object_id
' Add name of object, list of associated access_1ds 1006

|
l—

and object_id to the Name Map L~/
T I
. . . 1008
Add object to Object Description Table L~

End

Fig. 10

U.S. Patent Nov. 30, 1999 Sheet 7 of 12 5,995,999

Hierarchical Name - Get name, access_1d to be resolved

to Object b— - —ﬁ——‘
Resolution Processing 1104

1102

Name, access_1d
in Name Cache?

Resolve names in Name Map until hierarchical name
is resolved or an external Global Namer is 1dentified | l

1108 ‘ - -

Name Add Chlient_1d to object 1n
Resolved? Client Map
R 1126
External N |
ERROR
Global Namer?
1114 lY 12
Add preceding Global Namer, succeeding Global Namer,
and Object-path to the External Namer Map
L — I — I—
1116

M~ Y

Update node-path and forward the hierarchical name
and the point of continued resolution in the
hierarchical name to the external Global Namer

1118 f_—.—
l Ret

urn node-path and object 1dentifier to client program

1120

Add hierarchical object name and node-path:
object identifier to the Name Cache

—T . I — -
(END)

Fig. 11

U.S. Patent Nov. 30, 1999 Sheet 8 of 12 5,995,999

Fig. 12A
Object Fig. 12B
Deletion/Renaming _
Processing Fig. 12
1202
Check External Namer Map for object referencing
L_ external Global Namers

1204

1226
External N Build client identifier list
Global Namers? / from Client Map
Y

Send the object_id to all referencing external Global Namers

1206

1208

External Global Namers examine External Namer Map for match
of preceding node entry; for all objects in the

object-path, send the client identifier list and
the list of external Global Namers to the root Global Namer

1210

External Global Namers send the object 1dentifier to other external
Global Namers referencing the object_id

1212 I
-~
Root Global Namer waits for client 1dentitier list
from all external namers
Root Global Namer sends message to flush cache to all clients 1214

in the client identifier list r\/
1214p '

vrv Figure 12A

U.S. Patent Nov. 30, 1999 Sheet 9 of 12 5,995,999

1214p
v 1216
All clients)

respond with flush?

N 1218
A

Send list of non-responsive clients to external Global
Namers which returned client 1dentitier lists

1220
L _ " L /\/

External Global Namers add clients 1n list of
non-responsive clients to the Pending Cache Flush Maps

I
-t —————— oo
— v - 00000 1222

Delete/rename object in Name Map, Client Map, —
and Object Description Table

I S — 1224

Remove all entries in External Namer Map where the L~
object_id appears in the object path list

€D

Fig. 12B

U.S. Patent

N
i

Nov. 30, 1999

Sheet 10 of 12

5,995,999

In

o - 206ba
Name, access_1d Object 1dent1fiel/
N
/b, access_1d 01
Name Map of ~_ First Global Namer N
fc, 01, access_id 02 (gn2/x) |
Fig. 13A
L 206Db
N

/d, /x, access_1d 03
e, 03 access_id
_ T—
Name Map of Second Global Namer

/f, 04, access_id 05
I
Fi1g. 13B
N i
| /g, ly, access_1d
L N
i
/h, 06 07
I .

(gn3/y)

— 1

206
/ ,-\,C

]

Fig. 13C

Name Map of T Third Global Namer :l ,.

U.S. Patent Nov. 30, 1999 Sheet 11 of 12 5,995,999

2106a
\)bject_id Preceding Namer Succeeding Namer Object Path List
i

N
02 \ 0 | Second Global Namer a:/b,01/¢,02

|

External Namer Map of First Global Namer

— ¢

Fig. 14A

216b

First Global Namer Third Global Namer x/d,03/e.04

External Namer Map of Second Global Namer

| J N

Fig. 14B

U.S. Patent Nov. 30, 1999 Sheet 12 of 12 5,995,999

208a

\ Object Identitier Client Identifier List
T T

07 First Client System: Application

~L :L
Client Map of Third Global Namer

) _ By

Fig. 15

2042 | | |
Hierarchical object name, | |
']:\ access 1d Node-path: object_i1d T

a:/b/c/d/e/t], access_1d - enl, gn2, gn3: 07

S R S —

Name Cache of Requesting Client System

T 0 .__ iy

Fig. 10

3,995,999

1

NAMING SYSTEM FOR HIERARCHICALLY
NAMED COMPUTER ACCESSIBLE
OBJECTS

CROSS-REFERENCE TO CO-PENDING
APPLICATTONS

This application 1s related to the co-pending patent appli-
cations: “A SYSTEM AND METHOD FOR EXECUTION
MANAGEMENT OF COMPUTER PROGRAMS” which

was filled on Dec. 30, 1996 by Rajeev Bharadhwaj applica-
fion Ser. No. 08/778,213 which 1s pending; and “A COM-

MUNICATIONS SYSTEM FOR CLIENT-SERVER DATA
PROCESSING SYSTEMS” which was filed on Mar. 12,
1997 by Rajeev Bharadhwaj application Ser. No. 08/815,742
which 1s pending, both assigned to the assignee of the
present 1invention, and both of which are hereby incorpo-
rated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1nvention generally relates to client-server
type data processing systems, and more particularly to a
system for naming objects which are made accessible via
Server systems.

2. Description of Background Art

Usage of client-server type data processing systems con-
finues to icrease. Client-server systems offer flexibility in
the distribution of processing tasks between various systems
on a network.

Server systems host server programs that provide services
to client programs. Oftentimes, the term object 1s used to
refer to services and/or data referenced by a client program.
For a client program to gain access to an object, it must
know the identity of the server system hosting the server

program which provides access to the object, as well as the
identifier of the object.

The client program may be programmed to directly ref-
erence the object (via the server system 1dentifier and object
identifier). However, this means that if the referenced object
1s moved and thereby hosted by a different server system, the
client program must be modified to reference the different
server system. If there are many client programs which
reference the object, each of the programs would have to be
modified. Thus, the seemingly simple act of moving an
object to a different server system could actually result 1in a
major effort to update the client programs.

In response to such a problem, the Domain Name Service
(DNS) was created. The DNS introduces a level of indirec-
tion 1nto the addressing of an object. The service maps a
logical name of a service to an Internet Protocol (IP)
address, thereby eliminating the requirement for a client
program to remember the address. Note that the logical
name of a service oftentimes refers to the logical nature of
the service or data. Thus, 1t 1s desirable for the name to
remain relatively static. With DNS, the client program need
only remember the logical service name. Thus, the service
can be moved to a machine having a different IP address
without requiring nofification to the clients. Only the DNS
needs to be notified of the change.

With the growth of the Internet, distributed naming ser-
vices have become popular. Systems adhering to distributed
naming protocols, e.g., Lightweight Directory Access Pro-
tocol (LDAP), offer replication of naming services, thereby
distributing the naming services at multiple sites on the
Internet. The availability of the naming services at multiple

10

15

20

25

30

35

40

45

50

55

60

65

2

sites offers protection against disaster 1n addition to relieving
processing bottlenecks.

Present naming services are typically implemented under
cither a multiple-master naming service architecture or a
single-master naming service architecture. In both types of
architectures a master naming service system 1s the only
system that can effect a change. Both types of architectures
can have multiple slave systems, and the slave systems
duplicate the changes forwarded from the master systems. In
the multiple-master naming service architecture, there are
multiple master naming service systems, and a name and
address may be added at any one of the master naming
service systems. The master system at which a name 1is
added propagates the addition to each of the other master
naming service systems and to the slave systems.

In contrast, the single-master naming service architecture
has multiple slave naming service systems and a single
master naming service system. A name may be added only
at the master system, which then propagates the addition to
cach of the slave naming service systems.

Both the multiple-master naming service architecture and
the single-master naming service architecture require a
protocol for maintaining consistency. That 1s, each of the
naming service systems must have identical mappings.
When a mapping 1s added to a master naming service
system, the mapping must be added to either the other
master naming service systems or the slave naming service
systems, depending upon the architecture type. With respect
to the multiple-master naming service architecture, each of
the master naming service systems must be consistent with
the others; and in the single-master naming service
architecture, the master naming service system must make
consistent each of the slave naming service systems. Main-
taining consistency between the naming service systems
involves extra complexity 1n implementation and additional
overhead processing when names are added and close con-
nections between the master systems and slave systems.

Both the multiple-master naming service architecture and
the single-master naming service architecture have multiple
replicated databases of the mappings. Thus, the architectures
may be viewed as having multiple centralized databases. A
drawback to a centralized database 1s that a bottleneck may
develop at the system hosting the database. Thus, even
though the replicated databases are distributed throughout a
network, the number of client systems assigned to each of
the naming service systems must be monitored to provide
adequate response time.

Thus 1t would be desirable to have a naming service which
1s not a subject to the limitations of multiple-master or
single-master type naming service architectures.

SUMMARY OF THE INVENTION

The present invention 1s a naming system for hierarchi-
cally named computer accessible objects. The system pro-
vides an economical mechanism for creating new hierarchi-
cal names and for resolving hierarchical names of computer
objects to unique object identifiers. The 1nvention uses
multiple instances of a global namer module for distribution
of mappings of portions of hierarchical names to object
identifiers. The system resolves an 1nput hierarchical name
of an object to an object 1dentifier. To resolve the hierarchi-
cal name, each of the instances of the global namer module
has mappings of portions of hierarchical object names to
object 1dentifiers. When a request 1s infitiated to, for
example, a first instance of the global namer module, the first
instance resolves successive portions of the hierarchical

3,995,999

3

name until either the end of the hierarchical name 1s reached
and an object i1dentifier 1s 1dentified, or a portion of the
hierarchical name maps to an object 1dentifier which refer-
ences a second 1nstance of the global namer module. If a
second instance of the global namer module 1s referenced,
the hierarchical name 1s forwarded to the second 1nstance for
continued resolution. The process continues until the last
portion of the hierarchical name 1s resolved to an object
identifier, which is the final object identifier. The final object
identifier 1s then returned as the object identifer for the input
hierarchical name.

New objects may be economically added to the naming
system by adding at a predetermined one of the instances of
the global namer module a mapping of the new object, as
logicially identified by a portion of a hierarchical name, to
its object 1dentifier. The mapping need only be added at one
instance of the global namer module. Because other
instances of the global namer module do not need to be
apprised of the added object, the present invention elimi-
nates the synchronization processing required by prior art
master-slave naming service architectures, thereby saving
fime.

These and other advantages of the invention will become
apparent upon review of the drawings and accompanying
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of inter-networked computer
systems 1n which object 1dentification services are provided
by multiple global namer systems;

FIG. 2 1s a block diagram of a global namer system;

FIG. 3 1s a table that illustrates the content of a name
cache;

FIG. 4 1s a table
FIG. 5 1s a table

FIG. 6 1s a table that illustrates the content of an object
description table;

that 1llustrates the content of a name map;

that 1llustrates the content of a client map;

FIG. 7 1s a table that illustrates an address zone map;
FIG. 8 1s a table that 1llustrates a pending cache flush map;
FIG. 9 1s a table that illustrates an external namer map;

FIG. 10 1s a flowchart of the processing performed in
adding an object to a global namer module;

FIG. 11 1s a flowchart of the processing for resolving an
input hierarchical name to an object 1dentifier;

FIG. 12 shows the relationship between FIGS. 12A and
12B, the combination of which contains a flowchart of the
processing for deleting or renaming an object within a global
namer module;

FIGS. 13A—C 1illustrate the respective name maps of the
global namer systems for the example described 1n FIG. 1;

FIGS. 14A-B 1llustrate respective external namer maps of

the global namer systems for the example described along
with FIG. 1;

FIG. 15 1llustrates a client map of a global namer system

in an example which 1s a modified version of the example of
FIG. 1; and

FIG. 16 1llustrates a name cache of the client system for
the example described 1n FIG. 1.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of inter-networked computer
systems 1n which object 1dentification services are provided
by multiple global namer systems. Client systems 102a—f

10

15

20

25

30

35

40

45

50

55

60

65

4

forward requests for services from client programs (not
shown) to various ones of the server systems 104a—c. The
client systems 102¢—f and server systems 104a—c are respec-
tively coupled to network segments 106a—c, and the network
secgments are inter-connected as 1llustrated by the inter-
network connections 108.

The global namer systems 110a—c are used by programs
which are hosted by the client systems 102a—f. The global
namer systems 110a—c host respective instances of a global
namer module which collectively resolve references 1n the
form of hierarchical logical names to physical names. The
“hierarchical logical names” reference various types of
objects which are accessible to the programs. The types of
objects may include data files such as Hyper-Text Markup
Language files (HTML), server programs such as would be
hosted by the server systems 104a—c, and domain arrays,
domain array elements, and domain ports as described 1n the
cross-referenced co-pending patent applications. The physi-
cal names will hereinafter be referred to as “object 1denti-
fiers” and will refer to a unique 1dentifier for directly
referencing the object referenced by the hierarchical logical
name.

An example of the resolution of a hierarchical logical
name, a:/b/c/d/e/t/e/h, to 1ts physical name 1s illustrated 1n
FIG. 1. At step 1, a client program hosted by client system
1024 1ssues a request to global namer system 110a to resolve
the name of object a:/b/c/d/e/t/g/h. It 1s assumed that global
namer system 110a 1s assigned as a root global namer to
client system 102a. The root global namer 1s the first one of
oglobal namer systems 110a—c to which a client system
102a—f 1ssues a hierarchical logical name for resolution. The
oglobal namer system 110a resolves components a:, /b, and /c
of the logical name. The component /c resolves to global
namer system 1105, and at step 2, a request 1s forwarded to
oglobal namer system 1105 for continued resolution of the
remainder of the logical name, 1.e., /d/e/t/g/h.

Global namer system 1105 receives the entire logical
name a:/b/c/d/e/f/g/h and continues resolution at /d. The
components /d, /e, and /I are resolved to global namer
system 110c by global namer system 110b. At step 3, the
logical name 1s forwarded to global namer system 110c for
resolution of /g/h. Global namer system 110c resolves the
remainder of the logical name to server system 104¢ and the
block 120 labeled as a:/b/c/d/e/t/g/h. An object 1dentifier 1s
used to 1dentify the server system 104¢ in combination with
block 120. The object identifier may be used by the client
program hosted on client system 1024 to reference the object
a:/b/c/d/e/t/g/h. Global namer system 110c¢ returns the object
identifier to client system 102a as shown by line 4.

FIG. 2 1s a block diagram of a global namer system 110.
Global namer systems 110a—c are exemplary ones of global
namer 110. Global namer 110 1s a conventional data pro-
cessing system whose hardware resources may be config-
ured according to processing requirements of the system.
The global namer module 202 is software which 1s hosted by
the global namer system 110. The global namer module 202
uses the name map 206, client map 208, object description
table 210, address zone map 212, pending cache flush map
214, and external namer map 216 to resolve a logical name
of an object.

The name map 206 maps an mput logical name and
access__1d, or a portion of an input logical name, to an object
identifier.

The client map 208 maps all client objects for a server
object. For example 1 FIG. 1, a client program hosted by
client system 1024 1s mapped to the object a:/b/c/d/e/t/g/h.

3,995,999

S

The client map 208 1s used to 1dentity which client systems
102a—f have cached references to objects so that if the
address of the object changes, the client systems can be
informed to flush their caches.

The object description table 210 describes the type of 5

object identified by an object identifier. As stated above,
objects may be data files such as Hyper-Text Markup
Language files (HTML), server programs such as would be
hosted by the server systems 104a—c, and domain arrays,
domain array elements, and domain ports as described 1n the
cross-referenced co-pending patent applications.

The address zone map 212 maintains a map of address
ranges and node names. The address zone map 1s used 1n

updating the various maps 206—216 when objects are deleted
and renamed.

A list of client systems 102a—f where a cache flush 1s
pending 1s maintained 1n the pending cache flush map 214.
If a client system 102a—f does not respond after a global
namer system 110a—c sends a request to flush the cache, an

identifier for the non-responding client system 1s added to
the pending cache flush map 214. When a non-responding
client system 102a—f once again initiates contact with a
oglobal namer system 110, the global namer module 202
checks the pending cache flush map 214 for the client
system. If the client system 1s 1dentified, the global namer
module 202 sends a cache flush request to the client system.

The external namer map 216 maintains a list of succeed-
ing nodes encountered 1n resolving a logical name of an
object to 1ts object 1dentifier. Also maintained are an object
path list (from the name map 206) for the global namer
module 202 and a preceding global namer from which a
logical name was forwarded. The external namer map 1s
used 1n deleting and renaming objects.

FIG. 3 1s a table that illustrates the content of a name
cache 302. The name cache 302 is used to map an 1nput
hierarchical logical name of an object to an object identifier.
Caching object identifiers reduces the need to resolve logical
names through multiple global namer systems 110a—c. In the
example of FIG. 1, client system 102a caches the mapping
of a:/b/c/d/e/t/g/h to 1ts associated object 1dentifier which 1s
returned from global namer system 110c.

Each entry 1n the left-hand column 1n the table includes an
hierarchical object name and an access_ 1d. The hierarchical
object name 1s a logical name which the global namer
module 202 resolved to an object 1dentifier. The access__ 1d
1s an 1dentifier submitted by a client program making a
request for the object having the hierarchical object name.

In the example of FIG. 1, the hierarchical object name 1s
a:/b/c/d/e/t/e/h. The access_1d 1s that of the client program
which made the request. For example, the access__ 1d would
be of the form client_id:process 1d. The corresponding
node-path:object 1dentifier would be global namer 1104,
oglobal namer 1105, global namer 110c:object identifier,
where object 1dentifier 1s the address of the named object.

FIG. 4 1s a table that 1llustrates the content of name map
206. The name map 206 maps an mnput logical name and
access__1d, or a portion of an input logical name, to an object
identifier. The name map 206 1s used where the input logical
name 1S not present in the name cache 302.

Entries 1n the left-hand column of the name map 206 are
of the form {namel, object identifier }[name2], access_ id.
The defined syntax indicates that either namel and an object
identifier, or namel alone, or an object identifier alone 1is
required, and additional names may optionally follow, des-
ignated as name2. The access_1d 1s a required second part
of the entry. If the access__1d 1s 0, then 1t 1s assumed to be
a wild card for all objects with the name portion.

10

15

20

25

30

35

40

45

50

55

60

65

6

A name 15 assumed to be hierarchical and without loops.
That 1s, the name 1s assumed to be a directed acyclic graph.
A name can have multiple components where a component
may be any one of the following object types: data files,
domain array, domain group, or a domain port. Components
of a name are separated by a character in the set, {, % / }.

There are three variations 1n mapping a name using the
name map 206. Aname in the name map 206 can be mapped
to another name for a particular access_ 1d. Aname-to-name
mapping may return a new access_ 1d. A subcomponent of
a name can be a system call, domain array, domain group,
or a domain port, and for these types an operation must be
performed to obtain a new name and access__1d pair. The last
variation may be used for authentication of access_ ids.
Those skilled 1n the art will recognize that the name map 206
could be structured in alternate ways to achieve the same
basic objective.

FIG. 5 1s a table that 1llustrates the content of client map
208. The client map 208 maps all client objects for a server
object where access to the object 1s provided by the global
namer system. For example in FIG. 1, a client program
hosted by client system 1024 1s mapped to the object
a:/b/c/d/e/t/g/h, if hypothetically, the global namer system
110c¢ provides access to the object 120 mstead of server
system 104c¢. The client map 208 1s used to 1dentify which
client systems 1024—f have cached references to objects so
that if the address of the object changes, the client systems
can be informed to flush their caches.

Each entry 1n the left-hand column of the client map 208
contains an object 1dentifier which has been referenced by a
client program hosted by a client system 102a—f. Each
corresponding entry in the right-hand column contains a
client 1dentifier list. The client 1identifier list 1s a list of client
system:process__1d pairs, each i1dentifying a client system
102a— and a client program hosted thereon.

FIG. 6 1s a table that illustrates the content of object
description table 210. The object description table 210
describes the type of object 1identified by an object identifier.
As stated above, an object may be data files such as
Hyper-Text Markup Language files (HTML), server pro-
orams such as would be hosted by the server systems
104a—, and domain arrays, domain array elements, and
domain ports as described 1in the cross-referenced
co-pending patent applications.

FIG. 7 1s a table that illustrates address zone map 212. The
address zone map 212 maintains a map of address ranges to
node names. Because the object 1dentifiers may be repre-
sented as addresses, the address zone map 212 may be used
to quickly identily the node on which a object may be
referenced given an object identifier.

FIG. 8 1s a table that 1llustrates pending cache flush map
214. A list of client systems 102a—f where a cache flush 1s
pending 1s maintained i1n the pending cache flush map 214.
If a client system 102a—f does not respond after a global
namer system 110a—c sends a request to flush the cache, the
non-responding client system 1s added to the pending cache

flush map 214.

FIG. 9 1s a table that 1llustrates external namer map 216.
The external namer map 216 maintains a list of succeeding
nodes encountered 1n resolving a logical name of an object
to 1ts object 1dentifier. Also maintained are an object path list
(from the name map 206) for the global namer module 202
and a preceding global namer from which a logical name
was forwarded. The external namer map 1s used 1n deleting
and renaming objects.

Each entry 1n the Object 1dentifier column of the external
namer map 216 contains an object identifier. A correspond-

3,995,999

7

ing entry in the Preceding Namer column indicates the
identification of the global namer system 110a—c from which
a request to resolve a logical name was forwarded. A
corresponding entry 1n the Succeeding Namer indicates
which global namer system 110a—c a request to resolve a
logical name was forwarded for resolution. The final entry
assoclated with an object identifier 1s an object path list
entry. An object path list entry contains a list of pairs of
name/object identifier where the list indicates the object
identifiers to which names were resolved 1n the global namer

module 202.

FIG. 10 1s a flowchart of the processing performed in
adding an object to a global namer module 202. The global
namer module 202 receives as input a name of an object and
a list of associated access__1ds at step 1002. The access_ 1ds
indicate which programs have access to the object. At step
1004, a unique object 1dentifier 1s created to address the
object. The object 1dentifier 1s used to address and uniquely
identify the named object. The object 1dentifier 1s unique as
between the nodes 1 the address zone map 212 because
there 1s no overlap 1n the address ranges 1n the address zone
map.

The name of the object, access__1ds, and associated object
identifier are added to the name map 206 at step 1006. At
step 1008, the object 1s added to the object descriptor table
210.

FIG. 11 1s a flowchart of the processing for resolving an
input hierarchical name to an object identifier. When a
non-responding client system 102¢—f once again initiates
contact with a global namer system 110, the global namer
module 202 checks the pending cache flush map 214 for the
client system. If the client system 1s 1dentified, the global
namer module 202 sends a cache flush request to the client
system. At step 1102, a hierarchical name and an access_ 1d
to be resolved are received as imnput. The client system, e.g.,
102a—f, first looks for the paired “hierarchical name,
access_ 1d” 1n the name cache 302. If the pair 1s not present
in the name cache 302, decision step 1104 directs control to
step 1106. Step 1106 successively resolves names within the
hierarchical name from left-to-right until the entire hierar-
chical name 1s resolved or an external global namer system
110a—c 1s 1dentified. Decision step 1108 tests whether the
hierarchical name was resolved to an object 1dentifier. It not,
control 1s directed to decision step 1110. Decision step 1110
tests whether part of the hierarchical name resolved to an
external global namer system 110a—c. If not, control 1is
directed to step 1112 to address an error condition.
Otherwise, control 1s directed to step 1114.

When part of a hierarchical name resolves to an external
global namer system 110a—c, step 1114 updates the external
namer map 216. Step 1114 adds the identifier of the global
namer system 110a—c which forwarded the hierarchical
name for resolution to the external namer map 216, if the
oglobal namer module 202 1s not the root global namer
module. Note that the root global namer module 202 is the
oglobal namer module which was the global namer module to
which the request for resolution was 1nitiated. Global namer
modules 202 other than the root global namer module are
referred to as external global namers. Step 1114 also adds an
identifier for the external global namer to which the hierar-
chical name resolved 1n the external namer map 216. The
object 1dentifier 1s also added to the external namer map 216.

At step 1116, the global namer module 202 updates a
node-path. The node-path contains a list of the global namer
systems 110a—c which were visited in resolving a hierarchi-
cal name. The hierarchical name and the position i1n the

5

10

15

20

25

30

35

40

45

50

55

60

65

3

hierarchical name at which the succeeding global namer 1is
to begin resolution are then forwarded to the succeeding
oglobal namer. Succeeding global namers then perform the
processing set forth in FIG. 11 and the global namer module
waits for resolution from the succeeding global namer(s).

After step 1116, the succeeding global namer returns an
object 1dentifier. At step 1118, the node-path and object
identifier are then returned to the client program hosted by
the client system 102¢—f from which the request was initi-
ated. The node-path 1s returned to the client system 102a—,
and the node-path 1s used by the client system in flushing
entries from 1ts name cache 302. Without the node-path, an
incorrect entry could be removed from the name cache 302
in flushing entries. The name cache 302 at the client system
102a— 1s updated at step 1120. Specifically, the hierarchical
name of the object and the corresponding node-path:object
identifier are added to the name cache 302. Thereafter,
processing 1s complete.

Returning now to decision step 1108, when a global
namer module 202 resolves a hierarchical name to an object
identifier, control 1s directed to step 1126. Step 1126 adds the
client_1d of the client program which 1nitiated the request to
the client identifier list of the appropriate object 1n the client
map 208. Control 1s then directed to step 1118, and process-
ing continues as described above.

Returning now to decision step 1104, if the mnput name,
access_ 1d are present 1 the name cache 302, control 1s
directed to step 1126, and processing continues as described
above.

FIG. 12 shows the relationship between FIGS. 12A and

12B, the combination of which contains a flowchart of the
processing for deleting or renaming an object within a global
namer module 202. Deletion or renaming 1s selected based
upon a selected function input to the global namer. The
oglobal namer module 202 at which deletion or renaming
processing 1s 1nitiated 1s referenced as the root global namer.
At step 1202, the root global namer module 202 checks the
external namer map 216 for global namers 1n the succeeding
namer entries which correspond to the input object identifier.
If there are external global namers, decision step 1204
directs control to step 1206. Step 1206 sends the input object
identifier to the external global namers identified 1n step

1202.

In receiving an 1nput object identifier, at step 1208 an
external global namer searches 1ts external namer map 216
for entries 1n which the preceding node matches that from
which the request was made. For those 1dentified entries, all
objects 1n the object-path of the entry have their associated
client identifier lists (from the client map 208) and lists of
external global namers (from associated succeeding namers
of the external namer map 216) sent to the root global namer.
At step 1210, the external global namer sends the object
identifier to other external global namers referencing the
object identifier (as described in steps 1202—1206). The root
oglobal namer, at step 1212, waits for client 1dentifier lists
from all external global namers.

At step 1214, the root global namer module sends mes-
sages to all client systems 102a—f which are 1dentified 1n the
client 1dentifier lists returned from the external global nam-
ers. The messages indicate which of the client systems
102a— should flush their respective name caches 302.
Control 1s then directed via path 1214p to step 1216.

After a predetermined period of time, decision step 1216
tests whether all client systems 1dentified 1n step 1214 have
responded to the request to flush their respective caches. It
not, control 1s directed to step 1218 where a list of non-

3,995,999

9

responsive client systems 102a—f 1s sent to each of the
external global namers which returned a client 1dentifier list.
At step 1220, each of the external global namers adds to the
pending cache flush map 214 idenfifiers for each of the
non-responsive client systems from step 1218.

The root global namer, at step 1222, deletes or renames
the object identifier in each of name map 206, client map
208, and object description table 210. At step 1224, the root
oglobal namer deletes all entries 1n the external namer map
216 where the object identifier appears 1n the object path list
for the deleted or renamed object 1dentidier.

Returning now to decision step 1216, if all client systems
102a—f respond affirmatively that their name caches 302
have been flushed, control 1s directed to step 1222 and
processing continues as described above.

In decision step 1204, 1f there are no external global
namers 1dentified as succeeding namers in the external
namer map 216, control i1s directed to step 1226. A client
identifier list 1s built from the client map 208 at step 1226.
Processing then continues at step 1214 as described above.

FIGS. 13A-C-FIG. 16 are illustrative of name maps
206a—c, external namer maps 216a—b, a client map 208a,
and a name cache 302a which result from the example
described 1n FIG. 1. Recall that client system 102a requests
resolution of a:/b/c/d/e/t/g/h by global namer system 110a.

FIG. 13A 1llustrates the name map 206a of global namer
system 110a, FIG. 13B 1illustrates the name map 2065 of
oglobal namer system 110b, and FIG. 13C illustrates the
name map 206c of global namer system 110c. The entries 1n
the left-hand column consist of name, access_ 1d pairs, as
described in FIG. 4, and the entries in the right-hand column
consist of corresponding object identifiers. Note that no
exemplary values are shown for the various access_ 1ds.

The names /b and /c are resolved 1n name map 206a of
oglobal namer system 110a. The name /b resolves to the
object 1d O1, and the paired name, object identifier /c, O1
maps to O2. Note that O2 maps to global namer system
110b, designated as (gn2/x). Because O2 maps to global
namer system 11056, global namer system 110a forwards the
hierarchical name a:/b/c/d/e/t/g/h along with the point of
continued resolution to global namer system 1105. Note that
global namer system 1105 continues resolution at /d, and /x
1s also forwarded to identify the proper name, object 1den-
fifier pair.

The name map 2065 of FIG. 13B 1illustrates the resolution
of the hierarchical name which 1s accomplished by the
oglobal namer system 110b. The names /d, /e, and /f are
resolved by the global namer system 110b. The name /d,/x
resolves to object O3, the pair /e,03 resolves to object 04,
and the pair /£,04 resolves to object O5, which 1s a reference
to external global namer system 110b, i.c., (gn3/y).

The name map 206c of FIG. 13C 1illustrates the resolution
of the hierarchical name which i1s accomplished by the
oglobal namer system 110c¢. The names /g and /h are resolved
by the global namer system 110c. The pair /g,/y resolves to
object 06, and the pair /h,06 resolves to object O7, which
1s the object 1dentifier to which the hierarchical name

a:/b/c/d/e/t/e/h 1s finally resolved.

FIG. 14A illustrates the external namer map 216a of
oglobal namer system 110a, and FIG. 14B illustrates the
external namer map 216b of global namer system 1105 for
the example described along with FIG. 1. The external
namer map 216a of the first global namer system 110a
contains an entry for the object O2. Because the first global
namer system 110a 1s the root global namer system for the
request to resolve a:/b/c/d/e/t/e/h, the preceding namer entry

5

10

15

20

25

30

35

40

45

50

55

60

65

10

for the object O2 1s null. The succeeding namer 1dentifies the
second global namer system 1105 because a:/b/c resolved to
object O2, and object O2 references the second global namer
system 110b. The object path list contains a list of the names
within the mnput hierarchical name and the objects to which
the names were resolved 1n the first global namer system
110a. The object path list of external namer map 216a

contains a:/b,01/c,02.

The external namer map 216b of the second global namer
system 110b contains an entry for the object O5 Because the
second global namer system 1100 received a request for
continued resolution from the first global namer system
1104, the preceding namer entry for the object O2 references
the first global namer system 110a. The succeeding namer
identifies the third global namer system 110c because a:/b/
c/d/e/f resolved to object O5, and object O5 references the
third global namer system 110c¢. The object path list contains
a list of the names within the input hierarchical name and the
objects to which the names were resolved. The object path
list of external namer map 2165 contains x/d,03/¢,04.

FIG. 15 illustrates a client map 208a of global namer
system 110c¢ for the example described in FIG. 1, where the
example 1s modified such that global namer system 110c
provides access to the object O7 instead of server system
104¢. The final resolution of the hierarchical name a:/b/c/
d/e/t/g/h 1s to object O7. Because the request for resolution
of the hierarchical name was 1nitiated from a client program
hosted by client system 1024, that client program and client
system 102a are 1dentified in the client identifier list. Thus,
if for example, object O7 1s moved from global namer
system 110c to server system 1044, the client system 1024
can be informed to flush its cache so that client system 1024
does not have a cached reference to object O7 on global
namer system 110c.

FIG. 16 1llustrates a name cache 3024 of the client system
1024 for the example described 1n FIG. 1. Recall that a name
302 maps a paired hierarchical name and access 1d to a
node-path:object identifier. In the example of FIG. 1, the
hierarchical name a:/b/c/d/e/t/e/h and access_1d were
resolved through global namer systems 1104, 1105, and 110c¢
to object O7. Thus, the paired node-path:object 1dentifier 1s
onl,on2,on3:07.

The exemplary embodiments described herein are for
purposes of illustration and are not intended to be limiting.
Theretfore, those skilled 1 the art will recognize that other
embodiments could be practiced without departing from the
scope and spirit of the claims set forth below.

What 1s claimed 1s:

1. Amethod for resolving a hierarchical object name to an
object 1dentifier, said name being received from an origi-
nating client system which 1s associated with an originating
name cache and is running an originating client program,
said method comprising the steps of:

resolving the hierarchical object name to the object 1den-
tifier at a global namer 1n a chain of global namers
including a root global namer;

returning the object 1dentifier and a node-path containing
a list of global namers which were visited 1n resolving,
the hierarchical object name, to the originating client
program; and

adding the hierarchical object name, the node-path, and

the object identifier to the originating name cache.

2. The method of claim 1 further comprising the step of
using the hierarchical object name and a list of associated
access 1dentifiers for looking-up in the originating name
cache.

3,995,999

11

3. The method of claim 2 wherein the step of resolving at
a root global namer comprises the further step of adding a
client i1dentifier to a client map associated with the root
oglobal namer.

4. The method of claim 3 wherein 1n the step of resolving,
if the object identifier 1s at a global namer which 1s not a root
oglobal namer, then the step of resolving further comprises
the steps of:

identitying a preceding global namer which forwarded the

hierarchical object name to a current global namer,
which 1s resolving the hierarchical name, and to a
succeeding global namer which will receive the hier-
archical object name from the current global namer;

adding the preceding global namer, the succeeding global
namer, and an object path to an external namer map
(NAMER MAP S) associated with the current global

namer;

forwarding the hierarchical object name and the point of
continued resolution 1n the hierarchical object name to
the succeeding global namer; and

updating the node-path.

5. The method of claim 4 comprising the further step of
a global namer (NAMER X)), upon receiving a contact from
a client system, requesting the client system to flush 1its

cache if the client system 1s identified 1n a pending cache
flush map (CACHE FLUSH MAP X) associated with the

NAMER X.
6. The method of claim 5 further comprising the steps of:

the client system flushing its cache; and

the NAMER X deleting an entry associated with the client
system from the CACHE FLUSH MAP X.
7. A method for adding an object (OBJECT A) to a global

namer (NAMER A), comprising the steps of:
maintaining a pending cache flush map;

receiving an object name and a list of associlated access

identifiers indicating programs having access to the
OBJECT A;

creating an object identifier for identifying the OBJECT
A; and

adding the object name, the list of associated access
identifiers, and the object identifier to a name map
assoclated with the NAMER A.

8. The method of claim 7 comprising the further step of
adding the object to an object description table associated
with the NAMER A.

9. The method of claim 8 comprising the further step of
a global namer (NAMER X), upon receiving a contact from
a client system, requesting the client system to flush 1its
cache if the client system 1s identified 1n a pending cache

flush map (CACHE FLUSH MAP X) associated with the
NAMER X.

10. The method of claim 9 further comprising the steps of:
the client system flushing its cache; and

the NAMER X deleting an entry associated with the client
system from the CACHE FLUSH MAP X.

11. A method for updating an object corresponding to an
object identifier in a root global namer (NAMER ROOT U)

assoclated with a root external namer map, a root client map,
a root name map, and a root object description table,
comprising the steps of:

checking the root external namer map for one or more
succeeding external global namers (NAMERS U) cor-
responding to the root object 1dentifier;

if no NAMER U 1s 1dentified in the root external namer
map then building a list of client identifiers (LIST U)
from the root client map;

10

15

20

25

30

35

40

45

50

55

60

65

12

flushing respective caches associated with client systems
identified 1n the LIST U;

updating the object 1n the root client map, 1n the root name
map, and 1n the root object description table; and

deleting all entries 1n the external namer map where the

object 1dentifier appears in an updating object path list.

12. The method of claim 11 comprising the further step of
building the LIST U from at least one NAMER U 1f the at
least one NAMER U is 1dentified 1n the root external namer
map.

13. The method of claim 12 comprising the further step of
sending a list of non-responding systems to a NAMER U
which returns client identifiers.

14. The method of claim 13 further comprising the step of
a global namer (NAMER X) maintaining in a pending cache
flush map (CACHE FLUSH MAP X) a list of client systems
having a pending cache flush.

15. The method of claim 14 comprising the further step of
the NAMER X, upon receiving a contact from a client
system, requesting the client system to flush its cache if the
client system 1s 1dentified in the CACHE FLUSH MAP X.

16. The method of claim 15 further comprising the steps
of:

the client system flushing its cache; and

the NAMER X deleting an entry associated with the client
system 1n the CACHE FLUSH MAP X.

17. The method of claim 15 comprising the further step of,
in response to a non-responding system, adding an entry
assoclated with the non-responding system to the CACHE
FLUSH MAP X.

18. The method of claim 17 wherein the step of updating
1s selected from a group consisting of deleting and renaming
the object.

19. The method of claim 18 comprising the further step of
sending the object 1dentifier to the at least one NAMER U.

20. The method of claim 19 further comprising the steps

of:

an external global namer (NAMER U1) of the at least one
NAMER U searching its external namer map for entries
in which preceding external namers match the object
identifier;

cach object 1n an object-path corresponding to the

matched entries sending 1ts list of client identifiers and
list of external global namers to the NAMER ROOT U;

the NAMER U1 sending the object identifier to external
oglobal namers referencing the object 1dentifier; and

the external global namers sending their client identifier
lists to the NAMER ROOT U.

21. A computer-readable medium comprising program
Instructions for causing a computer to resolve a hierarchical
object name to an object 1dentifier, said name being received
from an originating client system which 1s associated with
an originating name cache and 1S running an originating,
client program, by performing the steps of:

resolving the hierarchical object name to the object 1den-
fifier at a global namer 1n a chain of global namers

including a root global namer;

returning the object identifier and a node-path containing
a list of global namers which were visited 1n resolving,
the hierarchical object name, to the originating client
program; and

adding the hierarchical object name, the node-path, and
the object identifier to the originating name cache.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

