US005991705A
United States Patent (19] 11] Patent Number: 5,991,705
Klein et al. 451 Date of Patent: Nov. 23, 1999
[54] END-TO-END RESPONSE TIME 5,068,814 11/1991 Stark et al. .
MEASUREMENT FOR COMPUTER 5,412,803 5/1995 Bartow et al. ...cccoovvveevvvnnnnne, 709/230
PROGRAMS USING STARTING AND ggggggg 2332 gﬁeﬂ c ﬂi- -
,006, 1 en et al. .
ENDING QUEUES 5,511,185 4/1996 Weinbaum et al. .
|75] Inventors: Paul K. Klein, Thousand Oaks, Calif ; g’gég’;gg 3/2“996 Elliott et al. .
: 553, /1996 Chen et al. .
Raymond P. Ammerman, I1l, Raleigh, 5.717,745 2/1998 Vijay et al. oovvvvvvvvevrevecrsrsen 379/112
N.C. 5,802,302 9/1998 Waclawsky et al. ..c.vvenee..... 702/176
5,872,976 2/1999 Yee €t al. eevoveueeeeereeeeeerennee. 395/704
73] Assignee: Candle Distributed Solutions, Inc.,
Santa Monica, Calif. Primary Examiner—Krisna Lim

Attorney, Agent, or Firm—Gates & Cooper

[21] Appl. No.: 08/899,195 [57]

[22] Filed: Jul. 23, 1997

ABSTRACT

A method, apparatus, and article of manufacture for mea-

51] Imt. CLS oo G04F 10/00; GO6F 13/00 suring end-to-end response time for a transaction performed
52] U.S. Cl o 702/176; 702/182; 709,233 by a computer is disclosed. The method comprises the steps
58] Field of Searchooovvvvoovvo. 702/176, 182; Ol monitoring a start queue and an end queue in a computer,
N 709/233 assigning a start time when a first message 1s received at the

start queue, assigning a stop time when a second message,

[56] References Cited

sent 1n response to the first message, 1s received at the end

queue, and subtracting the start time from the stop time to

U.S. PATENT DOCUMENTS
4,868,785 9/1989 Jordan et al. .

calculate an end-to-end response time.

4,930,093 5/1990 Houser et al. ...coeveevevnevnnennnnne. 702/186 18 Claims, 3 Drawing Sheets
100
f <
110
r 8 [102
118 (APPLICATION a
| MONITOR . ‘SERVER
PROGRAM
P
AP
4 r~ Y
INBOUND OUTBOUND
QUEUE QUEUE
114 116
106\ 7 104
108
/’_
- 4
MONIT
KEYBOARD ONITOR |

U.S. Patent Nov. 23, 1999 Sheet 1 of 3 5,991,705

_

HEIE

FI1G. 1

O
-
—

AR

104
- .
—_—
JHIATHRRE]

‘IOO\

5,991,705

Sheet 2 of 3

Nov. 23, 1999

U.S. Patent

¢ Ol

dydv
dOLINOW O8AIA
J
~ s01 90l
40)" ————
9l l Pll ‘
. dN3INO _ JNIANO
ANNOY1No Dz:Omz_L
A
)
————— _
1817 NVHO0dd |
ddAH3dS HJOLINOW
201 ZO_._.<O_._&m<\ gLl
cll |\ OLL L
001

5,991,705

U.S. Patent Nov. 23, 1999 Sheet 3 of 3
WAIT FOR A
MESSAGE TO 120
TRAVERSE A
MESSAGE QUEUE
| 199 | :‘ 124
INBOUND 4
MESSAGE . > SAMPLE CLOCK
FOR START TIME

QUEUE?

126

128
[_

OUTBOUND
MESSAGE
QUEUE?

SAMPLE CLOCK
FOR END TIME

~— 130

CALCULATE

RESPONSE
TIME

5,991,705

1

END-TO-END RESPONSE TIME
MEASUREMENT FOR COMPUTER
PROGRAMS USING STARTING AND
ENDING QUEUES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to computer hardware and
software, and more particularly to an end-to-end response
fime measurement for computer programs.

2. Description of Related Art

In today’s environment, 1t 1s common for desktop com-
puters to run many different local and/or network applica-
fions simultancously. Within such computing environments,
it 1s not unusual for one application to execute significantly
slower than other applications. Further, 1t 1s not uncommon
for the operation of one application to seriously 1impact the
performance of other applications on the computer. As a
result, the user may have to wait an 1mordinate amount of
fime for applications to respond. Obviously, the wait time
experienced by a user 1s directly related to that person’s
productivity and business opportunity.

It can be difficult for the user to determine the perfor-
mance of individual applications, based only on their
observable behavior. For example, a user may be unable to
reliably detect whether abnormal performance for a specific
application 1s the result of operations performed by that
application, or whether it i1s the result of the impact from
another application, or whether it 1s the result of the perfor-
mance of a remote system. Further, since each application
may be able to perform many different kinds of processing,
the user may have no idea that certain requests have sig-
nificantly worse performance. Thus, there 1s a need 1n the art
for technmiques that allow the performance of various appli-
cations to be accurately and automatically measured.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a method,
apparatus, and article of manufacture for measuring end-to-
end response time for computer programs.

The method comprises the steps of detecting start and end
fimes of a transaction, storing the start and end times 1n a
memory of a computer, and subtracting the start time from
the end time to calculate an end-to-end response time.

Various advantages and features of novelty which char-
acterize the invention are pointed out with particularity in
the claims annexed hereto and form a part hereof. However,
for a better understanding of the invention, its advantages,
and the objects obtained by 1ts use, reference should be made
to the drawings which form a further part hereof, and to
accompanying descriptive matter, in which there 1s 1llus-
trated and described specific examples 1n accordance with
the 1nvention.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings i which like numbers
represent similar features throughout:

FIG. 1 illustrates an exemplary hardware environment
that could be used to implement the preferred embodiment
of the present invention;

FIG. 2 1s a block diagram that illustrates the various
software components of the present invention; and

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 1s a flow chart illustrating the steps used in the
present 1vention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference 1s made to the accompanying drawings which
form a part hereof, and in which 1s shown by way of
illustration the specific embodiment 1n which the mvention
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural and functional changes
may be made without departing from the scope of the
present 1nvention.

Hardware Environment

FIG. 1 1llustrates an exemplary hardware environment
that could be used to implement the preferred embodiment
of the present invention. The exemplary hardware environ-
ment may include, inter alia, a client computer 100 and/or a
server computer 102 connected to the client 100. Both the
client 100 and server 102 generally include, inter alia, a
processor, random access memory (RAM), read only
memory (ROM), a monitor 104, data storage devices, data
communications devices, etc. The client 100 and server 102
may also include data mput devices such as a mouse
pointing device 106 and a keyboard 108. Of course, those
skilled 1n the art will recognize that any combination of the
above components, or any number of different components,
peripherals, and other devices, may be used with the client
and/or server.

The client 100 and the server 102 each operate under the
control of their respective operating systems, such as
0S/2™_ Windows NT, UNIX, MVS, ctc. The respective
operating systems of the client 100 and server will also
control the operation of any computer programs executed by

the client 100 and the server 102.

The present invention comprises a monitoring function
that 1s preferably implemented by one or more computer
programs executed by the client 100. Generally, these com-
puter programs are tangibly embodied in or readable from a
computer-readable medium or carrier, €.g., one or more of
the fixed and/or removable data storage data devices and/or
data communications devices attached to the client or the
server. These computer programs comprise Instructions
which, when read and executed by client 100, cause the
client 100 to perform the steps necessary to execute the steps
or elements of the present invention.

Those skilled 1n the art will recognize that the exemplary
environment 1llustrated 1in FIG. 1 1s not intended to limit the
present 1nvention. Indeed, those skilled in the art waill
recognize that other alternative hardware environments may

be used without departing from the scope of the present
invention.

Monitoring Functions

The computer program that implements the monitoring,
functions of the present invention (referred to as the “moni-
tor program”) uses standard “hooks” in the operating system
to monitor the message queues used to communicate com-
mands and/or data sent by other computer programs
(referred to as “applications” herein) to and from other
entities, such as the graphical user interface (GUI) compo-
nent provided by the operating system, hardware devices, or
other computers. Keeping track of the messages traversing
these message queues, by application, provides the basis for
measuring an application’s end-to-end response time.

5,991,705

3

The message queues are monitored for certain message
types to 1nitiate, update, and/or end a measured end-to-end
response time between a user interaction with the client 100,
an operation performed by an application, and the resulting
display of data on the monitor 104 of the client 100. Such
message types may include messages that indicate mouse
movements, pressing mouse 106 buttons, keyboard 108
operations, window creations, window “painting”, or other
device functions.

For example, message types relating to mouse 106 clicks,
depressing the ENTER key, window creation in the GUI,
and other window or device events 1n the GUI may be used
o 1nitiate or start the monitoring function. Similarly, mes-
sage types relating to mouse 106 clicks, window “painting”
or updates in the GUI, window destruction in the GUI, and
other window events in the GUI may be used to update or
end the monitoring function. The resulting measured end-
to-end response time between these events comprises per-
formance data that may be dynamically displayed for the
user (e.g., as timing measurements are initiated or updated)
and/or stored for later reporting and analysis.

In the preferred embodiment of the present invention, the
operating system provides the ability for the monitor pro-
oram to examine the content of messages on a given
message queue. This interface 1s provided through an Appli-
cation Program Interface (API) provided by the operating
system. To compute an application’s end-to-end response
fime, the monitor program 1ssues the appropriate API call
and registers itself as a listener of all messages 1n a queue.
Thereafter, any messages that traverse the queue are also
presented to the monitor program.

When the monitor program receives notification of an
inbound message to the application (usually generated as a
result of a mouse 106, keyboard 108, window event, or other
device event), the monitor program samples the value of a
clock to mark the beginning of a transaction. Thereafter, the
application also receives the inbound message and begins 1ts
processing. When processing by the application 1s complete,
an outbound message 1s generated from the application.
When the monitor program receives notification of the
outbound message from the application, the monitor pro-
oram again samples the value of a clock to mark the ending
of the transaction. The difference between the sampled time
values associated with the inbound and outbound messages
1s the end-to-end response time for the application.

However, an application can and frequently does generate
multiple outbound messages as part of its processing.
Moreover, between these outbound messages, the applica-
fion can conftinue to perform its processing associated with
a transaction. Because of this, 1t becomes hard to determine
the true end of the application’s processing, which 1s needed
to accurately measure the end-to-end response time. So, in
order to be sure the monitor program has captured the entire
processing time of the transaction, the end-to-end response
fime 1s always reported as the difference 1n time between
receipt of the i1mbound message and the last outbound
message generated by the application. If multiple outbound
messages are generated before another inbound message 1s
received, then the end-to-end response time 1s updated
multiple times to reflect the difference in time between the
inbound message and the last-received outbound message.

Software Components

FIG. 2 1s a block diagram that illustrates the various
software components of the present invention. The client
100 includes a monitor program 110, application 112,

10

15

20

25

30

35

40

45

50

55

60

65

4

inbound message queue 114, and outbound message queue
116. Although only one application 112 1s shown 1n FIG. 2,
many applications 112 could be running simultaneously and
the monitor program 110 would collect data for each i1nde-
pendently. Further, there may be multiple queues 114 and
116 that can be monitored.

The monitor program 110 registers its interest 1n seeing,
messages on the inbound message queue 114 and outbound
message queue 116 by 1ssuing an API call to the operating
system (called WinSetHook 1n OS/2 and similarly named in
Windows NT). The API call provides for the creation of
“clones” of messages and the transmission of these clones to
computer programs registered with the operating system.
Once this API call 1s made, the monitor program 110 1s ready
to recerve all messages sent to and from the application 112.

User mput via the mouse 106 or keyboard 108 1nitiates a
request (also called a transaction) for information that causes
the operating system to create an mmbound message that 1s
sent to the inbound message queue 114. Similarly, the
operating system 1itself can also generate inbound messages
in response to “window” or other device events, that are also
sent to the 1bound message queue 114. Once a message
arrives at inbound message queue 114, it 1s “cloned” and
sent to the monitor program 110 before being sent to the
application 112.

To start the monitoring function, the monitor program 110
takes note of the inbound message, such as a mouse 106 or
keyboard 108 or “window event” message, by sampling the
current time value of a clock function provided by the client
100 and labeling this as the “start time” for the transaction.
The application 112 then processes the mmbound message,
which may, for example, result 1n the generation of a request
to the server 102, which 1s also transmitted as a message
through the outbound message queue 116. The server 102
processes the request and then returns the results back to the
application 112 as a message via the inbound message queue
114. When the processing by the application 112 1s
completed, 1t generates an outbound message, such as a
“window paint” message, which 1s sent to the outbound
message queue 116.

The monitor program 110 receives a “clone” of each
outbound message, because 1t 1s registered to see messages
on outbound message queue 116. The monitor program 110
takes note of the outbound “window paint” message by
again sampling the current time value of the clock function
provided by the client 100 and labeling this as the “end time™
for the transaction. The time difference between the “end
time” and the “start time” comprises the measured end-to-
end response time for the entire transaction (which may
include the interaction between the client 100 and server 102
as illustrated above).

Depending on how the application 112 1s constructed, it
may still continue to process data after the first outbound
“window paint” message 1s sent to outbound message queue
116. The monitor program 110 continues to monitor for
outbound “window paint” messages from application 112
sent to the outbound message queue 116 and updates the
end-to-end response time accordingly. More speciiically,
upon notification of subsequent outbound “window paint”
messages, before receipt of another inbound mouse 106 or
keyboard 108 or window event message, the monitor pro-
oram 110 updates the response time using the sampled time
assoclated with the last outbound “window paint” message
as the “end time” of the transaction.

In addition to monitoring end-to-end response time for a
specific application 112, the monitor program 110 can also

5,991,705

S

monitor end-to-end response times for client-server requests
(as described above) or for multiple windows associated
with a specific application. For example, if the application
112 includes multiple windows, the monitor program 110
can identify the name (i.e., title) given each window and
their associated mbound and outbound mouse or keyboard
or window event messages.

Detailed Control Flow and Message Recording,
Method

In the preferred embodiment, the response time informa-
fion obtained by the present mnvention is stored 1n a double
linked, circular list 118, although other data structures may
be used as well. When all the list 118 entries are used up, the
list 118 will “wrap” or start to re-use oldest list 118 entries
first. In addition, the list 118 may be written to a data storage
device, so no loss of information occurs.

The analysis and reporting of response time measure-
ments goes through three basic conversation points: 1nitiate,
update and terminate. These conversation points use differ-
ent messages and message queues to obtain the information.
A discussion of these conversation points follows.

For example, a response time measurement of an appli-
cation that interacts with the GUI component of the oper-
ating system may be initiated by monitoring the immbound
message queue for one of the following message types:

Window Create
Mouse Button 1 Down

Enter Key

Button Activation

As a message 1s examined, its process 1d (pid), thread 1d
(tid), message queue handle (msgq) and session id (sessid)
are determined through standard API functions provided by
the operating system. If the message 1s one of the above, the
list 118 1s searched backwards to find an active list 118 entry
with the corresponding pid, tid and msgqg. An active entry 1s
defined as a list 118 entry that has been 1nitiated but not yet
marked closed.

If an active entry 1s found with a matching pid, tid and
msgq, and the message 1s a “window create” message, the
window handle 1s saved if the sessid indicates that 1t 1s a
title-bar window. This will be used later to determine the title
of the window or the transaction name. Next, the message 1s
discarded and a return to the operating system 1s executed.
If an active entry 1s found with a matching pid, tid and msgq,
and the message 1s not a “window create” message, the list
118 entry 1s marked closed and no new timings are reported
for that list 118 entry. At this point, a new list 118 entry 1is
initiated. The executable file name of the application 112 and
the time are determined and stored away 1n the list 118 entry
along with the pid, tid and msgg.

Similarly, a response time measurement of an application
that interacts with the GUI component of the operating
system may be updated by monitoring the outbound mes-
sage queue 116 for message types:

Window Paint

If the message being examined on the outbound message
queue 1s a “window paint” message, the list 118 1s searched
for an active entry with a matching pid, tid and msgg. When
found, the current time value 1s obtained and subtracted from
the time wvalue the transaction started. Next, the text 1s
queried from the title bar window handle to get the name of
the transaction. Thereafter, the transaction’s executable file
name, pid, tid, start time, current elapsed time, and trans-
action name may be displayed by the monitor program 110.

An application 112 may receive any number of “window
paint” messages during the course of a transaction. The

10

15

20

25

30

35

40

45

50

55

60

65

6

present 1nvention provides a dynamic update mechanism
that automatically reports the information each time a “win-
dow paint” message 1s encountered for a given active
application 112. Also note that the present invention will
report on any number of active applications 112 that may or
may not be executing simultaneously.

Finally, a response time measurement of an application
that interacts with the GUI component of the operating
system may be terminated or closed by monitoring the
inbound message queue 114 for one of the following mes-
sage types:

Mouse Button 1 Down

Mouse Button 2 Down

When either of the above messages are encountered on
the 1nbound message queue 114, the list 118 1s searched for
a matching pid, tid and msgq. If found, the entry 1s marked
closed and no new timings will be reported for that list 118
entry. This mechanism must be used to close the transaction
since 1n a message-driven GUI environment, there 1s no
message that indicates that the transaction has finished
updating or painting the window displayed by the GUI
component of the operating system.

When the list 118 entry 1s marked closed, the last reported
timing from an update or “window paint” message 1S not
altered, so the true transaction response time 1s not atfected
by this user interaction. If the user triggered a Mouse Button
1 Down, then 1n some cases this will be seen on the
outbound message queue 116 and a new response time
measurement will be initiated for the window or application
112 1n focus. If the user triggered a Mouse Button 2 Down,
then no new response time measurement will be 1nitiated.

In addition to the scenario described above, client/server
applications, such as the Netscape web browser, can be
monitored to provide a means of “bracketing” transactions
in a more automated fashion, particularly when the appli-
cation’s response time measurement 1s started and stopped.

In this situation, the enabling and disabling of the Stop
button window displayed by the Netscape web browser may
serve as the transaction 1nitiation and termination i1dentifiers,
respectively. This allows the user to discern the difference
between the retrieval of information from the Internet (this
is the true response time) and the display of the information,
once downloaded from the Internet, on the monitor 104,
which may continue indefinitely for some web sites.

The response time measurement 1s 1nitiated by monitoring,
the outbound message queue 116 for the Stop button win-
dow 1d and the Window Enable message. When the above
situation 1s encountered, a new list 118 entry 1s initiated as
described above. In addition, message tratfic between the
Netscape web browser and the server 102 may also be
monitored.

The updating of the transaction response time for the
Netscape web browser 1s the same as the generic update
method described above. The response time measurement 1S
terminated by monitoring the outbound message queue 116
for the Stop button window 1d and the Window Daisable
message. When the above situation 1s encountered, the list
118 entries are searched for an active matching pid, tid and
msgq. When found, a final time value 1s recorded and the
response time 1s updated with this last time delta, thereby
providing the true response time of the targeted web site.
The list 118 entry 1s then marked closed and Netscape
message tratfhic recording 1s disabled.

Logic

FIG. 3 1s a flow chart 1llustrating the logic of the present
invention. Block 120 represents the monitor program 110

5,991,705

7

wailting for a message to traverse either the inbound or
outbound message queue. Block 122 is a decision block that
represents the monitor program 110 determining whether the
message traversed the inbound message queue. If so, control
transfers to Block 124 which represents the monitor program
110 sampling a time value from a clock for the start time.
Thereafter, control transfers back to Block 120. Block 126 1s
a decision block that represents the monitor program 110
determining whether the message 1s traversing the outbound
message queue. If so, control transfers to Block 128 which
represents the monitor program sampling a time value from
the clock for the in time and Block 130 which represents the
monitor program 110 calculating the response time.
Thereafter, control transfers back to Block 120.

Conclusion

The foregoing description of the preferred embodiment of
the mnvention has been presented for the purposes of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the 1nvention to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. It 1s intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.

What 1s claimed 1s:

1. A method for measuring end-to-end response time for

a transaction performed by a computer, comprising the steps
of:

monitoring a start queue and an end queue 1n a computer;

assigning a start time when a first message 1s received at
the start queue;

assigning a stop time when a second message, sent 1n
response to the first message, 1s received at the end
queue; and

subtracting the start time from the stop time to calculate
an end-to-end response time.
2. The method of claim 1, further comprising the steps of:

updating the stop time when a third message, sent 1n
response to the first message, 1s received at the end
queue; and

subtracting the start time from the stop time to calculate

the end-to-end response time.

3. The method of claim 1, wherein the end-to-end
response time 1s calculated for a plurality of computer
programs executed by the computer.

4. The method of claim 1, wherein the end-to-end
response time 1s calculated for a plurality of windows
displayed by a computer program executed by the computer.

5. The method of claim 1, wherein the second message 1s
selected from a group comprising a window create message,
a mouse button 1 down message, an enter key message, and
a button activation message.

6. The method of claim 1, wherein the first message 1s a
window paint message.

7. A computerized apparatus for measuring end-to-end
response time for a transaction performed by a computer,
comprising:

a computer;

a start queue and end queue in the computer, the start
queue and the end queue containing messages;

a start time, assigned to a first message when the {first
message 15 received at the start queue;

10

15

20

25

30

35

40

45

50

55

60

3

a stop time, assigned to a second message when the
second message, sent 1n response to the first message,
1s received at the end queue; and

an end-to-end response time, calculated by subtracting the
start time from the stop time.

8. The computerized apparatus of claim 7, further com-

prising:

a third message, sent 1n response to the first message,
received at the end queue and receiving a second stop
time; and

the end-to-end response time being calculated by sub-
tracting the second stop time from the start time.

9. The computerized apparatus of claim 7, wherein the
end-to-end response time 1s calculated for a plurality of
computer programs executed by the computer.

10. The computerized apparatus of claim 7, wherein the
end-to-end response time 1s calculated for a plurality of
windows displayed by a computer program executed by the
compuler.

11. The computerized apparatus of claim 7, wherein the
seccond message 1s selected from a group comprising a
window create message, a mouse button 1 down message, an
enter key message, and a button activation message.

12. The computerized apparatus of claim 7, wherein the
first message 1s a window paint message.

13. An article of manufacture comprising a program
storage medium readable by a computer having a memory,
the medium tangibly embodying one or more programs of
instructions executable by the computer to perform method
steps for measuring end-to-end response time for a transac-

tion performed by the computer, the method comprising the
steps of:

monitoring a start queue and an end queue 1n a computer;

assigning a start time when a first message 1s received at
the start queue;

assigning a stop time when a second message, sent 1n
response to the first message, 1s received at the end
queue; and

subtracting the start time from the stop time to calculate
an end-to-end response time.
14. The method of claim 13, further comprising the steps

of:

updating the stop time when a third message, sent 1n
response to the first message, 1s received at the end
queue; and

subtracting the start time from the stop time to calculate

the end-to-end response time.

15. The method of claim 13, wherein the end-to-end
response time 1s calculated for a plurality of computer
programs executed by the computer.

16. The method of claim 13, wherein the end-to-end
response time 1s calculated for a plurality of windows
displayed by a computer program executed by the computer.

17. The method of claim 13, wherein the second message
1s selected from a group comprising a window create
message, a mouse button 1 down message, an enter key
message, and a button activation message.

18. The method of claim 13, wherein the first message 1s
a window paint message.

	Front Page
	Drawings
	Specification
	Claims

