US005987592A
United States Patent .9 111] Patent Number: 5,987,592
Mahalingaiah 45] Date of Patent: Nov. 16, 1999
[54] FLEXIBLE RESOURCE ACCESS IN A 5,787,266 7/1998 Johnson et al.covveevrnnnnnnnne, 712/216

MICROPROCESSOR

_ _ _ Primary Examiner—William M. Treat
[75] Inventor: Rupaka Mahalingaiah, Austin, Tex. Attorney, Agent, or Firm—Conley, Rose & Tayon, PC; B.

_ Noel Kivlin; Lawrence J. Merkel
| 73] Assignee: Advanced Micro Devices, Inc.,

Sunnyvale, Calif. |57] ABSTRACT

A superscalar microprocessor defines a hierarchical struc-

21] Appl. No.: 03/195,151 ture of registers. The top level of the hierarchy includes

221 Filed: Nov. 17, 1998 performance critical registers and pointers to other levels of
- the hierarchy. A second level of the hierarchy may include
Related U.S. Application Data special registers. Special registers may include arrays or

ogroups of data. Special registers may be located 1n a special
[63] Continuation of application No. 08/874,031, Jun. 12, 1997, register file or remotely located throughout the micropro-

Pat. No. 5,854,912. cessor. Remote special registers are accessed via a special
51] Int. CLO oo GOGF 9/30 register bus. Resources throughout the microprocessor are
591 US. CL 712/200: 712/208: 712/227 defined as special registers. In this manner, resources
S ’ ’ 712/42’ throughout the microprocessor are accessed using special
58] Field of Search 712/200. 208 register move Instructions that are handled 1n a manner
"""""""""""""""""""" 719 /22’7 42’ similar to other register moves in instructions. Accordingly,
’ adding and moditying resources within the microprocessor
56] References Cited 1s transparent to the majority of the circuitry of the micro-
processor. Thus, the present mmvention provides a uniform
U.S. PATENT DOCUMENTS and flexible mechanism of communicating to resources of a
5.574.927 11/1996 SCANHN —oovoooveeooeoeoeooeeeoeo. 712/41 THCTOPIOCESSOL
5,606,677 2/1997 Balmer et al.cccovveeervnenennnn.n. 712/208
5,752,069 5/1998 Roberts et al. cooeevvvevevevineennnee. 712/23 20 Claims, 9 Drawing Sheets
MROM UNIT INSTRUCTION
ALIGNMENT UNIT
34 18
¢ Operand Request Bus 412
Reorder Buffer . i l
— Special
Tag Bus 402 . Control Bus DECODE UNIT
REORDER Register | |4 _
Operand - 408
BUFFER — — Unit 202
Tag Bus 404 Operand Bus 20
LOAD/STORE [* * 44—
32 Load/Store UNIT
<«—Result Bus v
406 26 RESERVATION
A STATION
> 22
! v
Remote FUNCTIONAL
Special UNIT
Register
Bus 414 =
Result Bus 38

-
N :
ph.,, WwajsAsqng Alowsiy Uley . 9|5 Ol
e N 4) - - _ v\
9 ——
v . . BE . S
| § I S F
(- 8¢ ove || 8vZ aun vpz wn [_
; ayoen ejeq UM [BUonoun [BUOIJOUN ‘ > euonound
_ _] 1+ I b _ % lww
= 9¢ 1N J¢¢ UOIE]S g¢¢ UOIElS V(¢ UOHELS
- | 21015/pe0] UONBAJESOY UONBAISSAY | UONBAJSSSY
>
5 , _ ik 4 2 4+ 4 p 4 m
_ _ L K |
. 4 - v % T @ < T |
X 55 Jolng r_Jv . Jun 8poos(Jlun 8pooe(Jlun 9poos(|
< 18pI0aY | Jt Mad < A Y A
o _) _ — _ _
> — _
- lio E— _| 8} Jun Juswubl|y uononasul | € HuN WO
0€ 3l se)sibay 5
_ - i - - —
My _ |
- _ — f—> UoNIPald Youelg Bl
- 9 J
L 3[0,1.
- ayoe) uoioniisu | 12 warshsans
~ | MUN9P0%BPRId | Koy
7 | ..] jyoeleld | e
-

U.S. Patent Nov. 16, 1999 Sheet 2 of 9 5,987,592

from Instruction Alignment Unit 18

|
I
- \ : Yy =
| I
: o I
: Early Decode I I : Early Decode | :
| 408 o 40C I
o :
|
| _ I oL l__I :
- o .
I - '
from '
MROM . '
Unit 34 : : '
I l I
\ 428 /) o\ 420 | toregister
| : : - file 30
- ‘ . reorder
I R T buffer 32,
I L | - and load/
I - i - store unit
{ | 26
I Opcode Decode | Opcode Decode |
I 448 , 44C
I
: | .
A S | ; | _ I
S
E 28 | ! 20C
\ 4

to Reservation Stations 22

FIG. 2

5,987,592

Sheet 3 of 9

Nov. 16, 1999

U.S. Patent

d4

S19)sIbay

Julod
buieo|

¢ Old
sa|diy N
sJ19)sibay
Alewllld

sdnolo

s19)s1b9Y
B10adg
o]0WaY

SAB.LY

SJ10)SI109Y
eioadg

SJo)sIboy
e1oadsg
007

5,987,592

Sheet 4 of 9

Nov. 16, 1999

U.S. Patent

LINA LINJAINDITV
NOILONGLSNI

¥ Old
l —8¢ sNg }JINSay — I
—2 Pl shg
ve 19)s109y
d
LINM _mm,__wwmm_
TVYNOILONNA
P !
C < -
NOILV1S v
NOILVAYSSId | ac | 90F
A sng Jinsey —»
oL LINM 910]S/PECT] Z¢
= » J401S/AV0T
A7 sng puesad b
U q PrERto | Z0¢ nun Alvomcm_“mm_aoﬁll_ d3441d
80y > 19)s169) d4d403d
1INN 33003d Sng |04ju0) |] | 7o sng Be]
| elosds | |« —
_ - 1ayng Jap.Josy
T - ;
|_n - 7L sng 1sanbay pueladQ
T 7
LINN WO4EW

2 =
0 G 9l
7I.f
= . ooysng
) INsay 910}3/peoT]
5 p—
—)
T
B > <
_ 104LNOD SN LINS3Y
9 - N—
z iy e
2 <« sngorsiboy —| 3OVAHIINI SNg
” ei0ads o10Way SEIRIER
WI03dS
g _ T08INOD
w I
rd

U.S. Patent

]

90¢

43151934 VOO0

f

L

A3

d444N4d

_>
Oly

—
80y

A
14017

A
¢Ov

8¢ Sng }INSoY—

sngdo sng o bel dO bel gOY

5,987,592

Sheet 6 of 9

Nov. 16, 1999

U.S. Patent

"

LINM
1VNOILONN

1
SNg Sy

9 Old

43

dd44MN4d
d404044

3/
SNg YSY

)
SNg ¥SY
5

JHOVO

h NOILONAELSNI |_

V€

LINM
NOdI

|

=l

SNG USY

vl sng Jo)sibay
[e1oads a)oway

4/
- SNg ¥SH

_ 9¢
| LINN

Ja015/0vV0O |

U.S. Patent Nov. 16, 1999 Sheet 7 of 9 5,987,592

Define aFirst | | 702
Register Level /

and a Second
Register LeveL'

L

Decode a First / 704
Operand Fiela
of an Instruction

706

Does First
Operand Field
Identify a Special
Register
Pointer?

No Yes
v v
Access Primary Decode Second / 708
12 \ Reqister Operand Fleld
[dentified By ——
First Operand
Fleld
Yy

Access Special
Register |/ 710
|dentified by
Second
l Operand Field

FIG. 7

5,987,592

d8 9ld
] i l_ i [|
PIOAA
X3ANI | AVM dO | 3dAL | 10)edoT]
Aeliy
- o . . I .
= 0 3 91 174 8¢ 1
v o
2
&N
3
= V8 Ol
=
N —— M m———r N— s — _— A
PIOAA
SS34ddv dO | DUBWILLO?)
_ — ‘ ||_ - — - _
0 3 L1 91 Ve L€

U.S. Patent

U.S. Patent

—

Nov. 16, 1999

Sheet 9 of 9

Microprocessor
10

Ji 808

800A

8068

Bus Bridge
-
/0O Device /
| oo
810
AN
4——(/0O Device /
|
— |
— /O Device /

FIG. 9

806N

5,987,592

804

—

Main Memory

‘w

300

3,987,592

1

FLEXIBLE RESOURCE ACCESS IN A
MICROPROCESSOR

This application 1s a confinuation of U.S. Ser. No.
08/874,031, filed Jun. 12, 1997, now U.S. Pat. No. 5,854,

912.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of microprocessors and,
more particularly, to special registers within microproces-
SOIS.

2. Description of the Relevant Art

Superscalar microprocessors achieve high performance
by executing multiple instructions per clock cycle and by
choosing the shortest possible clock cycle consistent with
the design. As used herein, the term “clock cycle” refers to
an 1nterval of time accorded to various stages of an instruc-
tion processing pipeline within the microprocessor. Storage
devices (e.g. registers and arrays) capture their values
according to the clock cycle. For example, a storage device
may capture a value according to a rising or falling edge of
a clock signal defining the clock cycle. The storage device
then stores the value until the subsequent rising or falling
edge of the clock signal, respectively. The term “instruction
processing pipeline” 1s used herein to refer to the logic
circuits employed to process instructions 1n a pipelined
fashion. Although the pipeline may be divided into any
number of stages at which portions of instruction processing
are performed, instruction processing generally comprises
fetching the instruction, decoding the instruction, executing
the instruction, and storing the execution results in the
destination 1dentified by the imstruction.

Microprocessor designers often design their products in
accordance with the x86 microprocessor architecture in
order to take advantage of 1ts widespread acceptance 1n the
computer industry. Because the x86 microprocessor archi-
tecture 1s pervasive, many computer programs are written in
accordance with the architecture. X86 compatible micropro-
cessors may execute these computer programs, thereby
becoming more attractive to computer system designers who
desire x86-compatible computer systems. Such computer
systems are often well received within the industry due to
the wide range of available computer programs.

The x86 microprocessor architecture includes general and
special registers. General registers are registers that are

readily accessible to all mstructions. For example, 1n the x86
architecture eight general registers (EAX, EBX, ECX, EDX

EBP, ESI, EDI and ESP) are defined. The x86 microproces-
sor architecture also includes special registers. For example,
the x86 architecture defines six segment registers (CS, SS,
DS, ES, FS and GS), a flag register (EFLAGS) and an
instruction pointer register (EIP). In addition, the special
registers include a set of model specific registers (MSRs)
that may differ between various implementations of an x86
microprocessor. For example, a Time Stamp Counter 1s not
defined as part of the x86 architecture. Some 1mplementa-
fions of an x86 microprocessor, however, include a Time
Stamp Counter as a special register. The Time Stamp
Counter may be used to monitor the performance of a
microprocessor. Other examples of special register include
temporary registers, microcode registers and processor fea-
ture control registers. These registers may be distributed
throughout the microprocessor.

Resources within a microprocessor include special regis-
ters and other resources such as caches. Access to micro-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

processor resources 1s typically accomplished by special
instructions. For example, a special instruction to flush the
instruction cache may be defined. Likewise, a special
instruction for reading or writing to microcode registers may

be defined. Typically, when new resources are added to a
microprocessor, new special instructions are defined to
access those resources. Deflning new instructions requires
the modification of a significant portion of the microproces-
sor. For example, adding an instruction to flush the nstruc-
tion cache may require the modification of the decode unit
to recognize the opcode of the new instruction, the modifi-
cation of the microcode unit to implement the function of the
new 1nstruction, the addition of signal lines from the micro-
code unit to the instruction cache to signal the function of the
new 1nstruction, and the modification of the instruction
cache to receive the signal and execute the function of the
new 1nstruction.

The modification of the microprocessor to accommodate
new resources creates significant design and testing prob-
lems. Modifying the circuitry of the microprocessor may
introduce debug problems, timing problems and speed paths.
What 1s desired 1s a flexible way to access resources that
does not require significant redesign to add new resources.

SUMMARY OF THE INVENTION

The problems outlined above are 1n large part solved by
resource allocation within a microprocessor 1n accordance
with the present invention. All resources of a microprocessor
are defined as special registers. The resources are accessed
using 1nstructions that appear as simple register access
instructions to the majority of the microprocessor circuitry.
A hierarchical structure of registers 1s defined. Performance
critical resources reside at the top level of the hierarchy
while non-performance critical resources are assigned to
lower levels of the resource hierarchy. A standardized inter-
face may be connected to each block of the microprocessor
for accessing resources distributed throughout the micro-
processor. Accordingly, adding resources and communicat-
ing to those resources may not require additional control
signals.

Broadly speaking, the present invention contemplates a
microprocessor with flexible resource access including a
decode unit and a special register unit. The decode unit
decodes a first operand field of an instruction, wherein the
first operand field 1dentifies a primary register or a pointer to
a plurality of special registers. The special register unit 1s
coupled to the decode unit. If the first operand field identifies
the pointer to the plurality of special registers, the decode
unit conveys 1nstruction information to the special register
unit and decodes a second operand field. The special register
unit then accesses a special register 1dentified by the second
operand field.

The present 1invention further contemplates a method of
accessing special registers comprising: defining a first reg-
ister level and a second register level, wherein the first
register level includes a plurality of primary registers and a
pointer to a second register level that includes a plurality of
special registers; decoding a first operand field of an
instruction, wherein the first operand field 1dentifies one of
the plurality of primary registers or the pointer to the second
register level; decoding a second operand field of an instruc-
tion if the first operand field identifies the pointer to the
second register level; and accessing one the plurality of
special registers of said second register level i1dentified by
the second operand field.

The present mvention still further contemplates a micro-
processor with flexible resource allocation including: a

3,987,592

3

plurality of special registers including one or more remote
special registers and one or more local special registers; a
remote special register bus coupled to the one or more
remote special registers, wherein the remote special registers
are accessed via the remote special register bus; a special
register unit 1s coupled to the remote special register bus; a
decode unit 1s coupled to the special register unit, wherein
the decode unit routes instruction information to the special
register unit; the special register unit decodes the instruction
information and accesses a special register identified by said
instruction information. In this manner, the decode unait
handles an access to a special register in substantially the
same way as an access to a primary register.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the accompanying draw-
ings 1in which:

FIG. 1 1s a block diagram of one embodiment of a
superscalar microprocessor.

FIG. 2 1s a block diagram of one embodiment of two of
the decode units shown 1 FIG. 1.

FIG. 3 1s a diagram 1illustrating the hierarchical structure
of resources 1n a microprocessor in accordance with one
embodiment of the present invention.

FIG. 4 1s a block diagram of a portion of a microprocessor
involved 1n the access of special registers 1n accordance with
one embodiment of the present invention.

FIG. 5 1s a block diagram of a special register unit in
accordance with one embodiment of the present invention.

FIG. 6 1s a block diagram illustrating the interconnection
of the special register bus to portions of a microprocessor 1n
accordance with one embodiment of the present invention.

FIG. 7 1s a flow chart illustrating the allocation and access
of special registers 1n accordance with one embodiment of
the present invention.

FIG. 8A1s a diagram of a control word 1n accordance with
one embodiment of the present invention.

FIG. 8B 1s a diagram of an array locator word 1n accor-
dance with one embodiment of the present invention.

FIG. 9 1s a block diagram of a computer system including,
the microprocessor shown 1 FIG. 1.

While the mvention 1s susceptible to various modifica-
fions and alternative forms, speciiic embodiments thereot
are shown by way of example in the drawings and will
herein be described 1n detail. It should be understood,
however, that the drawings and detailed description thereto
are not 1intended to limit the invention to the particular form
disclosed, but on the contrary, the intention 1s to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present mvention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
INVENTION

Turning now to FIG. 1, a block diagram of one embodi-
ment of a microprocessor 10 1s shown. Microprocessor 10
includes a prefetch/predecode unit 12, a branch prediction
unit 14, an instruction cache 16, an instruction alignment
unit 18, a plurality of decode units 20A—20C, a plurality of
reservation stations 22A-22C, a plurality of functional units
24A-24C, aload/store unit 26, a data cache 28, a register {ile

30, a floating point unit 36, a reorder buffer 32, and an

10

15

20

25

30

35

40

45

50

55

60

65

4

MROM unit 34. Blocks referred to herein with a reference
number followed by a letter will be collectively referred to
by the reference number alone. For example, decode units
20A-20C will be collectively referred to as decode units 20.

Prefetch/predecode unit 12 1s coupled to receive instruc-
tions from a main memory subsystem (not shown), and is
further coupled to instruction cache 16 and branch predic-
tion unit 14. Similarly, branch prediction unit 14 1s coupled
to mnstruction cache 16. Still further, branch prediction unit
14 1s coupled to decode units 20 and functional units 24.
Instruction cache 16 1s further coupled to MROM unit 34
and 1nstruction alignment unit 18. Instruction alignment unit
18 1s 1n turn coupled to decode units 20. Each decode unit
20A-20C 1s coupled to load/store unit 26 and to respective
reservation stations 22A-22C. Reservation stations
22A-22C are further coupled to respective functional units
24A-24C. Additionally, decode units 20 and reservation
stations 22 are coupled to register file 30, model speciiic
register unit 31, and reorder buffer 32. Functional units 24
are coupled to load/store unit 26, register file 30, model
specific register unit 31, and reorder buffer 32 as well. Data
cache 28 1s coupled to load/store unit 26 and to the main
memory subsystem. Finally, MROM unit 34 1s coupled to
decode units 20.

Microprocessor 10 1s configured to align instructions from
instruction cache 16 to decode units 20 using instruction
alienment unit 18. Instructions are fetched as an aligned
plurality of bytes from a cache line within mstruction cache
16. Instructions of interest may be stored beginning at any

arbitrary byte within the fetched bytes. For example, a
branch instruction may be executed having a target address
which lies within a cache line. The instructions of interest
therefore begin at the byte 1dentified by the target address of
the branch instruction. From the instruction bytes fetched,
instruction alignment unit 18 identifies the instructions to be
executed. Instruction alignment unit 18 conveys the
instructions, 1n predicted program order, to decode units 20
for decode and execution.

Instruction alignment unit 18 includes a byte queue con-
figured to store instruction bytes. An instruction scanning
unit within instruction cache 16 separates the instructions
fetched mto 1nstruction blocks. Each instruction block com-
prises a predefined number of 1nstruction bytes. The 1nstruc-
tion scanning unit identifies up to a predefined maximum
number of instructions within the instruction block. Instruc-
tion 1identification information for each of the identified
instructions 1s conveyed to instruction alignment unit 18 and
1s stored 1n the byte queue. The mstruction identification
information includes an indication of the validity of the
mstruction, as well as indications of the start and end of the
instruction within the predefined number of instruction
bytes. In one embodiment, the predefined number of 1nstruc-
fion bytes comprises eight instruction bytes stored in con-
figuous main memory storage locations. The eight mnstruc-
tion bytes are aligned to an eight byte boundary (i.e. the least
significant three bits of the address of the first of the
contiguous bytes are 0). If more than the maximum number
of 1nstructions are contained within a particular predefined
number of instruction bytes, the instruction bytes are
scanned again during a subsequent clock cycle. The same
instruction bytes are conveyed as another mstruction block,
with the additional instructions within the instruction bytes
identified by the accompanying instruction identification
information. Therefore, an 1nstruction block may be defined
as up to a predefined maximum number of 1nstructions
contained within a predefined number of instruction bytes.

The byte queue stores each instruction block and corre-
sponding 1nstruction identification information within a sub-

3,987,592

S

queue defined therein. The subqueues include a position for
cach possible valid instruction within the instruction block.
The positions store instruction identification information
and are maintained such that the instruction identification
information for the first valid instruction within the sub-
queue 1s stored 1n a first position within the subqueue,
instruction identification information regarding the second
valid instruction (in program order) is stored in a second
position within the subqueue, etc. When 1nstructions within
the subqueue are dispatched, instruction 1dentification 1nfor-
mation corresponding to subsequent instructions are shifted
within the positions of the subqueue such that the first of the
remaining 1nstructions 1s stored i1n the first position.
Advantageously, instruction alignment unit 18 may only
consider the instruction information stored 1n the first posi-
tion of each subqueue to detect the 1nstruction to be dis-
patched to decode unit 20A. Similarly, only the second
position of the first subqueue (the subqueue storing instruc-
fions prior to the instructions stored in the other subqueues
in program order) may be considered for dispatch of instruc-
tions to decode unit 20B. By managing the subqueues in this
manner, logic for selecting and aligning 1nstructions may be
simplified. Fewer cascaded levels of logic may be employed
for performing the selection and alignment process, allow-
ing for high frequency implementation of microprocessor

10.

Because 1nstructions are variable length, an instruction
may begin within a particular 1nstruction block but end 1n
another instruction block. Instructions beginning within a
particular instruction block and ending in another 1nstruction
block are referred to as “overflow instructions”. The sub-
queue storing the mstruction block within which an overtlow
instruction begins uses the last position to store the overtlow
instruction’s 1dentification information. Unlike the other
positions, the instruction identification information of the
last position 1s not shifted from the last position when an
overflow 1nstruction 1s stored therein. Advantageously,
instruction alignment unit 18 need only search the last
position of a particular subqueue to identify an instruction
overtlowing from one subqueue to another.

As used herein, the term queue refers to a storage device
for storing a plurality of data items. The data items are stored
with an ordered relationship between them. For example, the
data 1tems of the byte queue are instructions. The ordered
relationship between the mstructions 1s the program order of
the 1nstructions. Data 1tems are removed from the queue
according to the ordered relationship 1n a first in-first out
(FIFO) fashion. Additionally, the term shifting is used to
refer to movement of data 1tems within the queue. When a
data i1tem 1s shifted from a first storage location to a second
storage location, the data 1item 1s copied from the first storage
location to the second storage location and 1invalidated 1n the
second storage location. The invalidation may occur by
shifting yet another data item into the second storage
location, or by resetting a valid indication i1n the second
storage location.

Instruction cache 16 1s a high speed cache memory
provided to store instructions. Instructions are fetched from
instruction cache 16 and dispatched to decode units 20. In
one embodiment, instruction cache 16 1s configured to store
up to 32 kilobytes of mstructions 1n an 8 way set associative
structure having 32 byte lines (a byte comprises 8 binary
bits). Instruction cache 16 may additionally employ a way
prediction scheme 1n order to speed access times to the
instruction cache. Instead of accessing tags 1identifying each
line of instructions and comparing the tags to the fetch
address to select a way, instruction cache 16 predicts the way

10

15

20

25

30

35

40

45

50

55

60

65

6

that 1s accessed. In this manner, the way 1s selected prior to
accessing the mstruction storage. The access time of instruc-
tion cache 16 may be similar to a direct-mapped cache. A tag
comparison 1s performed and, i1f the way prediction 1is
incorrect, the correct 1nstructions are fetched and the 1ncor-
rect 1nstructions are discarded. It 1s noted that instruction
cache 16 may be implemented as a fully associative, set
assoclative, or direct mapped configuration.

Instructions are fetched from main memory and stored
into 1nstruction cache 16 by prefetch/predecode umit 12.
Instructions may be prefetched prior to instruction cache 16
recording a miss for the instructions in accordance with a
prefetch scheme. A variety of prefetch schemes may be
employed by prefetch/predecode unit 12. As pretfetch/
predecode unit 12 transfers mstructions from main memory
to 1struction cache 16, prefetch/predecode unit 12 generates
three predecode bits for each byte of the mstructions: a start
bit, an end bit, and a functional bit. The predecode bits form
tags 1ndicative of the boundaries of each instruction. The
predecode tags may also convey additional information such
as whether a given 1nstruction can be decoded directly by
decode units 20 or whether the instruction 1s executed by
invoking a microcode procedure controlled by MROM unait
34, as will be described 1n greater detail below. Still further,
prefetch/predecode unit 12 may be configured to detect
branch 1nstructions and to store branch prediction informa-
tion corresponding to the branch mstructions into branch
prediction unit 14.

One encoding of the predecode tags for an embodiment of
microprocessor 10 employing the x86 instruction set will
next be described. If a given byte 1s the first byte of an
instruction, the start bit for that byte is set. If the byte 1s the
last byte of an instruction, the end bit for that byte 1s set. For
this embodiment of microprocessor 10, instructions which
may be directly decoded by decode units 20 are referred to
as “fast path” instructions. Fast path instructions may be an
example of directly-decoded 1nstructions for this embodi-
ment. The remaining x86 instructions are referred to as
MROM 1nstructions, according to one embodiment. For this
embodiment, MROM instructions are an example of micro-
code 1nstructions.

For fast path instructions, the functional bit 1s set for each
prefix byte included in the instruction, and cleared for other
bytes. Alternatively, for MROM 1nstructions, the functional
bit 1s cleared for each prefix byte and set for other bytes. The
type of instruction may be determined by examining the
functional bit corresponding to the end byte. If that func-
tional bit 1s clear, the 1nstruction 1s a fast path instruction.
Conversely, 1f that functional bit 1s set, the instruction 1s an
MROM 1nstruction. The opcode of an instruction may
thereby be located within an instruction which may be
directly decoded by decode units 20 as the byte associated
with the first clear functional bit in the instruction. For

example, a fast path nstruction including two prefix bytes,
a Mod R/M byte, and an SIB byte would have start, end, and

functional bits as follows:

Start bits 10000
End bits 00001
Functional bits 11000

MROM 1nstructions are instructions which are deter-
mined to be too complex for decode by decode units 20.
MROM 1nstructions are executed by invoking MROM unait
34. More specifically, when an MROM 1instruction 1is
encountered, MROM unit 34 parses and 1ssues the instruc-

3,987,592

7

fion 1nto a subset of defined fast path instructions to effec-
tuate the desired operation. MROM unit 34 dispatches the
subset of fast path instructions to decode units 20. A listing
of exemplary x86 1instructions categorized as fast path
instructions will be provided further below.

Microprocessor 10 employs branch prediction 1n order to
speculatively fetch instructions subsequent to conditional
branch 1nstructions. Branch prediction unit 14 1s included to
perform branch prediction operations. In one embodiment,
up to two branch target addresses are stored with respect to
cach cache line 1n 1nstruction cache 16. Prefetch/predecode
unit 12 determines 1nitial branch targets when a particular
line 1s predecoded. Subsequent updates to the branch targets
corresponding to a cache line may occur due to the execution
ol mstructions within the cache line. Instruction cache 16
provides an 1indication of the instruction address being,
fetched, so that branch prediction unit 14 may determine
which branch target addresses to select for forming a branch
prediction. Decode units 20 and functional units 24 provide
update information to branch prediction unit 14. Because
branch prediction unit 14 stores two targets per cache line,
some branch instructions within the line may not be stored
in branch prediction unit 14. Decode units 20 detect branch
instructions which were not predicted by branch prediction
unit 14. Functional units 24 execute the branch instructions
and determine 1f the predicted branch direction 1s incorrect.
The branch direction may be “taken”, in which subsequent
instructions are fetched from the target address of the branch
instruction. Conversely, the branch direction may be “not
taken”, 1n which subsequent instructions are fetched from
memory locations consecutive to the branch instruction.
When a mispredicted branch instruction 1s detected, instruc-
tions subsequent to the mispredicted branch are discarded
from the various units of microprocessor 10. A variety of
suitable branch prediction algorithms may be employed by
branch prediction unit 14.

Instructions fetched from instruction cache 16 are con-
veyed to 1nstruction alignment unit 18. As instructions are
fetched from instruction cache 16, the corresponding pre-
decode data 1s scanned to provide information to instruction
alignment unit 18 (and to MROM unit 34) regarding the
instructions being fetched. Instruction alignment unit 18
utilizes the scanning data to align an instruction to each of
decode units 20. In one embodiment, 1nstruction alignment
unit 18 aligns mstructions from three sets of eight instruction
bytes to decode units 20. Decode unit 20A receives an
instruction which 1s prior to 1nstructions concurrently
received by decode units 20B and 20C (in program order).
Similarly, decode unit 20B receives an instruction which 1s
prior to the instruction concurrently received by decode unit
20C 1n program order. As used herein, the term “program
order” refers to the order of the instruction as coded 1n the
original sequence 1n memory. The program order of 1nstruc-
fions 1s the order in which the instructions would be
executed upon a microprocessor which fetches, decodes,
executes, and writes the result of a particular instruction
prior to fetching another instruction. Additionally, the term
“dispatch” 1s used to refer to conveyance of an mstruction to
an 1ssue position which 1s to execute the instruction. Issue

positions may also dispatch load/store memory operations to
load/store unit 26.

Decode units 20 are coniigured to decode instructions
received from nstruction alignment unit 18. Register oper-
and information 1s detected and routed to register file 30,
MSR unit 31, and reorder buifer 32. Additionally, if the
Instructions require one or more memory operations to be
performed, decode units 20 dispatch the memory operations

10

15

20

25

30

35

40

45

50

55

60

65

3

to load/store unit 26. Each instruction 1s decoded into a set
of control values for functional units 24, and these control
values are dispatched to reservation stations 22 along with
operand address information and displacement or immediate
data which may be included with the instruction.

Microprocessor 10 supports out of order execution, and
thus employs reorder buifer 32 to keep track of the original
program sequence for register read and write operations, to
implement register renaming, to allow for speculative
instruction execution and branch misprediction recovery,
and to facilitate precise exceptions. A temporary storage
location within reorder buffer 32 1s reserved upon decode of
an 1nstruction that involves the update of a register to
thereby store speculative register states. If a branch predic-
tion 1s 1ncorrect, the results of speculatively-executed
mnstructions along the mispredicted path can be mvalidated
in the buffer before they are written to register file 30.
Similarly, 1f a particular instruction causes an exception,
instructions subsequent to the particular mstruction may be
discarded. In this manner, exceptions are “precise” (1.c.
Instructions subsequent to the particular instruction causing
the exception are not completed prior to the exception). It is
noted that a particular 1nstruction 1s speculatively executed
if 1t 1s executed prior to instructions which precede the
particular instruction 1n program order. Preceding instruc-
fions may be a branch instruction or an exception-causing
instruction, 1 which case the speculative results may be
discarded by reorder buifer 32.

The 1nstruction control values and immediate or displace-
ment data provided at the outputs of decode units 20 are
routed directly to respective reservation stations 22. In one
embodiment, each reservation station 22 1s capable of hold-
ing instruction information (i.e., instruction control values as
well as operand values, operand tags and/or immediate data)
for up to three pending instructions awaiting 1ssue to the
corresponding functional umit. It 1s noted that for the
embodiment of FIG. 1, each reservation station 22 1s asso-
cliated with a dedicated functional unit 24. Accordingly,
three dedicated “issue positions” are formed by reservation
stations 22 and functional units 24. In other words, 1ssue
position O 1s formed by reservation station 22A and func-
tional unit 24A. Instructions aligned and dispatched to
reservation station 22A are executed by functional unit 24 A.
Similarly, 1ssue position 1 1s formed by reservation station
22B and functional unit 24B; and 1ssue position 2 1s formed
by reservation station 22C and functional unit 24C. As used
herein, the term “issue position” refers to logic circuitry
configured to receive an 1instruction and to execute that
instruction. Once the 1nstruction enters the 1ssue position, 1t
remains 1n that issue position until the execution of the
instruction 1s completed.

Upon decode of a particular instruction, if a required
operand 1s a general register location, register address 1nfor-
mation 1s routed to reorder buifer 32 and register file 30
simultaneously. Those of skill 1n the art will appreciate that
the x86 register file includes eight 32 bit general registers
(i.c., typically referred to as EAX, EBX, ECX, EDX, EBP,
ESI, EDI and ESP). In embodiments of microprocessor 10
which employ the x86 microprocessor architecture, register
file 30 comprises storage locations for each of the 32 bit real
registers. Additional storage locations may be included
within register file 30 for use by other blocks of micropro-
cessor 10. Reorder buffer 32 contains temporary storage
locations for results which change the contents of these
registers to thereby allow out of order execution. A tempo-
rary storage location of reorder butfer 32 1s reserved for each
instruction which, upon decode, 1s determined to modify the

3,987,592

9

contents of one of the real registers. Therefore, at various
points during execution of a particular program, reorder
buffer 32 may have one or more locations which contain the
speculatively executed contents of a given register. If fol-
lowing decode of a given instruction 1t 1s determined that
reorder buffer 32 has a previous location or locations
assigned to a register used as an operand 1n the given
instruction, the reorder buffer 32 forwards to the correspond-
ing reservation station either: 1) the value in the most
recently assigned location, or 2) a tag for the most recently
assigned location if the value has not yet been produced by
the functional unit that will eventually execute the previous
instruction. If reorder buifer 32 has a location reserved for a
given register, the operand value (or reorder buffer tag) is
provided from reorder bufler 32 rather than from register {ile
30. If there 1s no location reserved for a required register in
reorder buller 32, the value 1s taken directly from register file
30. If the operand corresponds to a memory location, the
operand value 1s provided to the reservation station through
load/store unit 26.

In one particular embodiment, reorder buffer 32 1s con-
ficured to store and manipulate concurrently decoded
instructions as a unit. This configuration will be referred to
herein as “line-oriented”. By manipulating several instruc-
tions together, the hardware employed within reorder buifer
32 may be simplified. For example, a line-oriented reorder
buffer included 1n the present embodiment allocates storage
sufficient for instruction information pertaining to three
instructions (one from each decode unit 20) whenever one or
more 1nstructions are dispatched by decode units 20. By
contrast, a variable amount of storage 1s allocated 1n con-
ventional reorder buffers, dependent upon the number of
instructions actually dispatched. A comparatively larger
number of logic gates may be required to allocate the
variable amount of storage. When each of the concurrently
decoded 1nstructions has executed, the instruction results are
stored 1nto register file 30 simultancously. The storage is
then free for allocation to another set of concurrently
decoded 1instructions. Additionally, the amount of control
logic circuitry employed per instruction 1s reduced because
the control logic 1s amortized over several concurrently
decoded 1nstructions. A reorder buffer tag identifying a
particular mstruction may be divided into two fields: a line
tag and an offset tag. The line tag i1dentifies the set of
concurrently decoded imstructions including the particular
instruction, and the offset tag identifies which instruction
within the set corresponds to the particular instruction. It 1s
noted that storing instruction results into register file 30 and
freeing the corresponding storage 1s referred to as “retiring”
the instructions. It 1s further noted that any reorder buifer
conilguration may be employed in various embodiments of
microprocessor 10.

As noted earlier, reservation stations 22 store nstructions
until the instructions are executed by the corresponding
functional unit 24. An i1nstruction 1s selected for execution if:
(1) the operands of the instruction have been provided; and
(i1) the operands have not yet been provided for instructions
which are within the same reservation station 22A—22C and
which are prior to the instruction 1 program order. It 1s
noted that when an instruction 1s executed by one of the
functional units 24, the result of that instruction 1s passed
directly to any reservation stations 22 that are waiting for
that result at the same time the result 1s passed to update
reorder buffer 32 (this technique is commonly referred to as
“result forwarding™”). An instruction may be selected for
execution and passed to a functional unit 24A-24C during
the clock cycle that the associated result is forwarded.

10

15

20

25

30

35

40

45

50

55

60

65

10

Reservation stations 22 route the forwarded result to the
functional unit 24 1n this case.

In one embodiment, each of the functional units 24 1s
configured to perform integer arithmetic operations of addi-
tion and subtraction, as well as shifts, rotates, logical
operations, and branch operations. The operations are per-
formed 1n response to the control values decoded for a
particular 1nstruction by decode units 20. It 1s noted that a
floating point unit (not shown) may also be employed to
accommodate floating point operations. The floating point
unit may be operated similar to load/store unit 26 1n that any
of decode units 20 may dispatch instructions to the floating
point unit. Additionally, functional units 24 may be config-
ured to perform address generation for load and store
memory operations performed by load/store unit 26.

Each of the functional units 24 also provides information

regarding the execution of conditional branch instructions to
the branch prediction unit 14. If a branch prediction was
incorrect, branch prediction unit 14 flushes instructions
subsequent to the mispredicted branch that have entered the
instruction processing pipeline, and causes fetch of the
required 1instructions from instruction cache 16 or main
memory. It 1s noted that in such situations, results of
instructions 1n the original program sequence which occur
after the muispredicted branch instruction are discarded,
including those which were speculatively executed and
temporarily stored 1n load/store unit 26 and reorder buifer

32.

Results produced by functional units 24 are sent to reorder
buffer 32 if a general register value 1s being updated and to
load/store unit 26 if the contents of a memory location are
changed. If the result 1s to be stored 1in a general register,
reorder buil

er 32 stores the result 1n the location reserved for
the value of the register when the mstruction was decoded.
A plurality of result buses 38 are included for forwarding of
results from functional units 24 and load/store unit 26.
Result buses 38 convey the result generated, as well as the

reorder buifer tag 1dentifying the mnstruction being executed.

Load/store unit 26 provides an interface between func-
tional units 24 and data cache 28. In one embodiment,
load/store unit 26 1s configured with a load/store buifer
having eight storage locations for data and address infor-
mation for pending loads or stores. Decode units 20 arbitrate
for access to the load/store unit 26. When the buffer 1s full,
a decode unit must wait until load/store unit 26 has room for
the pending load or store request information. Load/store
unit 26 also performs dependency checking for load memory
operations agamst pending store memory operations to
ensure that data coherency 1s maintained. A memory opera-
tion 1s a transfer of data between microprocessor 10 and the
maln memory subsystem. Memory operations may be the
result of an instruction which utilizes an operand stored in
memory, or may be the result of a load/store instruction
which causes the data transfer but no other operation.
Additionally, load/store unit 26 may include a special reg-
ister storage for special registers such as the segment reg-
isters and other registers related to the address translation
mechanism defined by the x86 microprocessor architecture.

In one embodiment, load/store unit 26 1s configured to
perform load memory operations speculatively. Store
memory operations are performed 1n program order, but may
be speculatively stored into the predicted way. If the pre-
dicted way 1s incorrect, the data prior to the store memory
operation 1s subsequently restored to the predicted way and
the store memory operation 1s performed to the correct way.
In another embodiment, stores may be executed specula-

3,987,592

11

fively as well. Speculatively executed stores are placed to
an store buffer, along with a copy of the cache line prior to
the update. If the speculatively executed store 1s later
discarded due to branch misprediction or exception, the
cache line may be restored to the value stored in the buffer.
It 1s noted that load/store unit 26 may be configured to
perform any amount of speculative execution, including no
speculative execution.

Data cache 28 1s a high speed cache memory provided to
temporarily store data being transferred between load/store
unit 26 and the main memory subsystem. In one
embodiment, data cache 28 has a capacity of storing up to
sixteen kilobytes of data in an eight way set associative
structure. Similar to 1nstruction cache 16, data cache 28 may
employ a way prediction mechanism. It 1s understood that
data cache 28 may be implemented 1n a variety of speciiic
memory configurations, including a set associative configu-
ration.

In one particular embodiment of microprocessor 10
employing the x86 microprocessor architecture, instruction
cache 16 and data cache 28 are linearly addressed. The linear
address 1s formed from the offset specified by the instruction
and the base address specified by the segment portion of the
x86 address translation mechanism. Linear addresses may
optionally be translated to physical addresses for accessing
a main memory. The linear to physical translation 1s speci-
fied by the paging portion of the x86 address translation
mechanism. It 1s noted that a linear addressed cache stores
linear address tags. A set of physical tags (not shown) may
be employed for mapping the linecar addresses to physical
addresses and for detecting translation aliases. Additionally,
the physical tag block may perform linear to physical
address translation.

Turning now to FIG. 2, a block diagram of one embodi-
ment of decode units 20B and 20C are shown. Each decode
unit 20 receives an nstruction from instruction alignment
unit 18. Additionally, MROM unit 34 1s coupled to each
decode unit 20 for dispatching fast path instructions corre-
sponding to a particular MROM 1nstruction. Decode unit
20B comprises early decode unit 40B, multiplexer 42B, and
opcode decode unit 44B. Similarly, decode unit 20C
includes early decode unit 40C, multiplexer 42C, and
opcode decode unit 44C.

Certain 1nstructions 1n the x86 instruction set are both
fairly complicated and frequently used. In one embodiment
of microprocessor 10, such instructions include more com-
plex operations than the hardware included within a par-
ticular functional unit 24A-24C 1s configured to perform.
Such 1nstructions are classified as a special type of MROM
instruction referred to as a “double dispatch” instruction.
These instructions are dispatched to a pair of opcode decode
units 44. It 1s noted that opcode decode units 44 are coupled
to respective reservation stations 22. Each of opcode decode
units 44A—44C forms an 1ssue position with the correspond-
ing reservation station 22A-22C and functional unit
24A-24C. Instructions are passed from an opcode decode
unit 44 to the corresponding reservation station 22 and
further to the corresponding functional unit 24.

Multiplexer 42B 1s included for selecting between the
instructions provided by MROM unit 34 and by ecarly
decode unit 40B. During times 1n which MROM unit 34 1s
dispatching instructions, multiplexer 42B selects instruc-
fions provided by MROM unit 34. At other times, multi-
plexer 42B sclects nstructions provided by early decode
unit 40B. Similarly, multiplexer 42C selects between
instructions provided by MROM unit 34, carly decode unait

10

15

20

25

30

35

40

45

50

55

60

65

12

40B, and early decode unit 40C. The mstruction from
MROM unit 34 1s selected during times 1n which MROM

unit 34 1s dispatching instructions. During times 1n which
carly decode unit 40B detects a double dispatch instruction,
the 1nstruction from early decode unit 40B 1s selected by
multiplexer 42C. Otherwise, the instruction from early
decode unit 40C 1s selected. Selecting the instruction from
carly decode unit 40B mto opcode decode unit 44C allows
a fast path instruction decoded by decode umit 20B to be
dispatched concurrently with a double dispatch instruction

decoded by decode unit 20A.

According to one embodiment employing the x86 instruc-
tion set, early decode units 40 perform the following opera-
fions:

(1) merge the prefix bytes of the instruction into an
encoded prefix byte;

(i1) decode unconditional branch instructions (which may
include the unconditional jump, the CALL, and the
RETURN) which were not detected during branch
prediction;

(111) decode source and destination flags;

(iv) decode the source and destination operands which are
register operands and generate operand size informa-
tion; and

(v) determine the displacement and/or immediate size so
that displacement and immediate data may be routed to
the opcode decode unit.

Opcode decode units 44 are configured to decode the opcode
of the instruction, producing control values for functional
unit 24. Displacement and immediate data are routed with
the control values to reservation stations 22.

Since early decode units 40 detect operands, the outputs
of multiplexers 42 are routed to register file 30, MSR {ile 31,
and reorder buffer 32. Operand values or tags may thereby
be routed to reservation stations 22. Additionally, memory
operands are detected by early decode units 40. Therefore,
the outputs of multiplexers 42 are routed to load/store unit
26. Memory operations corresponding to instructions having
memory operands are stored by load/store unit 26.

Turning now to FIG. 3, a diagram 1llustrating one embodi-
ment of a hierarchical structure of resources within a micro-
processor 1s shown. The hierarchy of FIG. 3 1s for illustrative
purposes only, other processors may utilize other hierarchi-
cal structures. The hierarchy includes several register levels.
At the top level of the hierarchy 1s a plurality of primary
registers. The primary registers may include performance
critical resources such as general registers, segment
registers, a flag register and an 1nstruction pointer register. In
addition, the top level of the hierarchy includes a special
register pointer and a floating point register pointer. Each
pointer 1dentifies a second level of the register hierarchy. For
example, the top level of the register hierarchy may include
64 primary register addresses. Of the 64 primary register
addresses, 62 addresses may 1dentily primary registers. One
of the primary register addresses 1s a pointer to a special
register hierarchical level. Another primary register address
1s a pointer to a floating point register hierarchical level.

In one embodiment, the primary registers are i1dentified
directly 1n the register operand fields of an instruction. The
term register operand field i1dentifies an operand field that
normally 1dentifies a source or destination register. Gener-
ally speaking, an operand field 1s a portion of an instruction
that 1denfifies parameters of an instruction, €.g., source
register, destination register, memory address, immediate
data or displacement data.

To access a special register, a first register operand field
specifies the special register pointer and another operand

3,987,592

13

field, or a register, identifies which special register to access.
For example, the special register may be 1dentified by the
immediate field of an instruction. Alternatively, a general
register or a temporary register may store a value that
identifies the special register. Likewise, when a floating
point register 1s accessed, a first operand field 1dentifies the
floating point register pointer and another operand field, or
register, speciiies which floating point register to access.

In one embodiment, the special registers are split between
local special registers and remote special registers. The more
time critical resources (but not as time critical as the primary
registers) are allocated to the local special registers. In one
embodiment, the local special registers are located 1n a
special register file. The less time critical special registers
are allocated to the remote special registers and may be
located throughout the microprocessor. Remote special reg-
isters may 1nclude arrays, groups or multiples of data. For
example, a data cache may be defined as a remote special
register. An operand field or a register identifies which
clement of the array to access. In one embodiment, remote
special registers are accessed via a remote special register
bus 414. The hierarchical structure discussed above may be
extended to include more levels of the hierarchy and/or to
include more branches of the hierarchy.

The following instructions 1llustrate one method of defin-
Ing 1nstructions to access registers of the hierarchical reg-
ister structure 1llustrated in FIG. 3. The following instruction
moves data from a local special register DS segment base to
primary register tmp0O:

MOV tmp0, SR, (srctl=read, ds_ base).

The MOV i1nstruction includes three operand fields: two
register operand fields and an 1mmediate field. The first
operand field specifies the destination register of the move
instruction. In the illustrated embodiment, primary register
tmp0 1s the destination register. The second operand field
specifles the source register of the move 1nstruction. In the
1llustrated embodiment, the second 1nstruction operand does
not specily a primary register, but rather specifies a pointer
to the special registers. The immediate field of the 1nstruc-
tion defines which special register to access and the type of
operation to perform on the special register. The immediate
field specifies that a read operation 1s to be performed and
specifles the special register as the DS segment base register
(ds_ base). To most portions of the microprocessor, this
instruction appears as a normal register move instruction.

The following pair of instructions illustrates one method
of accessing an array such as a data cache array:

MOV SR, tmpl, (srctl=write, array locator word)

MOV temp0, SR, (srctl=array read, dc_ data)

In the illustrated embodiment, accessing an element of the
data cache array requires two instructions. The first instruc-
tion moves data, which identifies the element of the array to
access, from general register tmpl to a special register called
an array locator word. This instruction 1s the same format as
the move 1nstruction discussed above. The array locator
word 1s a special register that stores data identifying the
clement of the array. The second instruction moves the
clement of a data array to primary register temp0. The first
operand field of the move instruction specifies the destina-
fion register, the second operand field contains a pointer to
the special register, and the immediate field specifies the
operation as an array read and 1dentifies the special register
as the data cache array. As noted above, the immediate field
contains data identifying the special register to access and
the type of bus operation. When an instruction that accesses
an array 1s encountered, the array locator word 1s read to
determine which element of the array to access.

10

15

20

25

30

35

40

45

50

55

60

65

14

The operations, or bus operations, defined 1n the 1mme-
diate field include read operations, write operations, array
read operations, array write operations, and array invalidate
operations. In other embodiments, other bus operations may
be defined. The immediate field also identifies the special
register to be accessed. For example, 1f the special register
space Includes 256 special registers, then an 8-bit address
field 1s used. Each address identifies a unique special reg-
Ister.

Turning now to FIG. 4, portions of a microprocessor that
relate to the access of special registers according to one
embodiment of the present invention 1s shown. The portions
of the microprocessor include 1nstruction alignment unit 18,
decode unit 20, reservations stations 22, functional unit 24,
MROM unit 34, load/store unit 26 and reorder buffer 32.
Outputs of MROM unit 34 and instruction alignment unit 18
are provided to decode unit 20. Decode unit 20 1s coupled to
reservation station 22, load/store unit 26 and reorder buffer
32. Reservation station 22 1s additionally coupled to func-
tional unit 24. Functional unit 24 1s coupled to reorder buifer
32 and load/store unit 26. Load/store unit 26 1s coupled to
reorder buffer 32.

Special register instructions may be either MROM
instructions or fast path instructions. As noted above,
MROM 1nstructions are conveyed to MROM unit 34, which
parses the mstruction into a subset of fast path instructions.
The fast path instructions are dispatched from MROM unait
34 to decode unit 20. Alternatively, fast path special register
instructions are dispatched directly from instruction align-
ment unit 18 to decode umt 20. Special register access
instructions received by decode unit 20 are handled 1n a
similar manner whether received from MROM unit 34 or
mnstruction alignment unit 18.

In the 1llustrated embodiment, the special register unit 202
1s located within load/store unit 26. Special register unit 202
stores the local special registers which may include the
secgment registers. Because, 1n one embodiment, the load/
store unit performs most of the segment register operations,
special register unit 202 1s located within load/store unit 26.
In other embodiments, special register unit 202 may be
located 1n other portions of microprocessor 10. Load/store
unit 26 may control access to both local special registers and
remote special registers. In one embodiment, special register
unit 202 includes a local register file for storing local special
registers. In one particular embodiment, remote special
registers are located 1n other blocks of the microprocessor
and are accessed via a remote special register bus 414.

Upon decode of a special register access instruction,
decode unit 20 conveys instruction information to load/store
unit 26. Instruction information may include operand and
control data. In the 1llustrated embodiment, operand data 1s
conveyed on op bus 410 and control data 1s conveyed on
control bus 408. The control data includes the type of bus
operation and data identifying a special register. In one
embodiment, the control data 1s the same data as the
immediate field of the instruction. The operand data may
indicate, among other things, the operand of the instruction.

Decode unit 20 additionally conveys an operand request
signal to reorder buffer 32 on operand request bus 412. In
one embodiment, when reorder buffer 32 receives an oper-
and request signal, 1t allocates a storage location within
reorder builer 32 for the instruction. Reorder buifer 32
outputs the reorder bufler tag, which identifies the storage
location allocated to the instruction, on the reorder buffer tag
bus 402. Reorder buffer 32 also performs a dependency
check on the operands of the instruction with operands of
previous 1structions. If the source operand of an 1nstruction

3,987,592

15

1s the destination operand of a previous 1mstruction, a depen-
dency exists. If the previous instruction on which the current
instruction depends has returned a result, the reorder buifer
outputs the result on the operand tag bus 404. If the previous
instruction has not returned a result, the reorder builer
returns the reorder bufler tag of the previous instruction on
operand tag bus 404. As discussed above, the operand tag is
used by load/store unit 26 to capture the general register
result from the result bus 38. The load/store unit conveys
special register results to reorder buifer 32 via a load/store
result bus 406.

In one embodiment, the transfer of data between general
registers and special registers 1s performed by reorder buifer
32 and load/store unit 26. General register data 1s passed
directly from reorder buifer 32 to load/store unit 26. Special
register data 1s passed directly from load/store unit 26 to
reorder bufler 32. The special register instruction 1s retired
in reorder buffer 32. In this embodiment, reservation station
22 and functional unit 24 are not involved 1n the transter of
data between a primary register and a special register. In an
alternative embodiment, decode unit 20 additionally passes
instruction 1nformation to reservation station 22. Special
register data 1s conveyed from load/store unit 26 to reser-
vation station 22. When reservation station 22 receives the
operand data from load/store unit 26, reservation station 22
conveys the instruction and the operand data to functional
unit 24. Functional unit 24 conveys the special register data
to reorder buffer 32 via result bus 38. In this embodiment,
load/store result bus 406 1s coupled to reservation station 22.

For illustrative purposes, a move instruction from a spe-
cial register to a general register 1s discussed. When decode
unit 20 encounters a move 1nstruction from a special register
fo a general register, it asserts an operand request signal to
reorder buller 32 on operand request bus 412. Reorder buifer
32 allocates a storage location for the instruction result and
outputs the reorder buller tag of the allocated storage loca-
fion to load/store unit 26. Load/store unit 26 additionally
receives control data from decode unit 20. The control data
indicates the bus operation 1s a read operation and 1dentifies
the source special register. Load/store unit 26 reads the
special register 1dentified by the control signal. If the special
register 1s a local special register, the value stored i the
special register 1s read from special register unit 202. It the
special register 1s a remote special register, load/store unit 26
reads the value stored 1n the remote special register via the
remote special register bus 414. Accessing special registers
within load/store unit 26 1s discussed in more detail below
in reference to FIG. 5. Load/store unit 26 outputs the value
read from the special register and the reorder buffer tag
allocated to the instruction on load/store result bus 406.
Reorder buifer 32 receives the special register value and
stores 1t 1n the storage location allocated for that result.

In one particular embodiment, reorder buffer 32 1s a line
oriented reorder bufler. In this embodiment, the reorder tag
output from the reorder buffer to the load/store unit and the
result output from load/store unit 26 to reorder buffer 32
specifies both the line and offset within the line oriented
reorder buffer.

A move nstruction from a general register to a special
register 1s discussed next. When decode unit 20 encounters
a move 1nstruction from a general register to a special
register, decode unit 20 outputs an operand request signal to
reorder buffer 32 and conveys control data identitying the
type of bus operation and the special register to load/store
unit 26. In response to the operand request signal, reorder
buffer 32 performs dependency checks on the source regis-
ter. As discussed above, 1f the source register does not

10

15

20

25

30

35

40

45

50

55

60

65

16

depend on any previous nstructions, reorder buffer 32
returns the source register value on operand tag bus 404.
Load/store unit 26 stores the source register to the special
register 1dentified by the control signal. If, however, the
source register depends upon the result of another
instruction, reorder buffer 32 returns the tag of the instruc-
tion on which the source register depends on operand tag bus
404. Load/store unit 26 monitors result bus 38 to capture the
source operand when 1t becomes available. When load/store
unit 26 captures the source operand, it stores the source
operand to the special register designated by the control
signal. If the special register 1s a local special register, the
source operand 1s stored 1n special register unit 202. If the
special register 1s a remote special register, the source
operand 1s stored to the remote special register via the
remote special register bus 414. Storing data to local and
remote special registers 1s discussed 1n more detail below 1n
reference to FIG. §.

Turning now to FIG. §, a block diagram of one embodi-
ment of a special register unit 202 1s shown. Special register
unit 202 includes buffer 302, control 304, local register file
306, special register bus 1nterface 308 and result bus control
310. Bufter 302 receives operand, control and tag data from
decode unit 20 and reorder butfer 32. Bufler 302 1s a storage
device for storing pending special register access 1nstruc-

tions. In one embodiment, bufl

er 302 1s a first-in-first-out
(FIFO) storage device. Read operations may be issued for
execution after the operation and control information 1is
available. Write instructions may be 1ssued for execution
after the operands have been captured from result bus 38. In
one particular embodiment, buffer 302 acts as a reservation
station and allows for non-sequential execution of read
operations. All write operations are executed 1n sequence
while read operations can be executed out of sequence as
long as there are no write operations to the same special
register pending ahead of the read operation in butfer 302.
Buffer 302 1ssues instructions for execution to control 304.
Control 304 determines whether the instruction accesses a
local special register or a remote special register. Access
may be either a read or write operation. If a local special
register 1s accessed, control 304 accesses the local special
register from local register file 306. If the instruction
accesses a remote special register, control 304 passes control
and operand information to special register bus interface
308. Special register bus interface 308 reads or writes to a
special register via remote special register bus 414. The
register values read during a read operation are passed from
local register file 306 or special register bus interface 308 to
result bus control 310. Result bus control 310 outputs the
register values on load/store result bus 406. Result bus
control 310 additionally outputs the tag associated with the
read instruction on load/store result bus 406. As discussed

above, reorder buftt

er 32 1s coupled to load/store result bus
406. Reorder bulfer 32 uses the data from load/store result
bus 406 to store the register value 1n the storage location
allocated to a special register read instruction.

Turning now to FIG. 6, a block diagram 1illustrating the
interconnection of remote special register bus 414 to por-
tions of microprocessor 10 according to one embodiment of
the present invention 1s shown. In the 1illustrated
embodiment, remote special register bus 414 1s coupled to
load/store unit 26, instruction cache 16, data cache 28,
functional units 24, reorder buffer 32 and MROM unit 34. As
discussed above, special registers may be located throughout
microprocessor 10. In one embodiment, special registers
located 1n portions of microprocessor 10 other than load/
store unit 26 are accessed via remote special register bus

3,987,592

17

414. Remote special register bus 414 provides a standard-
1zed mterface for communicating between the blocks of the
MI1CrOProcessor.

Additional special registers may be defined without rede-
signing or adding additional signals to the microprocessor.
For example, adding a new special register to 1nstruction
cache 16 does not require any additional control signals to
be routed from load/store unit 26 to instruction cache 16.
Instruction cache 16 1s already coupled to remote special
register bus 414. Instruction cache 16 1s modified to receive
or output data on remote special register bus 414 when the
new remote register 15 addressed. Additionally, new func-
fions or commands can be added without modifying other
portions of the microprocessor. For example, to add a flush
instruction cache command, a new special register within
instruction cache 16 may be defined. Writing a particular
data value to the special register may initiate the flush
command. Alternatively, an existing special register in cache
16 may receive the sequence that initiates the flush com-
mand. In either case, only instruction cache 16 needs to be
modified to add the new command. Decode unit 20 treats all
moves to special registers in the same manner. Likewise,
remote special register bus 414 treats all transfers to special
registers 1n the same manner. If an existing special register
1s used, only the data being transferred to instruction cache
16 differs. If a new special register 1s defined, remote special
register bus 414 outputs a new address. Remote special
register bus 414 may implement any conventional protocol
for transferring data between portions of a circuit.

Turning now to FIG. 7, a flow chart diagram 1llustrating,
the access of a resource according to one embodiment of the
present invention 1s shown. In step 702, a first register level
and a second register level 1s defined. In one embodiment,
more time critical registers are allocated to the first register
level and less time critical registers are allocated to the
second register level. In step 704, a first operand field of an
instruction 1s decoded. In one embodiment, the first operand
field 1dentifies either a register allocated to the first register
level or a pointer to the second register level. In decisional
step 706, 1t 1s determined whether the operand field identifies
a special register pointer. If the operand field does 1dentify
a special register pointer, then 1n step 708, a second operand
field 1s decoded. The second operand field identifies which
of the registers allocated to the second register level to
access. In step 710, the register identified by the second
operand field 1s accessed. If 1n decisional step 706, the first
operand field does not specily a special register pointer, then
in step 712, the primary register identified by the {first
operand field 1s accessed. In other embodiments, the first
register level may include more than one pointer. For
example, the first register level may include a pointer to
floating point registers 1n addition to special registers. In this
alternative embodiment, 1f the first operand field i1dentifies
the tloating register pointer, then the second operand field 1s
decoded to determine which floating point operand to
aCCESS.

FIG. 8A illustrates a command word output on the special
register bus according to one embodiment of the present
invention. The command word identifies a type of bus
operation and an address of a special register. In the 1llus-
trated embodiment, the operation field 1s 4-bits and thus may
specily 16 bus operations. For example, the operation field
may 1ndicate that the bus operation 1s a read from a special
register, a write to a special register, an array read, an array
write, or an array 1nvalidate. The address field 1s 8-bits and
thus may specily up to 256 special registers.

FIG. 8B 1llustrates an array locator word according to one
embodiment of the present invention. As discussed above,

10

15

20

25

30

35

40

45

50

55

60

65

138

when an array 1s accessed, the array locator word indicates
the element of the array to access. In the 1illustrated
embodiment, the array locator word includes a type ficld, an
op field, a way field and an index field. The type field defines
a subarray within the array addressed by the command word.
For example, the tag field may 1dentily a data array, a tag
array, a predecode array, a way prediction array, or a prefetch
buffer array. Other subarrays may be defined m other imple-
mentations of a microprocessor. The op field definition
depends on the command word. For example, when an array
1s 1nvalidated, the op field defines the type of invalidation.
For example, the op field may identify a global invalidate, a
line mvalidate or a line 1invalidate based on date. The way
field selects one of the ways 1n the array. The index field
contains the row and word addresses of the element to
access.

Turning now to FIG. 9, a computer system 200 including,
microprocessor 10 1s shown. Computer system 200 further

includes a bus bridge 202, a main memory 204, and a
plurality of input/output (I/O) devices 206 A—206N. Plurality

of I/0O devices 206 A—206N will be collectively referred to as
I/0 devices 206. Microprocessor 10, bus bridge 202, and
main memory 204 are coupled to a system bus 208. I/O
devices 206 are coupled to an I/O bus 210 for communica-
tion with bus bridge 202.

Bus bridge 202 1s provided to assist in communications
between 1/0 devices 206 and devices coupled to system bus
208. I/O devices 206 typically require longer bus clock
cycles than microprocessor 10 and other devices coupled to
system bus 208. Therefore, bus bridge 202 provides a butfer
between system bus 208 and input/output bus 210.
Additionally, bus bridge 202 translates transactions from
onc bus protocol to another. In one embodiment, mput/
output bus 210 1s an Enhanced Industry Standard Architec-
ture (EISA) bus and bus bridge 202 translates from the
system bus protocol to the EISA bus protocol. In another
embodiment, mput/output bus 210 1s a Peripheral Compo-
nent Interconnect (PCI) bus and bus bridge 202 translates
from the system bus protocol to the PCI bus protocol. It 1s
noted that many variations of system bus protocols exist.
Microprocessor 10 may employ any suitable system bus
protocol.

I/O devices 206 provide an interface between computer
system 200 and other devices external to the computer
system. Exemplary 1I/0 devices include a modem, a serial or
parallel port, a sound card, etc. I/O devices 206 may also be
referred to as peripheral devices. Main memory 204 stores
data and instructions for use by microprocessor 10. In one
embodiment, main memory 204 includes at least one
Dynamic Random Access Memory (DRAM) and a DRAM
memory controller.

It 1s noted that although computer system 200 as shown 1n
FIG. 9 includes one bus bridge 202, other embodiments of
computer system 200 may include multiple bus bridges 202
for translating to multiple dissimilar or similar I/O bus
protocols. Still further, a cache memory for enhancing the
performance of computer system 200 by storing instructions
and data referenced by microprocessor 10 in a faster
memory storage may be included. The cache memory may
be mserted between microprocessor 10 and system bus 208,
or may reside on system bus 208 1n a “lookaside” configu-
ration.

Although the x86 microprocessor architecture and
instruction set have been used as a specific example herein,
it 1s noted that the apparatus and method described herein
may be applicable to any microprocessor which employs
model specific registers. Such embodiments are contem-
plated.

19

3,987,592

It 1s still further noted that the present discussion may
refer to the assertion of various signals. As used herein, a
signal 1s “asserted” 1f 1t conveys a value indicative of a
particular condition. Conversely, a signal 1s “deasserted” if
it conveys a value indicative of a lack of a particular 5
condition. A signal may be defined to be asserted when 1t
conveys a logical O value or, conversely, when it conveys a
logical 0 value. Additionally, various values have been
described as being discarded in the above discussion. A
value may be discarded in a number of manners, but 10
generally imvolves moditying the value such that 1t is
ignored by logic circuitry which receives the value. For
example, 1f the value comprises a bit, the logic state of the
value may be 1nverted to discard the value. If the value 1s an
n-bit value, 1 of the n-bit encodings may indicate that the 15
value 1s 1mnvalid. Setting the value to the mvalid encoding
causes the value to be discarded. Additionally, an n-bit value
may 1nclude a valid bit indicative, when set, that the n-bit
value 1s valid. Resetting the valid bit may comprise discard-
ing the value. Other methods of discarding a value may be 20

used as well.

Table 1 below indicates fast path, double dispatch, and
MROM i1nstructions for one embodiment of microprocessor
10 employing the x86 instruction set:

x86 Fast Path, Double Dispatch, and MROM Instructions

TABLE 1

X&6 Instruction

AAA
AAD
AAM
AAS
ADC
ADD
AND
ARPL
BOUND
BSE
BSR
BSWAP
BT
BTC
BTR
BTS
CALL
CBW
CWDE
CLC
CLD
CLI
CLI'S
CMC
CMP
CMPS
CMPSB
CMPSW
CMPSD
CMPXCHG
CMPXCHGSB
CPUID

CWD

CWQ

DDA

DAS

DEC

DIV

ENTER

HLI

[DIV

IMUL

IN

INC

INS

[nstruction Category

MROM
MROM
MROM
MROM

fast path
fast path
fast path
MROM
MROM
fast path
fast path
MROM
fast pat

1
fast path
h
1

fast pat
fast pat
fast path/double dispatch
fast path
fast path
fast path
fast path
MROM
MROM

fast path

fast path
MROM
MROM
MROM
MROM
MROM
MROM
MROM
MROM
MROM
MROM
MROM

fast path
MROM
MROM
MROM
MROM

double dispatch
MROM

fast path
MROM

25

30

35

40

45

50

55

60

65

20

TABLE 1-continued

x86 Fast Path, Double Dispatch, and MROM Instructions

X&6 Instruction

INSB
INSW
INSD
INT
INTO
INVD
INVLPG
IRET
IRETD
Jcc
JCXZ
JECXYZ
IMP
LAHF
LAR
LDS

LES

LES

LGS

LSS
LEA
LEAVE
LGDT
LIDT
LLDT
LMSW
LODS
LODSB
LODSW
LODSD
LOOP
L.OOPcond
LSL

LTR
MOV
MOVCC
MOV.CR
MOV.DR
MOVS
MOVSB
MOVSW
MOVSD
MOVSX
MOVZX
MUL
NEG
NOP
NOT

OR

ouUT
OuUTS
OUTSB
OUTSW
OuUTSD

[nstruction Category

MROM
MROM
MROM
MROM
MROM
MROM
MROM
MROM
MROM

fast path
double dispatch
double dispatch
fast path

fast path
MROM
MROM
MROM
MROM
MROM
MROM

fast path
double dispatch
MROM
MROM
MROM
MROM
MROM
MROM
MROM
MROM

double dispatch
MROM
MROM
MROM

fast path

fast path
MROM
MROM
MROM
MROM
MROM
MROM

fast path

fast path
double dispatch
fast path
fast path
fast path
fast path
MROM

MROM

MROM

MROM

MROM

double dispatch

MROM

MROM

MROM

MROM

fast path/double dispatch
MROM

MROM

fast path

fast path

MROM

MROM

fast path

fast path

MROM

MROM

MROM

MROM

MROM

MROM

double dispatch

3,987,592

21

TABLE 1-continued

x86 Fast Path, Double Dispatch, and MROM Instructions

X86 Instruction [nstruction Category >
RSM MROM

SAHF fast path

SAL fast path

SAR fast path

SHL fast path 10
SHR fast path

SBB fast path

SCAS double dispatch

SCASB MROM

SCASW MROM

SCASD MROM 15
SETcc fast path

SGDT MROM

SIDT MROM

SHLD MROM

SHRD MROM

SLDT MROM 0
SMSW MROM

STC fast path

STD fast path

STT MROM

STOS MROM

STOSB MROM

STOSW MROM 25
STOSD MROM

STR MROM

SUB fast path

TEST fast path

VERR MROM

VERW MROM 30
WBINVD MROM

WRMSR MROM

XADD MROM

XCHG MROM

XLAT fast path

XLATB fast path 35
XOR fast path

Note: Instructions including an SIB byte are also considered double dispatch
instructions.

It 1s noted that other aspects regarding superscalar micro-
processors may be found in the following co-pending,
commonly assigned patent applications: “A Line-Oriented
Reorder Buifer for a Superscalar Microprocessor”, Ser. No.
08/690,385 filed Jul. 26, 1996 by Witt, et al. now U.S. Pat.
No. 5,878,244; “Linearly Addressable Microprocessor 45
Cache”, Ser. No. 08/146,381, filed Oct. 29, 1993 by Witt
now U.S. Pat. No. 5,761,691; “Superscalar Microprocessor
Including a High Performance Instruction Alignment Unit”,
Ser. No. 08/377,843, filed Jan. 25, 1995 by Witt, et al. now
U.S. Pat. No. 5,819,057; “A Way Prediction Structure”, Ser. s
No. 08/522,181, filed Aug. 31, 1995 by Roberts, et al. now
U.S. Pat. No. 5,845,323; “A Data Cache Capable of Per-
forming Store Accesses 1n a Single Clock Cycle”, Ser. No.
08/521,627, filed Aug. 31, 1995 by Witt, et al. now U.S. Pat.
No. 5,860,104; “A Parallel and Scalable Instruction Scan- ss
ning Unit”, Ser. No. 08/475,400, filed Jun. 7, 1995 by
Narayan now U.S. Pat. No. 5,875,315; and “An Apparatus
and Method for Aligning Variable-Byte Length Instructions
to a Plurality of Issue Positions”, Ser. No. 08/582,473, filed
Jan. 2, 1996 by Narayan, et al. now U.S. Pat. No. 5,822,559. ,
The disclosure of these patent applications are incorporated
herein by reference 1n their entirety.

Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
1s fully appreciated. It is intended that the following claims 65

be 1nterpreted to embrace all such variations and modifica-
fions.

22

What 1s claimed 1s:
1. A microprocessor comprising:

a plurality of units arranged 1n a pipeline to effect execu-
tion of instructions, each of said plurality of units
including at least one of a plurality of resources acces-
sible via execution of an instruction specifying, in an
operand field of said instruction, one of a plurality of
special register addresses assigned to said plurality of
r€SOUICeS;

a remote special register bus coupled to each of said
plurality of units; and

a special register unit coupled to said remote special
register bus, wherein said special register unit 1s con-
figured to access said one of said plurality of resources
1in response to said 1nstruction, said special register unit
configured to access said one of said plurality of
resources using said remote special register bus to

access sald one of said plurality of resources;

wherein said each of said plurality of units comprises a
remote special register bus interface for interfacing
between said one of said plurality of resources and said
remote special register bus.

2. The microprocessor as recited 1n claim 1 wherein said
special register unit comprises a register file including one or
more speclal registers, wherein said one or more special
registers are 1dentified in said operand field of said instruc-
tion using a second plurality of special register addresses
separate from said plurality of special register addresses.

3. The microprocessor as recited in claim 1 wherein said
plurality of units include a reorder buifer.

4. The microprocessor as recited 1in claim 1 wherein said
plurality of units mnclude a microcode unit.

5. The microprocessor as recited 1in claim 1 wherein said
plurality of umts include a cache.

6. The microprocessor as recited in claam 1 further
comprises a decode unit coupled to said special register unit,
wherein said decode unit 1s configured to decode said
mstruction and determine that said instruction accesses a
special register.

7. The microprocessor as recited in claim 6 further
comprising a microcode unit coupled to said decode unit and
an 1nstruction alignment unit coupled to said decode unit,
wherein said 1nstruction i1s sourceable from either said
microcode unit or said instruction alignment unit.

8. A method for accessing a plurality of resources in a
microprocessor, the method comprising:

decoding an 1nstruction coded to access one of said
plurality of resources;

transmitting said instruction to a special register unit;

determining if said one of said plurality of resources 1s
local or remote; and

transmitting, upon a remote special register bus, a com-
mand from said special register unit to a second unit
including said one of said plurality of resources it said
one of said plurality of resources 1s remote.

9. The method as recited in claim 8 further comprising
reading a local register file within said special register unit
if said one of said plurality of resources 1s local.

10. The method as recited 1n claim 8 wherein said second
unit comprises a reorder buifer.

11. The method as recited in claam 8 wherein said second
unit comprises a microcode unit.

12. The method as recited 1n claim 8 wherein said second
unit comprises a cache.

13. The method as recited 1n claim 8 wheremn said
decoding comprises decoding a first operand field of said
instruction.

3,987,592

23

14. The method as recited 1n claim 13 wherein an encod-
ing of said first operand field comprises a pointer indicating
that said operand 1s specified 1n a second operand field of
said 1nstruction.

15. The method as recited in claim 14 further comprising
assigning a plurality of special register addresses to said
plurality of resources.

16. The method as recited in claim 15 further comprising
coding said second operand field with one of said plurality
of special register addresses to access a corresponding one
of said plurality of resources.

17. A computer system comprising:

a microprocessor mncluding:

a plurality of units arranged in a pipeline to effect
execution of instructions, each of said plurality of
units including at least one of a plurality of resources
accessible via execution of an 1nstruction specifying,
in an operand field of said instruction, one of a
plurality of special register addresses assigned to
said plurality of resources;

a remote special register bus coupled to each of said
plurality of units; and

a special register unit coupled to said remote special
register bus, wherein said special register unit is
configured to access said one of said plurality of
resources 1n response to said instruction, said special
register unit configured to access said one of said
plurality of resources using said remote special reg-
ister bus to access said one of said plurality of
r€SOUrces;

wherein said each of said plurality of units comprises a
remote special register bus interface for interfacing
between said one of said plurality of resources and
said remote special register bus; and

I

10

15

20

25

30

24

an input/output (I/O) device coupled to said
microprocessor, wherein said I/O device 1s configured
to communicate between said computer system and
another computer system to which said I/O device 1s
coupled.

18. The computer system as recited in claim 17 wherein

said I/0 device comprises a modem.
19. A computer system comprising:

a microprocessor with flexible resource access including:
a decode unit configured to decode a first operand field
of an instruction, wherein said first operand field
1dentifies a primary register or a pointer to a plurality
of special registers; and
a special register unit coupled to said decode unit
wherein 1f said first operand field identifies said
pointer to said plurality of special registers:
sald decode unit 1s configured to convey instruction
information to said special register unit,
said special register unit 1s configured to decode a
second operand field, and
said special register unit 1s configured to access a
special register 1dentified by said second operand

field; and

an input/output (I/O) device coupled to said
microprocessor, wherein said I/O device 1s configured
to communicate between said computer system and
another computer system to which said I/O device 1s
coupled.
20. The computer system as recited in claim 19 wherein
said I/0 device comprises a modem.

	Front Page
	Drawings
	Specification
	Claims

