United States Patent |9

Suzuki et al.

US005955691A
(11] Patent Number: 5,955,691
45] Date of Patent: Sep. 21, 1999

[54] SOFTWARE SOUND SOURCE

|75] Inventors: Hideo Suzuki; Motoichi Tamura;

Yoshimasa Isozaki; Hideyuki Masuda;
Masahiro Shimizu, all of Hamamatsu,

Japan
| 73] Assignee: Yamaha Corporation, Hamamatsu,
Japan
21] Appl. No.: 08/904,327
22| Filed: Jul. 31, 1997
30 IForeign Application Priority Data
Aug. 5, 1996 [IP] JAPAD oo 8-221780
Aug. 9, 1996 [IP] JaPan ..ococeeoeeeeemeeeeeeeereeennns 8-227807
Aug. 30, 1996 [IP] JaPAD oo, 8-246957
51] Int. CLO e, G10H 7/00
52] U.S. CL cerrerrrenrennesnnnnnenneneneens. OH004; 84/622
58] Field of Search 84/622, 659, 603,
84/604
[56] References Cited

U.S. PATENT DOCUMENTS

3,809,788 5/1974 Deutsch .

4,573,390 3/1986 Saito .

5,319,151 6/1994 Shiba et al. .

5,376,752 12/1994 Limberis et al. .

5,432,293 7/1995 Nonaka et al. .

5,677,504 10/1997 Kurata .

5,698,806 12/1997 Yamada et al.ccuuuene.... 84/622 X
5,703,310 12/1997 Kurakake et al. .

5,703,312 12/1997 Takahashi et al. .

FOREIGN PATENT DOCUMENTS

0722 162 7/1996 FEuropean Pat. Off. .
WO 80/01215 6/1980 WIPO .
WO 96/18995 6/1996 WIPO .

Primary Examiner—lellrey W. Donels
Attorney, Agent, or Firm—Graham & James LLP

57 ABSTRACT

A music apparatus uses a processing unit of a universal type
having an extended 1nstruction set used to carry out parallel
computation steps 1n response to a single 1nstruction which
1s successively 1ssued when executing a program. A software
module defines a plurality of channels and 1s composed of a
synthesis program executed by the processing unit using the
extended instruction set so as to carry out synthesis of
waveforms of musical tones through the plurality of the
channels. The plurality of the channels are optimally
orouped 1nto parallel sets each containing at least two
channels. The synthesis of the waveforms of at least two
channels belonging to each parallel set are carried out
concurrently by the parallel computation steps. A buifer has
a capacity sufficient to store the waveform samples allotted
to one frame period. A cache has a capacity suflicient to store
a subset of the waveform samples which 1s an integer
division of the set allotted to one frame period. The synthesis
program 1s executed by the processing unit at one frame
period so as to carry out synthesis of a set of waveform
samples allotted to one frame period while efficiently
accessing the cache. Any designated subroutine programs
are sequentially called 1n response to call mstructions to
process the waveform samples during the synthesis.

53 Claims, 28 Drawing Sheets

112

EXTERNAL

113 INPUT
SOURCE

KEYBOARD D HARD
— ISPLAY DISK GENERATOF{

101

NETWORK DISK

CACHE
MEMORY (117

S I

EXTERNAL
STORAGE
MEDIUM

105

5,955,691

Sheet 1 of 28

Sep. 21, 1999

U.S. Patent

WNId3N
JOVHOLS
IVNHJLX3

€01

GOl

/1L AJOWIN
JHOVO
40! 901 LO}
JAIHJ 0/
L0

1

R R

Ol 1|

143" IVINQ
W3 LSAS
ANNOS

GLI

HOLYHINID MSIQ
I aQuvh AVIdSIa | |a"vogAaM

LEE Okl 601 801

404NOS
1MNdNI
IVNYd1LX3

ELi

¢l

L O

5,955,691

Sheet 2 of 28

Sep. 21, 1999

U.S. Patent

(09d) (19d) (0gd)

NOILONAOHd3IH | NOILONAOHd3IY | NOILONQOYd3ad zo;wu_@m_om__@wm
HO4 Aav3ady HO4 av3d HO4 av3ad
l89d OL JLIHM '\ 09d OL 3LHM N 19d OL JLHM N\ 09d OL ILIHM !
NdD A8
SISTHLINAS
WHO4IAYM

14014 £0c

SISFHLNAS SISAHLNAS
dO4 d1NdNOD | HO4 ILNdNOD

c0¢

SISIHLNAS
d04 d1NdNOD

10¢C

SISAHLNAS
d0O4 3LNdNOD

1dNdd3.LINl JNVHS

——eeae—--

JOVSSdN
JONVINHOdddd

JOVSSIN dJONVINHO4dH3d
} ANl =——

rS £S cS 1S

¢ Vld

5,955,691

Sheet 3 of 28

Sep. 21, 1999

U.S. Patent

Jg1sibal 1q $9 | J909 1q 9| 'J800 1q 9| '}902 1Iq 9| '}902 1iq 91

X X X X

18)sibal 4q v9 | eidwes uq 91 | sidwes uq g1 | edwes g 91 | edwes g 9

a|dwes 1iIq 91 a|ldwes g 9| o|dwes 11q 91 a|dwes 1iq 91
yo {uxy) Yo {e+(L-u)xp} Yo {g+(L-u)xy} Yo {1+(L—u)xy}
£ 9Ol

5,955,691

Sheet 4 of 28

Sep. 21, 1999

U.S. Patent

Indino

POl

Indul

5,955,691

Sheet 5 of 28

Sep. 21, 1999

U.S. Patent

VX

G Ol

4=F

1=F

XX

daX

1X

U.S. Patent Sep. 21, 1999 Sheet 6 of 28 5,955,691

FIG.6A

m6 ab
input ’ e output

output
output

5,955,691

Sheet 7 of 28

Sep. 21, 1999

U.S. Patent

1dV1S DNIANNOS
1OMNY1LSNI

viL

d31S193d 30HNOS

ell ANNOS 13S

4 Y3 dNOL J1VOOT1V

ALIDO13A — JA
LEZ~d39INNN 310N — NN

YIIAIN — O

INIAT NO-310ON

d. 9ld

ONISSJO0Hd | [SONISSTO0Hd

80.

(N-

N3

ONISS3O0Hd
NOILVHINID
WNHOJIAVM

INISSIO0Hd
a

¢0.~d399ld1l HOd MO3HO

3ZI'1VILIN|

1074

NIVIN

vVLiOld

U.S. Patent Sep. 21, 1999 Sheet 8 of 28 5,955,691

FIG.8A

WAVEFORM_GENERATION
PREPARE_FOR _COMPUTATION }801
802

4 CHANNELx1 FRAME
WAVEFORM GENERATION

(OUTPUTS OF 3 LINES) [~803

— (4%(n—1)+1} CHANNEL
805 THROUGH {4xn} CHANNEL
804
YES MORE CHANNELS

T0O BE COMPUTED
?
NO

COMPUTE EFFECTS 806

RESERVE 1 FRAME
OF STEREO WAVEFORMS |~807
FOR REPRODUCTION

5,955,691

Sheet 9 of 28

Sep. 21, 1999

U.S. Patent

(N4

g8~ ++d
1z8~ (d) gvna — Jva
OVING

08 0l

N3
SdA

¢ A3131dINOD JINVHS |
18

ON

9 S3ANIT € HO4 (v,/¥,/-1) 137IvHVd NI
H™31v1NWNOOY ANV JNNTOA TOHLINOD

c18 (¥ /v—1) 13711vdvYd NI 431714

vig~ (7 /9-1) 1371IvHVd NI 3LVYIOdHI LN

€18~ ST1INNVHO ¥ X SFTdAVS ¢ SITdNVS WHOJIAVM Av3Y

A)

¢cl8 v,/ ¥—-€) 13711vdVd NI S3SS3HAAY JLVHINID

118 (?.2-1) 137IvHVYd NI S3SS3HAAVY I1VHINID

dNVHS | X S TdNNVHO ¥ HOd SWHOJIAVM J1VHINID

d8 Ol

5,955,691

Sheet 10 of 28

Sep. 21, 1999

U.S. Patent

JI'\

82l g P
14V d0Ildd 969l

5,955,691

Sheet 11 of 28

Sep. 21, 1999

U.S. Patent

14107

£—S0v

8ClIX¢C
q Xiw

¢— S0P

8clX¢
v XIW

1 —G0P

JAVATHALNI

P—v0P

JAVI Td31NI

e-y07

JAVITHILNI

¢—v0v

JAVITd3LNI

I=v0P

8-eQy <
>
Xl S
L-eQy Al L~El
>
XUl
. >
ey g ~9-€ i
>
XL
. >
G-£07
=
2L
v=eQy Al -l
>
c-€0F 31V10dY3LNI
S—— A‘ d3l 14 3 QVdd E@ﬂwﬁ\m_ﬁg
X1 - NHOJIAVM
Z—-£0¥
S Al B
Xiw S ey Ly L 0Y
| —E0p Z-€Lb
XIW S —— A |-€ 1Y >
=

—_ 07

STANNVYHO ONIANNOS 40 H3FGANN X ODNISS300Hd NOILYHINIO INOL DJISNIA
01Ol

5,955,691

Sheet 12 of 28

Sep. 21, 1999

U.S. Patent

OLSG

605G 805

ONISS3O0Hd

NOILVI'VA

£L0S

ONISS3004Hd
SNHOHD

90¢

ONISSIO0OHd

NOI|LvVdd9d3aAdY

G0G

L DI

£0§

¢0S

8¢l X¢
q Xiuw

v—10SG

82l X¢
7 X1w

&—10G

¢— L0G

8¢ Xg
v XIw

L= 10G

U.S. Patent Sep. 21, 1999 Sheet 13 of 28 5,955,691

FIG.12A

WAVEFORM GENERATION
PREPARE FOR COMPUTATION 901

GENERATE WAVEFORMS 902
FOR 16 SAMPLES

903

YES 1 FRAME COMPLETED ?
NO
COMPUTE VARIATION 904
COMPUTE CRHORUS 905

COMPUTE REVERBERATION 906

RESERVE 1 FRAME x STEREO Q07
WAVEFORMS FOR REPRODUCTION

U.S. Patent Sep. 21, 1999 Sheet 14 of 28 5,955,691

FIG.12B

GENERATE WAVEFORMS FOR 16 SAMPLES)
PREPARE 1ST CHANNEL |~911

UPDATE EGs 912

GENERATE ADDRESS, READ WAVEFORMS, 912
AND INTERPOLATE 16 SAMPLES

920 FILTER FOR 16 SAMPLES 914

PREPARE
NEXT

CHANNEL COMPUTE mixA FOR 2x16 SAMPLES 915
COMPUTE mixB FOR 2x16 SAMPLES [~916

COMPUTE mixC FOR 2x16 SAMPLES [~91/
COMPUTE mixD FOR 2x16 SAMPLES [—°18

919
NO MORE CHANNELS
10O BE COMPUTED ?
YES

U.S. Patent Sep. 21, 1999 Sheet 15 of 28 5,955,691

F1G.13

NOTE—-ON EVENT

MC « MIDlIch
NN — NOTE NUMBERP-S21
VE <~ VELOCITY

ASSIGN TONES BASED ON
SOUND SOURCE TYPE S22
TO MIDIch OF MC

PREPARE FOR
TONE GENERATION BASED So13

ON SOUND SOURCE TYPE
IN ASSIGNED CHANNEL

WRITE NOTE-ON 304
TO ASSIGNED CHANNEL

END

U.S. Patent Sep. 21, 1999 Sheet 16 of 28 5,955,691

FIG.14

SOUND SOURCE PROCESSING

S31

PREPARATION
(FIRST ALGORITHM) (FIRST CHANNEL)

>32

S34
ACCORDING TO SOUNDING CHANNEL
PREPARE REGISTER SETTING,

NEXT GENERATE WAVEFORMS FOR 16 SAMPLES
SAMPLE 539

NO 1 FRAME COMPLETED ?

PREPARE NEXT CHANNEL [~S36

S REPARE ALL CHANNELS COMPLETED ?

YE
S S35
NO
NEXT S38
YES S37
NO
YES S39

ALGORITHM
ALL ALGORITHMS COMPLETED ?

PREPARE EFFECT COMPUTATION

S40
42 ACCORDING TO EFFECT CHANNEL
PREPARE REGISTER SETTING, PERFORM EFFECT
NEXT PROCESSING FOR ONE GHANNEL
EFFECT
S41
NO ALL EFFECT CHANNELS COMPLETED
2
YES S43

RESERVE 1 FRAME x STEREO
WAVEFORMS FOR REPRODUCTION

END

U.S. Patent Sep. 21, 1999 Sheet 17 of 28 5,955,691

FI1G.15A

PCM SOUND SOURCE

READ WAVEFORM TABLE | .,
(4-POINT INTERPOLATION)

PERFORM QUARTIC DCF j~S52

GENERATE ENVELOPE | o,
(4 STATES)

PERFORM VOLUME
(EG+SL)
MULTIPLICATION
& ACCUMULATION
PROCESSING
(4 OUTPUTS)

S54

U.S. Patent Sep. 21, 1999 Sheet 18 of 28 5,955,691
FIG.15B

FM SOUND SOURCE
READ WAVEFORM TABLE |_q¢.
(WITHOUT INTERPOLATION)
GENERATE ENVELOPE |_co,
(2 STATES)
VOLUME MULTIPLICATION }~S63
READ WAVEFORM TABLE 64
(WITH FM LINEAR INTERPOLATION)
PERFORM DCF OF SECOND ORDER }~S65
GENERATE ENVELOPE | _c¢6
(4 STATES)

PERFORM VOLUME 67
(EG+SL)
MULTIPLICATION

& ACCUMULATION
PROCESSING
(3 OUTPUTS)

END

U.S. Patent Sep. 21, 1999 Sheet 19 of 28

FIG.15C

PHYSICAL MODEL SOUND SOURCE

PERFORM TH MODULE
PROCESSING
PERFORM GE MODULE
PROCESSING
PERFORM NL MODULE
PROCESSING
PERFORM LN MODULE
PROCESSING
PERFORM RS MODULE

' PROCESSING
PERFORM VOLUME
MULTIPLICATION
& ACCUMULATION

PROCESSING
(5 LINES)

END

S71

S72

S73

S74

S75

S/76

5,955,691

U.S. Patent Sep. 21, 1999 Sheet 20 of 28 5,955,691

FIG.16

REVERBERATION PROCESSING

PERFORM INITIAL REFLECTION PROCESSING S81
(2-TAP WITHOUT INTERPOLATION X 2)

APF X2 S82

PERFORM REVERBERATION PROCESSING

(COMB FILTER X 6) S83
(APF X 4)

PERFORM VOLUME MULTIPLICATION
& ACCUMULATION PROCESSING S84
(4-LINE OUTPUTS)

END

5,955,691

Sheet 21 of 28

Sep. 21, 1999

U.S. Patent

FIG.17
26

21

o
O
T
5 O 6 5 O O
Z = = SW W
N 3 T - | T o | B9
ma = W mm m QA O W P > Ll
S s 58 _:
L & > it .
s
R N e 3
TR K KKK XK XK KK AKX KKK AR AR KK KKK XX PR K AKX AKX AKX
e e S et s0orgsee
RSO0 020020°0.020 CORGIKEICHICRIK
CRSQSISSIEASEAREKELEK H344Nd NOLLYINWNOOY S V“Q“O“O“O“O“O“’“A (0“0“00@.
0 0 002020 0202020202000 20
o o 9
D%N D%m WWB wmﬂ %HW2
555 84335s| QqEexl| ¥E%al| 81232\
gt 539 25 25" £=2
3 G :

5,955,691

Sheet 22 of 28

Sep. 21, 1999

U.S. Patent

%3 12
6t cdVv <]

J19V.L

400
G mu— WNHO4IAVYM
DILHYND qvay

8¢ 19V <———1 ®HNISSIDOHd

NOILVINNNOOV
3

NOILYOIdILINA
/€ v K= 3WNIOA

4dO13AN- 3189V.1

31vVHINID NHOJIAVM

142 33

Gt

81 Ol

5,955,691

Sheet 23 of 28

Sep. 21, 1999

U.S. Patent

LY Gb 4%
2 X N7 oy
i 9 X = NOILYTOdH3LNI
d3XIW Sdalldk— v 1NOHLIM K/
diNOD dV1-2 AV13d

g X
AdV

1%

II
NN

ONISS3O0Hd NOILVINWNIIY 8 NOILVOITdILTNN IWNTOA

d 1 d
edv egv 0dv
LG 0S

cS

61 Ol

=
0dVv
$1%

37

1 GV

8Y

U.S. Patent Sep. 21, 1999 Sheet 24 of 28 5,955,691

FIG.20

CONTROL DATA

TGP
(PCM)

TGP2
(PCM)

TGP3
(PHYSICAL MODEL)

GENERATION
PROGRAM (PCM) HEADER

GROUP
TGP5
(FM) GENERATION
ROUTINE
(SUBROUTINE USED)
""""" EP1
(REVERBERATION)
(CHORUS) NEADER
EFFECT 53
nggSQM (REVERBERATION) CEEECT
ROUTINE
(SUBROUTINE USED)
""""" TABLE READ
SUBROUTINES
FILTER
SUBROUTINE SUBROUTINES
GROUP EG .
SUBROUTINES

VOLUME CONTROL &
OUTPUT SUBROUTINES

5,955,691

Sheet 25 of 28

Sep. 21, 1999

U.S. Patent

NE
ONILLIS ﬂ_w_mw_m_,_m ONILLIS ONILLIS
TYNOILdO N
IWOISAH NOa
901.S
(€) (2) (1)
SAOHLIN

¢O0lS

101S~ AOHLIW NOILVHINID 10313S

ONIL1LIS WVYHOOHd NOILVHINID

YA

5,955,691

Sheet 26 of 28

Sep. 21, 1999

U.S. Patent

N4

9LIS AVHOO0Hd 3HO1S

SONILLIS OL ONIGHODDV
NVHO0Hd NOILVHINID J31vddO

GLHLS

ANES NOILdO d31lVvNODIS3Ad 135S

d3ddv 39 Ol NOILdO

bhES JO IdAL ILVNOISIAA
SIA
o ;{ NOILLJO aav

cLiS

ddA1l 30dHNOS ANNOS OL

S~ oNiagoDoY SINIWIT3 DIsva L3S

SS3d00dd ONILLIS

¢¢ Ol

5,955,691

Sheet 27 of 28

Sep. 21, 1999

U.S. Patent

(N4

NOILVINANNDDV %
NOILVOI'IdIL NN
JNMN10OA 13S

14425

NOILO3S

tVES™ oNILYNOSIH 13S

NOILOJS

¢VES™ oNILYTIIOSO L3S

NOILOJS

VLS ONILIOXT 13S

ONILLIS T3TON TVOISAH

OEc Ol

PELS

ECLS

¢tlS

LELS

N4

NOILVINNNDDV %
NOILVOIdIL 1NN
JNMN10A L3S

d01vddd0 HOV3 40
NOILNLILSNOD 13S

SHOLvdddO ONONWY
NOILOINNQD 13S

SHO1vdddO 40
dd8NWMNN 13S

ONIL1LIS N

dtc Ol

&ClS

L2IS~ONIAV3d J18v.L 13S

(N4

NOILY ININNODV 3
NOILVOITdILTNIA
JNNTOA L3S

GGtS o4 1dS

ONILLIS WOd

\AXAII =

5,955,691

Sheet 28 of 28

Sep. 21, 1999

U.S. Patent

ONILLIS
ddH10

GSIS

cSlS

LG LS

ONILLS
SMNHOHD

(2)
SAOHL3IN

ONIL1IS WVHOOHd 103443

1£99] =

AOH1dW 10d443 10313S

ONILLIS

NOILVHIg4Hd3A3Y

£G5S

3,955,691

1
SOFTWARE SOUND SOURCE

BACKGROUND OF THE INVENTION

The present invention generally relates to a tone gener-
ating apparatus and a tone generating method for generating
music tones by executing predetermined music generating
software on a computer.

A tone generating apparatus 1s known 1n which music
tones are generated by executing a predetermined music
fone generating software on a general-purpose processor
such as a CPU (Central Processing Unit). Such an apparatus
1s called a software sound source. Recently, as higher
performance 1s required of this software sound source, so 1s
higher speeds of music tone processing to meet this require-
ment.

Recently, CPUs have been proposed that have instructions
cach capable of executing a plurality of arithmetic opera-
tions concurrently. These CPUs mclude for example a CPU

made by Intel Corporation that has an extended instruction
set called MMX.

In the conventional parallel processing as applied to
ographic processing, adjacent pixels each represented by one
byte data (eight bits) are grouped and the processing opera-
tions for the plurality of grouped pixels are performed in
parallel. When voice processing and tone generating pro-
cessing are performed 1n parallel, a plurality of samples
(cach represented by 16-bit data) that continue one after
another 1n time are grouped, and amplitude control and filter
processing are performed on each group.

It 1s also possible to perform the above-mentioned pro-
cessing by use of the above-mentioned CPU having an
extended instruction set capable of executing a plurality of
arithmetic operations by a single instruction in parallel.
Referring to FIG. §, there 1s shown a block diagram 1llus-
frating an algorithm for executing effect processing of a
software sound source. Referring to FIG. 6A, there 1s shown
a detailed circuit diagram illustrating an APn circuit of FIG.
5. Reterring to FIG. 6B, there 1s shown a detailed circuit
diagram 1illustrating a CFn circuit of FIG. 5. As shown 1n
FIGS. 6A and 6B, there are sections 1n which two pieces of
input data are multiplied by a predetermined coetflicient and

the resultant pieces of data are added together. These sec-
tions are (m4, m5, and aS) and (m6, m7, and a6) in FIG. 6A

and (m9, m10, a7) in FIG. 6B, for example. The arithmetic
operations 1n these sections can be executed with a single
instruction if a CPU 1s used having an extended instruction
set capable of multiplying two pieces of imput data by a
predetermined coefficient and adding the resultant data
together, thereby realizing high-speed processing. Actually,
however, such high-speed processing 1s only realized by
well contriving computational operations 1n one processing,
algorithm. This 1nevitably leaves portions that cannot be
completely processed 1n parallel, preventing the advantages
of parallel processing from being fully used.

The processing of generating music tone waveforms
includes processing for obtaining a current waveform
sample from a past wavetform sample during the course of
address generation, envelope generation, and filtering. To be
more specific, in address generation, a current address 1s
obtained based on an address one sampling period before. In
envelope generation, a current envelope value 1s obtained
based on an immediately preceding envelope value. In
filtering, a filter computation 1s performed based on values
of a past waveform sample and a current input waveform
sample to generate and output an output wavelform sample.
Thus, obtaining a current waveform sample from a past

10

15

20

25

30

35

40

45

50

55

60

65

2

waveform sample makes it difficult to process in parallel the
waveform samples adjacent to each other 1 terms of time.

A tone generating apparatus 1s known in which music
tones are generated by executing a predetermined music
fone generating software on a general-purpose processor
such as a CPU. Such an apparatus 1s called a software sound
source. Some software sound sources also use a software
effector to provide effects such as reverberation on a gen-
crated music tone and output the effect-added tone.
Recently, 1t 1s required to enhance the performance of
software sound sources to provide a variety of effects.

™

A software sound source 1s provided with a buffer area for
waveform generation to generate a plurality of samples
collectively when synthesizing a music tone by software.
FIG. 9B shows an example of a waveform generating buifer
arca. As shown 1n FIG. 9B, reference numerals 1,2, ..., 128
denote storage arecas for 128 sets of waveform samples
which are time-series data sequentially arranged 1n terms of
time. One set of wavelorm sample storage area 1s composed
of DryL, DryR, and Rev. DryLL denotes a storage area for a
waveform sample to which reverberation of the stereophonic
left side 1s not attached. DryR denotes a storage area for a
waveform sample to which reverberation of the stereophonic
richt side 1s not attached. Rev denotes a storage arca for a
wavelorm sample to which reverberation 1s attached.
Namely, the waveform samples are held 1n an interleaved
form with a combination of DryL, DryR, and Rev as one
unit. This 1s because 1t 1s convenient for these effects to align
the buffer 1n this order when writing output data of each
channel in waveform computation.

For example, a software sound source generates wave-
form samples for one frame (128 samples) of all channels
through which a music tone i1s generated for each frame,
which 1s a predetermined time interval. The software sound
source accumulates the generated waveform samples in a
waveform generating buffer shown in FIG. 9B, and outputs
waveform data. First, 128 samples of the first channel are
cgenerated and the generated samples are weighted such that
values of DryL, DryR, and Rev of each sample are respec-
tively multiplied with predetermined coefficients. The
welghted samples are stored in the waveform generating
buffer of FIG. 9B. Next, 128 samples of the second channel
are generated, the generated samples are weighted, and the
welghted samples are accumulated in the waveform gener-
ating buffer of FIG. 9B. Then, 128 samples of the third
channel are generated, the generated samples are weighted,
and the weighted samples are accumulated in the waveform
ogenerating butfer of FIG. 9B. These operations are repeated
for all channels to vocalize musical tones. The generated
waveform data is passed to a sound I/O device (an LSI called
CODEC for executing mnput/output operations ol music tone
waveform data) by a DMAC (Direct Memory Access
Controller) instructed so by the system. The sound I1/O
device performs digital-to-analog conversion on the
received waveform data and vocalizes the converted data
through a sound system.

The software sound source 1s required to provide a variety
of effects. A problem 1s, however, that the sequence of
computations (or the connecting relationship between
effectors) for providing a plurality of effects cannot be
altered dynamically.

Some processors used for the software sound source have
an 1nternal or external cache memory. However, a data
structure of the waveform generating buffer as shown 1in
FIG. 9B easily causes cache miss at waveform generation,
especilally, at computation by software effector. For

3,955,691

3

example, 1n the example of FIG. 9B, the software effector for
calculating reverberation performs computation by taking
Rev of 128 samples intermittently stored in an interleaved
manner, often resulting 1n cache miss. When the effect
attached 1s reverberation alone, not so much overhead 1s
caused. As the number of effects attached increases,
however, the chance of cache miss especially increases. For
example, if three types of effects (reverberation, chorus, and
variation) are attached and there are seven output systems,
the data structure of FIG. 9B 1s extended to DryL, DryR,
Rev, ChorusL., ChorusR, VariationL, and VariationR, which
are handled as one unit arranged for 128 samples 1n the
wavelform generating buffer. In this case, the effector
executes computational processing in the following
sequence:

(1) Computation for variation is executed by collecting
VariationlL and VariationR for 128 samples;

(2) Computation for chorus is executed by collecting
ChorusLL and ChorusR for 128 samples; and

(3) Computation for reverberation is executed by collect-

ing Rev for 128 samples.

Therefore, access must be frequently made to the data
arcas arranged intermittently in the waveform generating
buffer, thereby increasing the chance of cache miss, and
seriously lowering processing efficiency.

A conventional music apparatus 1s generally composed of
a MIDI (Musical Instrument Digital Interface), a perfor-
mance message section 1n which performance mformation 1s
inputted from a keyboard or a sequencer, a sound source for
generating music tone waveforms, and a central processing
unit (CPU) for controlling the sound source according to the
inputted performance information. The CPU executes sound
source driver processing such as channel assignment and
parameter conversion according to the inputted performance
information. In addition, the CPU supplies a converted
parameter and a sounding start command (note-on
command) to an assigned channel in the sound source. The
sound source generates music tone waveforms based on the
supplied parameters. For the sound source, hardware such as
an electronic circuit 1s used. The above-mentioned conven-
fional setup 1nevitably makes the music tone generator
dedicated to the music tone generation. Consequently, the
generation of music tones requires to prepare a dedicated
music tone generator. In generating music tones by a
general-purpose processor such as a personal computer, a
dedicated sound source 1s attached externally. Alternatively,
an extended board having several IC chips such as a music
fone generating chip for generating music tone waveforms,
a waveform ROM for storing waveform data, and a coder/
decoder (CODEC) composed of an A/D converter, a D/A
converter, a FIFO buffer, and an interface circuit 1s con-
nected to the personal computer for music tone generation.

Recently, a music tone generating module or a so-called
software sound source has been proposed in which the
operations of the above-mentioned hardware sound source
are replaced by sound source processing based on a com-
puter program and performance processing, and the sound
source processing are executed by the CPU. The perfor-
mance processing herein denotes processing equivalent to
the above-mentioned sound source driver processing in
which, based on the mputted information such as MIDI data,
control mformation for controlling music tones 1s generated.
The sound source processing herein denotes processing in
which, based on the control imnformation generated by the
performance processing, music tone waveforms are synthe-
sizes. According to this music tone generating module, only
providing a D/A converting chip in addition to the CPU and

10

15

20

25

30

35

40

45

50

55

60

65

4

software enables music tone generation without using a
dedicated hardware music tone generator and a sound source
board.

The software sound sources as mentioned above are
classified into various types according to a method of
simulating an acoustic musical instrument; for example,
PCM sound sourcing, FM sound source, and physical model
sound source. To synthesize music tones 1n any type of these

sound sources, 1t 1s required to separately prepare a sound
source processing program corresponding to each type. This
o1ves rise to a problem of significantly increasing the storage
capacity for storing the sound source processing programs
and waveform data necessary for sound processing.

Another problem 1s that, since there 1s no standard data
format for these sound sources, 1t 1s 1mpossible to synthesize
music tones by an algorithm in which the different sound
sources such as mentioned above are integrated with each
other.

SUMMARY OF THE INVENTION

It 1s therefore an object of the present invention to provide
a music tone generating apparatus and a music tone gener-
ating method capable of performing wavelform synthesis
computations at speeds higher than before mm a software
sound source that 1s realized by a CPU capable of executing
a plurality of operations with a single instruction.

It 1s another object of the present mnvention to provide a
music tone generating apparatus and a music tone generating
method capable of dynamically altering the sequence of
clfect attaching processing computations.

It 1s still another object of the present invention to provide
a music tone generating apparatus and a music tone gener-
ating method 1 which cache miss hardly occurs at wave-
form generation, especially at effect attaching computation
in a software sound source, thereby enhancing computa-
tional and processing efliciencies.

It 1s yet another object of the present invention to provide
a music tone generating method that realizes a software
sound source based on a plurality of sound synthesis meth-
ods with a relatively small storage capacity.

It 1s a further object of the present invention to provide a
music tone generating method capable of synthesizing music
tones by an algorithm 1n which a plurality of software sound
sources are 1ntegrated with each other.

According to a first aspect of the invention, a music
apparatus comprises a processing unit of a universal type
having an extended 1nstruction set used to carry out parallel
computation steps 1n response to a single instruction which
1s successively 1ssued when executing a program, a software
module defining a plurality of channels and being composed
of a synthesis program executed by the processing unit using
the extended instruction set so as to carry out synthesis of
waveforms of musical tones through the plurality of the
channels such that the plurality of the channels are optimally
grouped 1nto parallel sets each containing at least two
channels and such that the synthesis of the waveforms of at
least two channels belonging to each parallel set are carried
out concurrently by the parallel computation steps, a butler
memory for accumulatively storing the waveforms of the
plurality of the channels, another software module com-
posed of an effector program executed by the processing unit
using the extended instruction set if the effector program
contains parallel computation steps to apply an effect to the
waveforms stored 1n the buffer memory, and a converter for
converting the waveforms into the musical tones.

Preferably, the processing unit executes the synthesis
program so as to carry out the synthesis of the waveforms,

3,955,691

S

the synthesis mncluding one type of the parallel computation
steps treating a relatively great computation amount so that
the plurality of the channels are optimally grouped into
parallel sets each containing a relatively small number of
channels, and another type of the parallel computation steps
freating a relatively small computation amount so that the
plurality of the channels are optimally grouped into parallel

sets each containing a relatively great number of channels.

The inventive method of generating musical tones accord-
ing to performance information through a plurality of chan-
nels by parallel computation steps, comprises successively
providing performance information to command generation
of musical tones, periodically providing a trigger signal at a
relatively slow rate to define a frame period between suc-
cessive trigger signals, periodically providing a sampling
signal at a relatively fast rate such that a plurality of
sampling signals occur within one frame period, carrying
out continuous synthesis in response to each trigger signal to
produce a sequence of waveform samples of the musical
tones for each frame period according to the provided
performance mformation, the continuous synthesis being
carried out using the extended instruction set such that the
plurality of the channels are optimally grouped into parallel
sets each containing at least two channels so that the
continuous synthesis of the waveform samples of at least
two channels belonging to each parallel set are carried out
concurrently by the parallel computation steps, and convert-
ing cach of the waveform samples in response to each
sampling signal mto a corresponding analog signal to
thereby generate the musical tones.

According to a second aspect of the mnvention, a music
apparatus for generating musical tones by means of a
software, comprises a processor that periodically works each
frame period for executing the software to carry out syn-
thesis of a set of waveform samples allotted to one frame
period, a buffer having a capacity sufficient to store the
waveform samples allotted to one frame period, the bufler
being used as a working areca by the processor for storing a
temporary set of the waveform samples which are treated by
the processor during the course of the synthesis and for
storing a final set of the wavelform samples which are
obtained upon completion of the synthesis, a cache having
a capacity sufficient to store a subset of the waveform
samples which 1s an integer division of the set allotted to one
frame period such that the capacity of the buifer 1s set to an
integer multiple of the capacity of the cache, the cache being
hit by the processor before the bufler 1s addressed by the
processor so as to carry out the synthesis of each subset of
the waveform samples more efficiently than that the buffer
1s otherwise addressed by the processor, and a converter that
converts the final set of the waveform samples stored in the
buffer mto the musical tones.

Further, the 1nventive music apparatus using a processor
to generate musical tones, comprises a synthesis module
periodically executed by the processor at each frame period
so as to carry out synthesis of a set of waveform samples
allotted to one frame period, a plurality of buffers each
having a capacity suflicient to store the set of the waveform
samples allotted to the same frame period after the synthesis,
a plurality of effector modules each being linked to a
corresponding one of the buffers, each effector module being
executed by the processor to carry out modification of the set
of the waveform samples reserved 1n the corresponding
buffer to create a different effect, a mixer module executed
by the processor to carry out computation of one set of the
waveform samples stored in one buffer with another set of
the waveform samples stored 1n another buif

er SO as to mix

10

15

20

25

30

35

40

45

50

55

60

65

6

different effects, a controller that provides an total effect
algorithm for instructing the processor to execute the effec-
tor modules and the mixer module in a predetermined
sequence to create a total effect which 1s desired mixture of
the different effects, and that designates one of the buflers to
store the set of the waveform samples after completion of the
modification and the computation, and a converter for con-
verting the set of the waveform samples stored in the
designated bufler into the musical tones with the total etfect.

Preferably, the mixer module 1s executed by the processor
to carry out computation of adding one set of the wavelform
samples stored 1in one buifer to another set of the waveform
samples stored 1n another buifer by a desired ratio so as to
mix different effects, the set of the waveform samples being
reserved 1n said another buffer after the computation.

Preferably, the mixer module 1s commonly utilized to
carry out the computation between any pair of the buflers as
specified by the total effect algorithm.

Preferably, the controller comprises an editor that edits the
total effect algorithm to arrange the sequence by which the
processor sequentially executes selected ones of the effector
modules and the mixer module 1n a desired order to create

the desired total effect.

Preferably, the inventive music apparatus further com-
prises a cache having a capacity suflicient to store a subset
of the waveform samples which 1s an integer division of the
set of the wavelform samples allotted to one frame period
such that the capacity of each bufler 1s set to an integer
multiple of the capacity of the cache, the cache being hit by
the processor before the buifer 1s addressed by the processor
so as to carry out the synthesis of each subset of the
waveform samples more efficiently than that each buffer 1s
otherwise addressed by the processor.

The 1inventive method of generating musical tones accord-
ing to performance information through a plurality of
channels, comprises successively providing performance
information to command generation of musical tones, peri-
odically providing a trigger signal at a relatively slow rate to
define a frame period between successive trigger signals,
periodically providing a sampling signal at a relatively fast
rate such that a plurality of sampling signals occur within
onc frame period, carrying out continuous synthesis in
response to one trigger signal to produce a set of waveform
samples of the musical tones through the plurality of chan-
nels for one frame period according to the provided perfor-
mance Information, accessing a bufler having a capacity
sufficient to store the waveform samples allotted to one
frame period, the buffer being used as a working area by the
processor for storing a temporary set of the waveform
samples which are treated by the processor during the course
of the continuous synthesis and for storing a final set of the
waveform samples which are obtained upon completion of
the continuous synthesis and which are accumulated
throughout the plurality of the channels, addressing a cache
having a capacity suflicient to store a subset of the waveform
samples which 1s an integer division of the set of the
waveform samples allotted to one frame period, the cache
being hit by the processor before the buil

er 1s addressed by
the processor so as to carry out the continuous synthesis of
cach subset of the waveform samples more etficiently than
that the buffer 1s otherwise addressed by the processor, and
converting each of the waveform samples reserved 1n the
buffer as the final set in response to each sampling signal
into a corresponding analog signal to thereby generate the
musical tones.

The inventive method of generating musical tones accord-
ing to performance information, comprises successively

3,955,691

7

providing performance information to command generation
of musical tones, periodically providing a trigger signal at a
relatively slow rate to define a frame period between suc-
cessive trigger signals, periodically providing a sampling
signal at a relatively fast rate such that a plurality of
sampling signals occur within one frame period, periodically
executing a synthesis module at each frame period in
response to each trigger signal so as to carry out synthesis of
a set of waveform samples allotted to one frame period,
addressing a plurality of buifers each having a capacity
suflicient to store the set of the waveform samples allotted
to the same frame period after the synthesis, executing a
plurality of effector modules each being linked to a corre-
sponding one of the buifers to carry out modification of the
set of the waveform samples reserved 1n the correspondmg
buifers to create different effects, executing a mixer module
executed to carry out computation of one set of the wave-
form samples stored 1n one buffer with another set of the
waveform samples stored in another buifer so as to mix
different effects, providing an total effect algorithm for
instructing execution of the effector modules and the II]lXGI‘
module 1n a predetermined sequence to create a total effect
which 1s desired mixture of the different effects, designating,
one of the buflers to store the set of the waveform samples
after completion of the modification and the computation
and convertmg cach of the waveform samples stored in the
designated buffer 1n response to each sampling signal into a
corresponding analog signal so as to generate the musical
tones with the total effect.

According to a third aspect of the invention, a method
using a processor for generating musical tones through
oroups of channels according to performance information,
comprises the steps of loading a first synthesis program
prepared for a first group of channels and a second synthesis
program prepared for a second group of channels together
with a subroutine program utilized commonly for both of the
first synthesis program and the second synthesis program,
successively providing performance information to com-
mand generation of musical tones, periodically providing a
trigger signal at a relatively slow rate to define one frame
period between successive trigger signals, periodically pro-
viding a sampling signal at a relatively fast rate such that a
plurality of sampling signals occur within one frame period,
executing the first synthesis program by the processor at one
frame period so as to carry out synthesis of each set of
waveform samples allotted to one frame period through each
channel of the first group such that the subroutine program
runs to process the wavetform samples during the synthesm
cach set of the waveform samples being reserved 1n a buifer
after the synthesis, executing the second synthesis program
by the processor at one frame period so as to carry out
synthesis of each set of waveform samples allotted to one
frame period through each channel of the second group such
that the subroutine program runs to process the waveform
samples during the synthesis, each set of the waveform
samples being reserved 1n a buffer after the synthesis, and
converting each of the waveform samples reserved in the
buifer in response to each sampling signal into a correspond-
ing analog signal so as to generate the musical tones.

Preferably, the step of loading includes selecting at least
one of subroutine programs which are designed for reading
out waveform samples from a wave table, for filtering the
waveform samples to modily the music tones, for creating,
an envelope of the wavelform samples, for controlling an
amplitude of the waveform samples, and for accumulatmg
cach set of the waveform samples mto the buffer.

Preferably, the step of loading includes loading the
selected subroutine program from a secondary memory into
a primary memory which is used as a working area of the
ProCesSor.

10

15

20

25

30

35

40

45

50

55

60

65

3

Preferably, the inventive method further imncludes the step
of addressing a cache having a capacity suflicient to store a
subset of the waveform samples which 1s a division of the set
of the waveform samples allotted to one frame period, the
cache being hit by the processor before the buffer is
addressed by the processor while the processor runs the
subroutine program to process each subset of the waveform

samples.

The inventive method using a processor for generating,
musical tones through groups of channels according to
performance information, comprises the steps of loading a
first synthesis program prepared for a first group of channels
and a second synthesis program prepared for a second group
of channels, successively providing performance informa-
fion to command generation of musical tones, periodically
providing a trigger signal at a relatively slow rate to define
one frame period between successive trigger signals, peri-
odically providing a sampling signal at a relatively fast rate
such that a plurality of sampling signals occur within one
frame period, executing the first synthesis program by the
processor at one frame period so as to carry out synthesis of
cach set of wavetorm samples allotted to each channel of the
first group such that each set of the waveform samples
belonging to the first group 1s preceding reserved in a buffer,
executing the second synthesis program by the processor at
the same frame period so as to carry out synthesis of each set
of wavelorm samples allotted to each channel of the second
oroup such that each set of the waveform samples belonging
to the second group 1s succeeding reserved 1n a bufler after
cach set of the waveform samples belonging to the first
oroup 1s reserved, and converting each of the waveform
samples reserved 1n the buil

er 1n response to each sampling

signal mto a corresponding analog signal so as to generate
the musical tones.

The 1mnventive method using a processor for generating
musical tones according to performance information, com-
prises the steps of loading a synthesis program and an
cilector program together with a subroutine program utilized
commonly for both of the synthesis program and the effector
program, successively providing performance information
to command generation of musical tones, periodically pro-
viding a trigger signal at a relatively slow rate to define one
frame period between successive trigger signals, periodi-
cally providing a sampling signal at a relatively fast rate
such that a plurality of sampling signals occur within one
frame period, executing the synthesis program by the pro-
cessor at one frame period so as to carry out synthesis of a
set of waveform samples allotted to one frame period such
that the subroutine program runs to process the waveform
samples during the synthesis, the set of the waveform
samples being reserved 1n a buffer after the synthesis,
executing the effector program by the processor at one frame
pertod so as to carry out modilication of the set of the
waveform samples reserved in the bufl

er to create a desired
cifect such that the subroutine program runs to process the
waveform samples during the modification, each set of the
waveform samples being reserved in a buffer after the
modification, and converting each of the wavelform samples
reserved 1n the buft

er 1n response to each sampling signal
into a corresponding analog signal so as to generate the

™

musical tones together with the desired effect.

The 1nventive method using a processor for generating
musical tones according to performance information, com-
prises the steps of arranging an algorithm to designate
desired ones of subroutine programs provisionally stored in
a memory, assembling a synthesis program according to the
algorithm such that the synthesis program contains call

3,955,691

9

instructions for calling the designated subroutines from the
memory, successively providing performance information to
command generation of musical tones, periodically provid-
ing a trigger signal at a relatively slow rate to define one
frame period between successive trigger signals, periodi-
cally providing a sampling signal at a relatively fast rate
such that a plurality of sampling signals occur within one
frame period, executing the synthesis program by the pro-
cessor at one frame period so as to carry out synthesis of a
set of wavetorm samples allotted to one frame period such
that the designated subroutine programs are sequentially
called 1n response to the call instructions to process the
waveform samples during the synthesis, the set of the
wavelform samples being reserved 1 a buffer after the
synthesis, and Convertmg cach of the waveform samples
reserved 1n the buffer 1n response to each sampling signal
into a corresponding analog signal so as to generate the
musical tones together with the desired effect.

The above and other objects, features and advantages of
the present mvention will become more apparent from the
accompanying drawings, in which like reference numerals
are used to identify the same or similar parts 1n several
VIEWS.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1llustrating an electronic musi-
cal mstrument to which a music tone generating apparatus
and a music tone generating method both associated with the
present mvention 1s applied;

FIG. 2 1s a diagram for explaining principles of generating,
music tones by a software sound source;

FIG. 3 1s a diagram 1llustrating packing of data for four
channels;

FIG. 4 1s a diagram 1llustrating an example of an algo-
rithm for timbre filtering of each channel;

FIG. 5 1s a diagram 111ustrat1ng an example of an algo-
rithm for effect processing;

FIGS. 6A and 6B are detailed diagrams illustrating an
APn and a CFn of FIG. §;

FIGS. 7A and 7B show Hlowcharts of a main routine and
a note-on event routine;

FIGS. 8A, 8B and 8C show flowcharts of a waveform

generating routine, a routine for generating waveforms for
four channels and for one frame, and a DMAC processing
routine;

FIGS. 9A and 9B are a diagram 111ustrat111g an example of
constitution of a waveform generating buffer associated with
the present mnvention and an example of a constitution of a
conventional waveform buffer;

FIG. 10 1s a diagram 1llustrating an example of an
algorithm of operations mcluding music tone generation by
a software sound source and channel accumulation;

FIG. 11 1s a diagram illustrating an example of an
algorithm of a software effector for attaching a plurality of
effects to waveform data;

FIGS. 12A and 12B show flowcharts of a waveform

generation processing routine and a routine for generating
waveforms for 16 samples;

FIG. 13 shows a flowchart for explaining note-on event
processing;;

FIG. 14 shows a flowchart for explaining sound source
processing;;

FIGS. 15A, 15B and 15C show flowcharts for explaining,
music tone generation processing by various sound sources;

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 16 shows a flowchart for explaining reverberation
processing;

FIG. 17 1s a diagram for explaining a music tone synthe-
sizing algorithm in a music tone generating apparatus to
which the present invention 1s applied;

FIG. 18 1s a diagram for explaining an algorithm of PCM
sound source;

FIG. 19 1s a diagram for explaining an algorithm of
reverberation processing;

FIG. 20 1s a diagram 1llustrating an example of memory
map,

FIG. 21 1s a diagram for explaining setting of a waveform
generating program;

FIG. 22 1s a diagram for explaining setting processing;

FIGS. 23A, 23B and 23C are flowcharts for explaining,
setting of basic elements 1n various sound sources; and

FIG. 24 1s a flowchart for explaining setting of an ef
program.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

This 1invention will be described 1n further detail by way
of example with reference to the accompanying drawings.
Now, referring to FIG. 1, there 1s shown a block diagram
illustrating an electronic musical 1nstrument to which a
music tone generating apparatus and a music tone generating
method both associated with the present invention are
applied, the electronic musical instrument being practiced as
one preferred embodiment of the invention. The electronic
musical instrument has a central processing unit (CPU) 101,
a read-only memory (ROM) 102, a random access memory
(RAM) 103, a drive unit 104 of disks, a timer 106, a network
input/output (I/O) interface 107, a keyboard 108, a display
109, a hard disk 110, a sampling clock (Fs) generator 111, a
sound [/0 112, a DMA (Direct Memory Access) controller
114, a sound system 115, and a bus line 116.

The CPU 101 controls operations of the entire electronic
musical instrument. The CPU 101 has an extended instruc-
tfion set capable of executing a plurality of operations with
a single nstruction in parallel. more speciiic, data handled
by a 64-bit register in the CPU 1s divided into four pieces of
16-bit data. The above-mentioned instruction set has an
instruction that can simultancously handle these four pieces
of 16-bit data. Alternatively, the 64-bit data 1s handled as two
pieces of 32-bit data. The instruction set has an instruction
that can simultaneously handle these two-pieces of 32-bit
data.

The ROM 102 stores a control program such as a program
of the software sound source 1ncluding a software effector
executed by the CPU 101 and various parameter data. The
ROM 102 also stores waveform data (namely, waveform
sample data sampled at a predetermined rate) used for
generating a music tone by executing the software sound
source program by the CPU 101. It should be noted that the
control program, various parameter data, and waveform data
may be prepared in the RAM 103 mstead of the ROM 102.
In this case, the control program and data are supplied from
an external storage medium 105 such as a CD-ROM or the
network I/0 mterface 107. The supplied program and data
are loaded mto the RAM 103 or stored in the hard disk 110.
The RAM 103 has work areas such as various registers, a
waveform generating bufler, and reproducing buffers. The
drive unit 104 mputs and outputs various data with the
external storage medium 105 such as a floppy disk (FD) and
a flush card. The hard disk 110 1s a storage device for storing,
various data.

ect

3,955,691

11

The timer 106 supplies a timer clock signal for causing a
timer mterrupt on the CPU 101 at a predetermined interval.
The network I/O 1nterface 107 transfers various data via an
external public telephone line or a LAN (Local Area
Network). The keyboard 108 1s used by the user to enter
various Information into the electronic musical instrument.
The display 109 visually presents various information.
Through the keyboard and the display, the user performs
various setting operations and 1ssues commands necessary
for controlling music tone generation.

The Fs generator 111 generates a sampling clock having
frequency Fs supplied to the sound I/O 112. The sound I/O
112 is made up of an LSI called a coder/decoder (CODEC).
The sound I/O 112 has an analog-to-digital (A/D) converting
capability and a digital-to-analog (D/A) converting capabil-
ity. An analog music tone signal from an external input
source 113 1s mnputted 1n a A/D mput terminal of the sound
I/0 112, and the sound system 115 is connected to a D/A
output terminal of the sound I/O 112. The sound [/O 112
incorporates two stack areas of FIFO (First-In, First-Out).
One of the stack provides an mmput FIFO for holding the
digital waveform data mputted via the A/D input terminal.
The other provides an output FIFO for holding the digital
waveform data outputted via the D/A output terminal.

The analog music tone signal mputted from the external
input source 113 into the A/D input terminal of the sound I/0O
112 1s A/D-converted according to the sampling clock of
frequency Fs. This signal may be compressed by ADPCM
(Adaptive Differential Pulse Code Modulation) if required.
The resultant digital signal 1s written into the mnput FIFO. It
the mput FIFO has waveform data, the sound I/O 112
requests the DMA controller 114 for processing the wave-
form data. In response to the request, the DMA controller
114 transfers the data to a previously allocated recording
buffer arca in the RAM 103. The DMA controller 114
performs this data transfer by causing a hardware interrupt
on the CPU 101 every sampling clock Fs and by allocating
the bus line 116. The allocation of the bus line 116 by the
DMA controller 114 1s transparent to the CPU 101.

On the other hand, if waveform data exists in the output
FIFO 1n the sound I/O 112, the waveform data 1s D/A-
converted every sampling clock Fs, and the resultant analog
signal 1s sent to the sound system 115 via the D/A output
terminal for sounding.

When the waveform data held in the output FIFO 1s
outputted, the output FIFO 1s emptied. At this moment, the
sound I/O 112 requests the DMA controller 114 for captur-
ing the waveform data. The CPU 101 generates waveform

data outputted beforehand, stores the generated wavetform
data 1n the reproducing buifers PBO and PB1 in the RAM

103, and requests beforehand the DMA controller 114 for
reproducing that waveform data. The DMA controller 114
causes an mnterrupt on the CPU 101 every sampling clock Fs
to allocate the bus line 116, and transfers the waveform data
in the reproducing buifer of the RAM 103 to the output FIFO
of the sound I/O 112. The transfer of the waveform data by
the DMA controller 114 1s transparent to the CPU 101. The
waveform data written 1nto the output FIFO 1s sent to the
sound system 115 every sampling clock Fs, and sounded as
mentioned above.

The software sound source 1s realized by execution of the
music tone generating software stored 1n the ROM 102 by
the CPU 101. From the viewpoint of an application that uses
the software sound source, the music tone generating soft-
ware 1s registered as a driver. Next, the driver 1s started and
a MIDI (Musical Instrument Digital Interface) event mes-

10

15

20

25

30

35

40

45

50

55

60

65

12

sage representing various music performance 1s outputted to
an API (Application Program Interface) associated with a
predetermined software sound source to make the software
sound source perform various processing operations asso-
cliated with music tone generation. The CPU 101 1s a
ogeneral-purpose processor, and hence performs other pro-
cessing such as placing the performance message or MIDI
event to the API besides the software sound source process-
ing. The processing for giving the performance message to
the API by the CPU 101 includes outputting performance
message generated real-time 1n response to an operation
made on the keyboard to the API. It also includes outputting
to the API the performance message according to an MIDI
event inputted real-time via the network I/O 107. It further
includes outputting a MIDI event sequence stored in the
RAM 103 beforehand to the API as sequential performance
messages. In this case, the data stored on the external storage
medium 1035 or the hard disk 110 may be used or the data
inputted via the network I/O 107 may be used.

The following describes the principle of music tone
generation by the software sound source with reference to
FIG. 2. In FIG. 2, frames S1 through S4 denote time
intervals 1 each of in which a predetermined number of
samples (for example, 2x128 samples) are reproduced. Each
downward arrow on the line of “performance message”
denotes a performance message occurring at an indicated
time. The performance message includes various MIDI
events such as note-on, note-off, after-touch, and program
change, which are mputted 1n the API associated with the
above-mentioned software sound source. In the example of
FIG. 2, three performance messages take place 1n frame S1,
two 1n frame S2, and one 1n frame S3. The software sound
source can simultaneously generate a plurality of music
tones through a plurality of MIDI channels. The software
sound source 1s adapted to control the music tones by
software sound source registers for the plurality of channels
prepared in the RAM 103. When a note-on event 1s inputted
as a performance message, the software sound source per-
forms tone assignment to the software sound source registers
corresponding to the channels. Then, the software sound
source writes the various data and the note-on to the soft-
ware registers for controlling the sounding at the assigned
channels associated therewith. When a note-off event is
inputted as a performance message, the software sound
source writes the note-off to the software sound source
register assoclated with the channel concerned. The software
sound source also writes a performance message such as
alteration of after-touch other than note-on and note-off to
the software sound source register corresponding to the
channel concerned. The data written to the software sound
source register i a certain time frame 1s used for the
waveform synthesis computation at a succeeding time frame
regardless of data type.

Rectangles 201 through 204 indicated 1n column “Wave-
form Generation by CPU” 1n FIG. 2 indicate sections for
executing the waveform synthesis computations including
the effect attaching by the CPU 101. In these waveform
synthesis computations, music tone waveforms for the plu-
rality of channels are generated based on the data for the
plurality of channels set to the software sound source
registers. According to the performance message, the soft-
ware sound register 1s rewritten. On the other hand, the
frame 1n which no performance message exists holds old
data written to the software sound source registers in the
past. Therefore, in each of the frames 201 through 204 of
waveform generation, a waveform synthesis computation
for an performance message detected in the frame 1immedi-

3,955,691

13

ately before or a frame before that 1s executed. Since a
hardware 1nterrupt 1s caused between frames, the waveform
synthesis computation 1n each frame 1s triggered by this
interrupt.

For example, for the three performance messages detected
in frame S1, the waveform synthesis computation 1s trig-
gered 1n the section 202 by the first frame mterrupt in the

following frame S2. Based on a result of this waveform
synthesis computation, the CPU 101 generates the wave-
form data in the waveform generating buffer in the RAM
103. This waveform data 1s accumulated throughout the
plurality of channels, and attached with an effect. The
waveform data thus generated 1s written to the reproducing,
buffer arecas 1n the RAM 103. These builer areas are denoted
by PBO and PB1 of the same size arranged at continuous
addresses. These buffer areas are called double buffers. The
buifers PB0 and PB1 are used alternately for each frame. For
example, the waveform data generated in the section 201
allotted to the frame S1 1s written to the reproducing buflfer
arca PBO 1n the RAM 103. The waveform data generated 1n
the section 202 allotted to the frame S2 1s written to the
reproducing buffer arca PB1. The waveform data generated
in the section 203 allotted to the frame S3 1s written to the
reproducing buffer area PB0. The waveform data generated
in the section 204 allotted to the frame S4 1s written to the

reproducing buffer areca PB1. Thus, the waveform data 1s
alternately written to the PB0 and PB1.

The waveform data written to the reproducing buffers
PB0 and PB1 is read out out and reproduced, upon triggered
by the frame mterrupt, at the succeeding frame next to the
preceding frame 1n which the waveform data has been
generated, as shown 1n column “Read And Reproduction™ 1n
FIG. 2. more speciiic, the waveform data generated in the
frame S1 and written to the PBO 1s read out in the following
frame S2. The waveform data generated 1n the frame S2 and
written to the PB1 1s read out 1n the following frame S3. The
waveform data generated 1n the frame S3 and written to the
PB0O 1s read out in the following frame S4. Thus, the
waveform data written to the PB0 and the PB1 1s alternately
read out for reproduction. The reading and reproduction are
performed by the DMA controller 114 by causing an inter-
rupt on the CPU 101 every sampling clock Fs to transfer the
waveform data in the reproducing buffer (the PBO or the PB1
whichever is specified) in the RAM 103 to the output FIFO
of the sound I/O 112. The frame interrupt i1s caused at
occurrence of return, namely, at the end of reproduction of
the PB1, when the reproducing bufiers PB0 and PB1 are
read out 1n a loop the frame interrupt also occurs at passing
the ntermediate point of the loop reading, namely, at the end
of the reproduction of the PB0. The frame interrupt is
hardware interrupt caused by the sound 1/0 112, 1ndlcat1ng
the point of time at which reproduction of one frame has
been completed. Namely, the sound I/O 112 counts the
number of transferred samples, and causes a frame interrupt
every time the number of samples equivalent to a half of the
size of the reproducing buffers, namely a half of the total size
of both the PB0 and the PB1, are transferred. The number of
transferred samples are those transferred by the DMAC 114
from the PB0 and the PB1 to the output FIFO of the sound
1/0.

The software sound source can simultaneously generate a
plurality of music tones through a plurality of channels.
Especially, in the present embodiment, the CPU 101 {for
realizing the software sound source has a capability of
processing a plurality of data with a single mstruction. This
capability 1s used to process data through the plurality of
channels for waveform generation i1n parallel, thereby

10

15

20

25

30

35

40

45

50

55

60

65

14

enhancing the processing speed. The waveform generating
process for one channel 1s composed of address generation,
waveform sample reading, interpolation, filtering, volume
control, and accumulation. In the present embodiment, these
processing operations are executed for the plurality of
channels simultaneously.

FIG. 3 shows a diagram 1llustrating a method of packing
data for four channels. According to the above-mentioned
extended 1nstruction set of the CPU 101, 16 bitsx4 data are
set to one 64-bit register, on which arithmetic operations
such as multiplication, addition, and subtraction can be
performed simultancously with 16 bitsx4 data held 1n
another 64-bit register. FIG. 3 shows an example of multi-
plication between these data. The data processing for the
plurality of channels 1s divided into groups of four channels,
and the processing operations for the four channels belong-
ing to the same group 1s performed simultaneously. The four
channels processed simultaneously are denoted by —4x(n-
1)+1" through —4xn".

FIG. 4 shows an example of an algorithm of timbre filter
processing 1n each sounding channel. As seen from FIG. 4,
this timbre f{ilter processing i1s generally constituted by
addition and multiplication. Therefore, use of the above-
mentioned extended instruction set for processing the 16
bitsx4 data 1n parallel can execute the timbre filter process-
ing operations for four channels 1n parallel simultaneously.
Delay processing by delay circuits d1 and d2 may be
performed by writing the 16 bitsx4=64-bit data to a prede-
termined address beforehand, and by reading the same at a
desired delay.

FIG. 5, FIGS. 6 A and 6B show examples of algorithms of
effect processing. Effect processing i1s not performed for
cach channel, but 1s performed after generating a waveform
for each channel, accumulating the waveforms of all
channels, and 1nputting the accumulated result to a buffer.
The generated waveforms are provisionaly arranged into
three routes. In FIG. 5, the waveform data mputted through
three routes of XL, XR, and XX 1nto an effector module. For
one processing algorithm, the processing operations shown
in FIGS. 5, 6A and 6B are performed In such effect
processing, portions of the computation 1n the processing
algorithm that are executable in parallel are treated by the
extended 1nstruction set as much as possible, thereby
increasing the processing speed. For example, computations
(m4, m3, a5) and (m6, m7, a6) of FIG. 6A and (m9, m10, a7)
of FIG. 6B are executed with a single instruction.
Sometimes, mstead of the algorithms of FIGS. §, 6A and 6B,
cilect processing in which the same processing 1s performed
on the outputs of stereophonic left and right channels. In this
case, the effect processing operations for the outputs of
stereophonic left and right channels can be performed at the
same time by using an extended instruction set that pro-
cesses 32 bitsx2 data simultaneously.

The following describes the processing procedure of the
CPU 101 of the above-mentioned electronic musical 1nstru-
ment with reference to the flowcharts of FIGS. 7A and 7B,
and FIGS. 8A, 8B and 8C.

FIG. 7A shows a procedure of a main routine associated
with tha software sound source contained in the control
programs of the CPU 101. This main routine 1s registered in
the OS (Operating System) as a software sound source
driver. To generate a music tone by using a software sound
source, this driver or the processing of FIG. 7A 1s first started
to make valid the API associated with the software sound
source beforehand. As shown 1n FIG. 7A, various 1nitializ-
ing operations are performed i1n step 701. In this

3,955,691

15

initialization, the reproducing buifers PBO and PB1 are
cleared, and the sound I/O 112 and the DMAC 114 are
instructed to read the reproducing buffers PB0O and PB1
alternately as described in FIGS. 1 and 2, thereby starting the
processing for reproduction beforehand. Then, 1 step 702,
the CPU checks whether there 1s any trigger. If, in step 703,
a trigger 1s found, the process goes to step 704. If no trigger
1s found, the process goes back to step 702. Trigger accep-
tance of steps 702 through 704 corresponds to acceptance of
performance message to the API associated with the soft-
ware sound source.

In step 704, the CPU determines a type of the trigger, and
the process branches adccording to the determined type. If
the trigeer 1s an input of a MIDI event, the MIDI processing
of step 705 1s performed and then the process goes back to
step 702. This MIDI event input and the MIDI processing of
step 705 correspond to the acceptance of the performance
message of FIG. 2. If, in step 704, the trigger 1s found a
frame interrupt corresponding to completion of one-frame
reproduction, the waveform generation processing of step
706 1s performed and then the process goes back to step 702.
The frame interrupt 1s a hardware mterrupt that 1s caused
every time the sound I/O 112 completes one-frame repro-
duction. The waveform generation processing of step 706 1s
the processing for performing the waveform synthesis com-
putation shown in sections 201 through 204 of FIG. 2. In this
waveform generation processing, the wavetform data for one
frame are generated and written to the reproducing buifers
PB0 and PB1, alternately. The waveform data for one frame
contain the number of waveform samples equivalent to a
half of the total size of the reproducing buffers PB0 and PB1.
If the trigger found 1n step 704 i1s another request, the
processing according to the trigger 1s performed 1n step 707
and then the process goes back to step 702. Especially, 1f
sampling of the external input source 113 by the sound I/0
112 1s instructed, changing of software effector algorithm
setting 1s 1nstructed, or setting of a weighting coeflicient for
specifying the signal transmission level of each of the three
routes outputted from the waveform generation processing
to the effect attaching processing 1s 1nstructed, correspond-
ing processings are performed in step 707. If the trigger
found 1n step 704 1s a request for ending the software sound

source, end processing 1s performed 1n step 708, upon which
the main routine comes to an end.

FIG. 7B shows a procedure for the note-on event
processing, which 1s one of the MIDI processes executed
when a note-on 1s 1nputted at step 704. First, 1n step 711, a
MIDI channel, a note number, and a velocity of the mputted
note-on event are set to registers MC, NV, VE respectively.
Next, i step 712, sounding channel assignment 1s per-
formed. In step 713, information such as note number NN
and velocity VE necessary for sounding 1s set to the software
sound source of the assigned channel. In step 714, note-on
1s written to the software sound source register of the
assigned sounding channel and a sounding start instruction
1s 1ssued, upon which the note-on event processing comes to
an end. Other MIDI event processing operations such as
note-oif are executed 1n generally the same manner as
mentioned above. Namely, for note-off event processing,
note-oil 1s set to the software sound source register corre-
sponding to the sounding channel concerned. For other
performance messages, data corresponding to the perfor-
mance message concerned 1s written to the software sound
source register corresponding to the sounding channel con-
cerned.

FIG. 8A shows a detailed procedure of the waveform
generation processing of step 706. First, 1n step 801, the

10

15

20

25

30

35

40

45

50

55

60

65

16

preparation for computation 1s performed. This includes the
processing for recognizing a channel for which a waveform
synthesis computation 1s performed with reference to the
software sound source register, the processing for determin-
ing to which of the reproducing buifers PB0 and PB1 the
waveforms for one frame generated by the waveform syn-
thesis computation performed this time i1s set, and the
processing for making preparations for the computation such
as clearing all areas 1n the waveform generating butfer. Next,
in step 802, “1” 1s set to a work register n and the process
goes to step 803.

In step 803, waveform samples for four channels —4x(n-
1)+1" through -4xn" are generated. In step 804, it is
determined whether channels to be computed still remain. If
such a channel 1s found, the value of the work register n 1s
incremented and the process goes back to step 803. This
operation 1s repeated until the waveform generation 1s
performed for all channels to be computed. It should be
noted that, since the waveform generation 1s performed 1n
units of four channels, computation of an silent channel not
currently sounding may be unnecessarily performed. Such a
silent channel 1s controlled such that the volume becomes
zero and hence does not affect the music tone to be output-
ted. If all channels are found completed 1n waveform gen-
cration 1n step 804, the process goes to step 806. In step 806,
the effect processing as shown 1n FIGS. 5, 6A and 6B 1s
performed. After the effect processing, the reproduction of
the generated waveforms for one frame 1s reserved 1n step
807. This 1s the processing for copying the generated wave-
form samples to one of the reproducing bufiers PB0 and PB1
not currently 1n use for reproduction. Since the processing
for alternately reading the reproducing butfers PB0 and PB1
for reproduction has been started 1n step 701, 1t 1s satisfac-
tory to only copy the generated waveforms to the reproduc-
ing buffer currently not use for reproduction.

FIG. 8B shows a detailed procedure of generating one-
frame wavetorms for four channels performed in step 803 of
FIG. 8A. In step 811, address generation for two of the
above-mentioned four channels 1s performed and address
generation for the remaining two channels 1s performed 1n
step 812. The address generated here 1s a read address of the
waveform data. In the present example, the address 1s
prepared in the ROM 102. The address generated 1s longer
than 16 bits, and therefore 1s generated 1n units of two
channels. This 1s the parallel processing of two channels,
hence the CPU 101 uses an extended instruction set for
processing 32 bitsx2 data in parallel.

Next, 1n step 813, the wavelform samples are read out. It
should be noted that, 1n the interpolation processing, linear
interpolation using two samples 1s performed 1n each chan-
nel. Therefore, two wavetform samples are read out for each
channel, resulting in that the waveform samples for four
channels are read out at one sequence. In step 814, the
interpolating operations are performed for these four chan-
nels 1n parallel. Namely, the linear interpolation using two
successive samples 1s performed. In step 815, filtering
operations (FIG. 4) are performed for the four channels in
parallel. In step 816, the processing operations for volume
control and channel accumulation are performed for the four
channels 1n parallel. This processing 1s to obtain the outputs
of the three systems (XL, XR, and XX of FIG. 5) by
multiplying the waveform of each channel by a predeter-
mined level control coefficient and by accumulating the
multiplication results. Because the processing of step 816
involves this multiplication, there are some portions that
cannot be processed 1n parallel 1n this processing. In steps
814 through 816, the parallel processing 1s performed for the

3,955,691

17

four channels, so that the CPU 101 uses the extended
instruction set for processing 16 bitsx4 data in parallel.
Next, 1n step 817, it 1s determined whether the waveform
samples for one frame have been generated. The number of
samples for one frame 1s 128 sets by counting XL, XR, and
XX as one set. If the generation has not yet been completed,
the process goes back to step 811, in which a next waveform
sample 1s generated. When the samples for one frame have
been generated, the one-frame wavelform generation pro-

cessing comes to an end.

The following describes the processing of the DMA
controller 114 during the reproduction with reference to the
flowchart of FIG. 8C. At reproduction, a sample request
interrupt (one of the hardware interrupts) is issued every
sampling period by the sound I/O 112. Accordingly, the
DMA controller 114 performs the processing of FIG. 8C.
First, in step 821, one sample stored in the reproducing
buffers PB0 and PB1 is sent to the output FIFO of the sound
I/0 112. The wavetform data written to the output FIFO 1s
D/A-converted every sampling period as described with
reference to FIG. 1, and the resultant analog signal 1s sent to
the sound system 115. It should be noted that “DMAB” 1n
step 821 denotes the reproducmg buffers PB0 and PBI.
Because the reproducing buffers PBO and PB1 can be
regarded as the buflfers of the DMA, this notation DMAB 1s
used. Next, 1n step 822, a pointer p 1s incremented to end the
processing. The pointer p 1s used for reading one sample
form the reproducing buifers PB0 and PB1. Thus, while
incrementing the pointer p, one sample 1s passed from the
reproducing buifers PB0 and PB1 every sampling period to
the sound I/0 112. It should be noted that the pointer p 1s
incremented by one by one for sequentially reading the
samples from the top of the PB0 to the end of the PB1. When
the last sample of the PB1 has been read, 1t 1s necessary to
update the pointer value such that the pointer p points at the

first sample of PB0. This operation 1s automatically per-
formed by the DMA controller 114.

According to the above-mentioned first preferred
embodiment, waveforms are generated in a predetermined
time period (frame) longer than the sampling period, and the
waveform samples for the predetermined period are collec-
tively generated, so that the overhead 1s lower than that of
the waveform generation performed at every sampling
per1od, thereby reducing the processing time. If the CPU has
a multiway cache memory, caching for a plurality of chan-
nels for continuously processing in parallel the wavetform
data 1n the ROM 103 and the waveforms for one frame being
generated can be realized, resulting 1n a significantly effi-
cient computation for waveform generation. Further, in the
waveform generation processing, address generation 1s per-
formed 1n parallel by increasing the number of processing
bits and by decreasing the number of channels, while other
processing operations such as interpolation and amplitude
control are performed in parallel by decreasing the number
of processing bits and by increasing the number of channels.
Namely, the parallel number of channels 1s varied according
to the data to be handled, thereby enhancing the computa-
tional efficiency and shortening the processing time.

In step 804 of FIG. 8A, 1f there 1s a channel which 1s being
sounded and left uncomputed and 1t 1s expected that the
synthesis computation will not complete within the genera-
fion period, the process may go to step 806 1nstead of going
back to step 803. In the above-mentioned first preferred
embodiment, 64 bits are processed 1n parallel as a set of 16
bitsx4 data or another set of 32 bitsx2 data. It will be
apparent that the 64 bits may be processed 1n parallel 1n any
other data widths. In the above-mentioned embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

138

time length of one frame 1s equivalent to 128 music tone
waveforms. It will be apparent that one frame may be longer
or shorter than this value. For example, one frame may be
cquivalent to 64 samples or 1024 samples. LFO and pitch
envelope processing may be added to the above-mentioned
embodiment to control effects such as vibrato and tremolo.
If the number of bits of the effect control waveform gener-
ated 1s 8, this generation processing can be performed in
parallel for 8 channels.

The present mvention includes a storage medium 105 as
shown in FIG. 1. This storage medium 1s a machine-readable
media containing instructions for causing the apparatus to
perform the music tone generating method through a plu-
rality of channels. This music tone generating method 1s
realized by the following steps: first, performance 1nforma-
tion 1s supplied; second, a timing signal 1s generated at a
predetermined time 1nterval; and third, waveform data for a
plurality of channels according to the above-mentioned
performance information 1s generated every time the timing
signal 1s generated. In the third step, processing operations
for the plurality of channels are processed 1n parallel 1n units
of n channels (n being two or a higher integer number) and
the waveform data for a plurality of continuous samples 1s
ogenerated and outputted. Then, the generated waveform data
1s supplied to a D/A converter, one sample by one sample,
every sampling period, and converted 1nto an analog wave-
form.

According to the first aspect of the mvention, a music
apparatus comprises a processing unit of a universal type
having an extended 1nstruction set used to carry out parallel
computation steps 1n response to a single 1nstruction which
1s successively 1ssued when executing a program, a software
module defining a plurality of channels and being composed
of a synthesis program executed by the processing unit using
the extended 1nstruction set so as to carry out synthesis of
waveforms of musical tones through the plurality of the
channels such that the plurality of the channels are optimally
orouped 1nto parallel sets each containing at least two
channels and such that the synthesis of the waveforms of at
least two channels belonging to each parallel set are carried
out concurrently by the parallel computation steps, a buifer
memory for accumulatively storing the waveforms of the
plurality of the channels, another software module com-
posed of an effector program executed by the processmg unit
using the extended instruction set if the effector program
contains parallel computation steps to apply an effect to the
waveforms stored in the buffer memory, and a converter for
converting the waveforms into the musical tones.

Preferably, the processing unit executes the synthesis
program so as to carry out the synthesis of the waveforms,
the synthesis including one type of the parallel computation
steps treating a relatively great computation amount so that
the plurality of the channels are optimally grouped into
parallel sets each containing a relatively small number of
channels, and another type of the parallel computation steps
treating a relatively small computation amount so that the
plurality of the channels are optimally grouped into parallel
sets each contaming a relatively great number of channels.

The inventive method of generating musical tones accord-
ing to performance information through a plurality of chan-
nels by parallel computation steps, comprises successively
providing performance information to command generation
of musical tones, periodically providing a trigger signal at a
relatively slow rate to define a frame period between suc-
cessive trigger signals, periodically providing a sampling
signal at a relatively fast rate such that a plurality of
sampling signals occur within one frame period, carrying

3,955,691

19

out confinuous synthesis 1n response to each trigger signal to
produce a sequence of waveform samples of the musical
tones for each frame period according to the provided
performance 1nformation, the continuous synthesis being
carried out using the extended instruction set such that the
plurality of the channels are optimally grouped into parallel
sets ecach containing at least two channels so that the
continuous synthesis of the waveform samples of at least
two channels belonging to each parallel set are carried out
concurrently by the parallel computation steps, and convert-
ing cach of the waveform samples in response to each
sampling signal mto a corresponding analog signal to
thereby generate the musical tones.

The following describes an electronic musical instrument
practiced as a second preferred embodiment of the present
invention. Basically, the second preferred embodiment has
ogenerally the same hardware constitution as that of the first
preferred embodiment shown 1n FIG. 1 and a software sound
source operating according to the principle shown 1n FIG. 2,
and operates according to the main flowcharts shown 1n

FIGS. 7A and 7B.

Now, referring to FIG. 1, the CPU 101 controls the
operations of the entire electronic musical instrument prac-
ticed as the second embodiment. The CPU 101 incorporates
a cache memory 117. The cache line (cache block) size of
the cache memory 117 1s 32 bytes. To be more specific, when
the CPU 101 reads one data byte at a given address from the
ROM 102 or the RAM 103, continuous 32 bytes mcluding
the one byte at that address are copied to a predetermined
cache line 1n the cache memory 117. Then, 1if read request
occurs for data of any of these 32 bytes, the data in that cache
line 1s supplied mnstead of reading data from the ROM 102
or the RAM 103. Access to the cache memory 1s performed
significantly fast. Therefore, while the data 1s in the cache
memory 117, the data can be processed significantly fast. It
should be noted that the cache memory 1s of two types;
write-through and write-back. In the second embodiment,
the cache memory of write-though type 1s used.

FIG. 9A shows an example of the constitution of wave-
form generating bufters used by the CPU 101 for waveform
ogeneration. These bullers are denoted by mixA, mixB,
mi1xC, and mixD. The mixA is for a dry tone; 1n this buffer,
waveform data to which no effect 1s attached 1s set. The
mi1xB 1s for reverberation; in this buffer, waveform data
inputted 1nto reverberation processing 1s set. The mixC 1s for
chorus; 1n this buffer, waveform data mputted into chorus
processing 1s set. The mixD 1s for variation; in this buffer,
waveform data iputted 1nto variation processing 1s set.
Each of the buffers mixA, mixB, mixC, and mixD 1s made
up of a storage area for 128 sets of samples (2x128=256
samples), each set being composed of a storage area for
stereophonic left side (L) waveform sample and a storage
area for stereophonic right side (R) waveform sample. Each
of the L side waveform sample and the R side waveform
sample 1s a 16-bit (2-byte) sample. Each of the mixA, the
mixB, the mixC, and the mixD is subjected to boundary
adjustment that they are sequentially cached in units of
32-byte (namely 16 samples) from the top of addresses.

FIG. 10 shows an example of an algorithm of the pro-
cessing covering from music tone generation by a software
sound source to channel accumulation. A wavelorm memory
401 stores wavelform sample data sampled by a predeter-
mined rate. In this example, waveform data prepared in the
ROM 102 1s used. Alternatively, wavetform data prepared in
the RAM 103 may be used. For the waveform data in the
RAM 103, data read from the external storage medium 105
or the hard disk 110, data inputted via the network I/0 107,

10

15

20

25

30

35

40

45

50

55

60

65

20

or wavelform data obtained by sampling the external input

113 by the sound I/O 112 may be used.

The software sound source executes the music tone gen-
eration processing 402 for the required number of channels.
The maximum number of channels 1s predetermined accord-
ing to the processing capability of the CPU. Computation
can be started with any channel. For example, the compu-
tation can be performed on a last-in fast-out basis.
Sometimes, a channel for which volume level has been
reduced may have lower priority. For music tone generation
for one channel, waveform data 1s read out from the wave-
form memory by waveform read & interpolation processing
411, and the read waveform data 1s interpolated. Next, the
interpolated waveform data 1s filtered by a filter 412. Then,
the filtered waveform data 1s divided into eight routes or
lines, which are multiplied by predetermined coetficients by
multipliers 413-1 through 413-8, respectively. The outputs
of the eight lines include dry L output obtained by multi-
plying a dry L (stereophonic left side) coefficient through the
multiplier 413-1, dry R output obtained by multiplying a dry
R (stereophonic right side) coefficient through the multiplier
413-2, reverberation L output obtained by multiplying a
reverberation L coeflicient through the multiplier 413-3,
reverberation R output obtained by multiplying a reverbera-
fion R coeflicient through the multiplier 413-4, chorus L
output obtained by multiplying a chorus L coeflicient
through the multiplier 413-5, chorus R output obtained by
multiplying a chorus R coefficient through the multiplier
413-6, variation L output obtained by multiplying variation
L coeflicient through the multiplier 413-7, and variation R
output obtained by multiplying variation R coeflicient
through the multiplier 413-8. The outputs of these eight lines
cach obtained for each channel are independently mixed or
channel-accumulated by mixers 403-1 through 403-8. The
accumulated outputs are interleaved by interleave process-
ing operations 404-1 through 404-4 in L and R. The inter-
leaved data are set to the wavelorm generating buffers mixA,

mixB, mixC, and mixD of FIG. 9 as shown in 405-1 through
405-4.

The user can enter an effect edit command through the
keyboard 108 and the dlsplay 109. In step 707 of the main
flow shown 1n FIG. 7, an effect edit processing program can
be executed to edit the algorithm and parameters of a
software effector. FIG. 11 shows an example of an algorithm
of the software effector set by editing by the user. This
algorithm 1s adapted to apply a plurality of effects to the
waveform data reserved 1n the waveform generating buffers
mixA, mixB, mixC, and mixD 1n the processing of FIG. 10.

In editing the algorithm of the software effector, the
number of blocks of the processing by the software effector
(three blocks in FIG. 11), the processing contents of each
block (reverberation, chorus, and variation in FIG. 11), and
information about connection between blocks (connection
between three blocks by five add processing in FIG. 11) are
designated by the user, for example. The effect edit process-
Ing program automatically determines the sequence of effect
processing on a plurality of specified blocks and a plurality
of add processing operations such that the designated con-
nection 1s enabled and sets up an effect processing program
having the algorithm shown in FIG. 11. The algorithm
shown on FIG. 11 indicates the processing composed of the
following procedures (1) through (6).

(1) The wavef

‘lorm data 1s read out from the waveform
cgenerating buffer mixD 501-4, the variation processing 507
1s performed on the read data, and the resultant data is
overwritten to the mixD.

(2) Add(mixD—mixA) 508, add(mixD—mixB) 502, and
add(mixD—mixC) 504 are executed. In the add processing,

3,955,691

21

cach sample 1n the buffer indicated before “—" 1s weighted
by multiplying the sample by a predetermined coetflicient
and the weighted sample 1s added to a sample 1n the buffer
indicated after “—". The add processing 1s carried out by
using a common routine, while the weight coeflicient 1s
specifled beforehand according to which processing result 1s
welghted and to which the weighted result 1s added. Thus,
the results of the variation processing 507 are weighted by
the add processing operations 508, 502 and 504, and the
welghted results are added to the waveform data in the dry
buffer mixA, the reverberation buffer mixB, and the chorus
buffer mixC.

(3) The waveform data in the waveform generating buffer
mixC 1s obtained by adding the weighted waveform data on
which the variation processing has been performed by the
add processing 504 to the original waveform data prepared
for the mput 1n the chorus processing. This data 1s read out,
the chorus processing 506 1s performed 1n the read data, and
the result 1s overwritten to the mixC.

(4) Add(mixC—mixA) 509 and add(mixC—mixB) are
executed. Thus, by the add processing operations 509 and
503, the results of the chorus processing 506 are weighted
and the weighted results are added to the waveform data 1n
the dry buffer mixA and the waveform data i1n the rever-
beration buifer mixB, respectively.

(5) The waveform generating buffer mixB holds the data
obtained by adding the weighted waveform data on which
the variation processing 507 has been performed by the add
processing 502 to the waveform data prepared for the input
in the reverberation processing and adding the weighted
waveform data on which the chorus processing 506 has been
performed by the add processing 503 to that added data. The
resultant waveform data 1s read out from the mixD, the
reverberation processing 505 1s performed on the read data,
and the resultant data 1s overwritten to the mixB.

(6) Add(mixB—mixA) 510 is executed. Thus, by this add
processing 510, the result of the reverberation processing,
505 1s weighted and the weighted data 1s added to the
wavelorm data in the dry buffer mixA. Consequently, the
wavelorm data obtained by attaching variation, chorus, and

reverberation elfects to the dry waveform data 1s finally set
to the mixA.

The above-mentioned reverberation processing 503, cho-
rus processing 506, and variation processing 507 impart the
various effects to the waveform data of the mixB, mixC, and
mixD, and overwrite these buflers with the effect imparted
data. The add processing operations 502 through 504 and
508 through 510 are common routines. Therefore, appropri-
ate arrangement of these routines can change the sequence
in terms of the connection relationship between the software
clfectors representative of a plurality of effect attaching
operations. The common routines “add” are available
because the waveform generating buflers are separately
provided to the corresponding effects, and the same structure
1s given to these buifers. In the second embodiment of the
present 1nvention, the algorithms of the software effectors
can be designated without any restriction by means of the
keyboard 108, for example.

According to the second embodiment of the present
invention, a cache hit rate can be remarkably increased by
executing the wavetform generation through the algorithms
shown 1in FIGS. 10 and 11 in units corresponding to the
cache line size, thereby enhancing the speed of music tone
synthesis computation. The speeding up of the processing by
caching will be described 1n detail with reference to flow-

charts shown 1n FIGS. 12A and 12B.

10

15

20

25

30

35

40

45

50

55

60

65

22

FIG. 12A shows a detailed procedure of the wavelform
generation processing performed 1n step 706. By this wave-
form generation processing, music tone generation 1S per-
formed with the algorithms shown 1n FIGS. 10 and 11. First,
in step 901, preparation for computation 1s made. This
preparation processing includes the processing for recogniz-
ing a channel for which computation for waveform genera-
tion 1s performed with reference to a software sound source
register, the processing for determining to which of the
waveform generating buffers PB0 and PB1 the waveform for
one frame generated this time by this computation of wave-
form generation 1s to be set, and the processing for clearing
all areas of the waveform generating buifers mixA, mixB,
mixC, and mixD. Next, in step 902, computations for
generating waveforms for 16 samples associated with all
channels are performed. It should be noted that counting the
samples of stereophonic L and R as a unit results in 2x16=32
samples. The processing of algorithm shown 1n FIG. 10 1s
performed for 16 samples, and the waveforms for 2x16
samples are stored 1n each of the wavelform generating
buifers mixA, mixB, mixC, and mixD.

In step 903, it 1s determined whether the waveform
samples for one frame have been generated. Namely, 1t 1s
determined whether 2x128 samples have been generated 1n
cach of the waveform generating buffers mixA, mixB, mixC,
and mixC shown 1n FIG. 9. If the generation of samples for
one frame has not been completed, the process goes back to
step 902, in which next 2x16 samples are generated. By
repeating the operation of step 902, 2x16 waveform samples
arc loaded into the waveform generating buffers mixA,
mixB, mixC, and mixD shown in FIG. 9 from the top to the

end.

When the wavetform samples for one frame have been
ogenerated in the waveform generating buffers mixA, mixB,
m1xC, and mixD shown 1n FIG. 9 1n step 903, the process
cgoes to step 904. In steps 904, 905, and 906, variation,
chorus, and reverberation etfects are attached, respectively.
In these processing operations, the variation processing, the
chorus processing, the reverberation processing, and the add
processing are performed according to the sequence speci-
fied by the algorithm designated by the user as described
with reference to FIG. 11. It should be noted that changing
in setting of the algorithms of the software effectors is
conducted by the other processing at step 707 shown 1n FIG.
7A. The software effector processing operations of steps
904, 905, and 906 arc performed 1n units of 2x16 samples
likewise steps 902 and 903. Namely, the processing of the
algorithm shown in FIG. 11 1s performed for 2x16 samples
from the top of the wavelform generating buffers mixA,
mixB, mixC, and mixD. Then, the processing shown 1n FIG.
11 1s performed for the next 2x16 samples. This processing,
1s repeated until 2x128 samples attached with effects are
eventually obtained i1n the waveform generating bufler
mixA. Each of the variation processing, chorus processing,
reverberation processing, and add processing described with
reference to FIG. 11 1s conducted in the unit of 2x16
samples.

It should be noted that FIG. 12A does not show the add
processing described with reference to FIG. 11. Actually,
this add processing 1s included 1n the effect block processing
of steps 904 through 906. The varation processing of step
904 includes the procedures described in (1) and (2) above.
The chorus processing of step 905 includes the procedures
described in (3) and (4) above. The reverberation processing
of step 906 includes the procedures described in (5) and (6)
above.

It should also be noted that the effect processing in each
of steps 904, 905, and 906 may be performed for one frame

3,955,691

23

collectively rather than 1n units of 2x16 samples. Namely,
the variation processing, chorus processing, reverberation
processing, and add processing described with reference to
FIG. 11 may be performed for one frame at a time. In this
case, the caching 1s also working well for every 16 samples
during the one-frame processing. This setup may lower the
hit rate 1n the inter-processing among the buflers, but still
raises the hit rate with respect to the registers and within
cach buifer for use in each effect processmg As compared
with the sounding processing, the effect processmg takes
fime before results are obtained, so that it 1s more eflicient
to process the samples for one frame at a time. It 1s still more
efiicient if this collective processing 1s performed 1n units of
16 samples locally. Namely, to make it hard for cache miss
to occur, 1t 1s a good approach to process continuous pieces

of data 1n a short period.

After the software effector processing, the generated
waveform samples for one frame (namely, 2x128 samples in
the II]iXA) are reserved for reproduction. This 1s the pro-
cessing for copying the wavetform samples from the mixA to
one of the reproducing buffers PBO and PB1 (the buffer
currently not used for reproduction). Since the processing
for alternately reading the reproducing butfers PB0 and PB1
has already been started, only copying the waveforms 1n the
reproducing buffer not used for reproduction causes sound-
ing of the waveform concerned. In this example, the wave-
form generating buffer mixA, and the reproducing buifers
PB0 and PB1 are provided separately from each other.
Alternatively, two planes of mixA may be prepared to
provide the PBO and the PB1, respectively. In this case, the
waveform generation processing 1s performed on the repro-
ducing buifers directly, so that the processing for copying
the wavetorms generated 1n step 907 1s not required, thereby
enhancing the processing speed.

FIG. 12B shows a detailed procedure of generating wave-
forms for 16 samples (or 2x16=32 samples if counted in
units of the samples of stereophonic L and R) performed in
step 902 of FIG. 12A. First, 1n step 911, preparation for
computation 1s made for the first channel. By the preparation
of step 901 of FIG. 12A, channels to be subjected to
computation for waveform generation and the priority
among the channels are determined. Therefore, 1n step 911,
a channel having the highest priority 1s made the first
channel. Next, in steps 912 through 918, waveforms are
generated for 16 samples for the channel concerned.

In step 912, an envelope value used 1n later processing 1s
obtained. The envelope value 1s generated by envelope
generation processing that outputs an envelope waveform of
ADSR (attack, decay, sustain, release). The envelope value
generated 1n step 912 1s used commonly by the 16 samples
currently being processed. One generated envelope value 1s
commonly used by the 16 samples. Namely, one envelope
value 1s generated for every 16 waveform samples. Next, in
step 913, address generation, waveform reading, and inter-
polation denoted by reference 411 of FIG. 10 are performed
for 16 samples. In step 914, these samples are filtered (412
of FIG. 10). At this point of time, each of these samples is
not yet divided into stereophonic L and R, and hence 1is
monaural.

In step 915, 2x16 samples for the mixA are computed.
Namely, the following processing i1s performed on the mon-
aural 16 samples outputted from the filter processing 412
shown in FIG. 10. First, a dry weighting coefficient (dryL)
1s added to the envelope value obtained 1n step 912. These
coellicient and envelope value are both on dB scale, so that
the addition 1s equivalent to multiplication on linear scale.
Then, the added result of the above-mentioned coefficient

10

15

20

25

30

35

40

45

50

55

60

65

24

and envelope value 1s multiplied 1in exponential conversion
by an adder 413-1 by each waveform sample value outputted
from the filter processing 412. Thus, 16 samples of the dry
[L are obtained. The dry R waveform samples are also
obtained 1n generally the same manner by using the dry R
coefficient. The dry L and R sample waveforms (2x16=32)
are accumulated to the mixA.

As with step 915, reverberation L and R (2x16=32)

sample waveforms are accumulated to the mixB in step 916.
In step 917, chorus L and R (2x16=32) sample waveforms
are accumulated to the mixC. In step 918, variation L and R
(2x16=32) sample waveforms are accumulated to the mixD.
It will be apparent that different weighting coetficients are
used for dry, reverberation, chorus, and variation.

Next, in step 919, 1t 1s determined whether channels
remain uncomputed. If yes, preparation for the next com-
putation 1s made 1n step 920, and the process goes back to
step 912. The computation starts with a channel having
higher priority. This operation 1s repeated to generate wave-
forms for 16 samples for each of stereophonic L and R, the
ogenerated waveforms being accumulated to the waveform
ogenerating buffers mixA, mixB, mixC, and mixD. If no more
channel 1s found in step 919, the waveform generating
processing comes to an end.

In the waveform synthesis computation shown in FIGS.
12A and 12B, the waveform generation including effect
attaching 1s performed in units of 2x16 samples. Sixteen
samples are 32 bytes long. Each of the waveform generating
buffers mixA, mixB, mixC, and mixD shown in FIG. 9 has
adequate boundanes such that these buffers are sequentially
cached from the top in units of 32 bytes. Therefore, when the
first sample of the mixA 1s accessed for example, the 16
samples mncluding this first sample are cached 1n the cache
memory 117. Since the waveform generation processing 1S
performed 1n the cache memory 117 while these 16 samples
are being processed, wavelform generation can be performed
very fast. When stereophonic L and R are considered, the
processing 1s performed in units of 64 bytes for 2x16
samples. Adjacent groups of 16 samples are cached in
different cache lines, so that two cache lines are used 1n this
case.

Especially, in the second preferred embodiment, the user
can arbitrarily designate the algorithms of attaching a plu-
rality of effects, so that the effect attaching 1s performed in
a variety of sequences. Since the different waveform gen-
eratmg buffers are prov1ded for different effects, the pro-
cessing of one effect 1s performed on the corresponding
buffer. This buffer stores only the waveform samples used
for the effect attached. Namely, this buifer has no sample
that 1s unnecessary for the effect attaching concerned. This
setup remarkably increases the cache hit efficiency, thereby

enhancing the effect of caching.

In the above-mentioned second preferred embodiment, as
seen from steps 902 and 903 of FIG. 12A and from FIG.
12B, the processing for generating wavetforms for 16
samples over all channels 1s performed in an 1nner loop and
this waveform generation processing for 16 samples 1s kept
performed 1n an outer loop until one frame 1s processed,
thereby generating the waveforms for one frame. In some
cases, the inner and outer loop processing operations may be
exchanged with each other. Namely, the waveform genera-
tion for 16 samples associated with one channel may be
repeated in the mner loop until the waveforms for one frame
are generated, which 1s executed 1n the outer loop for each
channel, thereby generating the eventual wavetforms for one
frame. According to the second preferred embodiment, the

3,955,691

25

wavelorms are generated m units of 16 samples for all
channels, resulting 1n a high cache hit rate. However, if the
CPU processing performance 1s low, the waveform genera-
fion for one frame may not be completed within the time of
one frame. On the contrary, 1n the above-mentioned
approach in which the mner and outer loops are exchanged,
the waveforms for the channel having higher priority are
first generated for one frame. Therefore, even 1f the wave-
form generation for all channels 1s not completed within one
frame time, the channel having the higher priority 1is
sounded. It will be apparent that these approaches coexist, in
which the former approach i1s used for a predetermined
number of channels while the latter approach 1s used for the

remaining channels.

In the above-mentioned second preferred embodiment,
the cache memory of write-through type 1s used. It will be
apparent that the cache memory of write-back type may be
used. In the write-back type, wavetorm update processing 1s
enabled 1n the cache memory, resulting 1n faster waveform
generation. It will be also apparent that the user can desig-
nate not only the states of connection between effect to
modules but also the number and contents of these effector
modules. The number of samples subjected to caching
differs from CPU to CPU, so that units 1n which waveform
generation 1s performed may be changed accordingly. The
number of buifers for waveform generation 1s four, the mixA
through the mixD 1n the above-mentioned second preferred
embodiment. This corresponds to that the number of eff

ect
blocks 1n the subsequent stage 1s three. According to the
number of effect blocks, the number of buffers 1s altered.
Since the buifers for imparting the effects and the buifer for
dry tones are requlred the total number of buifers 1s set to

the number of effect blocks plus one.

According to the second aspect of the invention, a music
apparatus for generating musical tones by means of a
software, comprises a processor that periodically works each
frame period for executing the software to carry out syn-
thesis of a set of wavelform samples allotted to one frame
period, a buffer having a capacity sufficient to store the
waveform samples allotted to one frame period, the bufler
being used as a working area by the processor for storing a
temporary set of the waveform samples which are treated by
the processor during the course of the synthesis and for
storing a final set of the waveform samples which are
obtained upon completion of the synthesis, a cache having
a capacity sufficient to store a subset of the waveform
samples which 1s an integer division of the set allotted to one
frame period such that the capacity of the buifer 1s set to an
integer multiple of the capacity of the cache, the cache being
hit by the processor before the bufler 1s addressed by the
processor so as to carry out the synthesis of each subset of
the waveform samples more efficiently than that the buifer
1s otherwise addressed by the processor, and a converter that
converts the final set of the waveform samples stored in the
buffer nto the musical tones.

Further, the inventive music apparatus using a processor
to generate musical tones, comprises a synthesis module
periodically executed by the processor at each frame period
so as to carry out synthesis of a set of waveform samples
allotted to one frame period, a plurality of buffers each
having a capacity sufficient to store the set of the waveform
samples allotted to the same frame period after the synthesis,
a plurality of effector modules each being linked to a
corresponding one of the buffers, each effector module being
executed by the processor to carry out modification of the set
of the waveform samples reserved 1n the corresponding
buffer to create a different effect, a mixer module executed

10

15

20

25

30

35

40

45

50

55

60

65

26

by the processor to carry out computation of one set of the
waveform samples stored in one buifer with another set of
the waveform samples stored 1n another buifer so as to II]lX
different effects, a controller that provides an total effect
algorithm for instructing the processor to execute the etfec-
tor modules and the mixer module 1n a predetermined
sequence to create a total effect which 1s desired mixture of
the different effects, and that designates one of the buifers to
store the set of the waveform samples after completion of the
modification and the computation, and a converter for con-
verting the set of the waveform samples stored in the
designated bufler into the musical tones with the total etfect.

Preferably, the mixer module 1s executed by the processor
to carry out computation of adding one set of the wavelform
samples stored 1in one buifer to another set of the waveform
samples stored 1n another buffer by a desired ratio so as to
mix different effects, the set of the wavelform samples being
reserved 1n said another buffer after the computation.

Preferably, the mixer module 1s commonly utilized to
carry out the computation between any pair of the buflers as
specified by the total effect algorithm.

Preferably, the controller comprises an editor that edits the
total effect algorithm to arrange the sequence by which the
Processor Sequentially executes selected ones of the effector
modules and the mixer module 1n a desired order to create
the desired total effect.

Preferably, the inventive music apparatus further com-
prises a cache having a capacity suflicient to store a subset
of the waveform samples which 1s an integer division of the
set of the wavelform samples allotted to one frame period
such that the capacity of each buffer 1s set to an integer
multiple of the capacity of the cache, the cache being hit by
the processor betore the buifer 1s addressed by the processor
so as to carry out the synthesis of each subset of the
waveform samples more efficiently than that each buifer 1s
otherwise addressed by the processor.

The inventive method of generating musical tones accord-
ing to performance information through a plurality of
channels, comprises successively providing performance
information to command generation of musical tones, peri-
odically providing a trigger signal at a relatively slow rate to
define a frame period between successive trigger signals,
periodically providing a sampling signal at a relatively fast
rate such that a plurality of sampling signals occur within
onc frame period, carrying out continuous synthesis in
response to one trigger signal to produce a set of wavelform
samples of the musical tones through the plurality of chan-
nels for one frame period according to the provided perfor-
mance Information, accessing a bufler having a capacity
suflicient to store the waveform samples allotted to one
frame period, the buller being used as a working arca by the
processor for storing a temporary set of the waveform
samples which are treated by the processor during the course
of the continuous synthesis and for storing a final set of the
waveform samples which are obtained upon completion of
the continuous synthesis and which are accumulated
throughout the plurality of the channels, addressing a cache
having a capacity suflicient to store a subset of the waveform
samples which 1s an iteger division of the set of the
waveform samples allotted to one frame period, the cache
being hit by the processor before the buil

er 15 addressed by
the processor so as to carry out the continuous synthesis of
cach subset of the wavelform samples more efficiently than
that the buffer 1s otherwise addressed by the processor, and
converting each of the waveform samples reserved 1n the
buffer as the final set in response to each sampling signal
into a corresponding analog signal to thereby generate the
musical tones.

3,955,691

27

The inventive method of generating musical tones accord-
ing to performance information, comprises successively
providing performance information to command generation
of musical tones, periodically providing a trigger signal at a
relatively slow rate to define a frame period between suc-
cessive ftrigger signals, periodically providing a sampling
signal at a relatively fast rate such that a plurality of
sampling signals occur within one frame period, periodically
executing a synthesis module at each frame period in
response to each trigger signal so as to carry out synthesis of
a set of wavetform samples allotted to one frame period,
addressing a plurality of buffers each having a capacity
suflicient to store the set of the waveform samples allotted
to the same frame period after the synthesis, executing a
plurality of effector modules each being linked to a corre-
sponding one of the buffers to carry out modification of the
set of the waveform samples reserved 1n the corresponding
buffers to create different effects, executing a mixer module
executed to carry out computation of one set of the wave-
form samples stored 1n one buffer with another set of the
wavelorm samples stored in another buffer so as to mix
different effects, providing an total effect algorithm {for
instructing execution of the effector modules and the mixer
module 1n a predetermined sequence to create a total ¢

™
* Yt

ect
which 1s desired mixture of the different effects, designating,
one of the buflers to store the set of the waveform samples
after completion of the modification and the computation,
and convertmg cach of the waveform samples stored in the
designated bufler 1n response to each sampling signal into a
corresponding analog signal so as to generate the musical

tones with the total effect.

The following describes an electronic musical instrument
practiced as a third preferred embodiment of the present
invention. Basically, the third preferred embodiment has
ogenerally the same hardware constitution as that of the first
preferred embodiment shown in FIG. 1 and a software sound
source operating according to the principle shown 1n FIG. 2,

and operates according to the main flowcharts shown 1n
FIGS. 7A and 7B.

First, note-on event processing performed when a note-on
event 1s inputted will be described for example of the MIDI
processing of step 705 of FIG. 7A with reference to FIG. 13.
If the mputted MIDI event 1s a note-on event, the MIDI
channel number (MIDIch) allotted to the note-on event is
recorded 1n an MC register, the note number 1s recorded 1n
an NN register, and the velocity 1s recorded 1n a VE register
in step S21.

In the third preferred embodiment, a timbre 1s selected for
cach MIDI channel, and each timbre parameter specifies a
particular music tone generating method. Namely, each
fimbre parameter specifies the sound source type for gener-
ating a tone assigned to each MIDI channel. Therefore,
based on the sound source type set to the MIDI channel
registered 1n the above-mentioned MC register, tone assign-
ment to the sounding channel concerned is performed (step
S22). Next, for the sounding channel register of the sound-
ing channel assigned 1n step S22, preparation 1s made for
generating a tone having note number NN and velocity VE
by the corresponding sound source type. Then 1n step S24,
note-on 1s written to the sounding channel register of the
sounding channel concerned. Thus, a corresponding channel
1s assigned when a note-on event occurs, thereby preparing
the music tone generation processing based on the corre-
sponding sound source type.

The following describes in detail the waveform genera-
tion processing of step 706 executed 1n the main routine of

FIG. 7A, with reference to FIG. 14. In the third preferred

10

15

20

25

30

35

40

45

50

55

60

65

23

embodiment, this waveform generation processing 1s
referred to as sound source processing. This sound source
processing generates music tone wavelorm samples by
computation, and provides the generated waveform samples
with predetermined effects. When the trigger shown 1n FIG.
7A is a one-frame reproduction completion interrupt of (2)
above, the sound source processing starts. First, in step S31,
a preparation 1s made. As described before, 1n the music tone
generating method according to the present invention, a
music tone 1s synthesized by sound sources of a plurality of
types. Hence, music tones are generated by use of one music
tone synthesizing algorithm, and are collectively generated
for the plurality of sounding channels. Next, music tones for
sounding channels are collectively generated for the plural-
ity of sounding channels by use of another music tone
synthesizing algorithm. Thus, the music tone waveforms
ogenerated by the same program are collectively generated,
thereby enhancing the hit rate of the cache, and hence
increasing the processing speed. Therefore, 1n this prepara-
tion processing of step S31, a sounding channel 1s deter-
mined that first generates a music tone based on one music
tone synthesizing algorithm used first, for example, PCM
sound source. For silent channels currently generating no
music tone, the waveform generation processing 1s skipped.

Next, 1n step S32, according to the setting of the sounding
channel register for the sounding channel concerned, music
tone wavelorm samples for 16 samples of the sounding
channel are collectively generated by computation. The
music tone wavelform samples are collectively generated for
16 samples because one music tone wavelorm sample 1s
two-byte data and 32-byte data 1s collectively transterred to
the cache as described before. This enhances the processing

speed.

Then, 1 step S33, it 1s determined whether generation of
the music tone wavelorm samples for one frame of the
sounding channel concerned has been completed. If the
generation has not been completed, preparation 1s made for
the next computation of waveform samples (step S34), and
then the process goes back to step S32. If the generation has
been completed and the decision of step S33 1s YES, the
process goes to step S35, 1n which it 1s determined whether
the generation of the music tone waveform samples for one
frame for all sounding channels using the first sound source
algorithm has been completed.

If the decision 1s NO, then 1n step S36, preparation 1s
made for music tone waveform generation by computation
for a next channel using this ound source algorithm and the
process goes back to step S32. On the other hand, if the
ogeneration of the music tone waveforms for all channels
based on this algorithm has been completed, the process
ogoes to step S37, 1n which 1t 1s determined whether the music
tone waveform generation processing for all sound source
algorithms has been completed. If a sound source algorithm
not yet executed 1s found, the process goes to step S38, in
which preparation 1s made for the music tone waveform
generation processing using a next algorithm, and the pro-
cess goes back to S32. Thus, the music tone wavelorm

generation processing using the next algorithm starts 1n step
S32.

When the generation of the music tone waveform samples
for one frame for all corresponding sounding channels has
been completed for all sound source algorithms, the decision
of step S37 becomes YES, upon which step S39 1s executed.
Subsequent to step S39, the eifect processing for the music

tone wavelorm Samples generated by computation in steps
S31 through S38 is performed.

In step S39, preparatlon for the effect computatlon 1S
made first. In this processing, the sequence of the effect

3,955,691

29

processing operations to be performed 1s determined. It
should be noted that the effect processing is skipped for the
channels for which input/output levels are zero. Next, 1n step
S40, the effect processing for one channel i1s performed
according to the setting of the effect channel register. Thus,
according to the third preferred embodiment of the
invention, the effect channel register 1s provided for every
effect processing, and an effect processing algorithm 1is
designated for each channel register.

Then, it 1s determined whether the effect processing has
been completed for all effect channels (step S41). If the
effect processing has not been completed, preparation for
next effect processing 1s made in step S42, and then the
process goes back to step S40. On the other hand, 1if the
cffect processing has been completed, the process goes to
step S43, 1n which reproduction of stereophonic waveforms
for one frame 1s reserved. To be more specific, the stereo-
phonic waveforms for one frame are transierred to the areas
of the two frames for which DMAB reproduction has been
completed.

Thus, the music tone waveforms are generated and out-
putted by software. According to the third preferred
embodiment, the music tone waveforms can be generated by
use of three sound source types; PCM sound source, FM
sound source, and physical model sound source. Namely,
according to the third preferred embodiment, the waveform
generating programs and the effect programs for executing
various effect processing operations are prepared corre-
sponding to these three sound source types. Moreover, these
programs use a common wavelorm processing subroutine to
perform their processing. Thus, use of the common subrou-
fine contributes to the reduced size of each program and the
saved storage capacity of storage devices. Since the formats
of various pieces of data are standardized, music tones can
be synthesized by an integrated music tone generating

algorithm 1n which various sound source types coexist.

FIGS. 15A to 15C show three particular examples of the
waveform generation processing for 16 samples executed in
step S32 of FIG. 14. FIG. 15A denotes an example of the
music tone generation processing by PCM sound source,
FIG. 15B denotes an example of the music tone generation
processing by FM sound source, and FIG. 15C denotes an
example of the music tone generation processing by physical
model sound source. In each example, when the processing
1s performed once, music tone waveforms for 16 samples are
ogenerated. Each step shown 1n FIGS. 15A to 15C denotes a
wavelorm processing subroutine described above. Each
music tone generation processing 1S composed of a combi-
nation of waveform processing subroutines. Therefore,
some waveform processing subroutines can be used by
different sound source types. That 1s, subroutine sharing is
realized in the present embodiment.

In the music tone generation processing of the PCM
sound source shown 1n FIG. 15A, a waveform table 1s first
read 1n step S51. In the processing, a read address progress-
ing at a speed corresponding to a note number NN 1is
generated, waveform data 1s read out from the waveform
table stored 1n the RAM 103, and the read data 1s interpo-
lated by use of the fractional part of the read address. For this
interpolation, two-point interpolation, four-point
interpolation, six-point interpolation, and so on are avail-
able. In this example, a subroutine that performs four-point
interpolation on the wavetform data read from the waveform
table 1s used 1 step S51. Next, i step S52, quartic DCF
processing 1s performed 1n step SS52. In this processing,
filtering by a timbre parameter set according to velocity data
and so on 1s performed. In this example, a quartic digital
filter such as a bandpass filter 1s used for example.

10

15

20

25

30

35

40

45

50

55

60

65

30

Next, 1n step S53, envelope generation processing 1s
performed. In this example, an envelope waveform com-
posed of four states of attack, #1 decay, #2 decay, and release
1s generated. Then, 1n step S54, volume multiplication and
accumulation processing 1s performed. In this processing,
the music tone waveform read from the waveform table

(step S51) and filtered (step S52) is multiplied by the
envelope data generated in step S33, the resultant music tone
waveform sample for each channel being accumulated 1nto
an output register and an effect register. To be more specific,
the envelope waveform 1s added to an output transmission
level by logarithmic scale and the resultant sum 1s logarith-
mically multiplied by the waveform. It should be noted that
data corresponding to four registers, namely two stereo-
phonic output registers (accumulation buffers #OL and
#0OR) and two effect registers (accumulation buffers #1 and
#2) are outputted.

FIG. 15B shows an example of the music tone generation
processing by FM sound source. In this processing, in step
S61, waveform data 1s selectively read from a sine table, a
triangular wave table, and so on at a speed corresponding to
a note number NN. No interpolation i1s performed on the
read data. Next, in step S62, an envelope waveform 1s
cgenerated. In this example, an envelope waveform having
two states 1s generated. The generated envelope wavelorm 1s
used for a modulator. Then, in step S63, a volume multipli-
cation 1s performed. To be more specilic, the envelope
waveform 1s added to a modulation 1ndex by logarithmic
scale and the resultant sum 1s logarithmically multiplied by
the waveform data read from he waveform table, or the
resultant sum 1s multiplied by the waveform data while
converting the sum from linear to exponent.

Next, 1n step S64, the waveform table 1s read out. In this
processing, the result of the above-mentioned volume mul-
tiplication 1s added to a phase generated such that the phase
changes at a speed corresponding to the note number NN.
The sine table, triangular wave table, and so on are selec-
tively read with the mteger part of the resultant sum used as
an address. Linear interpolation according to the fractional
part of the resultant sum 1s performed on the read output.
Then, 1n step S65, quadratic digital filtering 1s performed on
the interpolated read output. In step S66, four-state envelope
generation processing 1s performed. This processing 1s gen-
crally the same as the processing of step S53 of FIG. 15A.
In step S67, volume multiplication and accumulation pro-
cessing 1s performed. In this example, the resultant data 1s
outputted to three accumulation registers (L and R registers
and an effect register).

FIG. 15C shows an example of the music tone generation
processing by physical model sound source. In this
processing, in step S71, TH (throat) module processing is
performed for emulating the resonance of throat. In this
processing, primary DCF processing and delay without
one-tap 1nterpolation are performed for example. Then, 1n
step S72, GR (growl) module processing 1s performed for
emulating the vibration of throat. In this processing, delay
processing with one-tap interpolation 1s performed for
example. It should be noted that the processing operations in
steps 71 and 72 are not performed for a string model. Then,
In step S73, NL (nonlinear) module processing is performed
for emulating a breath blow-in section (for tube model) or
emulating a contact between bow and string (for string
model) to generate an excitation waveform. In this
processing, linear DCEF, quadratic DCE, referencing function
table without interpolation, and referencing function table
with interpolation are utilized. Next, in step S74, an LN
(linear) module processing having a predetermined delay is

3,955,691

31

performed for emulating the resonance of a tube (for tube
model) or emulating the length of a string (for string model).
In this processing, delay with two-tap interpolation, linear
interpolation, and linear DCF are performed for example.
In step S75, RS (resonator) module processing is performed
for emulating the resonance at an exit of tube or emulating
the resonance of body (for string model).

In step S76, generally the same volume multiplication and
accumulation processing as mentioned above 1s performed.
In this example, five lines of outputs are provided.

For the constitution of these physical model sound sources,
reference 1s made to Japanese Non-examined Patent Publi-
cation Nos. He1 5-143078 and He1 6-83364.

The following describes reverberation processing with
reference to FIG. 16 as a particular example of effect
processing for one channel performed 1n step S39 of FIG.
14. When this reverberation starts, initial reflection process-
ing 1s performed 1n step S81. In this example, two lines of
delay processing without two-tap interpolation are per-
formed. Then, 1n step S82, two lines of all-pass filter
processing are performed. In step S83, reverberation pro-
cessing using six comb filters and four all-pass filters is
performed. In step S84, generally the same volume multi-
plication and accumulation processing as mentioned before
1s performed. In this example, four lines of outputs are used.

As described 1n the examples shown in FIGS. 15A
through 15C and FIG. 16, 1n the music tone generation
processing and effect processing based on the above-
mentioned sound source types, volume multiplication and
accumulation, waveform table reading, DCEF, and envelope
generation are executed mm common manner. Therefore,
preparing these processing operations as subroutines before-
hand and combining these subroutines to execute predeter-
mined processing operations by the sound source programs
can reduce a necessary storage capacity. This setup also
allows music tones to be synthesized by an algorithm based
on different sound source types, in which data generated by
one sound source type can be used by another sound source
type for music tone generation. For example, a waveform
ogenerated by PCM can be used as an excitation waveform 1n
the physical model sound source.

The following describes the waveform processing sub-
routine groups shared by the above-mentioned processing
operations.

(1) Subroutines associated with waveform table reading:

subroutines without interpolation, without FM

interpolation, with linear interpolation, with FM lin-

car interpolation, with four-point interpolation, and
with six-point mterpolation.

These subroutines perform processing for reading a wave-
form table prepared in RAM at a read speed designated by
a note number NN or the like. These subroutines include a
subroutine for providing frequency modulation on the read
speed and a subroutine for performing interpolation for
preventing aliasing noise form occurring. These subroutines
arc mainly used for PCM and FM sound sources.

(2) Subroutines associated with function table referenc-
Ing:
subroutines without interpolation and with linear inter-
polation.

These subroutines perform processing in which a function
table prepared in the RAM 1s referenced with waveform data
as address, and values of the waveform data are converted.
These subroutines are used for the physical model sound
source and effect processing such as distortion.

(3) Subroutines associated with interpolation:
subroutines with linear interpolation and time interpo-
lation.

10

15

20

25

30

35

40

45

50

55

60

65

32

The subroutine with linear iterpolation 1s used for cross
fading, or cross fading pertormed to alter delay length of
delay processing in the physical model sound source. The
subroutine with time interpolation 1s used for volume control
of after-touch.

(4) Subroutines associated with filtering;
subroutines with APF (all-pass filter), linear DCEF,
quadratic DCEF, and quartic DCF.
These subroutines are widely used for controlling the
frequency characteristics and phase characteristics of music
tones.

(5) Subroutines associated with comb filter:

These subroutines are mainly used for reverberation pro-
cessing and 1n the physical model sound source.

(6) Subroutines associated with envelope generation pro-
cessing:
subroutines with two-state EG, four-state EG, and so
on.
The envelopes generated by these subroutines are used for
controlling music tone waveform volume, filter cutoif, and
pitch.

(7) Subroutines associated with volume control and out-
put processing;:
subroutines such as lout, 2out, 3out, 4out, and 6out.
These subroutines multiply data such as the envelope for
controlling music tone waveform volume by the volume
data based on the transmission level classified by output
lines (accumulation buffers), and accumulate the resultant
volume-controlled music tone waveform data to the corre-
sponding accumulation buffer for each output line.

(8) Subroutines associated with modulation processing:
subroutines such as one-modulation 1nput and two-
modulation 1nput.
These subroutines modulate data such as music tone pitch
and volume by a modulation waveform such as LFO wave-
form.

(9) Subroutines associated with LFO (Low Frequency
Oscillator) processing.

(10) Subroutines associated with delay processing:
subroutines without one-tap interpolation, with one-tap
interpolation, without 2-tap interpolation, and 2-tap
interpolation.

These subroutines delay waveform data inputted by a time
length corresponding to a specified delay length, and output
the resultant delayed waveform data. For example, these
subroutines are used for reverberation processing and the
resonating section of the physical model sound source.

(11) Subroutines associated with mixer

These subroutines are used for the output section of a

comb filter.

The following describes, with reference to FIG. 17, an
example of an overall algorithm of a music tone generator
realized by the sound source processing described with
reference to FIG. 14. FIG. 14 schematically shows a music
tone synthesizing algorithm of a music tone generator to
which the music tone generating method according to the
present invention 1s applied. In the figure, reference numeral
21 denotes a first PCM sound source and reference numeral
22 denotes a second PCM sound source, the first PCM sound
source 21 functionally precedding the second PCM sound
source 22. Reference numeral 23 denotes a first FM sound
source having four operators, reference numeral 24 denotes
a second FM sound source having two operators, and
reference numeral 25 denotes a physical model sound
source. Thus, the 1llustrated music tone generator has five

3,955,691

33

sound sources based on different methods (different sound-
ing algorithms), and is realized by the processing of steps

S31 through S38 shown 1n FIG. 14. The PCM sound source
21 corresponds to the routine of FIG. 15A. The FM sound
source 24 corresponds to the routine of FIG. 15B. The
physical model sound source 25 corresponds to the routine
of FIG. 15C.

It should be noted in the figuer that the numbers on both
sides of a slash (/) denote the number of channels being
sounded/the maximum number of channels. For example,
2/8 1n the first PCM sound source 21 denotes that the
maximum number of channels of this PCM sound source 1s
eight, of which two channels are current sounded.

Reference numeral 26 denotes an accumulation buffer (a
mixer buffer) Composed of four buffers #0 through #3. The
accumulation buffers #0 and #3 are of sterecophonic
constitution, having the L channel section and the R channel
section, respectively. The music tone waveform outputs
from the sound sources 21 through 25 and the outputs of
cilect processing routines are written to these accumulation
buffers. This writing 1s performed by accumulating the
music tone waveform samples generated by each sounding
channel or the music tone wavetform samples attached with
an effect to each accumulation buffer at a storage position
corresponding to each sampling timing. In this writing,
mixing of a plurality of music tone waveforms 1s also
performed. In this example, the #0 accumulation buifer 1s
used as an output buil

er, the output thereof being equalized
by equalizing processing 27 and then being outputted to a
DAC.

The equalizing processing 27, reverberation processing
28, chorus processing 29, and tube processing 30 (for
attaching vacuum tube characteristics, providing the same
effect as distortion) are examples of the effect processing.
These four effect processing operations are realized by steps
S39 through S42 of FIG. 14. Further, the reverberation
processing 28 corresponds to the reverberation processing,
described before with reference to FIG. 16. In each of these
elfect processing operations, the effect processing operation
1s performed on the inputs of the accumulation buffers #1
through #3 and the effect added output 1s written to at least
one of these accumulation buifers #0 through #3.

The following describes the algorithm of the above-
mentioned sound sources 21 through 25 by using the PCM
sound source, for example. FIG. 18 schematically illustrates
a sounding algorithm of the above-mentioned PCM sound
source (corresponding to FIG. 15A) for example. In the
figure, reference numeral 31 denotes a waveform table,
reference numeral 32 denotes a wavelform table reading
section (with four-point interpolation), reference numeral 33
denotes a quartic DCF section, reference numeral 34 denotes
an envelope generating section, and reference numeral 35
denotes volume multiplication and accumulation processing
section. Reference numerals 36 through 39 denote accumu-
lation buffer sections, and reference numerals 36 and 37
denote an L channel section and an R channel section,
respectively, of an output buil

er corresponding to the #()
buffer of the above-mentioned accumulation buffer 26. Ret-
erence numerals 38 and 39 denote accumulation buifers
corresponding to the #1 buffer and the #2 buffer,
respectively, of the above-mentioned accumulation buf:er
26.

In the PCM sound source having the above-mentioned
algorithm, the waveform table reading section 32
(corresponding to step S51) generates a read address that
progresses according to a note number NN. Based on the
integer part thereof, wavetform data 1s read out and, accord-

10

15

20

25

30

35

40

45

50

55

60

65

34

ing to the fractional part, four-point interpolation 1s per-
formed. The output of this section 1s filtered by the quartic
DCF 33 (corresponding to step S52),and is then inputted in
the volume multiplication and accumulation processing 35
(corresponding to step S54). Envelope data generated by the
envelope generator 34 (corresponding to step S53) is also
inputted 1 the volume multiplication and accumulation
processing section 35. The above-mentioned waveform
data, the envelope data, and the transmission level data
classified by accumulation buffer are multiplied by each
other, the multiplication results being inputted 1n the speci-
fied accumulation buflers, respectively. To be more specific,
the music tone waveform data of a sounding channel on
which no eff

ect processing 1s performed 1s accumulated to
the accumulation buffers 36 and 37 after being volume-
controlled according to the envelope and the levels of the
direct L and R outputs. The music tone waveform data of a
sounding channel on which effect processing 1s performed 1s
accumulated to the accumulation buifer 38 or 39 after being
volume-controlled according to the envelope and the level of
transmission to each effect.

The following describes an effect algorithm of the above-
mentioned effect processing section by using the reverbera-
tion processing 28 (corresponding to step 16) as an example.
FIG. 19 schematically 1llustrates an algorithm in the above-
mentioned reverberation processing 28. In the figure, refer-
ence numeral 41 denotes an accumulation buffer corre-
sponding to the above-mentioned #1 builer, and reference
numeral 42 denotes a delay section (corresponding to step
S81) representative of an initial reflective sound, which is a
delay section without two-tap interpolation. Reference
numeral 43 denotes two lines of all-pass f{ilters
(corresponding to step S82), reference numeral 44 denotes
six lines of comb filters arranged in parallel, reference
numeral 45 denotes a mixer for mixing the outputs of the
comb filters 44 to generate outputs of the two channels L and
R, and reference numerals 46 and 47 denote two lines of
all-pass filters 1n each of which the output of the mixer 45
1s inputted. These six lines of comb filters 44, mixer 45, and
two lines of all-pass filters 46 and 47 correspond to the
above-mentioned step S83. The outputs of these components
are mputted 1n the volume multiplication and accumulation
processing section 48 (corresponding to step S84).

In the volume multiplication and accumulation processing,
section 48, the output of the delay section 42 1s mixed with
the outputs of the all-pass filter 46 and 47 at a predetermined
level, the mixed outputs being accumulated to the corre-

sponding accumulation buffers 49 through 52. Reference
numerals 49 and 50 denote an L. channel section and an R
channel section of the same accumulation buffer #0 for
output as the above-mentioned accumulation buifers 36 and
37. The music tone wavetform outputted after being attached
with reverberation 1s written to these accumulation buffers.
Reference numerals 51 and 52 denote accumulation buffers
corresponding to the right and left channels, respectively, of
the #3 of the above-mentioned accumulation buffer 26. The
reverberated music tone waveform data on which another

effect (for example, tubing) is performed is written to these
buffers. It should be noted that the attaching of another el

cCt
1s performed by using the outputs of the accumulation
buffers 51 and 52 as the mput.

As described, 1n the music tone generating method
according to the present invention, the waveform generating,
programs and the effect processing programs based on the
various sound source types are constituted by common
waveform processing subroutines. The following describes
how these programs are stored in memory by using a

3,955,691

35

memory map of the RAM 103 shown in FIG. 20 for
example. It should be noted that control data is held 1n an
arca where the contents of these programs are written.
Below the control data, the waveform generating programs
(TGPs) are stored sequentially. As shown in the figure, the
waveform generating programs required for this music per-
formance are sequentially stored; namely, the waveform
generating program TGP1 providing the first PCM sound
source, the waveform generating program TGP2 providing
the second PCM sound source, the wavelform generating
program TGP3 providing the physical model sound source,
the waveform generating program TGP4 providing the third
PCM sound source, the waveform generating program
TGPS providing the FM sound source, and so on. The three
flowcharts shown 1n FIGS. 15A to 15C are specific examples
of these waveform generating programs. As shown, each
waveform generating program 1s composed of a header part
and a generating routine part. The header part stores a name,
characteristics, and parameters of this program, and the
generating routine part stores a wavelorm generating routine
using above-mentioned waveform processing subroutines.

Following the waveform generating programs, elfect pro-
grams (EP) are stored. In this area, the programs for per-
forming a variety of effect processing operations are stored.
In the 1llustrated example, EP1 for reverberation processing,
EP2 for chorus processing, EP3 for reverberation
processing, and so on are stored in this order. The rever-
beration processing shown in FIG. 16 1s a specific example
of this effect program EP. Each of these effect programs 1is
composed of a header part and an effect routine part as
shown. The header part stores a name, characteristics, and
parameters of this effect processing, and the effect routine
part stores an eflect routine using various waveform pro-
cessing subroutines.

Following the effect programs, the waveform processing,
subroutines are stored. As shown, the above-mentioned
waveform processing subroutines are stored 1n this area as
classified by processing contents. In this example, the sub-
routines assoclated with table reading come first. Stored
thereafter are the subroutines associated with filter
processing, the subroutines associated with EG processing,
and the subroutines associated with volume control and
accumulation processing 1n this order. In this area, only the
wavelorm processing subroutines actually used by the
above-mentioned waveform generating programs TGPs or
the effect programs EPs may be stored. On the other hand,
all waveform processing subroutines including the other
waveform subroutines are basically stored 1n the above-
mentioned hard disk 110. Alternatively, all waveform pro-
cessing subroutines may be supplied from the external
storage medium 105 or another computer via a network.

As described, in the music tone generating method
according to the present invention, the waveform processing
subroutines are shared by the sound source programs, so that
the user can select any waveform processing routines to edit
the sounding algorithm of the sound source programs (music
tone generation processing). The following describes these
selecting and editing operations, or the setting processing. It
should be noted that these operations are performed 1n the
other processing of step 707 of the main routine shown 1in
FIG. 7A.

FIG. 21 1s a flowchart for describing the above-mentioned
setting processing. This setting processing starts when the
operating for waveform generating program setting 1s per-
formed by the user. First, in step S101, the user selects a
waveform generating method. Next, 1n step S102, according,
to the selected waveform generating method, the process

10

15

20

25

30

35

40

45

50

55

60

65

36

branches to PCM setting processing S103, FM setting pro-
cessing S104, physical model setting processing S105, or
any setting processing S106. Then, the setting processing to
which the process branched 1s performed.

FIG. 22 illustrates the outline of the setting processing
executed 1n the above-mentioned setting processing at S103
through S106. When the above-mentioned setting process-
ing 1s started, basic elements according to each sound source
type are set in step S111. This setting of the basic elements
will be described later. Next, in step S112, the user deter-
mines whether there 1s an additional option. If yes, the
process goes to step S113, in which the type of the option to
be added 1s designated. In step 114, the processing for setting
the designated option 1s performed. Then, back 1n step S112,
the user determines whether there is another option to be
added. Thus, the user can alter the generator algorithm in
various ways such as adding filtering processing to the
waveform data read from the waveform table and adding
throat, growl, or resonator in the physical model sound
source, by way of example.

When there 1s no option added, the process goes to step
S1135, the various waveform generating programs set in the
basic element setting processing of step S111 and the option
setting processing of step S114 are generated and, 1n step
S116, the generated waveform generating programs are
stored 1n memory. It will be apparent that, in the program
generating processing of step S115, the necessary waveform
generating programs may be selected from a mass storage
medium such as a CD-ROM 1n which many waveform
generating program are stored, instead of generating pro-
ograms according to the above-mentioned setting.

The following describes the basic element setting pro-
cessing corresponding to each sound source type. FIGS. 23A
to 23C 1llustrate a flowchart of this basic element setting
processing, FIG. 23A indicating the basic element setting
processing 1n the PCM method, FIG. 23B indicating the
basic element setting processing 1n the FM method, and FIG.
23C 1ndicating the basic element setting processing 1n the
physical model method. In the PCM method, setting asso-
clated with table reading processing 1s performed 1n step
S121. In step S122, EG setting 1s performed. In step S123,
volume multiplication and accumulation processing 1s set. In
steps S121 through S123, the user selects desired waveform
processing subroutines from the subroutine group corre-
sponding to each basic element setting processing.

In the FM method, the number of operators 1s set 1n step
S131 as shown 1n FIG. 23B. Next, in step S132, the
connection between the operators 1s set. In step S133, the
constitution of each operator 1s set. In step S134, volume
multiplication and accumulation processing 1s set.

In he physical model sound source, as shown 1n FIG. 23C,
an exciting section 1s set first 1n step S141. Next, 1 step
S142, an oscillating section 1s set. In step S143, a resonating
section 1s set. In step S144, the volume multiplication and
accumulation processing section 1s set.

The above-mentioned waveform generating program set-
ting processing can €asily generate, for example 1n the PCM
sound source processing shown 1 FIG. 15A , a waveform
generating program (music tone generation processing) that
has an algorithm added with vibrato processing by LFO or
a sounding algorithm with a desired order or a desired
number of output lines of the filter.

The following describes the effect program setting pro-
cessing with reference to FIG. 24. In setting effect
processing, the user first selects an effect method to be used
in step S151. Next, in step S152, the process branches to the
corresponding processing according to the method selected

3,955,691

37

in step S152. For example, if the selected effect 1s
reverberation, the reverberation setting processing of step
S153 1s performed; 1f the selected effect 1s chorus, the chorus
setting processing of step S154 1s performed; and if the
selected effect 1s others, the corresponding setting process-
ing 1s performed 1n step S155. It should be noted that these
setting processing operations are basically the same as those
of the generator programs mentioned above, so that no
further description will be made thereof.

The above-mentioned eifect program setting processing,
can casily generate, for example 1n the reverberation pro-
cessing shown i FIG. 16, an effect program that has an
cifect algorithm with a desired number of mitial reflections
or an effect algorithm with a desired number of reverberation
comb filters.

It should be noted that “waveform processing subroutine”
referred to herein denotes a subroutine having capabilities of
performing predetermined waveform generation and wave-
form manipulation characteristic to music tone generation
and effect processing, rather than a simple subroutine for
performing arithmetic operations.

In the description made so far, the generator programs and
effect programs that have been set are not changed during
the music performance processing period. It will be apparent
that the waveform generating algorithm or the effect algo-
rithm may be automatically altered to waveform processing
subroutines of less load according to the total load of the
sound source.

According to the third aspect of the invention, a method
using a processor for generating musical tones through
oroups of channels according to performance information,
comprises the steps of loading a first synthesis program
prepared for a first group of channels and a second synthesis
program prepared for a second group of channels together
with a subroutine program utilized commonly for both of the
first synthesis program and the second synthesis program,
successively providing performance information to com-
mand generation of musical tones, periodically providing a
trigger signal at a relatively slow rate to define one frame
period between successive trigger signals, periodically pro-
viding a sampling signal at a relatively fast rate such that a
plurality of sampling signals occur within one frame period,
executing the first synthesis program by the processor at one
frame period so as to carry out synthesis of each set of
wavelorm samples allotted to one frame period through each
channel of the first group such that the subroutine program
runs to process the waveform samples during the synthesis,
cach set of the waveform samples being reserved 1n a buifer
after the synthesis, executing the second synthesis program
by the processor at one frame period so as to carry out
synthesis of each set of wavelform samples allotted to one
frame period through each channel of the second group such
that the subroutine program runs to process the waveform
samples during the synthesis, each set of the waveform
samples being reserved 1n a buffer after the synthesis, and
converting each of the waveform samples reserved 1n the
buffer 1n response to each sampling signal 1nto a correspond-
ing analog signal so as to generate the musical tones.

Preferably, the step of loading includes selecting at least
one of subroutine programs which are designed for reading
out waveform samples from a wave table, for filtering the
waveform samples to modily the music tones, for creating,
an envelope of the waveform samples, for controlling an
amplitude of the waveform samples, and for accumulatmg
cach set of the waveform samples into the buifer.

Preferably, the step of loading includes loading the
selected subroutine program from a secondary memory into
a primary memory which is used as a working area of the

ProcCcssolr.

10

15

20

25

30

35

40

45

50

55

60

65

33

Preferably, the inventive method further imncludes the step
of addressing a cache having a capacity suflicient to store a
subset of the waveform samples which 1s a division of the set
of the waveform samples allotted to one frame period, the
cache being hit by the processor before the buffer is
addressed by the processor while the processor runs the
subroutine program to process each subset of the waveform
samples.

The 1nventive method using a processor for generating,
musical tones through groups of channels according to
performance information, comprises the steps of loading a
first synthesis program prepared for a first group of channels
and a second synthesis program prepared for a second group
of channels, successively providing performance 1nforma-
tion to command generation of musical tones, periodically
providing a trigger signal at a relatively slow rate to define
one frame period between successive trigger signals, peri-
odically providing a sampling signal at a relatively fast rate
such that a plurality of sampling signals occur within one
frame period, executing the first synthesis program by the
processor at one frame period so as to carry out synthesis of
cach set of waveform samples allotted to each channel of the
first group such that each set of the waveform samples
belonging to the first group 1s preceding reserved 1n a buffer,
executing the second synthesis program by the processor at
the same frame period so as to carry out synthesis of each set
of wavetorm samples allotted to each channel of the second
ogroup such that each set of the waveform samples belonging
to the second group 1s succeeding reserved 1 a bulfer after
cach set of the waveform samples belonging to the first
oroup 1s reserved, and converting each of the waveform
samples reserved 1n the buil

er 1n response to each sampling
signal mto a corresponding analog signal so as to generate
the musical tones.

The 1nventive method using a processor for generating,
musical tones according to performance information, com-
prises the steps of loading a synthesis program and an
effector program together with a subroutine program utilized
commonly for both of the synthesis program and the effector
program, successively providing performance information
to command generation of musical tones, periodically pro-
viding a trigger signal at a relatively slow rate to define one
frame period between successive trigger signals, periodi-
cally providing a sampling signal at a relatively fast rate
such that a plurality of sampling signals occur within one
frame period, executing the synthesis program by the pro-
cessor at one frame period so as to carry out synthesis of a
set of wavetorm samples allotted to one frame period such
that the subroutine program runs to process the waveform
samples during the synthesis, the set of the waveform
samples being reserved 1n a buffer after the synthesis,
executing the effector program by the processor at one frame
pertod so as to carry out modification of the set of the
waveform samples reserved 1n the buif

er to create a desired
cifect such that the subroutine program runs to process the
waveform samples during the modification, each set of the
waveform samples being reserved in a buffer after the
modification, and converting each of the wavelform samples
reserved 1n the bufl

er 1n response to each sampling signal
into a corresponding analog signal so as to generate the
musical tones together with the desired effect.

The 1nventive method using a processor for generating
musical tones according to performance information, com-
prises the steps of arranging an algorithm to designate
desired ones of subroutine programs provisionally stored in
a memory, assembling a synthesis program according to the

algorithm such that the synthesis program contains call

3,955,691

39

instructions for calling the designated subroutines from the
memory, successively providing performance information to
command generation of musical tones, periodically provid-
ing a trigger signal at a relatively slow rate to define one
frame period between successive trigger signals, periodi-
cally providing a sampling signal at a relatively fast rate
such that a plurality of sampling signals occur within one
frame period, executing the synthesis program by the pro-
cessor at one frame period so as to carry out synthesis of a
set of wavetorm samples allotted to one frame period such
that the designated subroutine programs are sequentially
called 1n response to the call instructions to process the
waveform samples during the synthesis, the set of the
wavelform samples being reserved 1 a buffer after the
synthesis, and converting each of the waveform samples
reserved 1n the buffer 1n response to each sampling signal
into a corresponding analog signal so as to generate the
musical tones together with the desired effect.

As described and according to the first aspect of the
present mvention, the same algorithm portions are collec-
fively processed 1n parallel for a plurality of channels 1n a
software sound source using a processing unit having an
extended instruction set capable of executing a plurality of
operations with a single instruction, thereby realizing faster
computation for waveform generation. In addition, as com-
pared with use of extended instructions for realizing paral-
lelism by contrivance 1n the processing algorithm in each
channel, the prevent invention can realize parallelism 1n a
plurality of channels, thereby generating parallel programs
for the plurality of channels from the algorithms for one
channel and hence enhancing processing speed significantly.

As described and according to the second aspect of the
present 1nvention, a unit 1 which waveform generation
processing 1s performed 1n a waveform generating buflfer of
a software sound source 1s 1dentical to the line size of cache
memory or a predetermined integral multiple of the line size,
thereby realizing the waveform generation processing that 1s
fast 1n operation and hard for cache miss to occur. Further,
the wavetform bufler 1s provided for each effect processing,
so that connection among effects can be altered easily and
the cache hit ratio 1n each effect processing 1s enhanced. Still
further, a plurality of waveform generating buifers provided
respectively for the effects have the same constitution, each
effect processing 1s performed 1n the corresponding buifer,
and data 1n one buffer can be accumulated to another by the
add processing, so that, if the user designates any software
ciiector algorithm, the sequence of the effect processing and
the add processing may be freely changed to execute the
designed algorithm. Consequently, the sequence of the com-
putations for effect attaching processing can be altered
dynamically according to user designation. Yet further, since
the cache hit ratio in generating the waveform data for a
plurality of channels 1s increased, the processing time for
wavelorm generation 1s shortened. In addition, since the
cache hit ratio at outputting the waveform data for each
sounding channel to the plurality of buffers is increased, the
processing time for waveform generation 1S shortened.
Moreover, the cache hit ratio at generating the waveform
data for a plurality of channels 1s increased, so that the music
fone generating method for shortening the processing time
for waveform generation can be provided i a machine
readable media.

As described and according to the third aspect of the
present mvention, the components of the waveform gener-
ating programs and the effect programs in each sound source
type are made of subroutines that can be shared by these
programs, thereby realizing a software sound source based

10

15

20

25

30

35

40

45

50

55

60

65

40

on a plurality of sound source types in less storage capacity.
Further, the same waveform processing subroutines can be
used by a plurality of sound source types, thereby easily
realizing an integrated sound source based on mixed meth-
ods. Still further, shared waveform subroutines are used by
the waveform generation processing operations based on at
least two different sounding algorithms simultaneously
executable on two sounding channels, thereby resulting in a
saved program storage arca. Yet further, when the processing
1s performed m a CPU having instruction cache, the cache
hit ratio can be increased for the shared subroutines. In
addition, when performing waveform generation based on
the algorithms of a plurality of sounding channels by the
CPU having cache, the processing operations for the plu-
rality of sounding channels are collectively performed for
cach algorithm, thereby enhancing the cache hit ratio and
hence increasing the processing speed. Moreover, since
waveform processing subroutines are shared between the
waveform generation processing performed 1n a sounding
channel and the effect processing for attaching an effect to
the generated waveform data, the program storage area can
be saved. Furthermore, if the processing 1s performed by a
CPU having instruction cache, the cache hit ratio can be
enhanced for the shared subroutines. Besides, the user
designates an algorithm and a generator program 1s made by
combining waveform processing subroutines according to
the designation, thereby realizing algorithm editing with
high degree of freedom. And, since the generated generator
program 1ncorporates only a call instruction of the selected
waveform processing subroutines, there 1S no need for
performing branch processing 1n the routines according to
the selection.

While the preferred embodiments of the present invention
have been described using specific terms, such description 1s
for 1llustrative purposes only, and 1t 1s understood that
changes and variations may be made without departing from
the spirit or scope of the appended claims.

What 1s claimed 1s:

1. A music apparatus comprising:

a processing unit used to carry out parallel computation
steps 1n response to a single instruction which 1s
successively 1ssued when executing a program,;

a software module defining a plurality of channels and
being composed of a synthesis program executed by the
processing unit so as to carry out synthesis of wave-
forms of musical tones through the plurality of the
channels such that the plurality of the channels are
orouped 1nto parallel sets each containing at least two
channels and such that the synthesis of the waveforms
of at least two channels belonging to each parallel set
are carried out concurrently by the parallel computation
Steps;

a buffer memory for accumulatively storing the wave-
forms of the plurality of the channels; and

a converter for converting the waveforms mto the musical

tones.

2. A music apparatus according to claim 1, wherein the
processing unit executes the synthesis program so as to carry
out the synthesis of the waveforms, the synthesis including
one type of the parallel computation steps where the plu-
rality of the channels are grouped into parallel sets each
containing a first number of channels, and another type of
the parallel computation steps where the plurality of the
channels are grouped into parallel sets each containing a
second number of channels, which 1s different from the first
number of channels.

3. A music apparatus according to claim 1, further com-
prising another software module composed of an effector

3,955,691

41

program executed by the processing unit i1f the effector
program contains parallel computation steps to apply an
cifect to the wavetforms stored 1n the buffer memory.
4. A method of generating musical tones through a plu-
rality of channels by means of a processing unit used to carry
out parallel computation steps 1 response to a single
instruction which 1s successively 1ssued when executing a
program, the method comprising:
executing a synthesis program by the processing unit so as
to carry out synthesis of waveforms of musical tones
through the plurality of the channels such that the
plurality of the channels are grouped 1nto parallel sets
cach containing at least two channels and such that the
synthesis of the waveforms of at least two channels
belonging to each parallel set are carried out concur-
rently by the parallel computation steps;

accumulatively storing the waveforms of the plurality of
the channels; and

converting the waveforms into the musical tones.

5. A method according to claim 4, wherein the synthesis
program 1s executed by the processing unit so as to carry out
the synthesis of the waveforms, the synthesis including one
type of the parallel computation steps where the plurality of
the channels are grouped 1nto parallel sets each containing a
first number of channels, and another type of the parallel
computation steps where the plurality of the channels are
orouped 1nto parallel sets each containing a second number

of channels, which 1s different than the first number of
channels.

6. A method according to claim 4, further comprising the
step of executing an effector program by the processing unit

if the effector program contains parallel computation steps
so as to apply to the wavetorms stored 1n the buffer memory.

7. A machine readable medium containing a synthesis
program for causing a computer machine to undergo opera-
fion of generating musical tones through a plurality of
channels by means of a processing unit used to carry out
parallel computation steps in response to a single instruction
which 1s successively 1ssued when executing the synthesis
program, wherein the operation comprises: executing the
synthesis program by the processing unit so as to carry out
synthesis of wavelforms of musical tones through the plu-
rality of the channels such that the plurality of the channels
are grouped into parallel sets each containing at least two
channels and such that the synthesis of the waveforms of at
least two channels belonging to each parallel set are carried
out concurrently by the parallel computation steps;

accumulatively storing the waveforms of the plurality of
the channels; and

converting the waveforms 1nto the musical tones.

8. A machine readable medium according to claim 7,
wherein the synthesis program is executed by the processing,
unit so as to carry out the synthesis of the waveforms, the
synthesis including one type of the parallel computation
steps where the plurality of the channels are grouped into
parallel sets each contaming a first number of channels, and
another type of the parallel computation steps where the
plurality of the channels are grouped 1nto parallel sets each
containing a second number of channels, which 1s different
than the first number of channels.

9. A machine readable medium according to claim 7,
wherein the operation further comprises the step of execut-
ing an elfector program by the processing unit 1f the effector
program contains parallel computation steps so as to apply
an effect to the waveforms stored i1n the buffer memory.

10. A method of generating musical tones according to
performance information through a plurality of channels by
parallel computation steps, the method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

42

successively providing performance information to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

carrying out continuous synthesis to produce a sequence
of waveform samples of the musical tones for each
frame period according to the provided performance
information, the continuous synthesis being carried out
such that the plurality of the channels are grouped 1nto
parallel sets each containing at least two channels so
that the continuous synthesis of the waveform samples
of at least two channels belonging to each parallel set
are carried out concurrently by the parallel computation
steps; and

converting each of the waveform samples at each sam-

pling period 1nto a corresponding analog signal to
thereby generate the musical tones.

11. A machine readable medium containing instructions
for causing a computer machine to perform operation of
generating musical tones according to performance infor-
mation through a plurality of channels by parallel compu-
tation steps, wherein the operation comprises:

successively providing performance mmformation to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

carrying out continuous synthesis to produce a sequence
of waveform samples of the musical tones for each
frame period according to the provided performance
information, the continuous synthesis being carried out
such that the plurality of the channels are grouped nto
parallel sets each containing at least two channels so
that the continuous synthesis of the waveform samples
of at least two channels belonging to each parallel set
are carried out concurrently by the parallel computation
steps; and

converting each of the waveform samples at each sam-
pling period i1nto a corresponding analog signal to
thereby generate the musical tones.

12. A music apparatus for generating musical tones by

means of a software, comprising;:

a processor that executes the software at each frame
period to carry out synthesis of a set of waveform
samples allotted to each frame period;

a buffer having a capacity sufficient to store the waveform
samples allotted to one frame period, the buifer being
used as a working area by the processor for storing a
temporary set of the waveform samples which are
treated by the processor during the course of the
synthesis and for storing a final set of the waveform
samples which are obtained upon completion of the
synthesis;

a cache having a capacity suflicient to store a subset of the
waveform samples which 1s smaller than the set allotted
to one frame period such that the capacity of the buifer
1s set greater than the capacity of the cache, the cache
being hit by the processor before the buffer 1s addressed
by the processor so as to carry out the synthesis of each
subset of the wavelform samples more efficiently than
that the buffer 1s otherwise addressed by the processor;
and

3,955,691

43

a converter that converts the final set of the waveform
samples stored 1n the buifer into the musical tones.
13. A music apparatus using a processor to generate
musical tones, comprising;:

a synthesis module executed by the processor at each
frame period so as to carry out synthesis of a set of
waveform samples allotted to one frame period;

a plurality of buflers each having a capacity sufficient to
store the set of the waveform samples allotted to the
same frame period after the synthesis;

S i

a plurality of effector modules each being linked to a
corresponding one of the buffers, each effector module
being executed by the processor to carry out modifi-
cation of the set of the waveform samples reserved 1n
the corresponding buffer to create a different effect;

at least one output buller for storing a set of waveform
samples after modification by the effector modules;

a mixer module executed by the processor to add one set
of the wavelform samples modified by one effector
module to another set of the waveform samples stored
in either of the output bu er or 1n another buifer to be
modified by another effector module; and

a converter for converting the set of the wavelorm
samples stored 1n the output buffer into the musical
tones.

14. A music apparatus according to claim 13, wherein the
mixer module 1s executed by the processor to carry out
computation of adding one set of the waveform samples to
another set of the waveform samples by a certain ratio so as
to mix different eff:

cCIs.

15. A music apparatus according to claim 13, wherem the
mixer module 1s commonly utilized to carry out the com-
putation between any pair of the builers.

16. A music apparatus according to claim 13, further
comprising a cache having a capacity suflicient to store a
subset of the waveform samples which 1s smaller than the set
of the waveform samples allotted to one frame period such
that the capacity of each bufler i1s set greater than the
capacity of the cache, the cache being hit by the processor
before the bufler 1s addressed by the processor so as to carry
out the synthesis of each subset of the waveform samples
more eificiently than that each bufler 1s otherwise addressed
by the processor.

17. A music apparatus according to claim 12, further
comprising a controller that provides a total effect algorithm
for instructing the processor to execute the effector modules
and the mixer module 1n a predetermined sequence to create
a total eff

ect which 1s a mixture of the different etfects.
18. A music apparatus according to claim 17, wherein the
controller comprises an editor that edits the total eff

cct
algorithm to arrange the sequence by which the processor
sequentially executes selected ones of the effector modules
and the mixer module 1n an order corresponding to the edited
total effect algorithm.

19. A method of generating musical tones according to
performance information, the method comprising:

successively providing performance information to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

periodically executing a synthesis module at each frame
per1od so as to carry out synthesis of a set of waveform
samples allotted to one frame period;

10

15

20

25

30

35

40

45

50

55

60

65

44

addressing a plurality of buffers each having a capacity
sufficient to store the set of the waveform samples
allotted to the same frame period after the synthesis;

executing a plurality of effector modules each being
linked to a corresponding one of the buifers to carry out
modification of the set of the waveform samples

reserved 1n the corresponding buifers to create different
cifects;

executing a mixer module to add one set of the wavelform
samples modified by one effector module to another set
of the waveform samples stored 1n either an output
buffer or in another buifer to be modified by another
effector module; and

converting each of the waveform samples stored 1n the

output buffer at each sampling period into a corre-

sponding analog signal so as to generate the musical
tones.

20. A method according to claim 19, wherein the mixer
module 1s executed to carry out computation of adding one
set of the wavetform samples to another set of the waveform
samples 1n another buffer by a certain ratio so as to mix
different effects.

21. A method according to claim 19, wherein the mixer
module 1s Commonly utilized to carry out the computation
between any pair of the bullers.

22. A method according to claim 19, further comprising
the step of addressing a cache having a capacity sufficient to
store a subset of the waveform samples which 1s smaller than
the set of the waveform samples allotted to one frame
period, the cache being addressed before the buffer 1s
addressed so as to carry out the synthesis of each subset of
the waveform samples more efficiently than that each buifer
1s otherwise addressed.

23. A method according to claim 19, further comprising
the step of providing a total effect algorithm for instructing
execution of the effector modules and the mixer module 1n
a predetermined sequence to create a total effect which 1s a
mixture of the different effects.

24. A method according to claim 23, further comprising
the step of editing the total eff

ect algorithm to arrange the
sequence by which selected ones of the eff

ector modules and
the mixer module are Sequentlally executed 1n an order
corresponding to the edited total effect algorithm.

25. A machine readable medium containing instructions
for causing a computer machine to perform operation of
ogenerating musical tones according to performance infor-
mation through a plurality of channels, wherein the opera-
flon comprises:

successively providing performance mmformation to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

carrying out continuous synthesis at each frame period to
produce a set of waveform samples of the musical tones
through the plurality of channels for one frame period
according to the provided performance information,

accessing a buffer having a capacity suflicient to store the
waveform samples allotted to one frame period, the
buffer being used as a working arca for storing a
temporary set of the wavelorm samples which are
treated during the course of the continuous synthesis
and for storing a final set of the wavelorm samples
which are obtained upon completion of the continuous
synthesis and which are accumulated throughout the
plurality of the channels;

3,955,691

45

addressing a cache having a capacity sufficient to store a
subset of the waveform samples which 1s smaller than
the set of the waveform samples allotted to one frame
period, the cache being hit before the buffer i1s
addressed so as to carry out the continuous synthesis of

cach subset of the waveform samples more efficiently
than that the buil

er 1s otherwise addressed; and
converting each of the waveform samples reserved 1n the
buffer as the final set at each sampling period into a
corresponding analog signal to thereby generate the
musical tones.

26. A machine readable medium containing instructions
for causing a computer machine to perform operation of
generating musical tones according to performance infor-
mation through a plurality of channels, wherein the opera-
flon comprises:

successively providing performance mnformation to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

periodically executing a synthesis module at each frame
per1od so as to carry out synthesis of a set of waveform
samples allotted to one frame period;

addressing a plurality of buffers each having a capacity
sufficient to store the set of the waveform samples
allotted to the same frame period after the synthesis;

executing a plurality of effector modules each being
linked to a corresponding one of the buflers to carry out
modification of the set of the waveform samples
reserved 1n the corresponding buifers to create different
elfects;

executing a mixer module executed to add one set of the
waveform samples modified by one effector module to
another set of the waveform Samples stored 1n either of

an output buffer or 1in another buifer to be modified by
another effector module; and

converting each of the waveform samples stored in the
output buil

er at each sampling period signal into a
corresponding analog signal so as to generate the
musical tones.

27. A machine readable medium according to claim 26,
wherein the mixer module 1s executed to carry out compu-
tation of adding one set of the waveform samples to another
set of the waveform samples by a certain ratio so as to mix
different effects.

28. A machine readable medium according to claim 26,
wherein the mixer module 1s commonly utilized to carry out
the computation between any pair of the buffers.

29. A machine readable medium according to claim 26,
wherein the operation further comprises addressing a cache
having a capacity suflicient to store a subset of the wavetform
samples which i1s smaller than the set of the waveform
samples allotted to one frame period, the cache being
addressed before the buffer 1s addressed so as to carry out the
synthesis of each subset of the waveform samples more
ciiiciently than that each buffer 1s otherwise addressed.

30. A machine readable medium according to claim 26,
wherein the operation further comprises the step of provid-
ing a total eff

ect algorithm for instructing execution of the
effector modules and the mixer module 1in a predetermined
sequence to create a total effect which 1s a mixture of the
different effects.

31. A machine readable medium according to claim 30,
wherein the operation further comprises editing the total

5

10

15

20

25

30

35

40

45

50

55

60

65

46

cffect algorithm to arrange the sequence by which selected
ones ol the effector modules and the mixer module are
sequentially executed 1n an order corresponding to the edited
total effect algorithm.
32. A method using a processor for generating musical
tones through groups of channels according to performance
information, the method comprising the steps of:
loading a first synthesis program prepared for a first group
of channels and a second synthesis program prepared
for a second group of channels together with a subrou-
tine program utilized commonly for both of the first
synthesis program and the second synthesis program;

successively providing performance mmformation to com-
mand generauon of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-

rality of sampling periods occur within one frame
per1od;
executing the first synthesis program by the processor at
one frame period so as to carry out synthesis of each set
of waveform samples allotted to one frame period
through each channel of the first group such that the
subroutine program runs to process the waveform
samples during the synthesis, each set of the waveform
samples being reserved in a bulfler after the synthesis;

executing the second synthesis program by the processor
at one frame period so as to carry out synthesis of each
set of wavelform samples allotted to one frame period
through each channel of the second group such that the
subroutine program runs to process the wavelorm
samples during the synthesis, each set of the waveform
samples being reserved in a bufler after the synthesis;
and

converting each of the waveform samples reserved 1n the

buffer at each sampling period mto a corresponding
analog signal so as to generate the musical tones.

33. A method according to claim 32, further including the
step of addressing a cache having a capacity sufficient to
store a subset of the waveform samples which 1s smaller than
the set of the waveform samples allotted to one frame
per1od, the cache being hit by the processor before the bufler
1s addressed by the processor while the processor runs the
subroutine program to process each subset of the waveform
samples.

34. A method according to claim 32, wherein the step of
loading includes selecting at least one of a mixer subroutine
program for mixing the waveform samples, a digital filter
subroutine for filtering the waveform samples to modify the
music tones, and an envelope generator subroutine program
for creating an envelope of the waveform samples.

35. A method according to claim 32, wherein the step of
loading includes selecting at least one of subroutine pro-
orams which are designed for reading out waveform samples
from a wave table, for filtering the waveform samples to
modify the music tones, for creating an envelope of the
waveform samples, for controlling an amplitude of the
waveform samples, and for accumulating each set of the
waveform samples mnto the buffer.

36. A method according to claim 35, wherein the step of
loading includes loading the selected subroutine program
from a secondary memory 1nto a primary memory which 1s
used as a working area of the processor.

37. A method using a processor for generating musical
tones through groups of channels according to performance
information, the method comprising the steps of:

loading a first synthesis program prepared for a first group
of channels and a second synthesis program prepared
for a second group of channels,

3,955,691

47

successively providing performance mnformation to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

executing the first synthesis program by the processor at
one frame period so as to carry out synthesis of each set
of waveform samples allotted to each channel of the
first group such that each set of the waveform samples
belonging to the first group 1s preceding reserved 1n a
buffer;

executing the second synthesis program by the processor
at the same frame period so as to carry out synthesis of
cach set of waveform samples allotted to each channel
of the second group such that each set of the waveform
samples belonging to the second group 1s succeeding
reserved 1n a buffer after each set of the waveform
samples belonging to the first group 1s reserved; and

converting each of the waveform samples reserved 1n the
buffer at each sampling period mto a corresponding
analog signal so as to generate the musical tones.

38. A method according to claim 37, further comprising
the step of addressing a cache having a capacity sufficient to
store a subset of the wavetorm samples which 1s smaller than
the set of the waveform samples allotted to one frame
period, the cache being addressed to carry out the synthesis
of each subset of the waveform samples.

39. A method using a processor for generating musical
tones according to performance information, the method
comprising the steps of:

loading a synthesis program and an effector program
together with a subroutine program utilized commonly
for both of the synthesis program and the effector
program,;

successively providing performance mnformation to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

executing the synthesis program by the processor at one
frame period so as to carry out synthesis of a set of
waveform samples allotted to one frame period such
that the subroutine program runs to process the wave-
form samples during the synthesis, the set of the
waveform samples being reserved 1n a buflfer after the
synthesis;

executing the effector program by the processor at one
frame period so as to carry out modification of the set
of the waveform samples reserved 1n the bulfer to
create an elfect such that the subroutine program runs
to process the waveform samples during the
modification, each set of the waveform samples being

reserved 1n a buffer after the modification; and

converting each of the waveform samples reserved 1n the
buffer at each sampling period 1nto a corresponding
analog signal so as to generate the musical tones
together with the effect.

40. A method according to claim 39, wherein the step of
loading includes selecting at least one of subroutine pro-
orams which are designed for filtering the waveform
samples to modify the music tones, for delaying the wave-
form samples to modily the music tones, for controlling an
amplitude of the waveform samples, and for accumulating
cach set of the waveform samples into the buifer.

10

15

20

25

30

35

40

45

50

55

60

65

43

41. A method according to claim 39, further including the
step of addressing a cache having a capacity sufficient to
store a subset of the wavetorm samples which 1s smaller than
the set of the waveform samples allotted to one frame
per1od, the cache being hit by the processor before the bufler
1s addressed by the processor while the processor runs the
subroutine program to process each subset of the waveform
samples.

42. A method according to claim 39, wherein the step of
loading includes selecting at least one of a mixer subroutine

program for mixing the waveform samples and a digital
filter subroutine program for filtering the waveform samples
to modify the music tones.

43. A method using a processor for generating musical
tones according to performance information, the method
comprising the steps of:

arranging an algorithm such that subroutine programs
provisionally stored in a memory, are selectively des-
ignated by the arranged algorithm;

assembling a synthesis program according to the algo-
rithm such that the synthesis program contains call
instructions for calling the designated subroutines from
the memory;

successively providing performance information to com-
mand generatlon of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

executing the synthesis program by the processor at one
frame period so as to carry out synthesis of a set of
waveform samples allotted to one frame period such
that the designated subroutine programs are sequen-
tially called in response to the call instructions to
process the waveform samples during the synthesis, the
set of the waveform samples being reserved 1n a buifer
after the synthesis; and

converting each of the waveform samples reserved 1n the
buffer at each sampling period mto a corresponding
analog signal so as to generate the musical tones,
wherein different synthesis programs assembled
according to different algorithms contain at least one
call instruction for calling the same subroutine.

44. A method according to claim 43, wherein the step of
arranging comprises designating at least one of subroutine
programs which are designed for reading out waveform
samples from a wave table, for filtering the waveform
samples to modify the music tones, for creating an envelope
of the waveform samples, for controlling an amplitude of the
waveform samples, and for accumulating each set of the
waveform samples into the buffer.

45. A method according to claim 43, wherein the step of
assembling 1ncludes loading the designated subroutine pro-
orams from a secondary memory 1nto a primary memory
which 1s used as a working area of the processor.

46. A machine readable medium containing instructions
for causing a computer machine having a processor to
perform operation of generating musical tones according to
performance information through groups of channels,
wherein the operation comprises:

loading a first synthesis program prepared for a first group
of channels and a second synthesis program prepared
for a second group of channels together with a subrou-
tine program utilized commonly for both of the first
synthesis program and the second synthesis program;

successively providing performance mmformation to com-
mand generation of musical tones;

3,955,691

49

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

executing the first synthesis program by the processor at
one frame period so as to carry out synthesis of each set
of waveform samples allotted to one frame period
through each channel of the first group such that the
subroutine program runs to process the wavelform

samples during the synthesis, each set of the waveform
samples being reserved 1n a bufler after the synthesis;

executing the second synthesis program by the processor
at one frame period so as to carry out synthesis of each
set of waveform samples allotted to one frame period
through each channel of the second group such that the
subroutine program runs to process the wavelform
samples during the synthesis, each set of the waveform
samples being reserved 1n a bufler after the synthesis;
and

converting each of the waveform samples reserved 1n the
buffer at each sampling period mto a corresponding
analog signal so as to generate the musical tones.

47. A machine readable medium according to claim 46,
wherein the step of loading includes selecting at least one of
a mixer subroutine program for mixing the waveform
samples, a digital filter subroutine program for filtering the
waveform samples to modify the music tones, and an
envelope generator subroutine program for creating an enve-
lope of the waveform samples.

48. A machine readable medium containing instructions
for causing a computer machine having a processor to
perform operation of generating musical tones according to
performance information, wherein the operation comprises:

loading a first synthesis program prepared for a first group
of channels and a second synthesis program prepared
for a second group of channels;

successively providing performance information to com-
mand generation of musical tones;

periodically counting a frame;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

executing the first synthesis program by the processor at
one frame period so as to carry out synthesis of each set
of waveform samples allotted to each channel of the
first group such that each set of the waveform samples
belonging to the first group 1s preceding reserved 1n a

buffer;

executing the second synthesis program by the processor
at the same frame period so as to carry out synthesis of
cach set of wavetorm samples allotted to each channel
of the second group such that each set of the waveform
samples belonging to the second group 1s succeeding
reserved 1n a bufler after each set of the waveform
samples belonging to the first group 1s reserved; and

converting each of the waveform samples reserved 1n the
buffer at each sampling period mto a corresponding
analog signal so as to generate the musical tones.

49. A machine readable medium according to claim 48,
wherein the operation further comprises the step of address-
ing a cache having a capacity suilicient to store a subset of
the waveform samples which 1s smaller than the set of the
waveform samples allotted to one frame period, the cache
being addressed to carry out the synthesis of each subset of
the waveform samples.

5

10

15

20

25

30

35

40

45

50

55

60

65

50

50. A machine readable medium containing instructions
for causing a computer machine having a processor to
perform operation of generating musical tones according to
performance 1nformation, wherein the operation comprises:

loading a synthesis program and an effector program
together with a subroutine program utilized commonly
for both of the synthesis program and the effector

program,

successively providing performance mmformation to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

executing the synthesis program by the processor at one
frame period so as to carry out synthesis of a set of
waveform samples allotted to one frame period such
that the subroutine program runs to process the wave-
form samples during the synthesis, the set of the
wavelform samples being reserved 1n a bufler after the
synthesis;

executing the effector program by the processor at one
frame period so as to carry out modification of the set
of the waveform samples reserved 1n the buffer to
create an elfect such that the subroutine program runs
to process the waveform samples during the
modification, each set of the waveform samples being
reserved 1n a buffer after the modification; and

converting each of the waveform samples reserved 1n the
buffer at each sampling period mto a corresponding
analog signal so as to generate the musical tones
together with the effect.

51. A machine readable medium according to claim 50,
wherein the step of loading includes selecting at least one of
a mixer subroutine program for mixing the waveform
samples and a digital filter subroutine program for filtering
the waveform samples to modily the music tones.

52. A machine readable medium containing instructions
for causing a computer machine having a processor to
perform operation of generating musical tones according to
performance information, wherein the operation comprises:

arranging an algorithm such that subroutine programs
provisionally stored 1in a memory are selectively des-
ignated according to the arranged algorithm;

assembling a synthesis program according to the algo-
rithm such that the synthesis program contaimns call
instructions for calling the designated subroutines from
the memory;

successively providing performance information to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu-
rality of sampling periods occur within one frame
per1od;

executing the synthesis program by the processor at one
frame period so as to carry out synthesis of a set of
waveform samples allotted to one frame period such
that the designated subroutine programs are sequen-
tially called 1n response to the call mstructions to
process the wavetform samples during the synthesis, the
set of the waveform samples being reserved 1n a buifer
alter the synthesis; and

converting each of the waveform samples reserved 1n the
buffer at each sampling period mto a corresponding
analog signal so as to generate the musical tones,

3,955,691

51 52
wherein different synthesis programs assembled storing a temporary set of the waveform samples which
according to different algorithms contain at least one are treated by the processor during the course of the
call instruction for calling the same subroutine. continuous synthesis and for storing a final set of the
53. A method of generating musical tones according to waveform samples which are obtamed upon comple-
performance information through a plurality of channels, the 5 tion of the continuous synthesis and which are accu-
method comprising: mulated throughout the plurality of the channels;

addressing a cache having a capacity suflicient to store a
subset of the waveform samples which 1s smaller than
the set of the waveform samples allotted to one frame

10 period, the cache being hit by the processor before the

successively providing performance mnformation to com-
mand generation of musical tones;

periodically counting a frame period;

periodically counting a sampling period such that a plu- buffer is addressed by the processor so as to carry out
rality of sampling periods occur within one frame the continuous synthesis of each subset of the wave-
period; form samples more efficiently than that the buffer is
carrying out continuous synthesis at each frame period to otherwise addressed by the processor; and
produce a set of wavetorm samples of the musical tones 15 converting each of the waveform samples reserved in the
through the plurality of channels for one frame period buffer as the final set at each sampling period into a
according to the provided performance information, corresponding analog signal to thereby generate the
accessing a bufler having a capacity sufficient to store the musical tones.

waveform samples allotted to one frame period, the
buffer being used as a working area by the processor for %k % k%

	Front Page
	Drawings
	Specification
	Claims

